
Answer to reviewers
Daniel Wolfensberger and Alexis Berne

March 29, 2018

We thank both reviewers for their constructive and relevant comments and suggestions. We have taken into
account all the suggested points and we think that the revised version of the paper has gained considerably in clarity
and accuracy. Our answers to the reviewers’ comments (which are in italic) are shown in black regular font, the new
additions or modifications in the revised paper are shown in blue font.

Anonymous Reviewer #1

Specific comments

1. Page 14, line 11 ff: The exact definition of the scattering matrix elements s which relate the incident and
scattered ~E field as function of direction (which angles?) remains somewhat unclear, which is not uncommon
in the literature. However, I would find it useful to see the exact equation and a sketch defining the scattering
angles. Also, which sign convention for the imaginary part of the refractive index of the scatterers is applied?

We have added some explanation and a sketch about the scattering matrix formalism at the very beginning of
Section 3.5.

The mathematical formulation of the radar observables involves the scattering matrix S, which relates the
scattered electric field Es to the incident electric field Ei (Bringi and Chandrasekar, 2001) for a given scattering
angle. [

Esh
Esv

]
=
e−ik0r

r
SFSA

[
Eih
Eiv

]
(1)

where k0 is the wave number of free space (k0 = 2π/λ).

The scattering matrix SFSA is a 2×2 matrix of complex numbers in units of m−1 (e.g., Bringi and Chandrasekar,
2001; Doviak and Zrni, 2006; Mishchenko et al., 2002).

SFSA =

[
shh shv
svh svv

]
FSA

(2)

The FSA subscript indicates the forward scattering alignment convention, in which the positive z -axis is in the
same direction as the travel of the wave (for both the incident and scattered wave). A sketch illustrating the
reference unit vectors for the scattered wave in the FSA convention is given in Figure 5.
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Figure 5: The direction of the far-field scattered wave is given by the spherical angles θs and φs, or by the unit
vector ψ̂s. In the FSA convention, the horizontal and vertical unit vectors are defined as ĥs = φ̂s and v̂s = φ̂s. The
unit vectors for the spherical coordinate system form the triplet (ψ̂s, θ̂s, φ̂s), which in the FSA convention becomes

(ψ̂s, v̂s, ĥs), with ψ̂s = v̂s × ĥs. This figure was adapted from Bringi and Chandrasekar (2001).

We have also added an explanation on the permittivity at the beginning of Section 3.6.

In the following, the term (complex) permittivity will be used for the relative dielectric constant of a given
material. It is defined by:

ε = ε′ + iε′′ (3)

where ε′ is the real part, related to the phase velocity of the propagated wave, and ε′′ is the imaginary part,
related to the absorption of the incident wave.

2. Maxwell-Garnett is only one of many known Effective Medium Approximations, and Eq. (13) is the special
case of a 2-component mixture (n-component mixture see Bohren and Huffman (1983)) where small ice spheres
are suspended in air (matrix). You could mention some alternative formulations from the literature (see Blahak
(2016) for a summary) but stating that, if none of the components is a strong dielectric, all these formulas
approximately agree to first order (Bohren and Huffman (1983)). This will become more important later in
your section 3.7.2, Permittivity

Thanks, we have added some discussion regarding this point in the paragraph following Eq. 13:

Note that other EMAs exist, such as the Bruggemann (1935) and Oguchi (1983) approximations. If none of
the components is a strong dielectric, all these EMAs approximately agree to first order (Bohren and Huffman,
1983). The interested reader is referred to Blahak (2016), for an intercomparison of these EMA in the context
of simulated reflectivity fields.

Please see also the answer to point 5 for more general modifications to this section.

3. Your Eq. (10) is wrong, because the argument of log should be dimensionless. Did you mean something like

ZH(rg) < S(r0) +G+ SNRthr + 20 · log10

(
rg
r0

)
(4)

where S(r0) is the sensitivity at a certain reference range r0. Please review this Equation. Is this just a “typo”
or are your results affected?

We agree that the distance in the log should be normalized to yield a dimensionless argument. This is why we
modified this Equation as recommended, by introducing a reference distance r0.
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The received power at the radar antenna decreases with the square of the range, which leads to a decrease of
signal-to-noise ratio (SNR) with the distance. To take into account this effect, all simulated radar variables at
range rg are censored if:

ZH(rg) < S +G+ SNRthr + 20 · log10

(
rg
r0

)
(5)

where G is the overall radar gain in dBm, S is the radar antenna sensitivity in dBm, ZH is the horizontal
reflectivity factor in dBZ, and SNRthr corresponds to the desired signal-to-noise threshold in dB (typically 8
dB in the following). r0 is a distance used to normalize the argument of the logarithm. If all units are consistent
and SI based then r0 = 1 m.

Concerning S, it is related to the sensitivity of the receiver, so to a certain extent S is defined at a reference
distance of 0, this is why we define it as a constant.

4. Please define D: melted diameter or actual diameter of a melting particle?

It is the the maximum dimension of a melting particle. We have added this information in the text following
the equation:

The considered diameter D is the actual maximum dimension of a melting particle, and not the melted diameter.

5. The description of your applied EMA is too short and omits necessary detail: Please give the exact formula
of εeff that you applied for partially melted particles. Describe the role of the air inclusions. Note that there
is an ncomponent version of Maxwell-Garnett given in Bohren and Huffman (1983), as well as a variant that
assumes spheroidal inclusions instead of spherical inclusions in the matrix medium. Note also that there are
other EMAs on the market, derived under different assumptions on the internal melting morphology and it is
not clear which one is best. This might also depend on the specific radar observable under consideration and is
really hard to determine. Definition of ρtotal ? Also, please illustrate in a new figure the typical dependence of
the mass fraction of water fwater = mwater/mice for single particles as function of D and fmwet, as derived from
your Eq. (24) together with (21). This will shed more light on your implicit assumptions about the distribution
of melt water among the particle sizes for given average degree of melting.

We thank Reviewer 1 for this comment. It is quite true that this part had to be improved. We have rewritten
the beginning of Section 3.6.2 (paragraph: Snow, graupel, hail and ice crystals) by starting from the general
Maxwell-Garnett EMA before introducing the simpler form used for dry solid hydrometeors:

The permittivity of composite materials, such as snow, which consists of a mixture of air and ice, can be
estimated with a so-called Effective Medium Approximation (EMA). A well known EMA is the Maxwell-Garnett
approximation (Bohren and Huffman, 1983), in which the effective medium consists of a matrix medium with
permittivity εmat and inclusions with permittivity εinc:

εeff = εmat

(
1 + 2f inc

vol
εinc−εmat

εinc+2εmat

1− f inc
vol

εinc−εmat

εinc+2εmat

)
(21)

where εeff is the effective permittivity of the composite material, and f inc
vol is the volume fraction of the inclusions.

Note that other EMAs exist, such as the Bruggemann (1935) and Oguchi (1983) approximations. If none of
the components is a strong dielectric, all these EMAs approximately agree to first order (Bohren and Huffman,
1983). The interested reader is referred to Blahak (2016), for an intercomparison of these EMA in the context
of simulated reflectivity fields.

Dry solid hydrometeors consist of inclusions of ice in a matrix of air. In this case εmat ≈ 1, which leads to a
simplified form of the mixing formula (e.g., Ryzhkov et al. 2011).

ε(j) =
1 + 2f ice

vol
εice−1
εice+2

1− f ice
vol

εice−1
εice+2

(22)
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The rest of the section is unmodified. We have also added some information about how we compute the
permittivity of melting hydrometeors in Section 3.7.2. Note that ρtotal, was somewhat of a typo, as it should
have been ρwater instead. We have fixed this in Equation 30 and we have added the mathematical expression
for ρm, the density of the melting hydrometeor.

In Equation 18, we have previously introduced the general two-component Maxwell-Garnett EMA. However,
melting hydrometeors are a mixture of three components: water, ice, and air. To compute their permittivity,
the general two-component formulation is used recursively, first to derive the permittivity of dry snow (as was
done previously for dry snow, graupel, hail and ice crystals), and then the permittivity of the dry snow and
water mixture.

The necessary volume fractions of all components fvol can again be estimated with the mass-diameter model:

fwater
vol = fmwet

ρm

ρwater
(34)

f ice
vol =

ρm − fwater
vol ρwater

ρice
(35)

fair
vol = 1− fwater

vol − f ice
vol (36)

(37)

where ρm = mm(D)
π/6D3 is the density of the melting hydrometeor.

In a first step, Equation 21 is used with f inc
vol =

f ice
vol

f ice
vol+f

air
vol

, εmat ≈ 1, εinc = εice, to yield εd, the permittivity of the

dry part of the melting hydrometeor. For the second step, however, the estimated permittivity of the melting
hydrometeor will depend on whether water is treated as the matrix and snow as the inclusions or the opposite,
giving two different possible outcomes. To overcome this issue, a formulation proposed by Meneghini and Liao
(1996) is used, where the final permittivity is a weighted sum of both permittivities and where the weights are
function of the wet fraction. This method is also used by Ryzhkov et al. (2011). Precisely, Equation 18 is used
first with f inc

vol = fwater
vol and εmat = εd, εinc = εwater, to yield εm,(1), and at second with f inc

vol = fair
vol + f ice

vol and
εmat = εwater, εinc = εd, to yield εm,(2). The final εm is a weighted sum of εm,(1) and εm,(2):

εm =
1

2

[
(1 + τ)εm,(1) + (1− τ)εm,(2)

]
(38)

where parameter τ is a function of fmwet:

τ = Erf

(
2

1− fmwet

fmwet

− 1

)
if fmwet > 0.01, (39)

We think that this revised version better describes our approach. The dependency of fwater
vol on the diameter

D and the wet fraction fmwet is illustrated in Figure 6. It basically shows that there is a roughly polynomial
increase in the volume fraction with the wet fraction for a fixed diameter, which can be expected. In terms of
diameter dependence, the relation is more complex. It can seem surprising, that, for a fixed wet fraction, fwater

vol

increases with the diameter for graupel, but decreases for snow. It is easy though to figure out though that this
is caused by the mass-diameter relations of dry snow and graupel: dry snow has a power of 2 in its power-law,
whereas graupel has a power of 3.1. This implies that dry graupel becomes denser with the size, whereas dry
snow becomes less dense (because 3.1 > 3 > 2). Since melting hydrometeors depend on the density of water
(which is constant) and their dry counterparts, the same trend can be found for melting hydrometeors.

6. In contrast to your Eq. (28), in the original literature Szyrmer and Zawadzki (1999) the equation reads

Nr(Dr)vt(Dr) = Nm(D)vmt (D)

[...]. I see two possible ways forward: (a) change your computation of Nm(D) using the correct transforma-
tion for the one-to-one-correspondence, or (b) keep your parameterization but discuss the implicitly contained
shedding/aggregation parameterization somehow. [..]. Because Nm(D) through the melting layer is extrapo-
lated from the rain DSD at the bottom, the transition to the dry snow PSD just above the melting layer is not
continuous. How large is the jump?
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Figure 6: Dependency of melting graupel and snow fwater
vol on the diameter (top) and wet fraction (bottom).

Thanks to Reviewer 1 for pointing this out. Indeed there has been some misinterpretation of Zawadzki’s paper.
Hence, we have decided to improve this part in the following way: we have first corrected the approach based on
Szyrmer and Zawadzki (1999), by talking into account Reviewer 1’s corrections. By closer visual inspection, we
realized that, indeed, there is a jump between the dry snow PSD and the PSD of melting snow when fwet = 0
and it is quite large. It can lead to an unrealistic sharp drop of ZH of several dBZ over one or two radar gates,
above the melting layer. We have then added another approach based on a simple empirical weighting between
the DSD of raindrops and the PSD of dry solid hydrometeors (snow/graupel). We have then compared these
two approaches, and it seems the second ones performs better in comparison with radar data, and it also allows
for a seamless transition between the PSD of melting hydrometeors and the PSD of dry hydrometeors. In the
end, the second approach is favored.

Since this new part is quite long, we do not copy it here, but we would like to refer the reviewers to the new
Section 3.7.3 in the revised paper.

7. The numeric representation of the convolution with a Gaussian kernel in Eq. (39) is wrong. To correct, do
either: [...]. Also, you have to divide by the sum of the Gaussian weights!

We thank Reviewer 1 for pointing this error out. Fortunately, this is just an error in the text, as in the code,
we used the convolve function from the well-known Python scipy library. We fixed the equation according to
your second proposition:

Scorr[i] =

NFFT∑
j=0

S[i− j] 1

σt+α
√

2π
exp

[
− (vrad,bins[j])

2

2σ2
t+α

]
(52)

where σt+α = σt + σα

However, we think that there is no need to divide by the sum of the Gaussian kernel because this sum should
be one, indeed, the term 1

σt+α
√

2π
yields a normalized Gaussian kernel.

8. This section should perhaps be better named attenuation computation instead of correction, because the latter is
usually used to denote the inverse procedure applied to observations. Also, the attenuation computation given
in Eqs. (40) to (42) is wrong. According to Lambert-Beers law, attenuation in the space of linear reflectivities
(such as your reflectivity S) is given by [...]. Please correct also the text of this section accordingly and recompute
the data of your figure 14.

Reviewer 1 is right and we thank him for this correction. We somehow got quite confused, and ended up solving
a uselessly difficult problem...This derivation as well as the title have been changed in the text. Note that kh
(one-way attenuation in linear units) is used now (as can be seen in the new appendix C2):
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In reality, attenuation will cause a decrease in observed radar reflectivities at all velocity bins within the
spectrum. To take into account this effect, the path integrated attenuation in linear units at a given radar gate
(kh in Equations C2) is distributed uniformly throughout the spectrum.

S(rg, φg, θg)
att[i] = S(rg, φg, θg)[i] · exp

−2

rg∫
r=0

kh(r, θg, φg) dr

 (53)

Please note that the appendix C has changed, and a single-way linear attenuation kh is used instead, which
explains why there is still a factor of 2 in the equation above. This modification leads to a slightly different
Figure 14 (please see the revised paper), which does not change the conclusions that are being drawn. Note that
Figure 14 also shows some differences in SNR censoring of the radar data. This is because, while recomputing
the plot, we realized that we were not being consistent with the SNR threshold of 8 dB, that was mentioned
in the paper (a smaller value was used). Now this is fixed as well.

9. Page 34, line 1: While I agree with the findings of the DSD-comparison in this special case, the well-known gen-
eral difficulties of such comparisons (vastly different sampling volumes, shapes of normalized spectra strongly de-
pend on rain rate) should be discussed a bit more and why their influence is presumably small in this case. Also,
whether or not to use this improved shape parameter value in the forward operator instead of the microphysics-
consistent value depends on the application (model verification vs. data assimilation). Applying it in the model
microphysics may be a good idea, but without re-tuning other parameters in the model, one might end up with
a degradation of the surface precipitation, because one of the compensating errors has been taken away.

Thanks to Reviewer 1 for providing this complement of information. We have added the recommended remarks
in text, at the end of the paragraph:

However, one must keep in mind the numerous difficulties in the comparison of these DSDs. First of all, the
sampling volumes are vastly different (around 80 millions of cubic meters for the COSMO grid cell, around 10000
cubic meters for the three Parsivels integrated over a time interval of 5 minutes and averaged over 520 of these
time intervals. Secondly, the shape of the DSDs depend strongly on the simulated precipitation intensity which
is not always agreeing with observations (rain gauges). Regarding the first point, giving the large homogeneity
of the studied precipitation events (widespread stratiform rain), the representativity issue comparison still has
some relevance. Concerning the second point, since precipitation intensity is a moment of the DSD, one can
expect a better agreement with Parsivel observations with more realistic COSMO microphysics, especially for
larger particles.

As conclusion, changing the shape parameter in the COSMO microphysics is a delicate task, as without re-
tuning other parameters in the model, it might lead, in fine, to a degradation of the surface precipitation.
Using it solely off-line in the context of the forward radar operator might be a better choice, as it can help to
reduce the bias in simulated polarimetric variables.

Technical corrections

1. Since COSMO 5.1, ice sedimentation is also taken into account in the 1-moment schemes.

Thanks to Reviewer 1 for providing this correction, we have added the following details in the text:

In terms of terminal velocities, in the version of COSMO that is being used (5.04), neither ice crystals nor
cloud droplets are sedimentating. In more recent versions (starting from 5.1) however, ice crystals have a bulk
non-diameter dependent terminal velocity, that depends on their mass concentration.

2. Page 4, line 19: Add two more references for the 2-moment scheme, because the addition of the separate hail
class came after Seifert (2006): Blahak (2008), Noppel et al. (2010)

We have added these references in the corresponding sentence.

A more advanced two-moment scheme with a sixth hydrometeor category, hail, was developed for COSMO by
Seifert and Beheng (2006) and extended by Blahak (2008) and Noppel et al. (2010).
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3. Page 5, line 6 (Table 1): N0 Rain: missing free after 2529. Also check the value 2529 (which units???), because
the N0-µ-relation of Ulbrich (1983) is applied, with a base value of 8000 m3mm1 for µ = 0 and increasing with
increasing µ. Specify the units of N0 in the table caption.

We fixed the term “free” after “2529”, and performed several modifications (see point 3 of Reviewer 2). We
also checked the value 2529, and this value is clearly false. Fortunately, it was just a typo. We checked
the code, and the value used there is 1253 m−3mm−1−µ. To get this value, we used the formulas defined in
the following document: http://www.cosmo-model.org/content/model/releases/histories/cosmo_4.21.
htm. They specify that

N0 = rain n0 factor ·N00exp (3.2µ)

Note that in the document it is written lambda, but we expect it to be mu, it doesn’t make sense otherwise
(this document is a bit confusing). Also N00 = 8e6 m−4. With µ = 0.5 and rain n0 factor = 1.0, which is the
value we used and it is the default used by MeteoSwiss, this gives N0 = 39624259.39, which must be in units
of m−4−µ. However we prefer to have it units of m−3mm−1−µ, because we work with diameters in mm, so we
divide by 10001+µ and this gives 1253.03 m−3mm1−µ. We added the units in the description of the table.

4. Page 10, line 3: dn
dh = const, not cst

This has been fixed, thanks.

5. Change mathematical presentation of your formulas (10) and (11). To reflect that in your ansatz the parameters
of the Normal- and generalized gamma distribution depend on diameter D, you dont have to use the awkward
superscripts. In the second formula, I think ar has to be replaced by 1/ar, if I look at your Figure 5 and if Im
not mistaken: [...]. You can eliminate the offset l from the formula and text. Just set it to 1.

The equations have been corrected and edited according to the Reviewer 1’s recommendations:

o : go(o,D) = N (0, σo(D)) (15)

1

ar
: g1/ar (1/ar, D) =

( 1
ar
− 1)Λar (D)−1exp

(
−

1
ar
−1

M(D)

)
M(D)Λar (D)Γ(Λar (D))

(16)

where Λar and M are the shape and scale parameters of the gamma aspect-ratio probability density function
and σo is the standard deviation of the Gaussian canting angle distribution. These parameters depend on the
diameter D. Technically Λ, M and σo have been fitted separately for each single diameter bin of MASC, then
their dependence on D has been fitted by power-laws for each parameter, which also allows further integration
over the canting angle and aspect-ratio distributions for all particle sizes. Note also that the gamma distribution
is rescaled with a constant shift of 1, to account for the fact that the smallest possible inverse of aspect-ratio
is 1 and not 0.

σo(D) = 58.07 D−0.11 [◦]

Λar (D) = 6.33 D−0.4 [−]

M(D) = 0.06 D−0.71 [−] (17)

Note that using the properties of the inverse distribution, the distribution of aspect-ratios can easily be obtained
from the distributions of their inverses:

gar (ar, D) =
1

a2
r

g1/ar (1/ar, D) (18)
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6. Delete the sentence starting with The superscript [D] . . . . In the next sentence, correct. . . constant factor
l = 1, . . . ⇒ constant shift of 1, . . . . Replace also the next sentence The relationship . . . by These
parameters depend on the diameter D. Technically, Λar , M and σo first have been fitted separately for each
single diameter bin of MASC, then their dependence on D has been fitted by power laws for each parameter, At
this point, you can insert the power laws from Figure 5 as equations in the text, they deserve it! When you do
so, please indicate all units. Then continue with Note that these power laws allow to estimate the parameters
for any arbitrary maximum diameter. This also allows integration over the canting angle...

Thanks to Reviewer 1 for this comment, we have adapted this part of the paper and added the numerical
expression for the best-fits, please see the previous point.

7. Page 20, line 23: Homogenize notation of the probability density functions p(β), p(ar) with Eq. (10) and (11)

Thanks, we have fixed these equations and their description:

Cb,(j)(D) =
1

2π

2π∫
0

π/2∫
−π/2

1∫
0

cb,(j)(D, ar, α, o) cos(o) go(o,D) gar (ar, D) dα do dar (23)

And for rain and hail, where ar is constant for a given diameter:

Cb,(j)(D) =
1

2π

2π∫
0

π/2∫
−π/2

cb,(j)(D,α, o) cos(o) go(o,D) dα do (24)

where cb,(j)(D,α, o) are the scattering properties for a fixed diameter, canting angle o and yaw Euler angle
(azimuthal orientation) α. go(o) and gar are the probabilities of o and ar for a given diameter D as obtained
from Equations 15 and 18. Note that the final scattering properties are averaged over all azimuthal angles α,
which are all considered to be equiprobable. The cos(o) in the equation is the surface element which arises
from the fact that the integration over α and o is a surface integration in spherical coordinates. The procedure
for Sf is exactly the same.

8. Page 27, line 21: Missing backslash in front of sigmaθ.

Fixed, thanks.

9. Sentence is garbled, delete will be performed.

We have corrected the sentence according to the suggestion.

10. Page 37, line 21: ”(xrot, yrot, zrot)” the same as (xm, ym, zm) ?

Yes, thanks to Reviewer 1. for pointing this out. We have changed all superscripts rot to the subscript m, in
order to be consistent.

11. Page 41, line 1 and 2: The factor 2 has to be removed from the equations because kH and kV are already
two-way attenuation coefficients. And the + sign should be .

Please note that this part of the appendix has been rewritten to be more mathematically correct. The attenu-
ation is now considered in linear Z units, so it becomes a multiplication and not an addition.
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Anonymous Reviewer #2

Specific comments

1. p3l25-27. Please split the line in two.

Thanks to Reviewer 2 for pointing this out. This has been fixed:

The article is structured as follows. In Section 2, a description of the COSMO NWP model as well as the radar
data used for the evaluation of the operator is given. In Section 3, the different steps of the polarimetric radar
operator are extensively described and its assumptions are discussed in details.

2. p4l14. Rutledge is probably meant here instead of Rudledge.

Yes, indeed, there was a typo in the bibliography file. This is now fixed.

3. p5. Table 1 contains several typos: f instead of free, minus sign instead of empty sign and vice versa, some
missing information. Please check it carefully

Yes, indeed, we are thankful to Reviewer 2 for noticing that. We have checked the table and made sev-
eral corrections. The occurence of empty signs were removed and replaced with dash signs, every time the
hydrometeor was considered in the microphysical scheme, but the specific parameter was not used in the pa-
rameterization. The ∅ is only used if the hydrometeor type is not considered by the microphysical scheme (hail
in the one-moment scheme). Please check the new Table 1 in the revised version.

4. p7. In the caption of Figure 1, five radars are mentioned whereas there are only three used in the study.

Yes, indeed the sentence was a bit clumsy. In fact there are currently five operational polarimetric C-band
radars in Switzerland, which are all displayed in the Figure 1. However, two of them were installed only quite
recently and as some of the studied events are already quite old (up to 2010), only the three “older” radars
were used, which explains the caption. We have reformulated the sentence a bit to make this less confusing:

An overview of the specifications of all radars used in this study is given in Table 2. The location of the Swiss
operational radars used in the evaluation of the radar operator (Section 4.3) and their maximum considered
range (100 km) are shown in Figure 1.

And in the caption of Figure 1:

Location of the Swiss operational radars. The three radars used in the context of this study are surrounded by
black circles which indicate the maximum range of radar data (100 km) used for the evaluation of the radar
operator (Section 4.3). Note that as they were installed only quite recently, no data from the Weissfluhgipfel
and Plaine Morte radars were used in this study.

5. p10l25-31. Why is it better to interpolate uncorrelated variables?

Thanks to Reviewer 2. for raising this point. After reflexion, we realized that our explanation could be
confusing. What we wanted to say is that by computing radar observables after downscaling model variables
(concentration and temperature), one is able to ensure the conservation of the mathematical relations between
radar observables (which are clearly correlated and dependent) at the radar gate scale. Doing the opposite
(i.e. computing radar observables at the model grid scale) and downscaling them later to the radar grid does
not guarantee this conservation and leads to an artificial linearization of these relations, caused by the linear
interpolation method.

To illustrate this we designed a small idealized setup: a Gaussian field of rain mass concentrations (g of rain
per m3 of air) of size 128 x 128 pixels is generated randomly. Let’s call this field Q. Two approaches are then
compared.

(a) The resolution of the field Q is decimated by reducing by two its resolution along both dimensions.
The factor of decimation is then increased from 2 to 4, 8, 16 and 32. For a factor of 32, this implies
that the resulting decimated field will be of size 4 x 4. The decimated field is then downscaled with
bilinear interpolation to match the original resolution of 128 x 128. From this downscaled field of rain
concentration, for every decimation factor, the radar observables ZH and ZDR are computed using the
COSMO DSD and lookup tables used in the radar operator (at X-band).
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(b) ZH and ZDR are computed only once on the original undecimated field Q. The computed ZH and ZDR

fields are then decimated and downscaled in a similar fashion as in approach 1.

Figure 7: Example of random Q field (top) and ZH - ZDR relationships obtained by computing radar observables after
downscaling (bottom-left) and before downscaling (bottom-right). The different lines correspond to the relationships
obtained with different decimation factors.

Figure 7 shows the resulting ZH - ZDR relationships for both approaches, for a random generation of Q. However
the conclusions that can be drawn are general and apply to any randomly generated field (with differences in
the magnitude of the observed trends). It is evident that approach 1 (downscaling before computing the radar
variables) seems preferable to approach 2 (computing radar variables and then downscaling). Indeed, the ZH -
ZDR relationship of the original undecimated Q field is preserved no matter the decimation factor that is used.
In contrary, when downscaling ZH and ZDR, the ZH - ZDR becomes more and more distorted, the larger the
decimation factor. In fact it becomes more and more linear, which can be explained by the bilinear interpolation
that is used.

We hope that this example has made our point more clear. Note also that the explanation has been modified
in the revised article.

Secondly, computing radar observables after downscaling allows to preserve the mathematical relation between
them. Indeed, radar variables are far from being independent. For example, in the liquid phase ZH is closely co-
fluctuating with ZDR, in the form of a power-law that tends to stagnate at large reflectivities. Some tests were
performed on random Gaussian fields of rain mass concentration. The results indicate that when computing
the radar observables first and then downscaling them, this theoretical relation becomes more and more linear
when the final downscaled resolution increases, which is quite unrealistic. In contrary, when computing the

10



radar variables after downscaling the rain concentration field, the theoretical relationship is always preserved,
regardless of the downscaling that is used.

6. p10l29. The terms number concentration and mass concentration are both used in the text. Please specify
whether you talk about the number or mass whenever the term concentration is used. Alternatively, use another
term, like contents to refer to mass concentration.

Thanks. To solve this issue, we have removed all occurrences of the term “concentration” as a single word. It
is now always explicitly referred to as “mass concentration” or “number concentration”.

7. p11l16. Has Q
(j)
N been already defined?

No, indeed Reviewer 2 is right, we forgot to define it! We have now corrected this sentence in the text:

[...] at every radar gate using the model variable Q
(j)
M , and, for the two-moments scheme, the prognostic number

concentration Q
(j)
N (M0) as well.

8. p11l19-20. I believe that the omission of the contribution of ice crystals in previous radar forward operators is
somewhat overestimated by the authors. In particular, ice crystals are actually taken into account by Augros et
al. (2016).

Yes, Reviewer 2 is right, sorry about that. We removed this sentence from the paper.

9. p12l1-4. I do not understand how the PSDs of ice crystals are retrieved. May the authors provide more details?
In particular, I am confused with the different moments that are used.

Yes, this part was really too short. We have added some details in the paper that we hope make it much more
clear:

Instead, a realistic PSD is retrieved with the double-moment normalization method of Lee et al. (2004). This
formulation of the PSD requires to know two moments of the PSD as well as an appropriate normalized PSD
function. Field et al. (2005) proposes best-fit relations between the moments of ice crystals PSDs as well as
fits of generating functions for different pair of moments. Precisely, assuming moments 2 (M2) and 3 (M3) of
the size distributions are known, Field et al. (2005) suggest to parameterize the PSD in the following way:

N ice(D) =M4
2 · M−3

3 φ23(x), with x = D

(
M2

M3

)
(4)

with

φ23(x) = 490.6 exp(−20.78x) + 17.46x0.6357 exp(−3.290x) (5)

Unfortunately, in the one-moment scheme of COSMO, only one single moment is known, which corresponds
to M3, since the value of the b parameter in the mass-diameter power-law for ice crystals is equal to 3 (see
Table 1). Fortunately Field et al. (2005), also provide best-fit relations relating M2 to other moments of the
PSD. According to these relationships, M3 can be estimated from M2 with:

M3 ≈ a(3, Tc)Mb(3,Tc)
2 (6)

where a(3, Tc) and b(3, Tc) are polynomial functions of the in-cloud temperature (in ◦ C) and the moment order
(3 in this case).

Taking advantage of these results, it is possible to retrieve a PSD for ice crystals in the radar operator by (1)
using the COSMO temperature to retrieve an estimate for a(3, Tc) and b(3, Tc), (2) inverting Equation 6 to get
an estimate of M2, and (3) use Equations 4 and 5 to estimate the PSD of of ice crystals.

10. p13. The math symbols ln and log are both used in the study. Do they have different meanings? If not, please
use only one notation to avoid confusion.

Thank, we have replaced all occurences of “ln” by “log”, to indicate the natural (Naperian) logarithm. If the
common logarithm (base 10) is used it is written explicitly as log10. We hope this will clear it out.
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11. p13. In Equation 6, z
′

j and z
′

k are not used consistently

Unfortunately, we were not totally sure about what the Reviewer 2 refers to as an inconsistency. We have
rephrased the description of Equation 6 to try to be more precise.

I [y] (ro, θo, φo) ≈
J,K∑

j=1,k=1

w′jw
′
k y(r0, θ0 + z′j , φ0 + z′k) cos (θ0 + z′k) (9)

where w′i = σwi, w
′
j = σwj and z′i = σzi, z

′
j = σzj with σ = ∆3dB

2
√

2 log 2
, where ∆3dB is the 3 dB beamwidth of the

antenna in degrees. wi and zi are respectively the weights and the roots of the Hermite polynomial of order J
(for azimuthal integration) and wi and zi are the weights and roots of the Hermite polynomial of order K (for
elevational integration).

12. p16l3-4. The authors write that the T-matrix method is also used for solid hydrometeors (snow, graupel and
hail). If it was also used for ice crystals, it should be added to the list of solid hydrometeors in parenthesis.

Indeed, the T-matrix method was used for ice crystals as well. We have added this info in the parenthesis
according to your suggestion.

This method was also used for the solid hydrometeors (snow, graupel, hail and ice crystals), at the expense of
some adjustments, that will be described later on.

13. p17. Please check Equation 11 which contains some typos: unexpected use of d, use of 1 instead of l, etc.

In accordance with the remarks of Reviewer 1 and 2, this equation has been significantly changed.

o : go(o,D) = N (0, σo(D)) (15)

1

ar
: g1/ar(1/ar, D) =

( 1
ar
− 1)Λar (D)−1exp

(
−

1
ar

−1

M(D)

)
M(D)Λar (D)Γ(Λar(D))

b (16)

14. p18l6 and p19l2. Please check the meaning of whereas. I think while applies better in these contexts.

We have replaced both occurences of “whereas” by “while”

15. p19. How come ZDR is always above 1 dB in Figure 6?

Thanks to Reviewer 2 for raising this important point. The plot label was indeed wrong because ZDR was in
linear units (dimensionless Zh/Zv) instead of dB, so this explains the strange values. This has been fixed in
the revised version, and ZDR is now plotted in dB as indicated in the label.

16. p22. I do not understand Equations 19 and 20. Why introduce fmswet and fmgwet if they are both equal to Qr/(Qr+
Qs +Qg)?

We are not sure to understand the Reviewer’s point here. In the text, it is written that:

fmswet =
QrQs

Qs (Qs +Qg) +QrQs
(28)

fmgwet =
QrQg

Qg (Qs +Qg) +QrQg
(29)

So they are not equal to Qr/(Qr +Qs +Qg) and are not equal to each other either. Could you please clarify
this point if still needed?

17. p24. Please check Equation 29. I suspect m is actually mm. Also, are terminal velocities missing?
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Indeed, Reviewer 2. is right. Thanks for pointing this out. We have now fixed the equation:

κ =
Qm

Dmax∫
Dmin

mm(D)Nm(D)dD

(41)

Terminal velocities are indeed missing from this equation, which depends only on the concentration (in kg m−3)
of the melting hydrometeor (we force the concentration of the adjusted PSD to match the concentrations of
melting hydrometeors derived from Equations 23 and 24). There is no precipitation intensity involved, so no
terminal velocity is needed.

18. p24l13-19. I do not understand how propagation effects (attenuation, in particular) are taken into account when
the number of quadrature points is increased in the melting layer only.

Indeed there were some missing indications in the text. Some trades-off are required to be able to use such a
simple oversampling scheme. In fact, in the melting layer integration scheme, the order of attenuation correction
and integration are reversed, i.e. attenuation correction is done only at the end, after all variables have been
integrated over the antenna diagram. This allows to get an estimation of kh, even when not all sub-beams are
used at a certain range (by integrating it only over the available sub-beams). Of course, this is a somewhat
strong simplification but it is the only way to perform a local oversampling, which is the only computationally
feasible way to simulate the melting layer effect. We have added some additional information in the revised
version:

Unfortunately, some trades-off are required to run such a simple oversampling scheme. Because the number
of quadrature points is not constant at every radar gate (as not all sub-beams cover the whole radar beam
trajectory), the order of attenuation computation and integration have to be reversed, i.e. attenuation com-
putation is done only at the very end, once all radar variables (including kh and kv) have been integrated
over the antenna diagram. This is a somewhat unrealistic simplification but it is the only way to perform a
local oversampling, which is the only computationally feasible way to simulate the melting layer effect with
volumetric integration. The effect of this approximation was investigated for the strong convective event of the
13 August 2015 (with J = 5,K = 7 and an oversampling factor of 10). The results indicate an overestimation
of the final ZH by an average of 0.58 dBZ, with respect to the normal integration scheme. This bias is caused
by the underestimation of the attenuation effect. For ZDR however, the bias is negligible (0.03 dB), which is
likely due to the fact that this simplification affects ZH and Zv to a similar extent.

19. p28. Please check Equation 39. A parenthesis is not balanced, the function is not Gaussian, etc.

We thank Reviewer 2 for this correction, this equation was indeed wrong. It has been fixed in the text, both in
terms of parenthesis, index of convolution and missing square in the Gaussian (it was right in the code, since
we were using the appropriate function from the numpy and scipy python libraries).

Scorr[i] =

NFFT∑
j=0

S[i− j] 1

σt+α
√

2π
exp

[
− (vrad,bins[j])

2

2σ2
t+α

]
(52)

where σt+α = σt + σα

20. p28. Please check Equation 40 which is wrong, given the definition of kH in Appendix C.

Thanks for pointing this out. This has been fixed in the paper. Please read all the response to Specific comment
8 of Reviewer 1, which is directly related. The new section is:

In reality, attenuation will cause a decrease in observed radar reflectivities at all velocity bins within the
spectrum. To take into account this effect, the path integrated attenuation in linear units at a given radar gate
(kh in Equations C2) is distributed uniformly throughout the spectrum.

S(rg, φg, θg)
att[i] = S(rg, φg, θg)[i] · exp

−2

rg∫
r=0

kh(r, θg, φg) dr

 (53)
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21. p28l15. What is gamma?

The attenuation computation in the Doppler spectrum was wrong (see Specific comment 8 of Reviewer 1). This
was fixed in the revised version, so there is no γ anymore in this part of the paper.

22. p32l29-31. Is µrain changed in the radar forward operator only, or in the COSMO simulations as well?

It has been changed in the COSMO simulations as well. We have added a sentence to make it more clear.

Note that the COSMO model has been run twice, once with µrain = 0.5 and once with µrain = 2.

23. . p34l27. I do not understand why it is argued that GPM tends to underestimate larger reflectivities to explain
why larger reflectivities are present more frequently in the simulations. Attenuation is taken into account in
the simulations, isnt it? Please elaborate.

Yes attenuation is taken into account, though for GPM, which is a spaceborne radar, its effect is quite small. We
were just stating that previous comparison by Speirs et al. (2017) have shown that GPM tends to be negatively
biased in complex terrain in terms of estimated precipitation intensities at the ground when compared with
rain gauge and the operational C-band QPE. So, the results we observe in Figure 20 (there are less observations
of high reflectivities than simulated values), are not surprising.

We have slightly rephrased the corresponding sentence:

Note that similar observations in terms of underestimation of surface rainfall intensities by GPM with respect
to the Swiss operational rain gauge and radar precipitation products have been reported by Speirs et al. (2017).

24. p46l9-11. The reference is incomplete.

We have fixed this reference.
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