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Abstract 14 

The determination of the distribution of water vapor in the atmosphere plays an important role in 15 

the atmospheric monitoring. Global Navigation Satellite Systems (GNSS) tomography can be 16 

used to construct 3D distribution of water vapor over the field covered by a GNSS network with 17 

high temporal and spatial resolutions. In current tomographic approaches, a pre-set fixed 18 

rectangular field that roughly covers the area of the distribution of the GNSS signals on the top 19 

plane of the tomographic field is commonly used for all tomographic epochs. Due to too many 20 

unknown parameters needing to be estimated, the accuracy of the tomographic solution degrades. 21 

Another issue of these approaches is their unsuitability for GNSS networks with a few stations as 22 

the shape of the field covered by the GNSS signals is in fact roughly an upside-down cone rather 23 

than the rectangular cube as the pre-set. In this study, a new approach for determination of 24 

tomographic fields fitting the real distribution of GNSS signals on different tomographic planes 25 

at different tomographic epochs and also for discretization of the tomographic fields based on the 26 

perimeter of the tomographic boundary on the plane and meshing techniques is proposed. The 27 

new approach was tested using three stations from the Hong Kong GNSS network and validated 28 

by comparing the tomographic results against radiosonde data from King's Park Meteorological 29 

Station (HKKP) during the one month period of May, 2015. Results indicated that the new 30 

approach is feasible for a three-station GNSS network tomography. This is significant due to the 31 

fact that the conventional approaches cannot even solve a few stations network tomography.   32 

 33 

1 Introduction 34 

Information of the distribution and variation of atmospheric water vapor is essential for 35 

meteorological applications. Nowadays, the most commonly used technology for measuring 36 

atmospheric water vapor is radiosonde due to its high vertical resolution and high accuracy, even 37 

though  its horizontal resolution is very low−several hundreds of kilometers, and its temporal 38 

resolution is also low−twice daily. With the development of Global Navigation Satellite Systems 39 
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(GNSS),  using GNSS measurements to remotely sense water vapor in the atmosphere has 40 

attracted significant attention due to their 24-hour availability, global coverage and low cost.  41 

based on GNSS measurements collected from a regional or global GNSS reference network, a 42 

regional or a global tomographic model, which is three-dimensional (3D), can be constructed. 43 

The tomographic model reflects the spatial variation of water vapor in the time period 44 

investigated, thus it has the potential to be used to investigate the evolution of heavy rain events 45 

for severe weather forcast (Wang et al., 2017; Chen et al., 2017; Zhang et al., 2015).  46 

Using the slant wet delays (SWDs) estimated from the GNSS signals of a GNSS network 47 

to construct a tomographic model is called GNSS tomography. Flores et al. (2000) built the first 48 

GNSS tomographic model using 4×4×40 voxels and developed Local Tropospheric Tomography 49 

Software (LOTTOS) for simulation and processing of GNSS data. Gradinarsky (2002) developed 50 

the wet refractivity Kalman filter (WeRKaF) for tomographic inversion of GNSS data and the 51 

filter mainly focused on the initialization of the tomographic covariance matrix used in the 52 

implementation of the Kalman filter. Troller et al. (2006) developed the atmospheric water vapor 53 

tomography software (AWATOS) based on double-differenced GPS observations and double-54 

differenced phase residuals. Rohm and Bosy (2009) addressed the issue with the ill-condition of 55 

tomographic equations using the Moore-Penrose pseudo inverse of the variance-covariance 56 

matrix. In order to minimize the discretization effects, Perler et al. (2011) for the first time 57 

proposed using node parameterization in GNSS tomographic modeling. Chen and Liu (2014) 58 

optimized a water vapor tomographic region through moving voxel location along the latitudinal 59 

and longitudinal directions until the number of the voxels that contain GNSS signals reached the 60 

maximum. Yao et al. (2016) improved the utilization rate of GNSS observations in the modeling 61 

by adding extra voxels on the top of the tomographic region where some satellite signals partly 62 

cross the tomographic field. Ding et al. (2017) developed an access order scheme called prime 63 

number decomposition (PND) for minimizing the correlation between the SWDs which are the 64 

sample data of tomographic modeling. The above GNSS tomographic approaches were tested 65 

using various numbers of GNSS stations, majority of which were a few tens of stations, and the 66 

maximum and minimum were 270 and 8 respectively.  67 

In all the above tomographic approaches, the tomographic fields are all assumed 68 

rectangular cubes. The size and location of the rectangular cubes are determined based on the 69 

distribution of GNSS signals only on the top boundary of the tomographic field−the rectangular 70 

cube that best fits the top boundary is adopted (Bastin et al., 2005; Bender et al., 2009; 71 

Champollion et al., 2005; Ding et al., 2017; Gradinarsky and Jarlemark, 2004; Hoyle, 2005; 72 

Rohm et al., 2014; Seko et al., 2000; Troller et al., 2006; Xia et al., 2013; Ye et al., 2016). In fact, 73 

the field that GNSS signals cover has a shape of upside-down cone, roughly, meaning that in the 74 

part near the edge of the cube, especially in the lower part, none of the GNSS signals cross 75 

through. This region is named empty spatial region (ESR) in this paper merely for convenience. 76 

In fact, the inclusion of those voxels/nodes in the ESR in the discretization of the model not only 77 

does little contribution to the improvement on the accuracy of the model solution but also adds 78 

extra meaningless unknown parameters to be estimated. More parameters mean more horizontal 79 

constraints are needed and also degradation of the accuracy and stability of the solution, 80 

especially in the case the network consists of a few stations, e.g.  only three stations. This is 81 

because the difference in the sizes covered by the GNSS signals in the bottom and top planes of 82 

the tomographic field is large, meaning a large number of voxels/nodes in the ESR and far away 83 

from the observed signals, especially in the lower part of the tomographic field. In the estimation 84 

process of the model, the horizontal constraints imposed on these nodes/voxels are usually from 85 
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extrapolated results based on their nearest observations. If these voxels/nodes are far away from 86 

the observed signals, the constraints are too weak and will cause difficulty in the solving of the 87 

tomographic equations. The large number of nodes/voxels contained in ESRs stemming from a 88 

small number of GNSS stations is the main reason for the unsuitable of the current GNSS 89 

tomographic approaches to   using a-few-station networks.  90 

In this study, a new node parameterization approach for dynamic determination of 91 

tomographic fields and the discretization of the fields at each tomographic epoch was proposed. 92 

It is adaptive node parameterization for varying density on different tomographic planes. This 93 

differs from all current approaches in which the same pre-set rectangular cube roughly 94 

determined by the distribution of the signals only on the top tomographic plane is adopted for all 95 

planes and all epochs of the tomography. In addition, for the discretization of the tomographic 96 

field determined for each plane at each epoch, the location and number of all the nodes on the 97 

plane are determined according to the size of the tomographic field.  As a result, the tomographic 98 

model is tailor-made for all planes and alll epochs. Moreover, the new approach is applicable to 99 

GNSS networks with any number of stations, i.e. equal to or larger than three.  100 

2 Methodology  101 

2.1 Observations of GNSS Tomography  102 

GNSS signals are bent and delayed when they propagate through the atmosphere. The 103 

atmosphere can be divided into the ionosphere and troposphere. The first order ionospheric delay 104 

was eliminated using the so-called ionosphere-free linear combination of dual-frequency 105 

observations. The tropospheric delay can be divided into two components−the dry delay and the 106 

wet delay. The wet component is the SWD and can be expressed by 107 

  ( ) cos( ) sin( ) cot( )          
w w

w N ESWD m e ZWD G G e R  (1) 108 

where mw (e) is a wet mapping function and the VMF1 mapping function was used in this study; 109 

G
w 

N  and G
w 

E  are the wet delay gradients in the north–south and east–west directions, respectively; 110 

R is the post-fit residuals and in one satellite-receiver, the residuals exceeding 2.5 times the 111 

standard deviation were removed and then computed means were subtracted from the remaining 112 

residuals to clean observation from systematic effects; ZWD is the zenith wet delay of the GNSS 113 

station, which can be obtained by subtracting the zenith hydrostatic delay (ZHD) from the zenith 114 

total delay (ZTD). The ZHD can be calculated by a standard tropospheric model such as the most 115 

commonly used Saastamoinen model (Saastamoinen, 1972) and the ZTD is estimated (as an 116 

unknown parameter) in GNSS data processing; 117 

In GNSS tomographic modeling, the SWDs of GNSS signals in a tomographic field are 118 

used as the observations for the estimation of water vapor parameters in the field. 119 

2.2 Tomographic modeling  120 

2.2.1 General approaches 121 

Voxel and node parameterization are the two common GNSS tomographic approaches. In 122 

the former, the tomographic field, which is usually assumed as a rectangular cube, is divided into 123 

many voxels (small rectangular cubes) and in the latter, and the field is discretized by nodes, as 124 
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all the black and circle nodes shown in Fig. 1. In this study, the node parameterization approach 125 

was adopted due to its better fitting of the spatial correlation of water vapor.    126 

In the current node parameterization approaches, if the GNSS network is very small, e.g. 127 

a three-station network from the Hong Kong Satellite Positioning Reference Station Network 128 

(SatRef) as shown in Fig. 1, a large number of nodes are in the ESR (see the hollow circles) 129 

within the rectangular cube which is the tomographic field. These nodes, as part of the unknown 130 

parameters, need to be estimated. The inclusion of these unknown parameters in the estimation 131 

process does not only add more ‘redundant’ parameters but also degrades the accuracy of the 132 

solution. 133 

 134 

Figure 1. A three-station GNSS network from the Hong Kong Satellite Positioning Reference 135 

Station Network (SatRef) as an example for GNSS tomography−the rectangular cube is the 136 

tomographic field adopted in current node parameterization approaches, the solid nodes are those 137 

near GNSS signals and the hollow nodes are those in the ESR. 138 

In addition, a fixed rectangular cube is used as the tomographic field for all time in the 139 

current approaches, In fact, the spatial region that the signals travel through varies with time, as 140 

shown in Fig. 2 for the different distributions of the signals at the three stations shown in Fig. 1 141 

on the top plane of the tomographic field at UTC 0 on 1 (day of year (DOY) 121), 16 (DOY 136) 142 

and 31 (DOY 151) in May 2015. 143 

 144 
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Figure 2. Distributions of GNSS signals at the three stations shown in Fig. 1 on the top plane of 145 

the tomographic field with the sampling rate of 30 seconds at UTC 0 on 1, 16 and 31 May, 2015. 146 

To address the above issues, a new node parameterization approach that dynamically 147 

adjusts the tomographic field based on the spatial distribution of the GNSS signals at the 148 

tomographic epoch and also dynamically adjusts the location and number of all the nodes based 149 

on the size of the tomographic field is proposed. Its procedure is elaborated in the next section. 150 

 151 

2.2.2 New approach 152 

The procedure for the new approach mainly includes two steps–determination of 153 

tomographic field and determination of node position, which are introduced below. 154 

i) Determination of tomographic field 155 

A tomographic field is regarded to be comprised of many layers in the vertical dimension 156 

and these layers with the same or different thickness, depending on the distribution of water 157 

vapor at the height of the layer, as shown in Fig. 3(a), each layer is formed by two neighboring 158 

horizontal planes. After all these planes are determined, the next task is to determine the 159 

tomographic boundary for each plane, according to the distribution of the GNSS signals on the 160 

plane. Fig. 3(b) shows the tomographic boundary on each of the planes shown in Fig. 3(a), which 161 

is determined from the following three steps that were used in the Graham scan (Graham, 1972) 162 

determining all the intersections ( the blue points) of the GNSS signal paths on the plane (they 163 

are name pierce points in this paper); 2) using a stack of the pierce points to detect and remove 164 

all those pierce points that are in concavities; and 3) connecting the rest pierce points to form a 165 

convex hull, which is the tomographic boundary (black polygon). 166 

 167 

Figure 3. (a) A tomographic field is divided by many layers, the thickness of which is dependent 168 

upon the distribution of water vapor in the layer, the red lines are the sampling GNSS signals and 169 

the blue points are the intersections of the GNSS signals on each horizontal plane; and (b) 170 

Tomographic boundary is depicted by the black polygon on each horizontal plane. 171 

 172 
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      Since the shape of the tomographic boundary determined using the new approach is irregular, 173 

it is difficult to generate equidistant nodes within the boundary. This differs from current node 174 

parameterization approaches in which uniformly distributed nodes can be easily pre-set. In this 175 

study meshing techniques are used to adjust the position of nodes for each plane and each 176 

tomographic epoch, and their procedure is discussed in the next section. 177 

ii) Determination of node position 178 

Meshing techniques for the generation of equidistant nodes of a GNSS tomographic 179 

model include three steps and each of the steps is introduced below. 180 

1) A mesh background in a desired size with nodes is used to provide initial nodes for 181 

each plane see Fig. 4(a) where the polygon is obtained from the last section for the tomographic 182 

boundary on the plane and at all the vertices of the polygon a new set of nodes are also attached 183 

to the initial nodes, see Fig. 4(b) for the final initial nodes.   184 

2) Delaunay triangulation (Delaunay, 1934) is used to establish a topology for the above 185 

initial nodes on each plane. It determines non-overlapping triangles that fill the region in a 186 

polygon such that every edge is shared by at most two triangles and none of the vertices is inside 187 

the circumcircle of any of the triangles. Delaunay triangulations maximize the minimum angle of 188 

all the triangles to avoid sliver triangles which has undesirable properties during some 189 

interpolation or rasterization processes (Edelsbrunner et al., 2000). Several methods have been 190 

developed to compute the Delaunay triangulation such as the commonly used flipping edges and 191 

conversing a Voronoi diagram. In this study, the flipping edges method is adopted to connect the 192 

initial nodes shown in Fig. 4(b) by the edges of Delaunay triangles on each plane and the 193 

topology formed is shown in Fig. 4(c). 194 

3) The force displacement algorithm (Persson, 2005) is applied to the above topology for 195 

the adjustment of the initial nodes into equidistance with a reasonable length fitting the size of 196 

the tomographic boundary on each plane. This method is based on the assumption that each edge 197 

in the topology has a force value (let it be Fij) equal to the length of the edge. It can be used to 198 

make all the edges’ Fij close to the same and reasonable pre-set force value F0 for a (roughly) 199 

regularly distributed mesh. This is the main reason for the introducing of this method to this 200 

study for adjusting the nodes in the irregular tomographic boundary (like Fig. 4(c)) into 201 

equidistance (roughly).  The force displacement algorithm is an iterative process as: 202 

 
1 1[ ] [ ] [ ]   k k k k k k

x yX Y X Y Scal F F  (2) 203 

where X
k
 and Y

k
 are the vectors of the x and y coordinates respectively of all the nodes on the 204 

plane at the kth iteration and k-1 denotes the previous iteration; Scal is a relaxation factor for 205 

constraining the amount of the movement from the k-1th iteration to an appropriate value, for 206 

which a 0.2 value  is commonly used; Fx
k
 is the vector of the vector sums of all the forces 207 

working on each of the nodes in the x direction, Fy
k
 is that in the y direction.  208 

After the above algorithm is performed, all the nodes on the plane can be adjusted from 209 

the initial position (Fig. 4(c)) to equidistant position (Fig. 4(d)) through a series of iterations. 210 

It is noted that the sizes of the tomographic boundaries on different planes are different 211 

(Fig. 3(b)) while the numbers of the signals on different planes are the same, so the densities of 212 

the signals on different planes are different, and the densities of the nodes on different planes 213 
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better be different through using different F0 values. In this study, the F0 value for the ith plane is 214 

calculated by: 215 

 0 C mean( ) i iF Ls  (3) 216 

where C is a constant coefficient and 0.68 is adopted for all planes; and  mean(Ls
i
) is the mean of 217 

all the lengths of the edges on the polygon. 218 

 219 

 220 

Figure 4. (a) Two sets of nodes for initialization−one set is generated using a mesh background 221 

with a desired size which is usually slightly larger than the region of the GNSS signals at all time 222 

and the other set is at all the vertices of the polygon (all black points); (b) Initial nodes; (c) 223 

Topology formed using Delaunay triangulation; (d) Nodes with equidistance adjusted based on 224 

the force displacement algorithm. 225 

2.3 Observation equations 226 

After equidistant nodes for all planes are determined (like Fig. 4(d)), the next step is to 227 

estimate water vapor parameters at these nodes from observation equations of GNSS-derived 228 

SWDs. The derivation of the observation equations is as follows.  229 

Theoretically, SWD is defined as the integral of wet refractivity Nw along the signal path s 230 

 
610   w

s

SWD N ds  (4) 231 

It can be further decomposed into integrations of n layers: 232 
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SWD N i ds SWD  (5) 233 

where N
 S 

W(i) is wet refractivity in the ith layer ; si, si+1 are the start and  end points of the 234 

layer/integral; and SWDi is the part of the SWD in the ith layer 235 

In GNSS tomography, in each of the piecewise integrals expressed in Eq. (5), i.e. SWDi, 236 

the signal path in the layer is further divided into several equally spaced points and then SWDi is 237 

approximated as a function of wet refractivity at  these points  using the Newton-Cotes formulae 238 

(Perler et al., 2011). In this study, SWDi is approximated by the Newton-Cotes formulae of 4 239 

degree at five equally spaced points, as (P 1…, P 5) shown in Fig. 5 where the plane i and plane 240 

(i+1) are the two horizontal planes corresponding to the above si, si+1 respectively, and the black 241 

solid dots denote some of the equidistant nodes obtained from Fig. 4(d).   242 

The methods for obtaining wet refractivity at each of the points are as follows.  243 

i) Wet refractivity at points P1 and P5 (which are on the ith and (i + 1)th planes 244 

respectively) can be calculated using the interpolation method of the inverse-distance-weighted 245 

(IDW) mean of the sample wet refractivity data from its surrounding nodes: 246 

 1

1













m
wet

j j

j

wet m

j

j

w n

P

w

 (6) 247 

where  j is the index of the sample data, and w j is its weight  determined by the inverse-distance; 248 

and m is the number of  the sample data. 249 

 250 

Figure 5. Five equally spaced points (black solid squares) for an approximation of wet 251 

refractivity for the ith layer. P
i 

4 and P
i+1 

4  (black hollow squares) are the projected points of P4 on 252 

the ith and (i+1)th planes respectively, h1 is the height difference between P4 and P
i 

4 , and h2 is 253 

that between P4 and P
i+1 

4 . 254 
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ii) Wet refractivity at points P2 , P3 and P4, cannot be directly interpolated like that for P1 255 

and P5, the following three-step procedure needs to be performed (P4 is taken as an example): 1) 256 

the position of P4 is projected onto both the ith and  (i+1)th planes to obtain two projected points 257 

named P
i 

4 and P
i+1 

4 , respectively; 2) the above interpolation procedure for P1 and P5  is used to 258 

obtain wet refractivity P
i 

4wet  and P
i+1 

4wet  at P
i 

4 and P
i+1 

4 respectively; and 3) P
i 

4wet  and P
i+1 

4wet  are used to 259 

obtain a weighed mean wet refractivity for the position of  P4 using [Reitan, 1963; Tomasi, 1981]: 260 

 1 21 2/ /1

4 4 4

1 2 1 2( ) ( )

    
 

h H h Hi i

wet wet

h h
P P e P e

h h h h
 (7) 261 

where h1 is the height difference between P4 and P
i 

4 and h2 is that between P4 and P
i+1 

4 ; and H is 262 

water vapor scale height, which can be calculated by Tomasi [1977]: 263 
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s

W
H  (8) 264 

where W and ρs are the vertical total water vapor content (in g m
-2

) and surface humidity (in g m
-

265 
3
) respectively, and both can be obtained from GNSS data. 266 

 267 

After the above procedures are carried out, SWDi can be expressed as a function of wet 268 

refractivity at a set of nodes. This procedure needs to be performed for all SWDi (i=1,2,..n), then 269 

the next step is to substitute these SWDi expressions and the SWD observation into Eq. (5), to 270 

form its GNSS tomographic observation equation.  271 

The final GNSS tomographic observation equations of all SWDs from the GNSS network 272 

for the tomographic modeling is expressed as: 273 

  A X b  (9) 274 

where A is the coefficient matrix of the model; b is the vector of the SWD observations; and X is 275 

the vector of the wet refractivity parameters at all nodes. 276 

The X vector in Eq. (9) can be estimated using the least squares method. However, due to 277 

the problem with the sparseness of A, the algebraic reconstruction technique (ART) was used to 278 

estimate X in this study.  279 

2.4 Tomographic solution 280 

The ART has been successfully applied to reconstruction of water vapor field (Chen and 281 

Liu, 2014; Bender et al., 2011). Its main advantage is the high numerical stability, even under 282 

adverse conditions and also relatively easy to incorporate prior knowledge into the reconstruction 283 

process. The ART used to solve Eq. (9) is (Kaczmarz, 1937): 284 

 
1

2

2

,
1,2, ,


  

k

i ik k

i

i

b a x
x x a i m

a
 (10) 285 

where ai and bi denote the ith rows in A and b respectively; xk is the kth iterative solution; and λis 286 

a relaxation factor and the value of 0.2 was selected in this study.  287 
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It is noted that Eq. (9) needs to be sorted in a certain sequence for Eq. (10). This is 288 

different from the commonly used observation equation system in which the order of the 289 

observation equations is not a matter. In this study, an access order scheme based on prime 290 

number decomposition (PND) proposed in (Ding et al., 2017) was used for the ordering of the 291 

observation equations such that the observation equations between two consecutive iterations are 292 

largely uncorrelated.  293 

The unknown parameters X solved from Eq. (10) are the wet refractivity values at all 294 

tomographic nodes. In some meteorological applications, water vapor density may be preferred, 295 

in this case X needs to be converted using a conversion factor Π which is a function of water-296 

vapor-weighted-mean temperature Tm (Bevis et al., 1994; Wang et al., 2016) at the position of 297 

the nodes. 298 

3 Test results 299 

3.1 Data selection and tomographic scheme 300 

Test data used in this study were from three stations in the Hong Kong Satellite 301 

Positioning Reference Station Network (SatRef), and the horizontal and vertical distributions of 302 

the three stations are presented in Fig. 6(a) and Fig. 6(b), respectively. The area of our interest 303 

ranges from 113.749° E to 114.474° E in the longitudinal direction, from 22.115° N to 22.651° N 304 

in the latitudinal direction and from 0 to 10800 m in the vertical direction. Radiosonde data from 305 

King's Park Meteorological Station (HKKP) (the blue triangle shown in Fig. 6(a) were used as 306 

the reference for the validation of our test results.  307 

 308 

Figure 6.  (a) Horizontal distribution of the three stations selected from the Hong Kong reference 309 

stations (red dots) and HKKP (blue triangle); and (b) Vertical distribution of the three stations 310 

(black spots) and vertical layers used in tomographic modeling. 311 

The test data were from the whole month of May, 2015 (day of year (DOY) 121−151) 312 

with the sampling rate of 30 seconds, and the GAMIT software was used to obtain SWDs at the 313 
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same rate in the data processing. For the tomographic modeling, a 5-minute sampling rate for 314 

SWDs and a 30-minute interval for a tomographic epoch were adopted, meaning that SWD 315 

observations from seven epochs stacked to one tomographic modelling interval were used − 316 

including the two sample data at the two ends of the interval. The reason for the selection of data 317 

from May 2015 is that its monthly total rainfall was 513.0 mm, a 68% larger than the normal 318 

level of 304.7 mm. The weather in Hong Kong was hot on the first few days of the month. After 319 

a cloudy but relatively rain-free day on 8 May, another trough of low pressure brought heavier 320 

showers and thunderstorms to Hong Kong on 9-10 May. Two rainstorm episodes on 20 and 23 321 

May brought rain to most parts of the Hong Kong.  Another rapidly developed rainstorm was on 322 

26 May. The weather improved gradually with sunny periods on 28-30 May. However, the 323 

weather turned cloudy again with isolated showers and thunderstorms on 31 May. The 324 

tomographic scheme for testing is as follows. The first step is to determine the vertical 325 

planes/layers for the tomographic field.  Non-uniform vertical intervals from 300 to 3800 m (Fig. 326 

6(b)) were selected for adaption to the inherent characteristic of water vapor spatial 327 

distribution−it exponentially decreases with the increase of height.  The use of this structure can 328 

also avoid too many unknown parameters overfitting the SWD observations. The next step is to 329 

determine the tomographic polygon/boundary on each of the above planes using the methods in 330 

section 2.2.1 and based on the GNSS signals in the tomographic interval, then according to the 331 

polygon’s perimeter, a F0 value in the force displacement algorithm for determination of the 332 

density of nodes on each plane is calculated. All F0 results in our test are in the range of about 333 

1800−10000 m corresponding to the range of height 300–10800 m. The position of the nodes on 334 

each plane is determined by Eq. (2).   335 

Figure 7 shows the boundary and nodes on three tomographic planes at tomographic 336 

epoch UTC 0 on DOY 121, 2015 for an example. Tomographic model results are presented in 337 

the next section.   338 

 339 

Figure 7. Tomographic boundary and nodes on three planes ((a), (b) and (c)) and the 340 

tomographic field and nodes (d) at tomographic epoch UTC 0 on DOY 121, 2015. 341 
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3.2 Results of profiles 342 

Water vapor density values obtained from the tomographic models at tomographic 343 

epochs UTC 0 and UTC 12 on each day of the month (DOYs 121−151) were compared against 344 

radiosonde (RS) data for evaluation of the model’s accuracy.  The values of the tomographic 345 

results at all RS sampling points were calculated first using the interpolation method mentioned 346 

in section 2.2.1, then the root mean square error (RMSE) of the differences between the 347 

interpolated values and RS observations at all the sampling points of the RS profile from the 348 

ground surface to 10800 m at each epoch was calculated for the accuracy of the profile. All the 349 

results at the 62 epochs during the 31-day period are shown in Fig. 8. 350 

 351 

Figure 8. RMSE of model-derived water vapor density values at all RS sampling points of the 352 

RS profile below 10800 m at tomographic epochs UTC 0 and UTC 12 on each day of the month 353 

(DOYs 121−151). 354 

 355 

The maximum RMSEs, i.e., the worst results,  at UTC 0 (red) and UTC 12 (blue) are on 356 

DOY 143 and DOY 150 respectively; while the best result (the minimum RMSEs) at the two 357 

epochs are on DOYs 121 and 146. In order to find the reason for the large difference between the 358 

worst and best results, the tomographic field, the distribution of the signals and the nodes at these 359 

four epochs are given in Fig. 9, where Fig. 9(a) and Fig. 9(b) correspond to the best results at 360 

UTC 0 and UTC 12 respectively, both of which show uniform distributions of the GNSS signals. 361 

However, the distributions of the GNSS signals corresponding to the worst results at UTC 0 (Fig 362 

9(c)) and UTC 12 (Fig 9(d)) are different in the sparse signals shown in blue lines, which is one of 363 

possible reasons for the poor accuracy of the model results. 364 

 365 
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 366 

Figure 9. Tomographic field and signal distribution at tomographic epoch UTC 0 on DOY 121 367 

(a), UTC 12 on DOY 146 (b),  UTC 0 on DOY 143 (c), and UTC 12 on DOY 150 (d). 368 

          The results shown in Fig. 8 are the statistics of the model results for each epoch on each 369 

day. In Table 1, the statistics of the model results at both epochs together in the whole month are 370 

compared with that of the adaptive node parameterization approach (ANP) (Ding et al., 2018) 371 

during the same periods. Unlike the results of new approach are based on three stations of SatRef, 372 

17 stations of SatRef are used to estimate the results of the ANP. The RMSE and IQR values of 373 

new approach are similar to that of the ANP, meaning that the new approach for a few GNSS 374 

stations, such as three stations, is feasible. But in terms of the Bias, the new approach has a poor 375 

performance.  376 

Table 1. Monthly statistics of new approach and ANP 377 

 378 

Statistic RMSE (g m
-3

) Bias (g m
-3

) IQR (g m
-3

) 

New approach 1.477 0.239 1.430 

ANP 1.216 -0.012 1.678 

 379 

To indicate the spread of all the errors (the ones used to calculate the above monthly 380 

statistics), scatter plots shown in Fig. 10(a) are used to analyze the characteristics of these errors 381 

in different intervals. The x and y axes denote the RS observation and the model result (in g m
-3

) 382 
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respectively; each hollow circle corresponds to a sampling point’s result; and the red line 383 

represents  the “perfect” results, i.e. the model results equal to the RS results. Those hollow 384 

circles that are on the red line have an error value of zero, those above the red line have a 385 

positive error value, and the rest have a negative error value. The closer a hollow circle to the red 386 

line, the smaller its error value.    387 

How well all the hollow circles “fit” the red line indicates the overall quality of the model 388 

results. It is clear that the hollow circles have a cigar-shaped (fusiform) distribution. The hollow 389 

circles in both ending intervals ([0−5] and [20−25] g m
-3

) more concentrate around the red line 390 

than those in the middle part ([5−20] g m
-3

). The reason for this is 1) most of the sampling points 391 

in the [20−25] g m
-3

interval are located near the ground surface, where water vapor density 392 

decreases exponentially with the increase of height and there are about 20 nodes were penetrated 393 

by about 106 signals on the bottom of the tomographic region (300m) and 28 nodes were 394 

penetrated by the same number of signals on the top of tomographic region (10800m). However, 395 

the area of tomographic boundaries on the bottom is about 64 km
2
 (i.e., about 1.7 signals per 396 

square kilometer) and that on the top is 1550 km
2
 (i.e., about 0.07 signals per square kilometer). 397 

Therefore, the density of the GNSS signals is very high near the ground surface, which results in 398 

relative high accuracy; 2) most of the sampling points in the [5−20] g m
-3

 interval are located in 399 

the mid-height of the tomographic field, where the GNSS signals are sparser than the [20−25] g 400 

m
-3

 interval, leading to  a larger tomographic field, which results in a lower accuracy; and 3) 401 

most of the sampling points in the [0−5] interval are located in the top section of the tomographic 402 

field, where the water vapor values are smaller than the other two intervals, leading to the 403 

smallest errors.  404 

 405 

Figure 10.  Graphic presentation for the distribution of the tomographic results at the two epochs 406 

on every day during the month: (a) scatter plot of water vapor density; and (b) box plot for 407 

outlier detection of the tomographic errors. 408 

 The box plot is mainly for the indication of those large errors at all sampling points. Q1 409 

and Q3, which are the first and third quartiles respectively, determine the IQR value in Table 1; 410 

Q2, the second quartile, roughly reflects the bias of all the errors; the whiskers, i.e. the two black 411 
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bars, located at Q1−1.5(IQR) and Q3+1.5(IQR), are for the determination of the lower and upper 412 

bounds of the criteria for outlier detection, e.g. the red cross marks are regarded outliers. Table 2 413 

lists all the above characteristic values of all errors (the total number of errors is 2790). 414 

 415 

Table 2. Characteristic values of the box plots in Fig. 10(b). 416 

 417 

Statistic 

Q1 Q2  Q3  Upper bound Lower bound  
Number of outliers 

 (g m
-3

) (g m
-3

) (g m
-3

)  (g m
-3

) (g m
-3

) 

−0.527 0.062 0.903 3.048 −2.672 159 

 418 

3.3 Results of different layers 419 

In the last section, the RMSE of model-derived water vapor density values at all sampling 420 

points for each profile (Fig. 8) and the errors at all the sampling points and two epochs on each 421 

day during the month (Fig. 9) are analyzed for the assessment of the overall performance of the 422 

models. In this section, the monthly RMSE at all the sampling points but in 11 different 423 

tomographic layers and the monthly mean of the relative errors in these layers are investigated, 424 

see Fig. 11.  425 

In those layers below 1500 m, the two lines in both subfigures show the same tendency of 426 

variation with height −the error value increases with the increase of height. This is because the 427 

higher the layer, the more the spread of the GNSS signals, the worse the accuracy of the result. 428 

However, in the layers above 1500 m, the two lines show opposite tendencies of variation with 429 

height because the higher, the smaller the water vapor density. The smaller water vapor density 430 

values in these high layers lead to the small RMSE and large relative errors.     431 

 432 

Figure 11. (a) Monthly RMSE of (absolute) tomographic errors and (b) mean of relative 433 

tomographic errors in different layers. 434 

 435 
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4 Conclusion and outlook 436 

In this study a new node parameterization approach for determination of a tomographic 437 

field based on the distribution of GNSS signals at the tomographic epoch and also for 438 

discretization of the tomographic field is proposed. The number and the position of the nodes on 439 

each tomographic plane are determined based on the perimeter of the tomographic boundary on 440 

the plane and meshing techniques respectively. Since the tomographic model is tailor-made for 441 

the tomographic field at the epoch, the new approach is applicable to not only GNSS networks 442 

with several stations, but also GNSS networks with few stations, e.g., three stations, which 443 

cannot be solved by conventional approaches. The new approach was tested using GNSS data 444 

from three stations in the Hong Kong Satellite Positioning Reference Station Network during the 445 

period of May, 2015 and its model results were validated by comparing them against radiosonde 446 

data at UTC 0 and UTC 12 from HKKP. Results suggest that the new approach is feasible for a 447 

three-station GNSS network. In addition, monthly statistics of the tomographic results on each 448 

tomographic layer indicated that the size of the tomographic boundary and the magnitude of 449 

water vapor are two critical factors affecting the accuracy of the tomographic result of the layer.  450 

Our future work will be focusing on using unevenly distributed nodes that fit the density 451 

of the GNSS signals.  452 

 453 

Data availability 454 

GNSS data in the RINEX format used for this study can be downloaded from website 455 

(http://www.geodetic.gov.hk/smo/gsi/programs/en/GSS/satref/satref.htm). Radiosonde data of 456 

King’s Park Meteorological Station can be downloaded from website 457 

(http://weather.uwyo.edu/upperair/sounding.html).   458 
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