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Reviewer Comment 1 & Author Response  

 

COMMENT: “This work presents a detailed analysis of the performance of one type of low cost metal-

oxide sensor for methane detection. The study involved the deployment of multiple sensors both in the 

Colorado Front Range (for a period of ~1 month) and in urban Los Angeles (for ~2 months). These 

experiments were well designed within the constraints of larger studies, providing multiple opportunities 

for infield comparison of the sensors with established methane measurement technologies. The analysis 

presented provides a thorough comparison of several calibration strategies and possible explanations for 

the observed discrepancies. The authors show that the sensors are capable of providing useful 

information on spatial variability, whilst not overstating their capabilities. Overall I feel the paper is well 

written and a valuable contribution to the growing body of work assessing the potential of low cost sensor 

technologies. I therefore recommend publication after the following minor comments have been 

addressed.” 

 

RESPONSE: The authors appreciate the overview provided by the reviewer and would like to thank the 

reviewer for their thoughtful comments.   

 

Minor Comments: 

 

COMMENT: “1) It would be beneficial to the readers if the authors could provide more detail on how 

well the sensors agreed when they were co-located. Previous work (e.g. Jiao et al. 2016; Smith et al. 

2017) has shown that variability between sensors can be significant. As Figs. 16 and 18 attribute 

observed differences between spatially distributed sensor signals to variations in methane concentrations 

at the different locations, an idea of the observed variability between co-located calibrated sensors would 

be useful. This could potentially be added as an extra panel to one or both of these figures?” 

 

RESPONSE: The authors agree that more detail regarding the inter-sensor variability would be a valuable 

addition to the manuscript. The attached figure and table (Figures 1 and 2 here, Figure 19 and Table 9 in 

the revised manuscript) have been added in an appendix to the manuscript, along with additional text 

noting where to find this figure and table as well as text discussing the inter-sensor variability. These 

additions have been made to Section 3.5 as they expand on the information already provided in Table 8 

(Table 7, prior to manuscript revisions).  

 

New text added to Section 3.5: “The details of each individual sensor versus P1 are available in Figure 19 

and Table 9, in Appendix A. These details demonstrate the extent of inter-sensor variability for co-located 

sensors and the increase in variability for deployed sensors. While there is some variability among 

correlation coefficients, for nearly all sensors the periods of enhanced methane fall along the 1:1 line and 

most offsets occur at lower methane concentrations.  Additionally, all RMSE’s for co-located sensor fall 

below our expected uncertainty, while the RMSE’s for deployed sensors is larger than this uncertainty 

(with the exception of the P1/P2 pair, which were co-located during the deployment).” 

 

COMMENT: “2) As acknowledged by the authors, the analytical method used by the sensors in this study 

is sensitive to hydrocarbons other than just methane. As oil and gas operations co-emit a variety of 

hydrocarbons along with methane it is possible that the sensor response attributed to methane could 

instead be due to other hydrocarbons. Although the authors say that this will be covered in a future 

publication, I feel the issue does require some further discussion in this manuscript. 

 

The authors state that the calibration parameters derived for the two study locations are significantly 

different, a problem well documented in the literature, but it would be useful to know which of the 



parameters in the equation show the most difference between the locations. Figure 6 shows that 

temperature and humidity observed in Los Angeles are within the range seen in Colorado, so one would 

expect the parameters associated with sensor response to these variables to be similar? It is likely that the 

hydrocarbons co-emitted with methane in Los Angeles and Colorado are different (geological basins 

often show characteristic hydrocarbon fingerprints). This would be visible as a difference in the 

parameters associated with the sensor sensitivity to methane if the sensor was responding more to the co-

emitted hydrocarbons than the methane. The authors should comment further on this source of 

uncertainty.” 

 

RESPONSE: The authors agree that the difference in optimal calibration model parameters between the 

two locations is likely the result, at least in part, of different hydrocarbon mixtures. Not only are Los 

Angeles and Colorado likely to have different hydrocarbon fingerprints associated with the geologic 

basin, but also differences in traffic and other sources will like to affect the background hydrocarbon 

mixture as well. To address this, the authors have added an additional analysis of variance on the sensor 

signal that includes some hydrocarbon species. This analysis supports the point in the paper that other 

hydrocarbons do help to explain the sensor signal, but they do not displace methane. The text below was 

added to provide context for and discussion of this analysis, and the table has been added as Table 7 to the 

revised manuscript (attached as Figure 3 here). An additional note is that methane is generally present in 

the atmosphere at much higher levels than other hydrocarbons, such as ethane. Therefore, while this 

sensor is likely responding to other hydrocarbons, methane is likely a big driver of sensor response.  

 

New text added to Section 3.4.3: “In addition to this observed cross-sensitivity to CO, we expect that 

other hydrocarbons may affect the sensor response as well. This would be an important consideration for 

measurements made in areas with oil and gas activity where the pollutant mixtures may be complex. At 

the PAO site there was also a proton-transfer-reaction quadrupole mass spectrometry (PTR-QMS) 

providing speciated VOC measurements (Halliday et al, 2016). Future work will provide a more in-depth 

analysis of VOC sensitivity and selectivity for the two MOx sensors we are using; however, we have 

included here a preliminary look at this cross-sensitivity to other hydrocarbons. Table 7 provides the 

results of another sensitivity analysis in which the explanatory power of a few speciated VOCs is 

examined. For simplicity, one VOC from different well-correlated groups was selected (e.g., benzene was 

selected out of the aromatic species). This analysis illustrates that VOCs (particularly acetaldehyde and 

benzene) do help to more fully explain the variance in the sensor signal, but they do not displace methane. 

This is most apparent for parameter sets 5 and 6, in which we see the variance explained by residuals 

increase slightly and the variance explained by temperature increase quite a bit as this factor compensates 

for the missing methane. When methane is added back in for parameter set 7, along with all three VOCs 

and CO, the variance explained by the residuals is at its lowest and the variance explained by methane is 

at 10.1%, higher than the percentages for the individual hydrocarbons. Thus, the Figaro TGS 2600 sensor 

seems to be cross-sensitive to carbon monoxide and some hydrocarbons; effects that should be considered 

or mitigated in future uses of this sensor to estimate methane.” 

 

COMMENT: “3) I am not convinced by usefulness of the methane baseline filtering approach shown in 

Fig. 5 (A.P.). Removing data points that are below a known background methane would surely introduce 

a negative bias into the sensor data and unlike the other filters does not seem to be a test of the 

calibration model, but just a method of improving the agreement statistics. These signals below 

background levels could be indicative of other sensor dependencies not captured by the calibration 

model, (e.g. changing hydrocarbon mix (see comment 2) and thus contain useful information. I would 

suggest omitting this filter or providing more justification of why it is a valid approach.”  

 



RESPONSE: The authors appreciate the reviewer’s observations regarding the inclusion of this baseline 

filtering and have chosen to add further justification for its inclusion. The authors feel that this filtering is 

valuable to leave in as it highlights the need for discussions around data processing for different purposes. 

Data processing such as this may be a necessary part of using data from low-cost sensors as these 

anomalies are likely to occur. That being said, the authors agree that this filter will likely introduce a 

negative bias and might remove valuable information about sensor behavior and response. Therefore, to 

address this comment, the authors have added further justification in the text highlighting the benefits and 

drawbacks of using this filtering – highlighting that this type of processing may be useful for sharing 

sensor data. We have also added another figure (Figure 4 here, Figure 20 in the revised manuscript) to the 

appendix illustrating that for every instance where these underestimations were removed by this filter, the 

dynamic range of methane for was less than our expected uncertainty (RMSE = .18). Therefore, this 

relationship does seem to indicate that the underestimations are related to environmental factors, or it 

might possibly be a limit of detection issue. This has also been pointed out in the text with additional 

discussion and a note to see the additional figure added to the appendix.  

  
New text added to Section 3.4.2: “The final filtering approach, utilizing atmospheric composition, should 

only be applied to sensor data selectively. Removing improbable values from sensor data that fall below 

zero or a known baseline may be a useful or even necessary strategy in certain situations. In dealing with 

air quality data, there are examples of additional processing being used to reduce negative values (Hagler 

et al., 2011), and examples of guidelines to remove negative values below a given threshold (US EPA, 

2016). For work with sensor data, if the focus of the analysis is to understand enhancements over 

background captured by sensors, then removing improbably low values can elucidate these results.  If 

preliminary data is being shared with the public, then flagging and removing improbable values can 

reduce confusion. Given the challenges in sensor quantification, this second example in particular 

warrants consideration by those using sensors in partnership with communities and the public. However, 

it is also likely that these underestimations contain valuable information about sensor behavior and 

sensitivity; removing these values will also introduce a negative bias to the data. Accordingly, when using 

this type of processing, researchers will need to be clear about why this approach is useful and valid for 

given situations. For this data set, every instance where underestimations are removed coincides with days 

having a dynamic range of methane less than the expected uncertainty for the sensor data, which indicates 

that these underestimations may be connected to a limit of detection issue. Figure 20 (Appendix B) 

demonstrates this association.” 

 

New Sources:  

 

Hagler, G. SW., Yelverton T. LB., Vedantham, R., Hansen, A. DA., Turner, J. R.: Post-processing 

method to reduce noise while preserving high time resolution in aethalometer real-time black 

carbon data, Aerosol and Air Quality Research., 11(5), 539-546, doi: 10.4209/aaqr.2011.05.0055, 

2011.    

United States Environmental Protection Agency (US EPA): Technical Note ‐ Reporting Negative Values 

for Criteria Pollutant Gaseous Monitors to AQS, information available at: 

https://www.epa.gov/sites/production/files/2017-

02/documents/negative_values_reporting_to_aqs_10_6_16.pdf (last access: April 2018), Oct. 

2016. 

COMMENT: Typographical errors: 

“Pg 15 line 12 “it is important explore” should read “it is important to explore” Pg 19 line 4 

“temperate” should read temperature” 

 



REPSPONSE: The authors have corrected this typographical error in the revised manuscript and have 

reviewed the entire manuscript once more for other errors.  

 

 

Figure 1 (Figure 19 in revised manuscript) 

 
 

Figure 2 (Table 9 in revised manuscript) 
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Figure 3 (Table 7 in revised manuscript) 

 

Source of 

Variation 
Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 

Temperature 9.6% 17.4% 10.1% 10.9% 33.7% 28.9% 16.3% 

Abs. Humidity 10.2% 11.7% 14.2% 7.5% 6.2% 9.0% 12.6% 

Time 8.9% 4.5% 9.2% 4.4% 3.0% 2.8% 5.8% 

CH4 21.8% 12.3% 14.2% 18.5% - - 10.1% 

CO 15.0% 13.6% 14.4% 19.7% - 9.8% 11.4% 

Acetaldehyde - 7.5% - - 13.4% 8.9% 6.5% 

Benzene - - 4.6% - 8.4% 6.4% 4.0% 

Methanol - - - 0.9% 0.4% 0.1% 0.3% 

Residuals 34.5% 33.0% 33.4% 38.2% 34.9% 34.1% 33.2% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

 

 

 

Figure 4 (Figure 20 in revised manuscript)  

 
 

 



Reviewer Comment 2 & Author Response 

 

COMMENT: “Overall this paper provides an in depth analysis of the use of metal oxide sensors for 

sensing of Methane in this case as part of the FRAPPE/DISCOVER-AQ and California community 

project. Investigating the use of this particular type of “small sensor” in a relatively complex and 

changeable environment is a timely investigation. The deployment environments are atypical in their 

proximity to petrochemical extraction, transport or storage activities/facilities however this adds to 

rather than detracts from the utility of this manuscript.” 

 

RESPONSE: The authors appreciate the reviewer’s overview of their manuscript and their helpful 

comments.  

 

 

COMMENT: “The particular focus on calibration is well received. The in depth discussion on calibration 

models adds to the literature around these and other low cost technologies. This reviewer feels that 

additional information regarding the field normalisation and other colocation activities would be useful. 

Particularly the practical setup used (shared inlets, enclosed chambers, flow cells or simply proximity 

etc…) and how it was replicated reliably.” 

 

RESPONSE: The authors agree that additional information on the practical setup is especially valuable in 

this case as the setup varied for each co-location. The following text was added to address this point. 

 

New text added to Section 2.4: “The setup of Y-Pods for these co-locations was governed by limitations 

at the site. In Colorado, Y-Pods were mounted to the railing of the Native Trailer (approximately 1.5 m 

above the trailer roof), which housed the reference instruments. The inlets to the reference instruments 

were approximately 2.5 m above the roof of the trailer and roughly 2 m away from the Y-Pods. For the 

first co-location in Los Angeles, the reference instrument was housed in a trailer in an open field. As we 

were not able to place the Y-Pods on the roof of the trailer, they were placed .75-1.5 m off the ground on 

the side of the trailer where the inlet was mounted. In this case, the Y-Pods were roughly 6 meters below 

and 3 m to the side of the inlet. For the second co-location in Los Angeles, the reference instruments were 

housed inside of a building. In this case the Y-Pods were mounted to a railing roughly 1-2 m off the roof. 

However, the Y-Pods were also approximately 10 m away from and 1-2 m below the inlet, as this location 

was secure and out of the way of ongoing operations at the reference site. We would expect the variability 

between co-location setups to be most important for short-term spikes in CH4 that do not pass over the Y-

Pod and inlet evenly. As discussed in Section 3.1, our co-location site in Colorado experienced the most 

short-term CH4 spikes, whereas the changes in CH4 concentration at the two LA sites were more gradual 

in nature.” 

 

COMMENT: “Additionally, information on inter-sensor differences in baseline, noise and response 

would be useful as well as a very short discussion of sensor selection (if undertaken).”  

 

RESPONSE: The authors agree with this comment as well. To provide more information on inter-sensor 

differences for co-located sensors and to demonstrate how much this variability increases when sensors 

are deployed, Figures 1 and 2 here (Figure 19 and Table 9 in the revised manuscript), have been added to 

the appendix of the manuscript showing the differences between P1 and the sensors for each other Y-Pod. 

These figures demonstrates how the inter-sensor differences are sometimes driven by offsets (resulting in 

biased data), and are sometimes driven by differences in response (resulting in a slope greater or less than 

1). However, in every case the RMSE between the sensor pair is less than our expected uncertainty for 

paired sensors. An addition to adding the figure and table to the appendix, the following text has been 

added to provide a discussion on the inter-sensor differences 



 

New text added to Section 3.5: “The details of each individual sensor versus P1 are available in Figure 19 

and Table 9, in Appendix A. These details demonstrate the extent of inter-sensor variability for co-located 

sensors and the increase in variability for deployed sensors. While there is some variability among 

correlation coefficients, for nearly all sensors the periods of enhanced methane fall along the 1:1 line and 

most offsets occur at lower methane concentrations.  Additionally, all RMSE’s for co-located sensor fall 

below our expected uncertainty, while the RMSE’s for deployed sensors is larger than this uncertainty 

(with the exception of the P1/P2 pair, which were co-located during the deployment).” 

 

 

“Further it could be informative to consider any hysteresis in these sensors from transient high 

concentration episodes (either of the detected species or of confounding species/parameters) which may 

or may not be seen in the data (irrespective or response time relative to the reference instruments).”  

 

RESPONSE: The authors found this to be an interesting question and tried to examine transient high 

concentration episodes for evidence of hysteresis. We began by selecting episodes where the range of the 

reference methane signal was greater than or equal to 1.5 ppm, the signal returned more or less to its 

starting position, and all of this occurred in the span of five minutes. Then the Matlab (a computing 

software utilized for this data processing and analysis) ‘finddelay’ function was utilized to look for 

consistent lags in the sensor data, possibly the result of hysteresis. This function can be used to identify 

delays between two columns of data as it examines the cross-correlation between two signals for different 

lags. This function was used to check for hysteresis by calculating lags for short, high-concentration 

spikes and lags for the sensor response and recovery periods separately. Given that this is minute-median 

data, the reported lags are in minutes. A limitation of this approach is that the function outputs the 

smallest absolute value for the observed lag. Thus, there may be individual events where there is a larger 

lag on either the response or the recovery period that we are missing, but we can be sure that this method 

would identify any consistent lags. Using this we found the following: 

 

Finddelay(Sensor Data, Reference Data), for complete dataset = -1 

Finddelay(Sensor Data, Reference Data), for selected spikes = 0 

Finddelay(Sensor Data, Reference Data), for positive slope on spikes = 0 

Finddelay(Sensor Data, Reference Data), for negative slope on spikes = 0 

 

This seems to indicate that there is not a consistent lag either in the sensor response or the recovery 

associated with high concentration episodes. However, looking at individual high concentration events, 

we can find examples of a lag during the recovery possibly the result of hysteresis in the sensor (Figure 3 

here, compares two spikes, one demonstrating this lag). Given the variation in the results, the authors 

believe that this issue could be examined more effectively in a lab using a controlled chamber. It is also 

worth noting that humidity is confirmed to impact both sensor response and recovery (Wang et al., 2010); 

sensors can also be poisoned (when compound bond permanently to the sensor surface) limiting their 

response and ability to recover (Masson et al., 2015a). As there is much complexity around this issue and 

the fact that we are utilizing field data (meaning we cannot be certain of all the confounding factors 

affecting a sensor) we feel we cannot adequately address this question in the manuscript and have not 

added any additional text to the manuscript on this issue.  

 

 

COMMENT: “A short discussion on the response time of the sensor and of the instrument set up in its 

case (and any calibration issues that may result from this) would be welcomed.” 

 

RESPONSE: Sensor response time verses instrument response time is an important issue to consider 

during field deployments. The authors have added specific information on reference instrument response 



time to expand the discussion currently in the paper noting the relatively slow sensor response time as 

compared to reference instruments.  

 

New text added to Section 3.1, paragraph 2: “For example, the manufacture of the Picarro cavity ring-

down spectrometer cites a gas response time under three seconds (Picarro, Inc., 2015), while Baseline 

Mocon cites a response time less than five seconds for the Series 900 Methane/Non-methane 

Hydrocarbon Analyzer (Mocon, Inc., 2017). Given these quick response times and the high flow rates 

used for sampling by the reference instruments we would not expect a lag on the part of the reference 

instrument. The sensor failing to reach steady state when exposed to a short, high concentration plume, as 

a result of slow sensor response, would be more of a concern for calibration.” 

 

 

COMMENT: “Sensor drift over time is addressed and discussed however this reviewer feel it might be 

useful to show the variation in instrument drift pod to pod (possibly as a supplemental figure) and 

campaign to campaign to help investigation of sensor ageing relative to reference grade instruments and 

potentially effective lifetimes for the use of these sensors.” 

 

RESPONSE: The authors have attempted to illustrate the drift from pod to pod by fitting the sensor data 

that using a calibration model that does not include time as predictor (Mdl3, Table 2) and then fitting time 

to the signal, in an effort to quantify the linear drift. This was performed for LA1, LA2, and LA3 and 

Figures 4 and 5 (here) depict the linear drift over time for the co-located sensors data as well as the Mdl3 

coefficients for the Y-Pod. These results illustrate the similarities in the coefficients for different 

predictors and the similarity of the linear drift values (0.009, 0.015, 0.011 ppm/week). Furthermore, this 

is similar to the values calculated by Eugster and Kling (2012) for the same sensor: 0.0156 and 0.0140. 

However, these drift values are below our uncertainty (~0.01 ppm/week over approximately 10 weeks 

results in ~.1 ppm drift), which reduces our confidence in these estimates. Below is the text we have 

added noting our additional look into drift, while also noting its limitations.  

 

While the authors do feel it would be valuable to compare pod to pod drift between campaigns, we are 

concerned that given the slightly different sensor platforms (U-Pod vs. Y-Pod), and different data 

treatment and processing (i.e., using model-specific calibration models for LA and universal calibration 

model for CO), the results could be misleading. You can also see from the added text that the authors 

have emphasized that drift and effective lifetimes are issues that will need to be addressed in future work.  

 

New text added to Section 3.2: “To examine the consistency of this drift between sensors, we compared 

the linear drift from the three LA Y-Pods by examining data converted to concentrations using Mdl3, 

which does not include time as a predictor. The results were drift values of 0.009, 0.015, 0.011 ppm/week 

for LA1, LA2, and LA3 respectively. While these numbers are similar to those reported by Eugster and 

Kling (2012), the total drift implied is less than or equal to our expected uncertainty for each Y-Pod 

making the estimates unreliable. Given the differences in the deployments and their lengths, we have a 

starting idea of drift and its consistency sensor to sensor, however a better understanding of drift as well 

as the effective lifetime of sensors will be important for future use of this and other MOx sensors.” 

 

Eugster, W., & Kling, G. W.: Performance of a low-cost methane sensor for ambient concentration 

measurements in preliminary studies, Atmospheric Measurement Techniques, 5(8), 1925–1934. 

doi: 10.5194/amt-5-1925-2012, 2012. 

 

 

 



COMMENT: “This reviewer thinks that a short discussion of cross sensitivities would be useful. 

Including with environmental parameters. Similarly, a discussion on potential differential response to 

other hydrocarbons would be useful.” 

 

RESPONSE: Acknowledgement and discussion of cross-sensitivities is especially important when 

discussing the quantification of metal-oxide sensors. While the authors feel that cross-sensitivities to 

environmental parameters have been explored in many other sensor studies (see the existing text copied 

from the manuscript below), they do agree that more information on cross-sensitivities to hydrocarbons 

would be useful. To address this point, we have added the results from another analysis of variance on the 

sensor signal that includes speciated hydrocarbons. This has been added as a table (Figure 6 here, Table 7 

in the revised manuscript) and further discussion in the manuscript. As stated in the manuscript, the 

sensitivity and selectivity of sensors to different hydrocarbons will be explored more in depth in future 

work, but this analysis provides a preliminary indication that other hydrocarbons do help to explain the 

sensor signal, but do not negate the role of methane.  

 

From Section 2.4: “Field normalizations were used to generate calibration models for the sensors. Field 

normalization provides one approach to correcting for the cross-sensitivities low-cost sensors tend to 

exhibit with respect to temperature, humidity, and other trace gases (Spinelle et al., 2015, 2017; Sadighi et 

al., 2017, Masson 2015a, 2015b; Wang et al., 2010)”. 

 

New text added to Section 3.4.3: “In addition to this observed cross-sensitivity to CO, we expect that 

other hydrocarbons may affect the sensor response as well. This would be an important consideration for 

measurements made in areas with oil and gas activity where the pollutant mixtures may be complex. At 

the PAO site there was also a proton-transfer-reaction quadrupole mass spectrometry (PTR-QMS) 

providing speciated VOC measurements (Halliday et al, 2016). Future work will provide a more in-depth 

analysis of VOC sensitivity and selectivity for the two MOx sensors we are using; however, we have 

included here a preliminary look at this cross-sensitivity to other hydrocarbons. Table 7 provides the 

results of another sensitivity analysis in which the explanatory power of a few speciated VOCs is 

examined. For simplicity, one VOC from different well-correlated groups was selected (e.g., benzene was 

selected out of the aromatic species). This analysis illustrates that VOCs (particularly acetaldehyde and 

benzene) do help to more fully explain the variance in the sensor signal, but they do not displace methane. 

This is most apparent for parameter sets 5 and 6, in which we see the variance explained by residuals 

increase slightly and the variance explained by temperature increase quite a bit as this factor compensates 

for the missing methane. When methane is added back in for parameter set 7, along with all three VOCs 

and CO, the variance explained by the residuals is at its lowest and the variance explained by methane is 

at 10.1%, higher than the percentages for the individual hydrocarbons. Thus, the Figaro TGS 2600 sensor 

seems to be cross-sensitive to carbon monoxide and some hydrocarbons; effects that should be considered 

or mitigated in future uses of this sensor to estimate methane.” 

 

COMMENT: “Potentially an associated point; This reviewer feels that the removal of reported values 

below the local background is not fully justified or explored currently as it could point to additional 

interferents or modes of behavior of the sensors. A further comment on the rational for removal of data 

spikes could also feed into this.” 

 

RESPONSE: The authors appreciate the reviewer’s observations regarding the inclusion of filtering to 

remove values below background and have chosen to add further rational for its inclusion. The authors 

feel that this filtering is valuable to leave in as it highlights the need for discussions around data 

processing for different purposes. Data processing such as this may be a necessary part of using data from 



low-cost sensors as these anomalies are likely to occur. That being said, the authors agree that this filter 

might remove valuable information about sensor behavior and response. Therefore, to address this 

comment, the authors have added further justification in the text highlighting the benefits and drawbacks 

of using this filtering – highlighting that this type of processing may be useful for sharing sensor data. We 

have also added another figure to the appendix (Figure 7 here, Figure 20 in the revised manuscript) 

illustrating that for every instance where these underestimations were removed by this filter, the dynamic 

range of methane for was less than our expected uncertainty (RMSE = .18). Therefore, this association 

seems to indicate that the underestimations are related to environmental factors, or possibly a limit of 

detection issue. This has also been pointed out in the text with additional discussion and a note to see the 

additional figure added to the appendix. 

 
New text added to Section 3.4.2: “The final filtering approach, utilizing atmospheric composition, should 

only be applied to sensor data selectively. Removing improbable values from sensor data that fall below 

zero or a known baseline may be a useful or even necessary strategy in certain situations. In dealing with 

air quality data, there are examples of additional processing being used to reduce negative values (Hagler 

et al., 2011), and examples of guidelines to remove negative values below a given threshold (US EPA, 

2016). For work with sensor data, if the focus of the analysis is to understand enhancements over 

background captured by sensors, then removing improbably low values can elucidate these results.  If 

preliminary data is being shared with the public, then flagging and removing improbable values can 

reduce confusion. Given the challenges in sensor quantification, this second example in particular 

warrants consideration by those using sensors in partnership with communities and the public. However, 

it is also likely that these underestimations contain valuable information about sensor behavior and 

sensitivity; removing these values will also introduce a negative bias to the data. Accordingly, when using 

this type of processing, researchers will need to be clear about why this approach is useful and valid for 

given situations. For this data set, every instance where underestimations are removed coincides with days 

having a dynamic range of methane less than the expected uncertainty for the sensor data, which indicates 

that these underestimations may be connected to a limit of detection issue. Figure 20 (Appendix B) 

demonstrates this association.” 

 

New Sources:  

 

Hagler, G. SW., Yelverton T. LB., Vedantham, R., Hansen, A. DA., Turner, J. R.: Post-processing 

method to reduce noise while preserving high time resolution in aethalometer real-time black 

carbon data, Aerosol and Air Quality Research., 11(5), 539-546, doi: 10.4209/aaqr.2011.05.0055, 

2011.    

United States Environmental Protection Agency (US EPA): Technical Note ‐ Reporting Negative Values 

for Criteria Pollutant Gaseous Monitors to AQS, information available at: 

https://www.epa.gov/sites/production/files/2017-

02/documents/negative_values_reporting_to_aqs_10_6_16.pdf (last access: April 2018), Oct. 

2016. 

 

 

COMMENT: Minor typographic errors: “In that vein, it is important explore the operational 

differences”: 

Missing “to” between “important” and “explore”. 

REPSPONSE: The authors have corrected this typographical error in the revised manuscript and have 

reviewed the entire manuscript once more for other errors.  

 



Figure 1 (Figure 19 in revised manuscript) 

 

 
 

 

Figure 2 (Table 9 in revised manuscript) 
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P2 0.961 0.210 
 

0.904 0.241 

E6 0.847 0.166 
 

-0.061 0.535 

E7 0.864 0.124 
 

-0.067 0.572 

E8 0.931 0.336 
 

-0.186 0.599 

F1 0.819 0.182 
 

0.221 0.550 

E9 0.931 0.095 
 

-0.454 0.655 

E10 0.929 0.107 
 

0.053 0.585 

E11 0.624 0.208 
 

0.104 0.571 

Average 0.866 0.175 
 

0.025 0.556 

Std Dev 0.092 0.073 
 

0.306 0.096 
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MDL3 Coefficients 
 

Intercept Concentration Temp. Abs. Hum. 

B2 0.116 -0.658 0.007 -90.788 

C9 -0.619 -0.647 0.009 -75.707 

D2 0.524 -0.629 0.005 -81.178 



Figure 6 (Table 7 in revised manuscript)  

 

 

 

 

Figure 7 (Figure 20 in revised manuscript)  

 

 
 

 

 

 

 

 

Marked-up/Revised Manuscript Follows 

Source of Variation Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 

Temperature 9.6% 17.4% 10.1% 10.9% 33.7% 28.9% 16.3% 

Abs. Humidity 10.2% 11.7% 14.2% 7.5% 6.2% 9.0% 12.6% 

Time 8.9% 4.5% 9.2% 4.4% 3.0% 2.8% 5.8% 

CH4 21.8% 12.3% 14.2% 18.5% - - 10.1% 

CO 15.0% 13.6% 14.4% 19.7% - 9.8% 11.4% 

Acetaldehyde - 7.5% - - 13.4% 8.9% 6.5% 

Benzene - - 4.6% - 8.4% 6.4% 4.0% 

Methanol - - - 0.9% 0.4% 0.1% 0.3% 

Residuals 34.5% 33.0% 33.4% 38.2% 34.9% 34.1% 33.2% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 



  

  1   

 

 

Assessing a low-cost methane sensor quantification system for use in 

complex rural and urban environments 

Ashley Collier-Oxandale1, Michael P. Hannigan2, Joanna Gordon Casey2, Ricardo Piedrahita3, John 

Ortega4, Hannah Halliday5, & Jill Johnston6, & Michael P. Hannigan2 5 

1Department of Environmental Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA 
2Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA 
3Berkeley Air Monitoring Group, Boulder, CO, USA 
4National Center for Atmospheric Research, Boulder, CO, 80301, USA 
5NASA Langley Research Center, Hampton, VA, 23666, USA 10 
6Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90089, USA 

Correspondence to: Ashley Collier-Oxandale (ashley.collier@colorado.edu) 

Abstract.  

Low-cost sensors have the potential to facilitate the exploration of air quality issues on new temporal and spatial scales. Here 

we evaluate a low-cost sensor quantification system for methane through its use in two different deployments. The first, was 15 

a one-month deployment along the Colorado Front Range and includeds sites near active oil and gas operations in the 

Denver-Julesberg basin. The second deployment was in an urban Los Angeles neighborhood, an subject to complex mixtures 

of air pollution sources including oil operations. Given its role as a potent greenhouse gas, new low-cost methods for 

detecting and monitoring methane may aid in protecting human and environmental health. In this paper, we assess a number 

of linear calibration models used to convert raw sensor signals into ppm concentration values. We also examine different 20 

choices that can be made during calibration and data processing, and explore cross-sensitivities that impact this sensor type. 

The results illustrate the accuracy of the Figaro TGS 2600 sensor when methane is quantified from raw signals using the 

techniques described. The results also demonstrate the value of these tools for examining air quality trends and events on 

small spatial and temporal scales as well as their ability to characterize an area – highlighting their potential to provide 

preliminary data that can inform more targeted measurements or supplement existing monitoring networks.  25 

1 Introduction 

1.1 Background and Motivation 

Given both the direct impacts on climate change and indirect impacts on human health, it is important to study increased 

atmospheric methane on varied temporal and spatial scales. Methane is an important greenhouse gas with 28 times the global 

warming potential of CO2 over a 100-year lifetime (IPCC, 2015); moreover, the majority of methane emissions result from 30 
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human activity (US EPA, 2017). Researchers using ice core samples to measure historic methane levels found relatively 

stable atmospheric concentrations of approximately 0.695 ppm from 1000 AD until the Industrial Revolution (Etheridge et 

al., 1988), after which methane concentrations have grown to a present-day global average of 1.851 ppm (NOAA, 2017). Not 

only does this increased atmospheric methane intensify climate change, but it also contributes to higher ground-level ozone – 

a public health risk (Fiore, 2008). Multiple modeling studies have revealed the benefits of reducing methane emissions, 5 

which include decreased premature mortality from respiratory illness caused by ozone (West et al., 2006; Fang et al., 2013). 

A better understanding of emissions and sources could help in the effort to reduce atmospheric methane. 

In 2015, production, storage, processing, and distribution of natural gas and petroleum were responsible for approximately 

one-third of methane emissions in the US (US EPA, 2017). While all of the leaks along thise chain fromof production to , 

processing, transmission, and distribution contribute to climate change,. vVented and fugitive emissions of methane that 10 

occur at oil and gas production sites may raise concerns for nearby communities due to potential co-emission of hazardous 

BTEX (benzene, toluene, ethylbenzene and xylene) compounds (Adgate et al., 2014; Helmig et al., 2014; Moore et al., 

2014). While all of the leaks along the chain of production, processing, transmission, and distribution contribute to climate 

change. Recent studies also suggest that methane emissions from the oil and gas sector are underestimated in current 

inventories (Miller et al., 2013;, Wilcox et al., 2014; Zavala-araiza et al., 2015; Petron et al., 2014; Subramanian et al., 15 

2015). Miller and colleagueso-workers found that methane emissions in US EPA inventories may be underestimated by a 

factor of 1.5 (Miller et al., 2013). It has been suggested that these discrepancies between measured methane and source-

based inventory estimates may be explained by “super-emitters” – a small percentage of sites or equipment that contribute a 

large portion of the emissions (Wilcox et al., 2014;, Petron et al., 2014). For example, a study in the Barnett Shale region 

found that at any given time, two percent of facilities accounted for half of methane emissions and that these sites vary 20 

spatiotemporally (Zavala-araiza et al., 2015). As described in a recent review, smart-sensing systems designed to detect leaks 

and alert operators at the well pad level may aid in identifying these events as they occur (Allen, 2014), speaking to the need 

for tools that can feasibly achieve useful spatial and temporal resolution for monitoring at the local or facility level. 

1.2 Low-Cost Sensors for Air Quality Monitoring 

1.2.1 A Place for Sensors 25 

Typically monitoring methods and technologies are driven by the research question of interest and available resources. For 

example, the National Oceanic and Atmospheric Administration (NOAA) has maintained a global monitoring network for 

methane for upwards of 30 years to study long-term atmospheric trends, seasonal cycles, and its global distribution (NOAA, 

2017). Monitoring networks can also be built on smaller scales to study methane fluxes at the regional or city-level; the 

MegaCities Project is currently undertaking this work in Southern California as is the INFLUX project in Indianapolis 30 

(Wong et al., 2015;, Davis et al., 2017). Remote sensing provides a global picture and, given the spatial coverage, this data 

can highlight hotspots at the regional-scale (Kort et al., 2014). However, interferences and satellite trajectories prevent truly 
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continuous data collection for any single location. Mobile monitoring using vehicles equipped with gas analysers as well as 

aircraft campaigns both allow for horizontally and vertically resolved spatial coverage at the neighborhood or facility level. 

Additionally, these methods facilitate the collection of high-quality data with precise instrumentation (Yacovitch et al., 2015; 

Karion et al., 2013). However, aircraft data typically represent a “moment in time” and changing meteorological conditions 

often limit the ability to repeat data collection. Ground-based mobile monitoring may be repeated more easily, however, the 5 

data collected is often periodic in nature and intended for targeted studies. Currently the scientific and regulatory 

communities are limited in their capability to collect data continuously at the neighborhood or facility level. While it would 

be possible to site the same high-quality instruments utilized in global and regional monitoring networks at a local scale, this 

approach would be costly given the expense of the equipment, the siting requirements, and the expertise needed for 

operation.  10 

Low-cost air quality sensing systems are well suited to fill this role by providing continuous measurements in high-density 

networks at a local scale. Given their versatility and capacity to provide high-spatial and temporal resolution data these 

systems could augment regulatory monitoring systems, aid in compliance monitoring (e.g., leak detection), or enable the 

public to formulate local strategies to reduce their exposure (Snyder et al., 2013). These systems are relatively easy to deploy 

and operate in nearly any type of location due to their size, low power requirements, and automated electronic data 15 

collection. These characteristics also make them more accessible for community-engaged research applications than 

conventional methods (Shamasunder, et al., 2017). For example, these systems could support a community collecting 

preliminary data, in partnership with researchers or local regulatory agencies, that could be evaluated for “hotspots” or 

correlated with community members’ experiences (e.g., odors or health symptoms) – providing more information to support 

better understandings of complex air quality issues.  20 

1.2.2 Previous Sensor Research  

Several studies have demonstrated the ability of low-cost sensors to measure pollutants of interest at ambient levels. For 

example, CO, NO, and NO2 have been measured in an urban sensor network with additional analysis demonstrating the 

ability to differentiate local emissions from regional trends (Mead et al., 2013; Heimann et al., 2015). In another example, 

researchers demonstrated the feasibility of collecting personal CO, NO2, O3, and CO2 exposure data with uncertainty 25 

estimations using a portable, wearable system (Piedrahita et al., 2014). Several studies have also made use of sensors to 

study the spatial variability of O3 on various scales (Sadighi et al., 2017; Cheadle et al., 2017; Moltchanov et al., 2015). 

Connected to this effort on sensor applications, there has been much work evaluating the performance of individual sensors 

(Masson et al., 2015a, 2015b; Spinelle et al., 2015, 2017; Lewis at al., 2015) and demonstrating the performance of different 

calibration approaches (Zimmerman et al., 2017; Kim et al., 2017; Cross et al., 2017).  30 

While many projects utilize sensors capable of detecting criteria pollutants, advances in the development of metal-oxide 

semiconductor (MOx) sensors have led to sensors capable of detecting methane in settings closer to ambient environmental 

conditions (Quaranta et al., 1999; Biaggi-Labiosa, 2012). Eugster and Kling (2012) demonstrated the ability of the Figaro 
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TGS 2600 sensor to resolve diurnal methane fluctuations in a remote area of Alaska. A similar sensor, the Figaro TGS 2611-

E00, was found to have an accuracy of ±1.7 ppm in a laboratory setting for minute-averaged data – suggesting its suitability 

for detecting substantial methane leaks (Van den Bossche et al., 2017). These and similar metal-oxide VOC sensors have 

also been utilized in other applications such as odor detection at landfills and electronic noses (Penza et al., 2015; Zhang et 

al., 2008).  5 

This paper describes a methodology for collecting and quantifying data using Figaro TGS 2600 MOx sensors to examine 

ambient trends and methane enhancements on small spatial and temporal scales. Data from two field deployments is used to 

discuss the different considerations for calibrating and deploying these sensors. The first dataset was collected in Colorado 

during the FRAPPE/DISCOVER-AQ monitoring campaigns in the summer of 2014 (Pfister et al., 2017). This deployment 

primarily measured rural and semirural areas along the Front Range north of Denver; important sources of methane in the 10 

area include oil and gas development and agriculture/ranching. The second data set was collected in California near 

downtown Los Angeles in the late-summer/early-fall of 2016 as part of a community-based research project. This 

deployment was in a mainly urban area with high-density housing near two major roadways and urban oil extraction. With 

this work, we build on the previous study by Eugster and Kling (2012) by demonstrating the use of these sensors in more 

complex environments where they are likely subject to a greater number and variety of local and regional influences. We (1) 15 

demonstrate methods for sensor calibration and validation of the Figaro TGS 2600 MOx sensors using field co-locations, (2) 

examine different options and issues that arise in the calibration process, and (3) explore the potential fo r the field data from 

these sensors to offer unique information. This paper is intended to explore ways of adapting this system to fit the needs and 

logistical constraints of different investigations in order to provide useful and relevant methane estimations. 

2 Methods 20 

2.1 Instrumentation – Low-Cost Sensor Systems 

In both deployments, embedded sensor systems termed U-Pods and Y-Pods (subsequent iterations of an open source 

platform) were used for data acquisition (mobilesensingtechnology.com). The main differences between the two versions 

were in the circuit board design and the programming, which was altered to improve reliability. Each U-Pod/Y-Pod (Pod) 

was outfitted with multiple gas-phase and environmental sensors, listed in Table 1. The two Figaro VOC sensors were 25 

originally developed for monitoring in industrial applications where much higher pollutant concentrations are expected, 

compared to ambient environmental monitoring. The following analysis will primarily utilize signals from one of these VOC 

sensors – the Figaro TGS 2600 MOx sensor. This is the same sensor used by Eugster and Kling (2012) in Alaska (2012), 

deployed here in environments characterized by complex mixtures including methane emissions and associated confounding 

gas species.  30 

Table 1: U-Pod and Y-Pod Sensor Lists 
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Sensor Type U-Pod Y-Pod 

Temp. & RH RHT03 (aka DHT22) Sensirion SHT2 

Temp. & Pres. 47 Bosh BMP085 Bosh BMP180 

Carbon dioxide ELT S-100 NDIR ELT S-300 NDIR 

Ozone SGX Corporation MiCS-2611 SGX Corporation MiCS-2611 

VOC Sensor 1 Figaro TGS 2600 MOx Figaro TGS 2600 MOx 

VOC Sensor 2 Figaro TGS 2600 MOx Figaro TGS 2600 MOx 

Additional 

Optional Sensors 

Alphasense B4 series (CO, NO, NO2, O3, SO2), 

Baseline Mocon PID 

Alphasense B4 series (CO, NO, NO2, O3, SO2), 

Baseline Mocon PID 

 

These embedded sensor systems are housed in small weather-proof plastic cases (approximately 20 cm x 25 cm x 10 cm) 

with fans to pull ambient air through the enclosure and across the sensor surfaces resulting in multiple air exchanges 

occurring each minute. The systems in these weatherproof cases can be placed outdoors for long-periods of time. They are 

powered using 12V AC/DC adapters plugged into wall power, but can use car batteries and/or solar power in remote 5 

locations. All data is logged to an onboard micro-SD card. As configured, these Pods draw roughly 11 Watts. These systems 

have been used in several other indoor and outdoor air quality studies (Casey et al., 2017; Sadighi et al., 2017;, Cheadle et 

al., 2017). Figure 1 includes a labeled photo of a Y-Pod interior and a photo of two Y-Pods deployed.  

 

 10 

Figure 1: A labeled photo of a Y-Pod interior (left) and a photo of two Y-Pods deployed at a field site (right). 

2.2 Deployment Overview 

Regulatory monitors have strict siting guidelines; however, no such constraints exist for low-cost sensor systems. Once a site 

is selected, Pod placement is chosen based on feasibility, access to air flow, and avoiding potential obstructions as much as 

possible to obtain samples that are representative of the area. As selecting sampling locations and setting up Pods is typically 15 

a joint effort with community partners, different sites often require different approaches. For example, at multi-story building 

Pods are typically placed on the roof, while at a single-family home we may place the Pod on the edge of a first story roof or 

a fence. Additional considerations include access to power, whether the instrument is obstructing a walkway or driveway, 
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and safety of the residents. In both deployments discussed in this paper, site selection was guided by the research goals and 

access to general air flow while also considering the preferences of the owner, tenants, or site manager.  

In Colorado, the Pods were used during the 2014 FRAPPE/DISCOVER-AQ campaign with the aim of characterizing small-

scale spatial variability of pollutants. This deployment lasted roughly one month. The deployment of the Pods was 

centeredcentred on a main site for the FRAPPE/DISCOVER-AQ campaign, the Boulder Atmospheric Observatory (BAO) 5 

Tower in Erie, Colorado. Fourteen Pods were placed in an approximately 10x10 km grid. The remaining four Pods were 

placed to the southwest and northeast of the grid to provide regional comparisons, with measurements taken at 

Golden/NREL, Frederick, and Platteville. All Colorado sites are shown in Figure 2.  

Also, shown in Figure 2 are the boundaries of the Wattenberg Gas Field and all active and inactive wells. In general, oil and 

gas activity increases in density moving from the south-westerneastern side of the deployment region to the north-10 

easternwestern side, with the Erie sites on the edge of the gas field. Note, the Golden/NREL site has no nearby oil and gas 

activity, while the Platteville site is surrounded by a high density of wells. The Pods were sited in rural/suburban areas 

primarily at homes, schools, or in open-space with two monitors sited at a water reclamation facility. Of the eighteen 

monitors, data from fifteen were included in the following analysis. Three monitors were excluded because of extended 

power failure, temperate/humidity sensor failure, or MOx VOC sensor malfunction. Some of Tthe remaining fifteen 15 

monitors experienced occasional power loss, but provided nearly complete datasets and all necessary sensors operated 

continuously. 

 

Figure 2: Maps of Colorado deployment area with every site displayed in the center map and the Erie sites displayed in the map 

inset on the left. The map to the right indicates active and inactive wells in the Wattenberg Gas Field along with major urban 20 
areas and counties, data courtesy of the Colorado Oil and Gas Conservation Commissions (COGCC, 2017). 

In Los Angeles, we partnered with two community-based organizations, Redeemer Community Partnership and Esperanza 

Community Housing, and deployed Y-Pods throughout a neighborhood south of downtown Los Angeles. This deployment 

lasted approximately eight weeks. The community was specifically interested in deploying a monitoring network around an 
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active oil extraction site. In this case, sites were selected at varying distances away from the drilling operation as well as 

varying distances from freeways, another potential source of pollutants (Figure 3). Thirteen of the sites were within an 

approximately 5x5 km grid, and two additional sites were located further to the northwest and northeast. These two 

additional sites were utilized because they allowed for continuous co-location with reference instruments for validation 

purposes. The deployment area in Los Angeles, was primarily urban/suburban with high-density residential areas, some 5 

commercial and industrial land use, and much higher density traffic than the Colorado deployment area.  

 

  

Figure 3: Map of Los Angeles deployment sites, the map on the left showing the deployment area and all sites where co-locations 

with reference monitors occurred, the map on the right showing the distribution of monitoring sites in relation to major roadways 10 
and the drill site of interest (note the monitor locations have been approximated to the center of their respective blocks to protect 

participant identities). 

Evaluating the performance of the Figaro TGS 2600 MOx sensor in the context of these two deployments provides the 

opportunity to better understand its strengths and limitations. In Colorado, the sensor network covered a larger area and we 

examined methane trends with respect to regional differences in potential sources. In Los Angeles, the sensor network 15 

covered a smaller area to examine local methane trends and to attempt to distinguish emissions from point sources. Another 

important distinction between the two locations is the nature of the oil and gas activity. In Colorado, the deployment was in 

the SW portion of the Denver-Julesberg Basin, which produces a mix of natural gas, condensate liquids, and crude oil (US 

EIA, 2016a). This area also includes the Wattenberg Field, which ranked in the top ten for both oil and gas producing fields 

in 2013 (US EIA, 2015). In Los Angeles, oil and gas activity refers primarily to crude oil production. California is the fourth 20 

top producing states for crude oil (US EIA 2016b), and Los Angeles County is home to more than 5,000 active oil wells 

(Sadd and Shamasunder, 2015). In both cases we expect methane to be emitted or co-emitted with other VOCs and as we 

attempt to better understand local sources, methane may serve as a valuable indicator of emissions from these types of sites. 

The ratio of methane relative to other combustion products such as CO and CO2, will likely be higher from sites related to oil 
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and gas activity than from other local sources such as traffic. (Nam et al., 2004; Popa et al., 2014; Pischl et al, 2013). While 

the two deployment locations offer contrasting sampling environments, both locations offer complexity in terms of 

number/types of sources, geography, and typical atmospheric trends.  

2.3 Sensor Signal Processing  

The operating principle of MOx semiconductor sensors is based on a reducing gas changing the resistance of a 5 

semiconductor material in a simple resistance circuit (Sun et al., 2012). In clean air, the flow of current across the sensor 

surface is limited by donor electrons in the tin dioxide that are attracted to oxygen adsorbed to the sensor’s surface. The flow 

of current increases when the target gas (e.g., methane) is present, thus reducing the amount of oxygen adsorbed to the 

sensor’s surface (Figaro, 2005a). In other words, the resistance across the sensor decreases with increasing methane. In both 

the Y-Pods and U-Pods, the sensor voltage is continuously recorded to the SD card. Using Eq. 1, provided by the sensor 10 

manufacturer, we calculate the sensor resistance (Rs) at various concentrations (Figaro, 2005b). In this equation Vc is the 

circuit voltage, Rl is the load resistance, and Vout is the logged voltage. R0 represents the resistance in clean air and the ratio 

of Rs/R0 is typically used in the analysis of MOx sensor data (Eugster and Kling, 2012; Piedrahita et al., 2014). Gas sensor 

signals, temperature, humidity, and pressure are recorded to the SD card approximately every 6-25 seconds (depending on a 

Pod’s programming). This frequent data acquisition allows for the use of minute-median data in calibration and analysis. 15 

Unless otherwise stated, this is the time-resolution used in our analysis and shown in this paper. 

𝑅𝑠 =
𝑉𝑐∗𝑅𝐿

𝑉𝑜𝑢𝑡
−  𝑅𝐿    (1) 

2.4 Sensor Calibration, Validation, and Analysis 

Field normalizations were used to generate calibration models for the sensors. Field normalization provides one approach to 

correcting for the cross-sensitivities low-cost sensors tend to exhibit with respect to temperature, humidity, and other trace 20 

gases (Spinelle et al., 2015, 2017; Sadighi et al., 2017;, Masson 2015a, 2015b; Wang et al., 2010). and t This method is 

implemented by co-locating low-cost sensor systems with high-quality reference instruments (typically regulatory-grade 

monitors) for a given period and then generating a calibration model using an approach such as linear regression. These 

calibration models predict the methane concentration (in ppm) based on the sensor signal (Rs/R0) and other predictors. An 

advantage of calibrating sensors in the field as opposed to in a laboratory setting is that the models will be trained for the 25 

pollutant levels of interest, and across the same dynamic temperature and humidity values that a sensor will likely experience 

during field deployment. In a study involving personal air quality monitors, Piedrahita and colleagues-workers (2014) 

successfully calibrated sensors and provided sensor-specific uncertainty estimates using this method. 

In Colorado, we co-located U-Pods with a Los Gatos cavity ring-down spectrometer operated by the Penn State Native 

Trailer team at the Platteville Atmospheric Observatory in Platteville, CO. In Los Angeles, we co-located Y-Pods with 30 

reference instruments at two different sites. The pre-deployment co-location was with a Baseline Mocon Series 900 
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Methane/Non-methane Hydrocarbon Analyzer located in a primarily residential suburban area of Los Angeles. The post-

deployment calibration was with a Picarro cavity ring-down spectrometer located in a suburban/urban area with a mix of 

residential, retail, and industrial land use. Reference instruments at both Los Angeles sites were operated by the South Coast 

Air Quality Management District. The timelines in Figures 4 and 5 illustrate when Pods were co-located vs deployed in the 

field as well as, which data was used for the generation of calibration models (i.e., training data) versus the validation of 5 

those models (i.e., testing data). Note for the Colorado deployment, both before and after the field deployment, the montiors 

were co-located in batches due to logistical constraints. Arrows indicate the movement of batches of montiors, and the “Not 

in Use” row clarifies whether Pods were deployed. In additon, during the Colorado deployment, a single calibration model (a 

universal model) was developed based on the data from the “Main U-Pod”, described in greater detail below. For the Los 

Angeles deployment, calibration models specific to each Y-Pod (sensor-specific models) were used.  10 

The setup of Y-Pods for these co-locations was governed by limitations at the site. In Colorado, Y-Pods were mounted to the 

railing of the Native Trailer (approximately 1.5 m above the trailer roof), which housed the reference instruments. The inlets 

to the reference instruments were approximately 2.5 m above the roof of the trailer and roughly 2 m away from the Y -Pods. 

For the first co-location in Los Angeles, the reference instrument was housed in a trailer in an open field. As we were not 

able to place the Y-Pods on the roof of the trailer, they were placed .75-1.5 m off the ground on the side of the trailer where 15 

the inlet was mounted. In this case, the Y-Pods were roughly 6 meters below and 3 m to the side of the inlet. For the second 

co-location in Los Angeles, the reference instruments were housed inside of a building. In this case the Y-Pods were 

mounted to a railing roughly 1-2 m off the roof. However, the Y-Pods were also approximately 10 m away from and 1-2 m 

below the inlet, as this location was secure and out of the way of ongoing operations at the reference site. We would expect 

the variability between co-location setups to be most important for short-term spikes in CH4 that do not pass over the Y-Pod 20 

and inlet evenly. As discussed in Section 3.1, our co-location site in Colorado experienced the most short-term CH4 spikes, 

whereas the changes in CH4 concentration at the two LA sites were more gradual in nature. 

 

 

Figure 4: Timeline for Colorado, indicating when monitors were co-located together in batches before and after the field 25 
deployment, as well as, illustrating how 2 U-Pods were sited with a reference instrument during the field deployment (and this 

data was used for calibration generation or training data verses model validation or testing data)  
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Figure 5: Timeline for LA indicating when Y-Pods were co-located together with reference instruments before and after the field 

deployment, as well as which data was used for calibration generation (training data) verses model validation (testing data)  

For both deployments, four days of data at the beginning and four days at the end of the co-location with reference 

instruments were used to generate the calibration models. Specifically, for Colorado, four days at the beginning and end of 5 

the field deployment were used for generating the quantification model; while in Los Angeles, four days from both the pre 

and post co-location were used for model generation. The remaining data from co-locations was then used for model 

validation (approximately eighteen days for Colorado and four days for LA). Table 1 lists the calibration models that were 

compared. Several models (the simpler ones) selected are commonly used in sensor calibration, while the more complicated  

models were selected based on predictors that aided in correcting for cross-sensitivity and resulted in more normal residuals. 10 

The models are listed in order of their complexity, beginning with the addition of environmental parameters, then 

interactions, and then transformations. Regression analysis provides sensor-specific coefficients for predictor variables. The 

models are then inverted, so that gas concentration is expressed as a function of sensor signals and can then be used to 

predict pollutant concentrations using new data collected in the field. This inverted model approach is typical for field 

normalization (Piedrahita et al., 2014; Spinelle et al., 2015, 2017). Evaluation of model performance was based on the 15 

coefficient of determination and the root mean squared error, as well as an analysis of the residuals in relation to relevant 

environmental and air quality parameters. Validation data provides the opportunity to evaluate the consistency of each 

model’s performance based on the same metrics but with the and the addition of mean bias.  

Table 2: Calibration Models 

Mdl # Description Model Equation  

1 Mdl1 𝑅𝑠 𝑅0⁄ =  𝑝1 + 𝑝2(𝐶) 

2 Mdl3 𝑅𝑠 𝑅0⁄ =  𝑝1 + 𝑝2(𝐶) + 𝑝3(𝑇) + 𝑝4(𝐻) 

3 Mdl4 𝑅𝑠 𝑅0⁄ =  𝑝1 + 𝑝2(𝐶) + 𝑝3(𝑇) + 𝑝4(𝐻) + 𝑝5(𝑇𝑖) 

4 Mdl4_1Int 𝑅𝑠 𝑅0⁄ =  𝑝1 + 𝑝2(𝐶) + 𝑇(𝑝3 + 𝑝6(𝐶)) + 𝑝4(𝐻) + 𝑝5(𝑇𝑖) 

5 Mdl4_2Int 𝑅𝑠 𝑅0⁄ =  𝑝1 + 𝑝2(𝐶) + 𝑇(𝑝3 + 𝑝6(𝐶)) + 𝑝4(𝐻) + 𝑝5(𝑇𝑖) + 𝑝7(𝑇 ∗ 𝐻) 

6 Mdl4_1Int_Tr 𝑅𝑠 𝑅0⁄ =  𝑝1 + 𝑝2(𝐶) + 𝑇(𝑝3 + 𝑝6(𝐶)) + 𝑝4(𝑙𝑛(𝐻)) + 𝑝5(𝑇𝑖) 

7 Mdl4_2Int_Tr 𝑅𝑠 𝑅0⁄ =  𝑝1 + 𝑝2(𝐶) + 𝑇(𝑝3 + 𝑝6(𝐶)) + 𝑝4(𝐻−1) + 𝑝5(𝑇𝑖) + 𝑝7(𝑇 ∗ 𝐻−1) 

8 Mdl5_1Int 𝑅𝑠 𝑅0⁄ =  𝑝1 + 𝑝2(𝐶) + 𝑇(𝑝3 + 𝑝6(𝐶)) + 𝑝4(𝐻) + 𝑝5(𝑇𝑖) + 𝑝7(𝑇𝑑) 
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9 Mdl5_2Int 𝑅𝑠 𝑅0⁄ =  𝑝1 + 𝑝2(𝐶) + 𝑇(𝑝3 + 𝑝6(𝐶)) + 𝑝4(𝐻) + 𝑝5(𝑇𝑖) + 𝑝7(𝑇 ∗ 𝐻) + 𝑝8(𝑇𝑑) 

10 Mdl5_1Int_Tr 𝑅𝑠 𝑅0⁄ =  𝑝1 + 𝑝2(𝐶) + 𝑇(𝑝3 + 𝑝6(𝐶)) + 𝑝4(𝑙𝑛(𝐻)) + 𝑝5(𝑇𝑖) + 𝑝7(𝑇𝑑) 

11 Mdl5_2Int_Tr 𝑅𝑠 𝑅0⁄ =  𝑝1 + 𝑝2(𝐶) + 𝑇(𝑝3 + 𝑝6(𝐶)) + 𝑝4(𝐻−1) + 𝑝5(𝑇𝑖) + 𝑝7(𝑇 ∗ 𝐻−1) + 𝑝8(𝑇𝑑) 

Predictors (lower case p with subscripts) are C – pollutant concentration (ppm methane), T – temperature, H – absolute humidity, 

Ti – continuous time, Td – categorical time of day, and model identifiers are Mdl# - indicates the number of predictors, #Int – 

indicates the number of interactions, Tr – indicates use of transformations. The predictor p1 indicates an empirical constant. 

Given the structure of each deployment and availability of co-located data, two different approaches to developing and 

applying calibration models were used: a universal calibration model vs. sensor-specific models. For the Colorado 5 

deployment, a universal calibration model was developed using the data from one sensor and this model was applied to all 

the sensors. As shown in Figure 4, two U-Pods were co-located with the reference instrument throughout the field 

deployment. The data from one of these Pods was used along with the following process: (1) generate a universal calibration 

model using data from the “Main U-Pod” co-located with the reference instrument, (2) normalize all of the other U-Pods’ 

raw sensor signals to the “Main U-Pod” using data from when they were co-located together before and after the field 10 

deployment, and (3) apply the universal calibration model to the normalized sensor data from each Pod. The second U-Pod 

co-located with the reference instrument allows for validation of this method. 

For the Los Angeles deployment, sensor-specific calibration models unique to each Y-Pod were used. As shown in Figure 5, 

the Y-Pods were all co-located together with reference instruments before and after the field deployment providing the 

opportunity to generate and use sensor-specific models. Additionally, one Y-Pod in Los Angeles was deployed with a 15 

reference instrument throughout the field deployment providing an additional set of validation data (referred to as Validation 

2). This data offers the opportunity to calibrate the Los Angeles data using both sensor-specific calibration models and a 

universal calibration model – a direct comparison demonstrating the relative performance of these two methods. This offers 

an informative comparison as there may be instances where only one method is possible given logistics, such as access to 

reference instruments. Another advantage to this universal calibration model approach would be that the calibration models 20 

isare not extrapolating in time as the training data would cover the complete field deployment period.  

3. Results & Discussion  

3.1 Differences in Reference Data and Environmental Conditions that Impact Calibration  

Different sampling environments necessitate the use of different strategies to produce the strongest calibration for each 

dataset. Reasons for this may be differences in local sources or metrological trends. Figures 6a and 6b illustrate the 25 

difference in temperature and humidity values observed during calibration verses validation periods for both locations. In 

Colorado, the temperature and absolute humidity observed during the validation period is generally well represented by the 

data collected during the calibration period, although there are some high and low humidity values at certain temperatures 

that fall outside of the calibration parameter space. Conversely, in Los Angeles, the full range of temperature and humidity 
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values observed during the validation period are captured in the calibration period. However, the Los Angeles data has many 

temperature/humidity combinations that are unique to the validation period.  

Other sensor limitations must be considered as well, for example relatively slow sensor response. A low-cost sensor with an 

operating principle relying on chemical reactions may not have time to fully detect a passing plume (Arfire et al., 2016) 

whereas this is not an issue for high-quality reference instruments that rely instead on optical properties. The manufacture of 5 

the Picarro cavity ring-down spectrometer, for example, cites a gas response time under three seconds (Picarro, Inc., 2015); 

while Baseline Mocon cites a response time less than five seconds for the Series 900 Methane/Non-methane Hydrocarbon 

Analyzer (Mocon, Inc., 2017). Given these quick response times and the high flow rates used for sampling by the reference 

instruments we would not expect a lag on the part of the reference instrument. The sensor failing to reach steady state when 

exposed to a short and high concentration plume, as a result of slow sensor response, would be more of a concern for 10 

calibration. This limitation may result in sensor data that is fundamentally different from reference data further complicating 

the calibration model generation. One option for addressing this issue, explored below, is filtering short-duration reference 

data features prior to model generation. Demonstrating the need for this step, Figures 6d and 6e each show three days of data 

from the reference monitors in which the diurnal patterns are similar, but the Colorado data also includes short-term 

enhancements or ‘spikes’ in methane possibly from the oil and natural gas extraction activity in the study region. The 15 

histogram in Figure 6c depicts the changes in methane values for each data set from minute to minute, further highlighting 

instances in the Colorado data where methane levels change by .5 or even 1 ppm over the course of a minute. These 

differences in the environmental parameter spaces emphasize the need to customize quantification methods to each dataset. 

 

Figure 6: Subplots 6a and 6b are the temperature and humidity values observed during calibration and validation periods in 20 
Colorado and Los Angeles respectively. While subplot 6c is a histogram of the changes in methane from minute to minute (for the 

reference data); and 6d and 6e are three days of minute-resolution data from the reference instruments in Colorado and Los 

Angeles respectively. 

3.2 Comparing Calibration Models 

Table 3 contains the resulting statistics for each of the models described in Table 2 for one Colorado U-Pod and three Los 25 

Angeles Y-Pods. Three Y-Pods were selected randomly to facilitate analysis of the universal model method and provide an 

initial indication of calibration model consistency across different sensors. This table lists the coefficient of determination 
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(R2) and the root mean squared error (RMSE) as well as the mean bias for the validation data. In all cases, these are the 

statistics for the fitted sensor data (converted into ppm CH4) versus the reference methane data. Note, the second value in the 

Colorado data is the result when a filter is used to remove short-term spikes from the reference and sensor data. Filtering the 

Los Angles reference data did not change any of the statistics for that dataset and therefore was not used. This filter removes 

spikes that are greater than twice the past hour’s standard deviation and last less than five minutes in duration.  5 

Table 3: Calibration Model Generation and Validation Results  

   CALIBRATION DATA  VALIDATION DATA 

# Mdl POD R2 RMSE (ppm)  R2 RMSE (ppm) Mean Bias 
         

1 Mdl1 CO; Filt. 0.463; 0.469 0.391; 0.369  0.456; 0.459 0.398; 0.378 0.014; 0.007 

  LA 1 0.244 0.561  0.550 0.438 -0.381 

  LA 2 0.257 0.541  0.556 0.444 -0.388 

  LA 3 0.229 0.582  0.552 0.434 -0.379 
   

      

2 Mdl3 CO; Filt. 0.498; 0.507 0.367; 0.346  0.329; 0.331 0.576; 0.550 -0.035; -0.040 

  LA 1 0.514 0.310  0.402 0.240 0.024 

  LA 2 0.522 0.304  0.434 0.248 -0.079 

  LA 3 0.552 0.286  0.481 0.225 0.003 
   

      

3 Mdl4 CO; Filt. 0.574; 0.590 0.314; 0.292  0.392; 0.401 0.483; 0.453 -0.038; -0.035 

  LA 1 0.500 0.319  0.380 0.252 0.070 

  LA 2 0.479 0.331  0.368 0.249 0.045 

  LA 3 0.526 0.301  0.438 0.250 0.096 
   

      

4 Mdl4_1Int CO; Filt. 0.596; 0.625 0.300; 0.271  0.423; 0.449 0.437; 0.383 -0.024; -0.011 

  LA 1 0.747 0.184  0.518 0.224 0.047 

  LA 2 0.765 0.176  0.558 0.212 0.026 

  LA 3 0.752 0.181  0.527 0.225 0.069 
   

      

5 Mdl4_2Int CO; Filt. 0.588; 0.618 0.305; 0.275  0.432; 0.462 0.441; 0.384 -0.019; -0.011 

  LA 1 0.753 0.181  0.496 0.229 0.053 

  LA 2 0.776 0.171  0.536 0.218 0.035 

  LA 3 0.752 0.181  0.527 0.226 0.067 
   

      

6 Mdl4_1Int_Tr CO; Filt. 0.593; 0.622 0.302; 0.273  0.425; 0.451 0.440; 0.385 -0.034; -0.019 

  LA 1 0.737 0.189  0.512 0.341 0.264 

  LA 2 0.761 0.177  0.457 0.389 0.316 

  LA 3 0.745 0.184  0.525 0.380 0.316 
   

      

7 Mdl4_2Int_Tr CO; Filt. 0.588; 0.616 0.305; 0.275  0.440; 0.465 0.430; 0.379 -0.041; -0.027 

  LA1 0.784 0.167  0.627 0.198 0.061 

  LA2 0.813 0.151  0.667 0.202 0.096 

  LA3 0.776 0.169  0.655 0.217 0.120 
   

      

8 Mdl5_1Int CO; Filt. 0.597; 0.625 0.300; 0.271  0.426; 0.451 0.435; 0.382 -0.021; -0.009 

  LA 1 0.809 0.154  0.630 0.206 0.076 

  LA 2 0.812 0.153  0.635 0.202 0.070 
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  LA 3 0.805 0.156  0.626 0.213 0.095 
   

      

9 Mdl5_2Int CO; Filt. 0.588; 0.618 0.305; 0.274  0.438; 0.466 0.437; 0.382 -0.014; -0.008 

  LA1 0.827 0.146  0.571 0.225 0.092 

  LA2 0.833 0.142  0.580 0.222 0.091 

  LA3 0.819 0.149  0.579 0.229 0.108 
   

      

10 Md5_1Int_Tr CO; Filt. 0.594; 0.622 0.302; 0.272  0.428; 0.453 0.437; 0.384 -0.032; -0.018 

  LA1 0.800 0.158  0.709 0.282 0.225 

  LA2 0.807 0.154  0.630 0.341 0.285 

  LA3 0.795 0.160  0.678 0.332 0.281 
   

      

11 Mdl5_2Int_Tr CO; Filt. 0.588; 0.617 0.305; 0.275  0.445; 0.467 0.426; 0.377 -0.038; -0.026 

  LA1 0.820 0.149  0.756 0.160 0.040 

  LA2 0.831 0.143  0.734 0.180 0.083 

  LA3 0.804 0.156  0.731 0.190 0.104 
         

 

Figures 7a and 7b provide a graphical representation of the same statistics from Table 3 and emphasize the differences in 

results between the two datasets. For the Colorado data, the greatest improvement in fit was observed when time was added 

as a predictor, but then the results level off with no major improvements as the models increase in complexity. However, the 

results consistently returned a higher R2 and lower RMSE when short-term methane spikes were filtered prior to model 5 

generation. In the Los Angeles dataset, there was continual improvement as models increased in complexity, with the most 

complex model producing a high R2 and low RMSE as well as the most consistency across both the calibration and 

validations datasets. 

  

Figure 7: Plotted R2 (left, a) and RMSE (right, b) for all models, circle markers indicate results from calibration generation (using 10 
the training data) and asterisk markers indicate results from the application of the models to the validation data (or testing data).  

Figures 8 and 9 provide plots of the ‘best-fitting’ calibration models for each dataset based on regression statistics, 

consistency across calibration and validation data, and an analysis of the residuals. For the Colorado data, the selected model 

was the simplest well-fitting model, the fourth model. While for the Los Angeles data, the selected model was the most 
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complex model tested, the eleventh model. With regards to both data sets, the selectedse models produced the most normal 

residuals, that also did not exhibit major trends in relation to with the predictors, and they resulted in the closest one-to-one 

relationship between the fitted sensor data and the reference data. The time series plots also display the performance of the 

calibration model on the validation data set.  

 5 

Figure 8: ‘Best-fitting’ model for the Colorado data with residual analysis, model: MDL4_1INT (for validation data, RMSE = .383 

ppm, mean absolute percent error = 12.13%). Subplots 8a, 8b, 8c are timeseries of the reference data and converted sensor data. 

Subplot 8d is a scatterplot of the same data. Subplots 8e, 8f, 8g, 8h, and 8i are the residuals from the claibration generation.  
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Figure 9: ‘Best-fitting’ model for the Los Angeles data with residual analysis (LA1 shown), model: Mdl5_2Int_Tr (for validaiton 

data, RMSE = .160 ppm, mean absolute percent error = 5.75%). Subplots 9a, 9b, 9c are timeseries of the reference data ans 

converted sensor data. Subplot 9d is a scatterplot of the same data. Subplots 9e, 9f, 9g, 9h, and 9i are the residuals from the 

claibraiton generation. 

As demonstrated by these two datasets, calibration models are not “one-size-fits-all”. While the deployments in Los Angles 5 

and Colorado occurred at roughly the same time of year, the best-fitting calibration models and regression results proved to 

be quite different. This speaks to the need to consider the environmental and pollutant parameter space both when planning a 

deployment and when processing data. For example, more complex temperature and humidity behavior may require more 

complex corrections. Additionally, if there is little overlap between conditions observed during calibration/, validation, and 

field deployment then the resultingless dependable calibrations will be less dependableresult. Likely, there are factors 10 

beyond environmental parameter space driving differences between sensor and reference data. In that vein, it is important to 

explore the operational differences between the reference instrument and the sensors, including distance apart and proximity 

to significant sources. Here, we compensated for those operational differences by filtering ‘spikes’ from the reference data;  

another modification could be to use a different averaging time such as hourly instead of minute data. Finally, tThis analysis 

demonstrates the importance of exploring different models, transformations of variables, and treatments of the data to find 15 

the model that provides the strongest methane estimates. 

One feature of the models that applied to both datasets was a correction for sensor drift over time, emphasizing the 

importance of collecting data that either bookends or spans the duration of the field deployment. Even though the final 

models selected here differed, both included a correction for sensor drift over time and a pre or post only calibration would 

not have allowed for this correction. To examine the consistency of this drift between sensors, we compared the linear drift 20 

from the three LA Y-Pods by examining data converted to concentrations using Mdl3, which does not include time as a 

predictor. The results were drift values of 0.009, 0.015, 0.011 ppm/week for LA1, LA2, and LA3 respectively. While these 

numbers are similar to those reported by Eugster and Kling (2012), the total drift implied is less than or equal to our 

expected uncertainty for each Y-Pod making the estimates unreliable. Given the differences in the deployments and their 

lengths, we have a starting idea of drift and its consistency sensor to sensor, however a better understanding of drift as well 25 

as the effective lifetime of sensors will be important for future use of this and other MOx sensors. Finally, this analysis 

demonstrates the importance of exploring different models, transformations of variables, and treatments of the data to find 

the model that provides the strongest methane estimates.  

3.3 Sensor-Specific vs. Universal Calibration Models 

The additional validation data (Validation 2) collected during the field deployment in Los Angeles facilitates a comparison 30 

of the sensor-specific verses the universal calibration model approach. Several calibration models were generated using this 

additional co-located data (Figure 5), including the two models selected in the previous section as ‘best-fitting’. These 

models were then applied to normalized data from the other two Los Angeles Y-Pods included in the previous section. The 
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raw sensor data from the Figaro TGS 2600 sensors was normalized using a simple linear regression (the R2 values for these 

regressions were 0.989 and 0.999 respectively).  

 

Table 4: Calibration and Validation Results for the Universal Calibration Method, (* - normalized Y-Pod data)  

  CALIBRATION DATA  VALIDATION DATA 

 
 R2 RMSE 

 
 R2 RMSE Mean Bias 

MDL1 (1) 
LA1 0.154 0.493   0.209 0.856 -0.396 
LA2*     0.223 0.835 -0.382 
LA3*     0.201 0.836 -0.377 

         

MDL3 (2) 
LA1 0.500 0.214   0.404 0.565 -0.249 
LA2*     0.438 0.581 -0.292 
LA3*     0.419 0.548 -0.256 

         

MDL4 (3) 
LA1 0.496 0.215   0.397 0.577 -0.261 
LA2*     0.434 0.589 -0.304 
LA3*     0.412 0.560 -0.268 

         

MDL4_1INT (4) 
LA1 0.463 0.230   0.372 0.622 -0.283 
LA2*     0.411 0.624 -0.324 
LA3*     0.387 0.606 -0.288 

         

MDL5_2INT_TR (11) 

LA1 0.477 0.223   0.486 0.334 -0.098 
LA2*     0.532 0.348 -0.139 
LA3*     0.529 0.336 -0.129 

 5 

Similar to the results from Section 3.2, the same model (MDL5_2INT_TR, mdl 11) emerges as the strongest for this 

particular dataset given that the validation statistics include the highest R2 and lowest RMSE. An important note is that 

overall the results using this method are not as strong as the results seen using the sensor-specific models in the previous 

section. One reason for this may be that we are attempting to fit roughly six weeks, rather than four days for the calibration 

model generation meaning the model is attempting to cover a larger environmental parameter space. This might also explain 10 

why the results for the ‘best-fitting’ model are better for the validation period, which is much shorter. In any case, this 

calibration model approach provides useful information regarding methane levels (e.g., diurnal trends), as is demonstrated by 

Figure 10, and this method can be used to convert the normalized signals from other sensors to a ppm value when logistics 

limit the potential for co-locating all sensors, whether due to time constraints or the limited availability of power/space at a 

co-location site. As the logistics of the Colorado deployment did not allow for sensor-specific calibrations, the universal 15 

calibration model approach is used below in Section 3.5 to convert the Colorado field data from all the U-Pods.  
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Figure 10: Time series of the universal calibration model (for MDL5_2INT_TR) generated using the Validation 2 

period (10b), and the application of the model to the pre and post-deployment colocation data (10a and 10c) for Y-

Pods LA1 and the normalized data from LA2 and LA3. 

3.4 Further Sensor Quantification Considerations 5 

Comprehensive best-practices to guide the use of low-cost air quality sensors have not been established. A recent workshop 

for low-cost sensors outlined some of the concerns shared throughout the research community including deployment 

logistics, data formatting and sharing, communication of uncertainty, etc. (Clements et al., 2017). With our datasets, we 

investigated three questions related to the development of best practices: the length of a co-location for a field normalization, 

additional dataset-specific filtering based on environmental parameters, and cross-sensitivities to non-methane pollutants.  10 

3.4.1 Length of Co-location  

Bootstrapping methods were applied to determine the variability and effectiveness of different co-location lengths for the 

Colorado data. A starting point in the complete dataset was randomly selected and consecutive data of varying lengths (0.5, 

3, 7, or 14 days) was used to generate a calibration model. This model was then applied to the entire dataset for validation. 

For comparison purposes three different models were tested with 20 iterations for each model. The resulting statistics are 15 

plotted in Figure 11 along with error bars for +/- one standard deviation.  
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Figure 11: R2 (left, 11a) and RMSE (right, 11b) for the calibration model generation (based on a given length of time) and the 

application of those models to the complete Colorado data. Note, calibration data, or training data, selected using a random stating 

point in the complete Colorado dataset and the appropriate amount of consecutive data. The colors indicate the model, and solid 

lines indicate calibration results verses dashed lines indicating validation results.  5 

The simplest model (Mdl1), using only sensor signal and no environmental predictors, seems to perform consistently well 

for all lengths of time, however the residuals reveal strong trends with temperature and humidity indicating that these 

variables are not being corrected for. Given the analysis of the residuals, this model may provide useful information, but it s 

implementation is also likely to be misleading. For example, this model may be useful in applications that do not require 

detailed analysis or decision making based on the data, such as education and outreach in a K-12 classroom where sensors 10 

are used for labs or student projects (Collier et al., 2015). Taking into account residuals, Mdl3 provides some correction for 

temperature and humidity effects without overfitting on shorter co-location lengths. Mdl4_1Int, which includes time as a 

predictor, is the best performing model for co-location periods of two weeks. Given that time was a useful predictor in 

Section 3.2, the fact that the data is spanning two weeks is probably more important than having two full weeks of co-located 

data. This means that the co-location data must be long enough or span a long enough duration relative to the complete 15 

dataset in order to provide a time correction that does not lead to overfitting and poor performance on validation data. While 

greater complexity can provide a better calibration model, a sufficient amount of data must be used to avoid overfitting. 

Simply stated, the model selection should be appropriate to the data’s characteristics and intended purpose. 

3.4.2 The Impact of Model Extrapolation 

The additional co-located data from Los Angeles (Validation 2) facilitates a more in-depth exploration of the outlier 20 

residuals and approaches that could improve the predictive power of the calibration model. For example, dataset specific 

filters were applied to remove values where extrapolation is likely occurring in field data. Extrapolation in this case, would 

be instances where one or more predictors are outside of the range of values used to train the calibration model. Table 5 

provides the statistics that result from applying the calibration model with and without this added filtering. The unfiltered 
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dataset statistics are the same results explored in Section 3.2. All other statistics in the table were calculated after values not 

observed during calibration were removed. In the first filtered grouping in Table 5, instances where individual temperature 

or humidity values, etc. (primarily extreme values) not observed were removed. In the second grouping, all data 

combinations not observed during calibration were removed, meaning all instances where exact combinations of 

temperatureate, humidity, etc. were not observed. The final filtering option, shown in the fourth section, applies knowledge 5 

of atmospheric composition to assist with filtering. In this instance, the atmospheric baseline of methane was used to filter 

out low sensor concentration values; the baseline was determined by the minimum value observed in the CH4 reference data. 

The final filtering approach should only be applied to sensor data selectively. Removing improbable values from sensor data 

that fall below zero or a known baseline may be a useful or even necessary strategy in certain situations. In dealing with air 

quality data, there are examples of additional processing being used to reduce negative values (Hagler et al., 2011), and 10 

examples of guidelines to remove negative values below a given threshold (US EPA, 2016). For work with sensor data, if the 

focus of the analysis is to understand enhancements over background captured by sensors, then removing improbably low 

values can elucidate these results. If preliminary data is being shared with the public, then flagging and removing improbable 

values can reduce confusion. Given the challenges in sensor quantification, this second example in particular warrants 

consideration by those using sensors in partnership with communities. However, it is also likely that these underestimations 15 

contain valuable information about sensor behavior and sensitivity; removing these values will also introduce a negative bias 

to the data. Accordingly, when using this type of processing, researchers will need to be clear about why this approach is 

useful and valid. For this data set, every instance where underestimations are removed by the filter coincides with days 

having a dynamic range of methane less than the expected uncertainty for the sensor, which indicates that these 

underestimations may be connected to a limit of detection issue. Figure 20 (Appendix B) demonstrates this association.   20 

Table 5: Additional Filtering to Improve Calibration Model Performance on Field Data 

 Data R2 RMSE Mean Bias n 

 Calibration 0.820 0.149 -0.002 9822 

Unfiltered datasets Validation 1 0.756 0.160 0.040 5461 

 Validation 2 0.527 0.166 -0.032 71411 

Using only values  

represented in the 

calibration data 

Temperature 0.529 0.167 0.031 70340 

Absolute Humidity 0.529 0.166 0.031 71551 

Resistance 0.548 0.160 0.028 70851 

Wind Speed/Wind Dir. 0.526 0.167 0.031 69578 

Temp, AH, & Res 0.552 0.160 0.026 69473 

Using only paired values seen 

in the calibration data 

Temp & AH 0.564 0.157 0.030 51233 

Temp, AH, & Res 0.574 0.160 0.063 20059 

Temp, Res, & WS/WD 0.715 0.188 0.091 7645 

Adding atm. principles (A.P.) CH4 baseline applied 0.552 0.160 0.047 71736 

Selected filtering Temp, AH, Res, & A.P. 0.581 0.153 0.041 69473 
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Additional filtering at nearly each stage yields some improvement in statistics, with the removal of the complete data 

combinations not seen during calibration resulting in the largest improvements, however this method also removes a large 

portion of the data. The combination of applied knowledge of atmospheric composition and the removal of extreme 

individual values not observed during calibration yields improvements while maintaining a substantial amount of the data. 

This result, labeled ‘Selected filtering’, suggests that this more conservative version of filtering may be sufficient. Not only 5 

did this filtering result in a RMSE that is lower than the RMSE for first validation dataset (0.1525 ppm and 0.1601 ppm 

respectively), but also these improvements are visible in a plot of the data. Figure 12a provides an overview of the complete 

dataset and highlights where some of the under-predictions are corrected for before 9/7 and 9/17, likely driven by the filter 

utilizing atmospheric principles. Figure 12b, shows a close-up of a couple of days illustrating a reduction in over-prediction, 

driven by the filter for either temperature, humidity, or resistance values. 10 

As was demonstrated with the Validation 2 dataset, we expect that applying the same filtering to each deployed sensor’s data 

should result in more reliable field data from all of the sites. Thus in addition to filtering data prior to calibration by 

removing short-duration enhancements in the reference data, filtering converted sensor data can improve the reliability of 

calibrated dataation models. While the bounds for this type of filtering should be dataset-specific, this step could easily be an 

automated addition to low-cost sensor quantification procedures.  15 

 

Figure 12: 12a includes the complete Validation 2 dataset from the Los Angeles deployment. The statistics for each are: RMSE = 

.17 ppm and absolute percent relative error = 6.77% for the unfiltered data (blue); RMSE = .15 ppm and absolute percent relative 

error = 6.19% for the filtered data (green), with the reference data plotted in black. 12b is a close-up of approximately two days 

illustrating an instance where the filtering helped to reduce an over-prediction of methane concentrations.  20 

3.4.3 Sensor Cross-Sensitivities  

Another common concern for low-cost sensors is cross-sensitivities to other gases, in addition to known cross-sensitivities to 

environmental factors. As discussed by Eugster and Kling (2012), the Figaro TGS 2600 sensor is reported to be sensitive to 

carbon monoxide as well as a few other hydrocarbons (Figaro, 2005b). This is not surprising, as each of these species can act 
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as reducing gases at the sensor surface and therefore also reduce the resistance to electron flow. While Eugster and Kling 

(2012) did not examine CO specifically given the absence of potential sources in their deployment area, they did perform an 

analysis of variance examining the effects of CO2 and found no significant impacts. We applied the same analysis techniques 

to minute-resolution data to examine the impacteffects of other gases, specifically CO, and O3 and a few VOCs. Given the 

information provided by the sensor manufacturer, we expected a cross-sensitivity to CO, but not to O3; this analysis provided 5 

an opportunity to check these assumptions. Table 6 includes the resulting explained variance from each ANOVA, all of 

which included environmental parameters and time along with the following differences: Set 1 – CH4 only, Set 2 – CH4 and 

CO, Set 3 – CH4 and O3, Set 4 - CO only, and Set 5 - combined (CH4 + CO) predictor.  

 

Table 6: Explained Variance from ANOVA Analyses on Figaro TGS 2600 Resistance Values (R/R0) for Different Parameter Sets 10 

Source of 

Variation 

Los Angeles  Colorado 

Set 1 Set 2 Set 3 Set 4 Set 5  Set 1 Set 2 Set 3 Set 4 

Temperature 0.3% 0.1% 0.0% 0.2% 0.08%  12.2% 9.6% 1.5% 27.9% 

Abs. Hum. 61.5% 72.5% 63.7% 61.5% 62.4%  6.8% 10.2% 10.6% 6.4% 

Time 0.0% 0.0% 0.1% 0.0% 0.0%  8.3% 8.9% 10.8% 3.7% 

CH
4
 16.8% 2.6% 14.2% - -  29.2% 21.8% 20.5% - 

CO - 4.2% - 18.1% -  - 15.0% - 19.2% 

O
3
 - - 0.3% - -  - - 2.7% - 

CH
4
 + CO - - - - 19.8%  - - - - 

Residuals 21.4% 20.7% 21.8% 20.3% 17.8%  43.5% 34.5% 53.9% 42.8% 

Total 100.0% 100.0% 100.0% 100.0% 100.0%  100.0% 100.0% 100.0% 100.0% 

 

The overall results varied between the deployments. For example, absolute humidity explained a high percentage of the 

variance in Los Angeles, while the temperature and humidity both played a role in the Colorado data. A commonality was 

that the sensor does exhibit a cross-sensitivity to CO, but not to O3. In both cases, the inclusion of O3 resulted in a higher 

percentage of variance being attributed to the residuals, and the variance explained by the O3 concentrations was 0.3% and 15 

2.7% for Los Angeles and Colorado respectively. In contrast, the inclusion of CO in the ANOVA for the Colorado data 

resulted in a decrease of the variance explained by CH4 from 29.2% to a still significant 21.8%, while 15.0% was explained 

by the new CO predictor. Notably, this set of parameters also resulted in the lowest portion of the variance being left to the 

residuals, suggesting that it provided the strongest set of among these five parameter sets. The inclusion of CO in the 

ANOVA for the Los Angeles data yielded somewhat different results with the explained variance dropping drastically for 20 

CH4 and being quite low for CO as well, at 2.6% and 4.2% respectively. This result is likely explained by the temporal 

correlation between the two gases obscuring the importance of each individually. The CO concentrations in Los Angeles 

were higher than those observed in Colorado and very well correlated with the CH4 data as demonstrated in Figure 13. 

Further supporting this conclusion, parameter set 5 included a combined ‘CH4 + CO’ term and resulted in a higher portion of 

the variance explained through this term at 19.8% verses CH4 alone (16.8%) or CO alone (18.1%). This set also resulted in 25 

the lowest portion of variance left to the residuals. An additional sensitivity analysis that included speciated hydrocarbons 
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was performed, that indicated that hydrocarbons also help to explain the Figaro TGS 2600 signal, but do not completely 

displace methane as a predictor (this analysis will be explored in-depth in a future paper). Thus, as demonstrated by our 

analysis the Figaro TGS 2600 sensor is cross-sensitive to carbon monoxide and likely to other hydrocarbons; Tthe lack of 

correlation between the Colorado CO and CH4 allows us to examine the impacts of the CO cross-sensitivity more closely. 

Figure 14 shows a portion of the Colorado data with both reference and U-Pod methane plotted along with carbon monoxide 5 

data from a reference monitor. In Figure 14a spikes in CO correspond with overpredictions of methane (most notably on 8/8) 

and the scatterplot in Figure 14b highlights how overpredictions seem to coincide with elevated CO concentrations. 

 

Figure 13: Histogram of carbon monoxide data from the two deployments and scatter plot of carbon monoxide data vs. methane 

data also from the two deployments. Note, all data in these two plots are from reference instruments.  10 

 

Figure 14: Subplot 14.a depicts a timeseries of methane and carbon monoxide data from the reference monitors and converted U-

Pod sensor data. Subplot 14.b depicts a scatterplot of reference methane data (x-axis) vs. U-Pod methane data (y-axis) with the 

points colored by carbon monoxide vales. Together they further show the Figaro TGS 2600’s cross-sensitivity to carbon monoxide, 

illustrating how many over predictions correspond to instances when CO is at or above .5 ppm. 15 

In addition to this observed cross-sensitivity to CO, we expect that other hydrocarbons may affect the sensor response as 

well. This would be an important consideration for measurements made in areas with oil and gas activity where the pollutant 

mixtures may be complex. At the PAO site there was also a proton-transfer-reaction quadrupole mass spectrometry (PTR-

QMS) providing speciated VOC measurements (Halliday et al, 2016). Future work will provide a more in-depth analysis of 

VOC sensitivity and selectivity for the two MOx sensors we are using; however, we have included here a preliminary look at 20 

this cross-sensitivity to other hydrocarbons. Table 7 provides the results of another sensitivity analysis in which the 

explanatory power of a few speciated VOCs is examined. For simplicity, one VOC from different well-correlated groups 

was selected (e.g., benzene was selected out of the aromatic species). This analysis illustrates that VOCs (particularly 

acetaldehyde and benzene) do help to more fully explain the variance in the sensor signal, but they do not displace methane. 

This is most apparent for parameter sets 5 and 6, in which we see the variance explained by residuals increase slightly and 25 

the variance explained by temperature increase quite a bit as this factor compensates for the missing methane. When methane 
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is added back in for parameter set 7, along with all three VOCs and CO, the variance explained by the residuals is at its 

lowest and the variance explained by methane is at 10.1%, higher than the percentages for the individual hydrocarbons. 

Thus, the Figaro TGS 2600 sensor seems to be cross-sensitive to carbon monoxide and some hydrocarbons; effects that 

should be considered or mitigated in future uses of this sensor to estimate methane.  

An additional sensitivity analysis that included speciated hydrocarbons was performed, that indicated that hydrocarbons also 5 

help to explain the Figaro TGS 2600 signal, but do not completely displace methane as a predictor (this analysis will be 

explored in-depth in a future paper). Thus, as demonstrated by our analysis the Figaro TGS 2600 sensor is cross-sensitive to 

carbon monoxide and likely to other hydrocarbons 

Table 7: Explained Variance of the Figaro TGS 2600 Resistance Values (R/R0) for Parameter Sets Including Different VOCs 

 10 

DespiteEven though we sampleingd in more complex environments than previous deployments of this sensor (Eugster and 

Kling, 2012), we are still seeing a sizable proportion of the sensor data’s variance explained by ambient methane 

concentrations. Although, these cross-sensitivities need to be addressed to discern which signals are driven by methane 

versues other pollutants, the Figaro TGS 2600 sensors are reacting in part to changes in ambient methane again providing 

useful methane estimates for applications where you need methane concentrations are needed with resolutions on the order 15 

of 0.2 – 0.4 ppm. Given the variety of low-cost sensors available, using the Figaro TGS 2600 sensors in the context of a 

sensor array could provide additional signals at each deployment site facilitatingresulting in more reliable data. Including 

multiple sensor signals inwith a neural network calibration approach may also improve the accuracy of the calibrated 

datasignal (Zimmerman et al., 2017; De Vito et al., 2008, Huyberechts et al., 1997). Future analysis of the data collected in 

Los Angeles and continued use of this sensor in areas with complex mixtures will require carbon monoxide and NMHC 20 

impacts be considered.  

 

Source of 

Variation 
Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 

Temperature 9.6% 17.4% 10.1% 10.9% 33.7% 28.9% 16.3% 

Abs. Humidity 10.2% 11.7% 14.2% 7.5% 6.2% 9.0% 12.6% 

Time 8.9% 4.5% 9.2% 4.4% 3.0% 2.8% 5.8% 

Source of Variation Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 

Temperature 9.6% 17.4% 10.1% 10.9% 33.7% 28.9% 16.3% 

Abs. Humidity 10.2% 11.7% 14.2% 7.5% 6.2% 9.0% 12.6% 

Time 8.9% 4.5% 9.2% 4.4% 3.0% 2.8% 5.8% 

CH4 21.8% 12.3% 14.2% 18.5% - - 10.1% 

CO 15.0% 13.6% 14.4% 19.7% - 9.8% 11.4% 

Acetaldehyde - 7.5% - - 13.4% 8.9% 6.5% 

Benzene - - 4.6% - 8.4% 6.4% 4.0% 

Methanol - - - 0.9% 0.4% 0.1% 0.3% 

Residuals 34.5% 33.0% 33.4% 38.2% 34.9% 34.1% 33.2% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
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CH4 21.8% 12.3% 14.2% 18.5% - - 10.1% 

CO 15.0% 13.6% 14.4% 19.7% - 9.8% 11.4% 

Acetaldehyde - 7.5% - - 13.4% 8.9% 6.5% 

Benzene - - 4.6% - 8.4% 6.4% 4.0% 

Methanol - - - 0.9% 0.4% 0.1% 0.3% 

Residuals 34.5% 33.0% 33.4% 38.2% 34.9% 34.1% 33.2% 

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

 

3.5 Ability to Assess Spatial Variability in the Northern Front Range of Colorado 

The universal calibration approach along with the ‘best-fitting’ calibration model (Figure 8) was used to convert the field 

data from the sensors deployed in Colorado. Following the same procedure outlined in Section 2.4 and examined in Section 

3.3, the raw ADC values from each Figaro TGS 2600 sensor, from the post-calibration period, were normalized to the sensor 5 

signals in U-Pod P1 (the ‘Main U-Pod’) using sensor-specific simple linear fits. The calibration model was then applied to 

this normalized sensor data along with the temperature and humidity data from each U-Pod. An additional step was taken to 

detrend each set of converted sensor data by removing the best-fit linear trend from the whole dataset. It was necessary in 

this instance because the time correction incorporated in the calibration model appeared to be over- or under-correcting for 

different sensors. The choice to continue using this model was based on both the performance of the model observed in 10 

Section 3.2 and the fact that time appears to be a useful predictor for the Colorado data given the cross-sensitivity analysis in 

Section 3.4.3. Data from the pre-calibration period when six sensors were co-located with U-Pod P1 was used to verify that 

the application of this detrend function was appropriately correcting for the under or over correction of the model. One 

possible explanation for this difference in drift between the sensors may have been that five sensors were new and while the 

other ten (including the one in U-Pod P1) had been previously deployed. This difference in drifts was not observed in the 15 

Los Angeles data (Section 3.3), which utilizeden all newthe  sensors were new  at the start of the deployment and were 

operated for the same amount of time throughout the deployment. The final step in preparing this data was to filter out data 

where the temperature and humidity values were outside of those ranges observed during calibration and to remove data 

where concentration values were lower than an expected minimum (atmospheric background) was observed; similar to the 

analysis in Section 3.4.2. In this case a conservative 1.6 ppm was used, roughly half of our RMSE below background 20 

methane levels. For this analysis, filtering out implausibly low values highlights the differences in methane enhancements 

between the field sites. The largest amount of data removed from any U-Pod dataset as a result of this filtering was 

approximately 6%.  

Table 87 presents statistics illustrating the correlation coefficients and RMSE for converted sensor data during co-location 

verses field deployment for both the two U-Pods continuously paired and the mean of all fifteen U-Pods. The result is high 25 

correlation when Pods are co-located and low correlation when U-Pods are deployed to their field sites. Highlighting that (1) 

there is consistency in the data provided through the universal calibration model and (2) that we are seeing quite a bit of 

variability across the field sites. Additionally, the RMSE for co-located U-Pods is continually less than the error we expect 
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given the RMSE of .3832 ppm for the validation dataset. The details of each individual sensor versus P1 are available in 

Figure 19 and Table 9, in Appendix A. These details demonstrate the extent of inter-sensor variability for co-located sensors 

and the increase in variability for deployed sensors. While there is some variability among correlation coefficients, for nearly 

all sensors the periods of enhanced methane fall along the 1:1 line and most offsets occur at lower methane concentrations.  

Additionally, all RMSE’s for co-located sensor fall below our expected uncertainty, while the RMSE’s for deployed sensors 5 

is larger than this uncertainty (with the exception of the P1/P2 pair, which were co-located during the deployment).  

 

Table 87: Statistics for Colorado Data Converted Using the Universal Model Method 

 Post Co-location  Deployed to Field Sites 

 R RMSE (ppm)  R RMSE (ppm) 

Co-located Pair; P2 to P1 0.961 0.210  0.904 0.241 

Mean of all U-Pods to P1 0.866 0.180  0.025 0.556 

 

This process provided minute-resolution methane estimates from 15 field sites, allowing for analysis of spatial data over 10 

different temporal scales. For example, Figure 15 includes roughly two days of data from four different deployment sites: P1 

was our primary U-Pod located at the Platteville site, U-Pod E2 was located at the Boulder Atmospheric Observatory, U-Pod 

E3 was located at a water reclamation facility, and the U-Pod G1 was located at the Golden/NREL site. Even from this small 

timeframe of data, we can see major differences between the sites. For example, there was a clear diurnal trend with elevated 

methane each night at the Platteville site. The high time resolution also allows us to observe short-term daytime increases at 15 

different sites, which were more sporadic and likely due to local emissions as there is typically more atmospheric mixing in 

the daytime (Bamburger et al., 2014). In contrast, the Golden/NREL site (U-Pod G1) exhibited relatively littlesmall 

variability in methane with differences between this site and the others well above our RMSE, suggesting significant 

differences in methane concentrations between these sites. Figure 15b provides a reminder of where the oil and gas wells of 

the Wattenberg Field are in relation to these U-Pods. This high-resolution data (minute-median) allows for the study of 20 

individual emission events and possibly their correlation to nearby activity or regional trends.  
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Figure 15: Time series of minute-resolution data from four Colorado sites and a map showing the location of the four U-Pod with 

respect to all active and inactive wells (COGCC, 2017).  

Figure 16 shows the day and night methane concentrations for each site throughout the deployment, grouped by region. This 

Figure also highlights the ambient background for methane +/- the U-Pod RMSE (0.3832 ppm) for this dataset on either side 

to illustrate that the enhancements above background were well beyond our expected error. The sensor in Golden/NREL (U-5 

Pod G1) exhibited little variability across both daytime and night-time values, whereas all the sites in Erie, Frederick, and 

Platteville exhibited larger ranges and larger night-time increases in methane likely contributed to by local or regional 

sources. At the majority of sites, over 50% of the data fell within the RMSE of typical background levels of methane. 

Though tThe middle 50% of the night-time data appears slightly shifted upward for U-Pods E11 and E3 in Erie (the two 

Pods located near the water reclamation facility). This trend was even more pronounced at the sites in Frederick and 10 

Platteville. Recall the well density show in Figures 2 and 15, illustrating no oil and gas activity around Golden, whereas we 

see higher density activity in Erie and Frederick, with the highest density of activity around Platteville suggesting that one 

possible source driving this elevated methane is emissions from oil and gas activity. We observe this trend at night when 

atmospheric mixing is more limited and the planetary boundary layer is lower.  

 15 

Figure 16: Boxplots of all data for each U-Pod, grouped into daytime and night-time values, note – whiskers are the 5th and 95th 

percentile values. These U-Pods are then further grouped by region.  

Figure 17 further illustrates this point by showing the difference in 90th percentile values between the main U-Pod (P1) and 

all other U-Pods during the day (left) verses at night (right). The daytime differences are small, within +/- .2 ppm for all 

sites, possibly indicating effective daytime mixing. However, at night there is a clear gradient across the sites with little 20 

difference between the Pods in Platteville and increasing differences as we move to the edge of the gas field and outside of 

it, with an approximately ~1 ppm difference for the Golden site and the site furthest west in Erie. As far as the trends go 
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tThroughout the Erie field sites, the two U-Pods in Erie furthest north, show the smallest difference with the Platteville Pods after the 

Fredrick Pod, which was located much further into the gas field. These two Pods were also the ones located at the water 

reclamation facility and therefore subject to ann additional local methane sources. Interestingly though, the U-Pod furthest west 

in the Erie area was the only U-Pod in that grid located on the west side of the county line. This , which placed the Pod in Boulder 

County during a time when a moratorium beginning in 2012 was in effectplace (Boulder County, 2017). This moratorium severely 5 

limiting new oil and gas development in the county. Although we cannot conclusively say theis observed difference in 90th 

percentile night-time valuesvation is the result of differing methane trends on either side of the county line, it is an indication of a 

question possibly worth revisiting using other data collected during the FRAPPE/DISCOVER-AQ campaigns. More 

importantly, this example demonstrates how low-cost sensors can offer preliminary or supplementary data tothat can help inform 

and guide future work.  10 

 

Figure 17: Above well sites (COGCC, 2015) are plotted along with the differences between the 90th percentile value for the main 

Platteville U-Pod (P1) and each other U-Pod during the day (left) verses during the night (right). The colorbar indicates the 

magnitude of the difference in units of ppm CH4, and the same colorbar scale is applied to both plots.  

Figure 18 provides another overview of the field data. In this plot, each hour of the day is averaged for each Pod using all 15 

available data – providing an indication of the diurnal patterns at each site. Again, we are seeing the night-time increase in 

methane occurring at the Platteville site and to a lesser extent an increase at the Frederick site. These increases continue to be 

well above background and the estimated measurement error, which supports the conclusion that night-time methane pooling 

was occurring in this location,; a conclusion which is further supported by the observations of other researchers. Another 

study also conducted during the FRAPPE/DISCOVER-AQ campaign found elevated levels of benzene at the Platteville 20 

Atmospheric Observatory, occurring primarily at night. These elevated benzene concentrations were then attributed to local 

oil and gas activity, as opposed to another source such aslike traffic, and the movement of the planetary boundary layer 

(Halliday et al., 2016). Figure 18 indicates that something similar may have beenwas occurring with methane at the same 
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site, likely driven by one or more sources and the fluctuations of the planetary boundary layer fluctuations. Another study 

using data from 2013 found the mean level of light alkanes in Platteville to be elevated 5-6 times above levels in Erie, and 9-

15 times above levels in downtown Denver (Thompson et al., 2014). This trend of elevated alkanes in Platteville and lower 

levels in Erie also agrees with the gradients apparent in Figures 17 and 18 as we see the highest elevations in Platteville, 

moderate elevations in Frederick, and lower levels across our Erie sites. Overall, confirming the ability of these low-cost 5 

sensors to provide unique information, in this case information regarding regional methane trends that iswas supported by 

studies that used more conventional monitoring instruments and sampling methods.  

 

Figure 18: Mean methane value for each hour of the day, for each U-Pod, grouped/colored by region.  

4. Conclusion 10 

A common response to the question, “How good is low-cost sensor data?” is “it depends”. It depends on what question you 

are trying to answer, what data you intend to collect, how you would like to use the data, and what supporting measurements 

are available. As demonstrated by the quantification system applied to the two deployments examined in this paper, the use 

of low-cost sensors, certainly in the short-term, is likely to be heavily application-dependent and sensors should be calibrated 

and quantified to meet the needs of a given research question and in response to the conditions of a particular deployment. 15 

As low-cost sensor systems become easier to deploy and data processing becomes more automated, these systems have 

tremendous potential. Their low-cost and portable nature allows for quick deployment across varied spatial scales, especially 

small, localized scales. Sensor data can already highlight potential “hotspots”, which could lead to better allocation of 

resources or the detection of potential air quality issues sooner. When used in this context, the sensor system described 

herein can provide a useful estimate of methane concentrations that may serve as preliminary or supplementary data. In Los 20 

Angeles, we were able to provide a methane prediction despite the complexity of sources and this methane signal has the 

potential to provide some insight into what is happening at the neighborhood-level, although special attention will need to be 



  

  30   

 

paid to likelypossible confounders and cross-sensitivities. In Colorado, we were able to generate a dataset that can be examined on 

various temporal and spatial scales, as well as, data able to characterize regional trends that concur with the observations of 

other researchers. While more research into cross-sensitivities and other deployment issues is certainly necessary, this sensor 

system currently provides a powerful tool for understanding methane in communities near sourcess. F andurthermore, additional this is a 

ly a tool that is complementary to conventional monitoring methods.  5 

 

Appendix A – Inter-Sensor Variability 

 

Figure 19: Scatterplots of P1 versus every other Y-Pod including both co-located data (in green) and deployed data (in blue).  

 10 

Table 9: Statistics for Colorado Data Converted Using the Universal Model Method, Includes Data for each Individual Y-Pod and 

Statistics for each Y-Pod versus Y-Pod P1  

 Co-located  Deployed 

 R RMSE  R RMSE 
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E1 0.914 0.117  -0.159 0.581 

E2 0.940 0.084  -0.095 0.594 

E3 0.909 0.284  0.168 0.619 

E4 0.863 0.201  0.050 0.591 

G1 0.737 0.200  -0.179 0.565 

E5 0.849 0.132  0.054 0.529 

P2 0.961 0.210  0.904 0.241 

E6 0.847 0.166  -0.061 0.535 

E7 0.864 0.124  -0.067 0.572 

E8 0.931 0.336  -0.186 0.599 

F1 0.819 0.182  0.221 0.550 

E9 0.931 0.095  -0.454 0.655 

E10 0.929 0.107  0.053 0.585 

E11 0.624 0.208  0.104 0.571 

Average 0.866 0.175  0.025 0.556 

Std Dev 0.092 0.073  0.306 0.096 
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Appendix B – Sensor Data Underestimates and Methane Variability  

 

Figure 20: The top panel includes time series of methane reference data and fitted sensor data. The bottom panel includes the 

methane data for the Validation 2 dataset binned by days. The yellow segments highlight periods when underestimations below 

atmospheric background were removed, which coincide with days where the dynamic range is less than the expected uncertainty 5 
(RMSE = .18 ppm).  

 

Data and Code Availability  

All sensor data (including final datasets and raw sensor data) and MatLab code used to process the data is available through 

the main author, please contact for access. All reference data used for analysis of the Colorado deployment was provided 10 

courtesy of the NATIVE Trailer team (Penn State University), and is available in the official DISCOVER-AQ database: 

https://www-air.larc.nasa.gov/missions/discover-aq/discover-aq.html. Additional data for Los Angles analysis provided 

courtesy of the South Coast Air Quality Management District (note this data has not passed through the normal review 

process, and is therefore not QA’d and is unofficial data). 
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