
From model to radar variables: a new forward polarimetric
radar operator for COSMO
Daniel Wolfensberger1 and Alexis Berne1
1LTE, Ecole polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
Correspondence to: EPFL ENAC SSIE-GE , GR C2 564, Station 2 . CH-1015 Lausanne, Switzerland, E-mail:
alexis.berne@epfl.ch

Abstract. In this work, a new forward polarimetric radar operator for the COSMO numerical weather prediction
(NWP) model is proposed. This operator is able to simulate measurements of radar reflectivity at horizontal polar-
ization, differential reflectivity as well as specific differential phase shift and Doppler variables for ground based or
spaceborne radar scans from atmospheric conditions simulated by COSMO. The operator includes a new Doppler
scheme, which allows to estimate the full Doppler spectrum, as well a melting scheme which allows to represent the5

very specific polarimetric signature of melting hydrometeors. In addition, the operator is adapted to both the oper-
ational one-moment microphysical scheme of COSMO and its more advanced two-moment scheme. The parameters
of the relationships between the microphysical and scattering properties of the various hydrometeors are derived
either from the literature or, in the case of graupel and aggregates, from observations collected in Switzerland. The
operator is evaluated by comparing the simulated fields of radar observables with observations from the Swiss opera-10

tional radar network, from a high resolution X-band research radar and from the dual-frequency precipitation radar
of the Global Precipitation Measurement satellite (GPM-DPR). This evaluation shows that the operator is able to
simulate an accurate Doppler spectrum and accurate radial velocities as well as realistic distributions of polarimetric
variables in the liquid phase. In the solid phase, the simulated reflectivities agree relatively well with radar obser-
vations, but the simulated differential reflectivity and specific differential phase shift upon propagation tend to be15

underestimated. This radar operator makes it possible to compare directly radar observations from various sources
with COSMO simulations and as such is a valuable tool to evaluate and test the microphysical parameterizations of
the model.

1 Introduction

Weather radars deliver areal measurements of precipitation at a high temporal and spatial resolution. Most recent20

operational weather radar systems have dual-polarization and Doppler capabilities (called polarimetric in the follow-
ing), which provide not only information about the intensity of precipitation, but also about the type of precipitation
(e.g. phase, homogeneity and shape of hydrometeors). Additionally, the Doppler capability of weather radars allows
to monitor the radial velocity of hydrometeors. In view of their capacities, weather radars offer great opportunities
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for validation of and assimilation in numerical weather prediction (NWP) models. This is unfortunately far from
being a trivial task since radar observables which are derived from the backscattered power and phase from pre-
cipitation cannot be simply put into relation with the state of the atmosphere as simulated by the model. There is
thus the need for a conversion tool, able to simulate synthetic radar observations from simulated model variables: a
so-called forward radar operator.5

Over the past few years, several forward radar operators have been developed. One of the first efforts was made
by Pfeifer et al. (2008) who designed a polarimetric operator for the COSMO model, able to simulate horizontal
reflectivity ZH, differential reflectivity ZDR and linear depolarization ratio LDR observations. The operator relies
on the T-matrix method (Mishchenko et al., 1996) to estimate scattering properties of individual hydrometeors.
Assumptions about shape, density and canting angles, which cannot be obtained from the NWP model were obtained10

from a sensitivity study. A limitation of this operator is that it does not perform any integration over the antenna
power density pattern and thus neglects the beam broadening effect which can be quite significant at longer distances
from the radar (Ryzhkov, 2007).
Cheong et al. (2008) developped a three-dimensional stochastic radar simulator able to simulate raw time series of

weather radar data. Doppler characteristics are retrieved by moving discrete scatterers with the three-dimensional15

model wind field, which allows to produce sample-to-sample time series data, instead of theoretical moments as with
conventional radar simulators. Thanks to this, the radar simulator is able to generate the full Doppler spectrum, at
the expense, however, of a high computation cost and without taking attenuation into account.
Jung et al. (2008) developed a polarimetric radar operator able to simulate ZH, ZDR as well as the specific

differential phase on propagation Kdp and adapted it for two different microphysical schemes: one single-moment20

scheme and one two-moment scheme. The authors also proposed a method to simulate the effect of the melting layer
with a weather model that does not explicitely simulate wet hydrometeors. They used this operator to simulate
realistic polarimetric radar signatures of a supercell storm from simulations obtained with the Advanced Regional
Prediction System (ARPS; Xue et al. (2000)). The validation of the operator was however limited to idealized cases
at S-band only.25

Ryzhkov et al. (2011) developed an advanced forward radar operator for a research cloud model with spectral
microphysics able to simulate ZH, ZDR, LDR and Kdp. Scattering amplitudes of smaller particles are estimated with
the Rayleigh approximation whereas the T-matrix method is used for larger hydrometeors. Note, however, that this
cloud model is computationally expensive and is not used for operational weather prediction.
Augros et al. (2016) elaborated a polarimetric forward radar operator for the French non-hydrostatic mesoscale30

research NWP model Meso-NH (Lafore et al., 1998) based on the forward conventional radar operator of Caumont
et al. (2006) which simulates all operational polarimetric radar observables: ZH, ZDR, the differential phase shift
upon propagation φDP, the copolar correlation coefficient ρhv and Kdp. The operator uses the T-matrix method
for rain, snow and graupel particles and Mie scattering for pristine ice particles. Beam-broadening is taken into
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account by approximating the integration over the antenna normalized power density pattern with a Gauss-Hermite
quadrature scheme.
Finally, Zeng et al. (2016) developed a forward radar operator for the COSMO model. The operator is designed for

operational purposes (assimilation and validation) with an emphasis on performance and modularity. It simulates
Doppler velocity with fall speed and reflectivity weighting as well as attenuated horizontal reflectivity, with different5

levels of approximation that can be specified. Note that the operator is currently not able to simulate polarimetric
variables.
Most available radar operators are primarily designed to simulate operational PPI (plane position indicator) scans

from operational weather radars at S, C or X bands. In research however, other types of radar data are available
which can also be relevant in the evaluation of a NWP model, especially for the simulated vertical structure of10

precipitation. Some examples of radar data used for research include satellite swaths at higher frequencies, such
as measurements of the GPM-DPR satellite at Ku and Ka band (Iguchi et al., 2003) as well as power weighted
distributions of scatterer radial velocities (Doppler spectra), commonly recorded by many research radars.
The purpose of this work is to design a state of the art forward polarimetric radar operator for the COSMO

NWP model taking into account the physical aspects of beam propagation and scattering as accurately as possible,15

while ensuring a reasonable computation time on a standard desktop computer. The radar operator also needs to
be versatile and able to simulate a variety of radar variables at many frequencies and for different microphysical
schemes, in order to be used in the future as a model evaluation tool with operational and research weather radar
data. As such, this radar operator includes a number of innovative features: (1) the ability to simulate the full
Doppler spectrum at a very low computational cost, (2) the ability to simulate observations from both ground20

and spaceborne radars (3) a probabilistic parameterization of the properties of solid hydrometeors derived from a
large dataset of observations in Switzerland, (4) the inclusion of cloud hydrometeors (which contribution becomes
important at higher frequencies). Besides, the radar operator has been thoroughly evaluated using a large selection
of radar data at different frequencies and corresponding to various synoptic conditions.
The article is structured as follows. In Section 2, a description of the COSMO NWP model as well as the radar25

data used for the evaluation of the operator is given. In Section 3, the different steps of the polarimetric radar
operator are extensively described and its assumptions are discussed in details. Section 4 focuses on the qualitative
and quantitative evaluation of the simulated radar observables using real radar observations from both operational
and research ground weather radars, as well as GPM satellite data. Finally Section 5 summarizes the main results
and opens perspectives for possible applications of the operator.30
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2 Description of the data

2.1 COSMO model

The COSMO Model is a mesoscale limited area model initially developed as the Lokal Modell (LM) at the Deutscher
Wetterdienst (DWD). It is now operated and developed by several weather services in Europe (Switzerland, Italy,
Germany, Poland, Romania and Russia). Besides its operational applications, it is also used for scientific purposes in5

weather dynamics, microphysics and prediction and for regional climate simulations. The COSMO Model is a non-
hydrostatic model based on the fully compressible primitive equations integrated using a split-explicit third-order
Runge-Kutta scheme (Wicker and Skamarock, 2002). The spatial discretization is based on a fifth-order upstream
advection scheme on an Arakawa C-grid with Lorenz vertical staggering. Height-based Gal-Chen coordinates are
used in the vertical (Gal-Chen and Somerville, 1975). The model uses a rotated coordinate system where the pole is10

displaced to ensure approximatively horizontal resolution over the model domain. Sub-grid scale processes are taken
into account with parameterizations.
In COSMO, grid-scale clouds and precipitation are parameterized operationally with a one-moment scheme similar

to Rutledge and Hobbs (1983) and Lin et al. (1983), with five hydrometeor categories: rain, snow, graupel, ice crystals
and cloud droplets. Snow is assumed to be in the form of rimed aggregates of ice-crystals that have become large15

enough to have an appreciable fall velocity. Cloud ice is assumed to be in the form of small hexagonal plates. In
the version of COSMO that is being used (5.04), ice crystals have a bulk non-diameter dependent terminal velocity,
that depends on their mass concentration. The particle size distributions (PSD) are assumed to be exponential for
all hydrometeors, except for rain where a gamma PSD is assumed. A more advanced two-moment scheme with a
sixth hydrometeor category, hail, was developed for COSMO by Seifert and Beheng (2006) and extended by Blahak20

(2008) and Noppel et al. (2010). As this scheme significantly increases the overall computation time it is currently
not used operationally.
In COSMO, with the exception of ice crystals and rain in the two-moments scheme, mass-diameter relations as

well as velocity-diameter relations are assumed to be power-laws. For rain in the two-moments scheme, a slightly
more refined formula by Rogers et al. (1993) is used. For ice crystals, the two-moment scheme, in contrast with the25

one-moment scheme uses a spectral (diameter-dependent) representation of ice crystal terminal velocities. For both
microphysical schemes, all PSDs can be expressed as particular cases of generalized gamma PSDs.

N(D) =N0D
µexp(−Λ ·Dν) m−3mm−1 (1)

where N0 is the intercept parameter in units of mm−1−µm−3, µ is the dimensionless shape parameter, Λ is the slope
parameter in units of mm−ν and ν is the dimensionless family parameter.30

In the one-moment scheme, which is used operationally, the only free parameter of the PSDs is Λ which can be
obtained from the prognostic mass concentrations. N0 is either assumed to be constant during the simulation, or in
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the case of snow, to be temperature dependent. µ is equal to zero (exponential PSDs) for all hydrometeors, except
for rain where it is set to 0.5 by default and ν is always equal to one.
In the two-moment scheme, both Λ and N0 are prognostic parameters, and can be obtained from the prognostic

moment of order zero (number concentration) and from the mass concentration. µ and ν are defined a-priori.
Table 1 gives the values of the PSD parameters µ, N0, and ν as well as the mass-diameter power-law parameters5

a and b and the terminal velocity-diameter power-law parameters α and β for all hydrometeor types and the two
microphysical schemes.

Rain Snow Graupel Hail Ice crystals

N0 1253/free 1/free 4000/free ∅/free -/free
µ 0.5/2 0/1.2 0/5.37 ∅/5 -/2.311
ν 1/1 1/1.1 1/1.06 ∅/1 -/1.104
a 5.23e-7/5.24e-7 3.80e-8/3.80e-8 8.50e-8/8.50e-8 ∅/3.39e-7 1.3e-7/1.17e-7
b 3.00/3.00 2.00/2.00 3.10/3.10 ∅/3.00 3.00/3.31
α 4.11/- 0.871/0.871 0.945/1.258 ∅/3.362 -/0.966
β 0.50/- 0.25/0.20 0.89/0.85 ∅/0.50 -/1.20

Table 1. Parameters of the hydrometeor PSDs and power-laws for the one-moment and two-moment parameterizations
(separated by a slash sign). ∅ indicates that the hydrometeor is not simulated in this scheme, a dash indicates that this
parameter is not used in this parameterization, and “free” indicates a prognostic parameter. As in Equation 1, N0 is expressed
in units of mm−1−µm−3. Note that the value of µ for rain can be specified in the COSMO user set-up, 0.5 being the default
value. The parameters a and b correspond to the power-law: m(D) = aDb, with m is in kg and D in mm. The parameters α
and β correspond to the power-law: vt(D) = αDβ , with vt being the terminal fall velocity in m s−1, and D is the diameter in
mm.

Non-precipitating quantities (cloud droplets and cloud ice) do not have a spectral representation in the one-
moment scheme of COSMO, but are instead treated as bulk, with the total number of particles being a function of
the air temperature.10

In the operational setup, for the parameterization of atmospheric turbulence the COSMO model uses a prognostic
turbulent kinetic energy (TKE) closure at level 2.5 similar to Mellor and Yamada (1982). The main difference is
the use of variables that are conserved under moist adiabatic processes: total cloud water and liquid water potential
temperature. Additionally, a so-called “circulation term” is included which describes the transfer of nonturbulent
subgrid kinetic energy from larger-scale circulation toward TKE. The reader is referred to Baldauf et al. (2011)15

and the model documentation (Doms et al., 2011) for a more in-depth description of the various COSMO sub-grid
parameterizations.

1for snow, a relation of N0 with the temperature is used (Field et al., 2005)
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MXPol Swiss radar network

Location Payerne: 46.813◦N, 6.943◦E, 495 m a.s.l Albis: 47.284◦N, 8.512◦E, 891 m a.s.l
La Dôle: 46.425◦N, 6.099◦E, 1680 m a.s.l
Monte Lema: 46.040◦N, 8.833◦E, 1604 m a.s.l

Frequency f 9.41 GHz (X-band) 5.6 GHz (C-band)
Pulse width τ 0.5 µs 0.577 µs
PRF 1666 Hz 500 to 1500 Hz (depends on elevation)
FFT length 128 -
3dB
beamwidth

1.45◦ 1◦

Sensitivity
(SNR = 10dB)

11 dBZ at 10 km 0 dBZ at 10 km

Table 2. Specifications of the ground radars used in the evaluation of the radar operator

2.2 Radar data

For the evaluation of polarimetric variables, the final product from the Swiss operational radar network was used.
The Swiss network consists of five polarimetric C-band radars, performing PPI scans at 20 different elevation angles
(Germann et al., 2006). The final quality-checked measurements are corrected for ground clutter, calibrated and
aggregated at a resolution of 500 m. In this work, ZH was used as provided, ZDR was corrected with a daily radar-5

dependent calibration constant provided by MeteoSwiss and Kdp was estimated from ΨDP using the Kalman filter
ensemble method of Schneebeli et al. (2013). Note that two of the operational radars were installed only quite
recently (2014 and 2016) and were thus not used in this study (see Figure 1).
For the evaluation of simulated Doppler variables (mean radial velocity and Doppler spectrum at vertical inci-

dence), observations from a mobile X-band radar (MXPol) deployed in Payerne in Western Switzerland in Spring10

2014 were used. The radar was deployed in the context of the PARADISO measurement campaign (Figueras i Ven-
tura et al., 2015). The PARADISO dataset provides a great opportunity to evaluate the simulated radial velocities,
as Payerne is the location from which the radiosoundings, which are assimilated every three hours in the model, are
launched.
An overview of the specifications of all radars used in this study is given in Table 2. The location of the Swiss15

operational radars used in the evaluation of the radar operator (Section 4.3) and their maximum considered range
(100 km) are shown in Figure 1.
Besides ground radar data, measurements from the dual-frequency precipitation radar (DPR, Furukawa et al.

(2016)), on-board the core satellite of the Global Precipitation Measurement mission (GPM, Iguchi et al. (2003))
were used to validate the simulation of spaceborne radar swaths. The GPM-DPR radar operates at both Ku (13.620

GHz) and Ka (35.6 GHz) bands. At Ku-band, the satellite swath covers approximately 245 km in width, with an
horizontal resolution approximatively 5 km and a 250 m vertical (radial) resolution. At Ka-band, the satellite swath
is more narrow, covering only 125 km in width.
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Figure 1. Location of the Swiss operational radars. The three radars used in the context of this study are surrounded by black
circles which indicate the maximum range of radar data (100 km) used for the evaluation of the radar operator (Section 4.3).
Note that as they were installed only quite recently, no data from the Weissfluhgipfel and Plaine Morte radars were used in
this study.

2.3 Parsivel data

In order to compare the COSMO drop size distribution parameterizations with real observations, data from three
Parsivel-1 optical disdrometers were used. These instruments were deployed at short distance from each other,
near the Payerne MeteoSwiss station. Like the X-band radar presented above, these instruments were deployed in
the context of the PARADISO measurement campaign. The measured drop size distributions were corrected with5

measurements from a 2-dimensional video disdrometer (2DVD) using the method of Raupach and Berne (2015).
For more details regarding these instruments, see Raupach and Berne (2015). All disdrometers were located within
the same COSMO grid cell, so the measured DSDs were simply averaged before comparing them with the COSMO
parameterizations.

2.4 Precipitation events10

A list and short description of all five events used for the evaluation of the radar operator with data from the
operational C-band radars (Section 4.3) and all six events from the PARADISO campaign used for the evaluation
of the radar operator with data from MXPol (Section 4.2) and from Parsivel data (Section 4.4) is given in Table 3.
For the comparison of simulated GPM swaths with real observations, the 100 overpasses with the largest precipi-

tation fluxes recorded between March 2014 and the end of 2016 were selected. Overall, this selection is a balanced15

mix between widespread low-intensity precipitation and local strong convective storms.
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Event Description Used for

1 February 2013 Heavy snowfall event with strong westerly geostrophic winds. A
22 March 2014 Stationary front with widespread stratiform liquid precipitation over

Switzerland.
B

8 April 2014 After the crossing of a cold front, presence of mostly liquid widespread
stratiform precipitation over Switzerland.

A/B

1th May 2014 Occlusion over Switzerland with mild temperatures and widespread
stratiform precipitation

B

7 May 2014 Wake of a cold front with scattered stratiform precipitation B
11 May 2014 Wake of a cold front with strong scattered stratiform and occasionally

convective precipitation
B

14 May 2014 Occlusion over Switzerland with mild temperatures and widespread
stratiform precipitation

B

8 November 2014 The first two weeks of november 2014 were characterized by very heavy
rainfall over the Southern Alps with strong Foehn winds, due to the
presence of a very strong low pressure system over the Mediterranean
(Xandra).

A

9 January 2015 Crossing of a warm front over Switzerland with widespread stratiform
precipitation and snowfall over the Swiss Alps.

C

26 January 2015 Snowfall event over the Swiss Alps with very similar characteristics to
the 9 January 2015 event

C

23 February 2015 Crossing of a cold front over Switzerland with some widespread and
medium-intensity snowfall

C

13 August 2015 Strong summer convection triggered by the presence of very warm and
wet subtropical air over Switzerland.

A

7 June 2016 Presence of warm and moist air over Western Europe with a succession
of thunderstorms.

A

Table 3. List of all events used for the comparison of simulated radar observables with real ground radar observations.
The last column indicates the context of the comparison. A indicates the comparison with the operational C-band radars
(Section 4.3), B indicates the comparison with the X-band radar (Section 4.2) and the Parsivel data (Section 4.4 in Payerne
and C indicates the evaluation of ice crystals with the X-band radar in the Swiss Alps in Davos (Section 4.6).
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3 Description of the polarimetric radar operator

The radar operator simulates observations of ZH, ZDR, Kdp, average Doppler (radial) velocity and of the full Doppler
spectrum based on COSMO simulations and user-specified radar characteristics, such as its position, its frequency,
the 3 dB antenna beamwidth ∆3dB, the pulse duration τ and the pulse repetition frequency (PRF). Figure 2
summarizes the main steps of this procedure, which will be more extensively detailed in the further section.5

Figure 2. Forward operator workflow

3.1 Propagation of the radar beam

Microwaves in the atmosphere propagate along curved lines at speeds v < c as the permittivity of the atmosphere ε
is larger than ε0, the permittivity of vacuum. In the case of large atmospheric permittivity gradients the beam can
even be refracted back to the surface, which can cause distant ground objects to appear on the radar scan. Obviously
in order to simulate the propagation of the radar beam, the effect of atmospheric refraction needs to be taken into10

account. In the radar operator, computing the distance at the ground s, and the height above ground h for every
radial distance r (see Figure 3), can be done in two ways.
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Equivalent Earth Model
The Equivalent Earth Model is a simple yet often used model, in which the atmospheric refractive index n=

√
ε

is assumed to be a horizontally homogeneous linear function of height dn
dh = const. This approximation is simple and

often used in practice, as it does not require any knowledge about the current state of the atmosphere, and is quite
accurate as long as the assumed vertical profile of n is valid in the first kilometers of the atmosphere.5

Atmospheric refraction model (Zeng et al., 2014)
In case of non-standard temperature profiles, such as a temperature inversion, the profile of n can vary significantly

from the one assumed by the Equivalent Earth Model, which can lead to strong underestimation of the beam
refraction. Fortunately Zeng et al. (2014) proposed a more generic and accurate model that is based on the vertical
profile of atmospheric refractivity derived from the model data. This vertical profile can be approximated from the10

temperature T , the partial pressure of water vapour Pw and the total pressure P (Doviak and Zrnić, 2006). The
height at a given range can then be estimated by solving a second order ordinary differential equation derived from
Snell’s law for spherically stratified layers. Again, this model assumes horizontal homogeneity of the atmospheric
refractivity.
The choice of the refraction model (Earth equivalent or atmospheric refraction) is left to the user of the radar15

operator, noting that the computation cost for the latter is slightly larger. The whole evaluation of the radar operator
presented in Section 4 was performed with the more advanced model of Zeng et al. (2014).

3.2 interpolation of model variables

Once the distance at the ground s, and the height above ground h, are obtained from the refraction model, it is
easy to retrieve the lat/lon/height coordinates (ψWGS,λWGS,h) of the corresponding radar gate, knowing the beam20

elevation θ0 and azimuth φ0 angles, as well as the position of the radar.
Once the coordinates of all radar gates have been defined, the model variables must be interpolated to the location

of the radar gates. This is done with trilinear interpolation (linear interpolation in three dimensions). The advantage
of interpolating model variables before estimating radar observables, instead of doing the opposite, is twofold. At
first, it is much more computationally efficient, because computing radar observables requires numerical integration25

over a particle size distribution at every bin, which is costly. Secondly, computing radar observables after linear
interpolation allows to preserve the mathematical relation between them. Indeed, radar variables are far from being
independent. For example, in the liquid phase ZH is closely co-fluctuating with ZDR, in the form of a power-law
that tends to stagnate at large reflectivities. Some tests were performed on random Gaussian fields of rain mass
concentration. The results indicate that when computing the radar observables first and then interpolating them,30

this theoretical relation becomes more and more linear when the the interpolation resolution increases, which is
quite unrealistic. In contrary, when computing the radar variables after interpolating the rain concentration field,
the theoretical relationship is always preserved, regardless of the interpolation technique that is being used.
Technical details about the trilinear interpolation procedure are given in Appendix A.
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3.3 Retrieval of particle size distributions

In the one-moment scheme, for a given hydrometeor j, the COSMO specific mass concentration Q
(j)
M in kg·m−3

is proportional to a specific moment of the particle size distributions (PSD), since the COSMO parameterizations
assumes simple power-laws for the mass-diameter relations: m(j)(D) = a(j)Db(j) . Because all COSMO PSDs belong
to the class of generalized gamma PSDs, QM can be expressed as:5

Q
(j)
M = a(j)

D(j)
max∫

D
(j)
min

Db(j)
·

N(j)(D)︷ ︸︸ ︷
N

(j)
0 Dµ(j)

exp
(
−Λ(j)Dν(j)

)
dD (2)

As in the COSMO microphysical parameterization (see Doms et al. (2011)), the PSDs are assumed to be only
weakly truncated and the integration bounds [D(j)

min,D
(j)
max] are replaced by [0,∞), in order to get an analytical

solution and avoid the cost of numerical root finding. Note that this truncation hypothesis is done only for the
retrieval of Λ and not when computing the radar observables (Section 3.6.3 and Appendix C). For the one-moment10

scheme, by integrating the Equation 2, one gets the following expression for the free parameter Λ(j).

Λ(j)
1mom =

N (j)
0 a(j)Γ

(
b(j)+µ(j)+1

ν(j)

)
ν(j)Q

(j)
M


ν(j)

b(j)+µ(j)+1

(3)

For the two-moment scheme, the method is similar, except that both mass and number concentrations are needed
to retrieve Λ and N0. The corresponding mathematical formulation is given in Appendix B.
Equation 3 allows to retrieve the PSD parameters for all hydrometeors2 in Table 1 at every radar gate using the15

model variable Q(j)
M , and, for the two-moments scheme, the prognostic number concentration Q

(j)
N (M0) as well.

Knowing the PSDs (N (j)(D)) makes it possible to perform the integration of polarimetric variables over ensemble
of hydrometeors as will be described in the next steps of the operator.
In our radar operator, cloud droplets are neglected because the radar operator is designed for common precipitation

radar frequencies (2.7 up to 35 GHz), for which the contribution of cloud droplets is very small (Fabry, 2015). However20

at higher frequencies and in weak precipitation, the contribution of ice crystals can be significant, especially for ZDR,
as these crystals can be quite oblate (Battaglia et al., 2001). Therefore, ice crystals are considered explicitly, even
though they do not have a spectral representation in the one-moment scheme of COSMO. Instead, a realistic PSD is
retrieved with the double-moment normalization method of Lee et al. (2004). This formulation of the PSD requires
to know two moments of the PSD as well as an appropriate normalized PSD function. Field et al. (2005) proposes25

best-fit relations between the moments of ice crystals PSDs as well as fits of generating functions for different pair of
2except for the ice crystals in the one-moment scheme, where COSMO does not consider any spectral representation
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moments. Precisely, assuming moments 2 (M2) and 3 (M3) of the size distributions are known, Field et al. (2005)
suggest to parameterize the PSD in the following way:

N ice(D) =M4
2 ·M−3

3 φ23(x), with x=D

(
M2

M3

)
(4)

with

φ23(x) = 490.6exp(−20.78x) + 17.46x0.6357 exp(−3.290x) (5)5

Unfortunately, in the one-moment scheme of COSMO, only one single moment is known, which corresponds to
M3, since the value of the b parameter in the mass-diameter power-law for ice crystals is equal to 3 (see Table 1).
Fortunately Field et al. (2005), also provide best-fit relations relatingM2 to other moments of the PSD. According
to these relationships,M3 can be estimated fromM2 with:

M3 ≈ a(3,Tc)Mb(3,Tc)
2 (6)10

where a(3,Tc) and b(3,Tc) are polynomial functions of the in-cloud temperature (in ◦ C) and the moment order
(3 in this case).
Taking advantage of these results, it is possible to retrieve a PSD for ice crystals in the radar operator by (1)

using the COSMO temperature to retrieve an estimate for a(3,Tc) and b(3,Tc), (2) inverting Equation 6 to get an
estimate ofM2, and (3) use Equations 4 and 5 to estimate the PSD of of ice crystals.15

3.4 Integration over the antenna pattern

Part of the transmitted power is directed away from the axis of the antenna main beam, which will increase the
size of the radar sampling volume with range, an effect known as beam-broadening. Depending on the antenna
beamwidth this effect can be quite significant and needs to be accounted for by integrating the radar observables at
every gate over the antenna power density pattern. Equation 7 formulates the antenna integration for an arbitrary20

radar observable y and a normalized power density pattern of the antenna represented by f2, as in Doviak and Zrnić
(2006).

I [y] (ro,θo,φo) =
ro+∆r/2∫
ro−∆r/2

θo+π/2∫
θo−π/2

φo+π∫
φo−π

y(r,θ,φ)f4(θ0− θ,φ0−φ)|W (r0− r)|2 cosθdrdθdφ (7)

In our operator, similarly to Caumont et al. (2006) and Zeng et al. (2016), we setW (r0−r) = 1 if r ∈
[
r0− cτ

4 , r0 + cτ
4
]

and W (r0− r) = 0 otherwise. Indeed since the model resolution (1-2 km) is about one order of magnitude larger25
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Figure 3. Beam broadening increases the sampling volume with increasing range and is caused by the fact that the normalized
power density pattern of the antenna (shown in red/blue tones) is not completely concentrated on the beam axis. The blue
dots correspond to the integration points used in the quadrature scheme (in this case with J,K = 3 for illustration purposes)
and their size depends on their corresponding weights. The effect of atmospheric refraction on the propagation of the radar
beam is also illustrated: r is the radial distance (radar range), s is the ground distance and h the distance above ground of a
given radar gate, which need to be estimated accurately.

than the typical gate length of a modern radar (80-250 m), effects related to the finite receiver bandwidth can be
neglected. Integration over r can still be done a posteriori by using a higher radial resolution and aggregating the
simulated radar observables afterwards.
Another often used simplification is to neglect side lobes in the power density pattern and to approximate f2 by

a circularly symmetric Gaussian. These simplifications reduce the integration to Equation 8.5

I [y] (ro,θo,φo) =
θo+π/2∫
θo−π/2

φo+π∫
φo−π

y(r0,θ,φ) exp
(
−8log2

[
θ0− θ
∆3dB

]2
− 8log2

[
φ0−φ
∆3dB

]2
)

cosθdθdφ (8)

This integration can be accurately approximated with a Gauss-Hermite quadrature (Caumont et al., 2006):

I [y] (ro,θo,φo)≈
J∑
j=1

w′j cos
(
θ0 + z′j

) K∑
k=1

w′k y(r0, θ0 + z′j , φ0 + z′k) (9)

where w′j = σwj , w′k = σwk and z′j = σzj , z′k = σzk with σ = ∆3dB

2
√

2log2
, where ∆3dB is the 3 dB beamwidth of the10

antenna in degrees. wj and zj are respectively the weights and the roots of the Hermite polynomial of order K (for
elevational integration) and wk and zk are the weights and roots of the Hermite polynomial of order K (for azimuthal
integration). For the integration in the radar operator, default values of J = 5 and K = 7 are used according to Zeng
et al. (2016). The quadrature points thus correspond to separate sub-beams with different azimuth and elevation
angles that are resolved independently. A schematic example of this quadrature scheme is shown in Figure 3 for15

J,K = 3.
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Another advantage of using a quadrature scheme is that is makes it easy to consider partial beam-blocking (grayed
out area in Figure 3). Note that in our operator, the blocked sub-beams are simply lost (i.e. are not considered in
the integration) and no modelling of ground echoes is performed. However, as was done in the evaluation of the
operator (Section 4), these beams can easily be identified and removed when comparing simulated radar observables
with real measurements.5

The choice of this simple Gaussian quadrature was validated by comparison with an exhaustive integration scheme
during three precipitation events (two stratiform and one convective). The exhaustive integration consists in the de-
composition of a real antenna pattern (obtained from lab measurements) into a regular grid of 200 × 200 sub-beams.
Such an integration is obviously extremely computationally expensive and can not be considered as a reasonable
choice of quadrature in practice. Four other quadrature schemes were tested, (1) a sparse Gauss-Hermite quadrature10

scheme (Smolyak, 1963), (2) a custom hybrid Gauss-Hermite/Legendre quadrature scheme based on the decompo-
sition of the real antenna diagram in radial direction with a sum of Gaussians (3) a Gauss-Legendre quadrature
scheme weighted by the real antenna pattern and (4) a recursive Gauss-Lobatto scheme (Gautschi, 2006) based on
the real antenna pattern. All schemes were tested in terms of bias and root mean square error (RMSE) in horizontal
reflectivity ZH and differential reflectivity ZDR as a function of beam elevation (from 0 to 90◦), taking the exhaustive15

integration scheme as a reference. Figure 4 shows an example for one of the two stratiform events. It was observed
that the simple Gauss-Hermite scheme was the one which performed the best on average (lowest bias and RMSE for
both ZH and ZDR), with schemes (1) and (3) performing almost systematically worse. Schemes (2) and (4) tend to
perform slightly better at low elevation angles in particular situations where strong vertical gradients are present,
generated for instance by a melting layer or by strong convection. This is due to the fact that in these situations,20

the contribution of the side lobes can become quite important, for example when the main beam is located in the
solid precipitation above the melting layer but the first side lobe shoots through the melting layer or the rain un-
derneath. However, considering that these schemes are more computationally expensive and tend to perform worse
at elevations > 3◦, it was decided to keep the simple Gauss-Hermite scheme, which seems to offer the best trade-off.
As an improvement to the operator, it could however be possible to use an adaptive scheme that depends on the25

specific state of the atmosphere and the beam elevation.

3.5 Derivation of polarimetric variables

The mathematical formulation of the radar observables involves the scattering matrix S, which relates the scattered
electric field Es to the incident electric field Ei (Bringi and Chandrasekar, 2001) for a given scattering angle.

Esh
Esv

= e−ik0r

r
SFSA

Eih
Eiv

 (10)30

where k0 is the wave number of free space (k0 = 2π/λ).
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Figure 4. Bias and RMSE in terms of ZH during one day of stratiform of precipitation (around 120 RHI scans), for the five
possible quadrature schemes. The exhaustive quadrature scheme is used as a reference. The other two events show similar
results.

The scattering matrix SFSA is a 2×2 matrix of complex numbers in units of m−1 (e.g., Bringi and Chandrasekar,
2001; Doviak and Zrnić, 2006; Mishchenko et al., 2002).

SFSA =

shh shv

svh svv


FSA

(11)
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The FSA subscript indicates the forward scattering alignment convention, in which the positive z-axis is in the
same direction as the travel of the wave (for both the incident and scattered wave). A sketch illustrating the reference
unit vectors for the scattered wave in the FSA convention is given in Figure 5.

x

y

z

φs

θs

φ̂s = ĥs

θ̂s = v̂s

ψ̂s

φ̂s = ĥs

Figure 5. The direction of the far-field scattered wave is given by the spherical angles θs and φs, or by the unit vector ψ̂s.
In the FSA convention, the horizontal and vertical unit vectors are defined as ĥs = φ̂s and v̂s = φ̂s. The unit vectors for the
spherical coordinate system form the triplet (ψ̂s, θ̂s, φ̂s), which in the FSA convention becomes (ψ̂s, v̂s, ĥs), with ψ̂s = v̂s× ĥs.
This figure was adapted from Bringi and Chandrasekar (2001).

In the FSA convention, the scattering matrix is also called the Jones matrix (Jones, 1941). In the following the
coefficients of the backscattering matrix (scattering towards the radar) will be denoted by sb, and the coefficients of5

the forward scattering matrix (scattering away from the radar) by sf .
All radar observables for a simultaneous transmitting radar can be defined in terms of a backscattering covariance

matrix Cb and a forward scattering vector Sf . For a given hydrometeor of type (j) and diameter D.

Cb,(j)(D) =

 |sb,(j)hh |2 s
b,(j)
vv

(
s
b,(j)
hh

)∗
s
b,(j)
hh

(
s
b,(j)
vv

)∗
|sb,(j)vv |2

 ∈R2×2 (12)

and10

Sf,(j)(D) =

sf,(j)hh

s
f,(j)
vv

 ∈ C2×1 (13)

where the superscripts b and f indicate backward, respectively forward scattering directions and s are elements
of the scattering matrix SFSA (Equation 11) that relates the scattered electric field to the incident electric field for
a given particle of diameter D.

16



The radar backscattering cross sections σb are easily obtained from Cb:

σ
b,(j)
h (D) = 4πCb,(j)1,1 (D)

σb,(j)v (D) = 4πCb,(j)2,2 (D) (14)

All polarimetric variables at the radar gate polar coordinates (ro,θo,φo) are function of Cb and Sf and can
be otained by first integrating these scattering properties over the particle size distributions, summing them over5

all hydrometeor types and finally integrating them over the antenna power density. The exhaustive mathematical
formulation of all simulated radar observables is given in Appendix C. Additionally, real radar observations of ZH

and ZDR are affected by attenuation, which needs to be accounted for to simulate realistic radar measurements. The
specific differential phase shift on propagation Kdp also needs to be modified in order to account for the specific
phase shift on backscattering (see Appendix C).10

3.6 Scattering properties of individual hydrometeors

Estimation of Cb,(j) and Sf,(j) for individual hydrometeors is performed with the transition-matrix (T-matrix)
method. The T-matrix method is an efficient and exact generalization of Mie scattering by randomly oriented non-
spherical particles (Mishchenko et al., 1996). Since the shape of raindrops is widely accepted to be well approximated
by spheroids (e.g., Andsager et al., 1999; Beard and Chuang, 1987; Thurai et al., 2007), the T-matrix method pro-15

vides a well suited method for the computation of the scattering properties of rain. This method was also used
for the solid hydrometeors (snow, graupel, hail and ice crystals), at the expense of some adjustments, that will be
described later on.
The T-matrix method requires knowledge about the permittivity, the shape as well as the orientation of particles.

Since particles are assumed to be spheroids, the aspect-ratio ar, defined in the context of this work as the ratio20

between the smallest dimension and the largest dimension of a particle, is sufficient to characterize their shapes. The
orientation o is defined as the angle formed between the horizontal and the major axis (canting angle ∈ [-90,90])
and can be characterized with the Euler angle β (pitch).
In order to make the overall computation time reasonable, the scattering properties for the individual hydrometeors

are pre-computed for various common radar frequencies and stored in three-dimensional lookup tables: diameter,25

elevation and temperature for dry hydrometeors and diameter, elevation and wet fraction for wet hydrometeors
(Section 3.7). On run time, these scattering properties are then simply queried from the lookup tables, for a given
elevation angle and temperature/wet fraction.

3.6.1 Aspect-ratios and orientations

Rain30
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For liquid precipitation (raindrops), the aspect-ratio model of Thurai et al. (2007) is used and the drop orientation
are assumed to be normally distributed with a zero mean and a standard deviation of 7◦ according to Bringi and
Chandrasekar (2001).
Snow and graupel
For solid precipitation, estimation of these parameters is a much more arduous task, since solid particles have a5

very wide variability in shape. Few aspect-ratio models have been reported in the literature and even less is known
about the orientations of solid hydrometeors.
In terms of aspect-ratio, Straka et al. (2000) report values ranging between 0.6 and 0.8 for dry aggregates and

between 0.6 and 0.9 for graupels while Garrett et al. (2015) reports a median aspect-ratio of 0.6 for aggregates and
a strong mode in graupel aspect-ratios around 0.9.10

In terms of orientation distributions, both Ryzhkov et al. (2011) and Augros et al. (2016) consider a Gaussian
distribution with zero mean and a standard deviation of 40◦ for aggregates and graupels in their simulations.

Given the large uncertainty associated with the geometry of solid hydrometeors, a parameterization of aspect-
ratios and orientations for graupel and aggregates was derived using using observations from a multi-angle snowflake
camera (MASC). A detailed description of the MASC can be found in Garrett et al. (2012). MASC observations15

recorded during one year in the Eastern Swiss Alps were classified with the method of Praz et al. (2017), giving a
total of around 30’000 particles for both hydrometeor types. The particles were grouped into 50 diameter classes
and inside every class a probability distribution was fitted for the aspect-ratio and the orientations. For sake of
numerical stability, the fit was done on the inverse of the aspect-ratio (large dimension over small dimension). In
accordance with the microphysical parameterization of the model, the considered reference for the diameter of solid20

hydrometeors is their maximum dimension.
The inverse of aspect ratio, 1/ar, is assumed to follow a gamma distribution, whereas the canting angle o is

assumed to be normally distributed with zero mean, and the parameters of these distributions depend on the
considered diameter bin bDc.

o : go(o,D) =N (0,σo(D)) (15)25

1
ar

: g1/ar (1/ar,D) =
( 1
ar
− 1)Λar (D)−1exp

(
−

1
ar
−1

M(D)

)
M(D)Λar (D)Γ(Λar (D))

b (16)

where Λar and M are the shape and scale parameters of the gamma aspect-ratio probability density function and
σo is the standard deviation of the Gaussian canting angle distribution. These parameters depend on the diameter
D. Technically Λ, M and σo have have been fitted separately for each single diameter bin of MASC, then their30

dependence on D has been fitted by power-laws for each parameter, which also allows further integration over the
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canting angle and aspect-ratio distributions for all particle sizes. Note also that the gamma distribution is rescaled
with a constant shift of 1, to account for the fact that the smallest possible inverse of aspect-ratio is 1 and not 0.

σo(D) = 58.07 D−0.11 [◦]

Λar (D) = 6.33 D−0.4 [−]

M(D) = 0.06 D−0.71 [−] (17)5

Note that using the properties of the inverse distribution, the distribution of aspect-ratios can easily be obtained
from the distributions of their inverses:

gar (ar,D) = 1
a2
r

g1/ar (1/ar,D) (18)

Figure 6 shows the fitted densities for every diameter and every value of inverse aspect-ratio and canting angle.
Overlaid are the empirical quantiles (dashed lines) and the quantiles of the fitted distributions (solid lines). Generally10

the match is quite good. The fitted models are able to take into account the increase in aspect-ratio spread and
decrease in canting angle spread with particle size, which are the two dominant trends that can be identified in the
observations.
Figure 7 shows the effect of using this MASC-based parameterization instead of the values from the litterature

(Ryzhkov et al., 2011) on the resulting polarimetric variables. Whereas only a small increase is observed for the15

horizontal reflectivity ZH, the difference is quite important for ZDR and Kdp, especially for graupel. The MASC
parameterization tends to produce a stronger polarimetric signature. It is interesting to notice that ZDR tends to
decrease with the mass concentration, which is rather counter-intuitive as ZDR is thought to be independent of
concentration effects. This can be explained by the fact that, in COSMO, the density of snowflakes decreases with
their size (they become less compact) and therefore the permittivity computed with the mixture model decreases as20

well. When the concentration increases, the proportion of larger (and more oblate) snowflakes increases but given
their smaller permittivity, the overall trend is a slight decrease in ZDR. This trend hence reflects an assumption in
COSMO, not necessarily the reality.
Note that even if this increase in the polarimetric signature of aggregates and graupel seems particularly dras-

tic, comparisons with real radar measurements indicate that the operator is still underestimating the polarimetric25

variables in snow (Section 4.3).
Hail
A similar analysis could not be performed for hail, as no MASC observations of hail were available. Hence, the

canting angle distribution is assumed to be Gaussian with zero mean and a standard deviation of 40◦, while the
aspect-ratio model is taken from (Ryzhkov et al., 2011).30
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q10 / q90
q25 / q75
q50 (median) Model fit

Observed (MASC)

Figure 6. Fitted probability density functions for the inverse of the aspect-ratio (top) and the canting angle (bottom). The
power-laws relating the particle density function parameters to the diameter are displayed in the grey boxes on the top-left.
Note that the fit was performed on the inverse of the aspect-ratio (major axis over minor axis).

ahailr =

1− 0.02D, if D < 10 mm

0.8, if D ≥ 10 mm
(19)

Ice crystals
For ice-crystals, the aspect-ratio model is taken from Auer and Veal (1970) for hexagonal columns, while the canting

angle distribution is assumed to be Gaussian with zero mean and a standard deviation of 5◦, which corresponds to
the upper range of the canting angle standard deviations observed by Noel and Sassen (2005) in cirrus and midlevel5

clouds.
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Figure 7. Polarimetric variables at X-band (9.41 GHz) as a function of the mass concentration for snow and graupel when
using canting angle and aspect-ratio parameterizations from the litterature (Ryzhkov et al., 2011) (solid line) and when using
the parameterization based on MASC data (dashed line).

3.6.2 Permittivities

In the following, the term (complex) permittivity will be used for the relative dielectric constant of a given material.
It is defined by:

ε= ε′+ iε′′ (20)
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where ε′ is the real part, related to the phase velocity of the propagated wave, and ε′′ is the imaginary part, related
to the absorption of the incident wave.
Rain
For the permittivity of rain εr, the well known model of Liebe et al. (1991) for the permittivity of water at

microwave frequencies is used. Note that recently, a new model for water permittivity has been proposed by Turner5

et al. (2016), which appears to provide a better agreement with field observations at high frequencies. However, for
common precipitation radar frequencies (< 30 GHz) and temperatures (>−20◦) both models agree very well.
Snow, graupel, hail and ice crystals
The permittivity of composite materials, such as snow, which consists of a mixture of air and ice, can be estimated

with a so-called Effective Medium Approximation (EMA). A well known EMA is the Maxwell-Garnett approximation10

(Bohren and Huffman, 1983), in which the effective medium consists of a matrix medium with permittivity εmat and
inclusions with permittivity εinc:

εeff = εmat

(
1 + 2f incvol

εinc−εmat

εinc+2εmat

1− f incvol
εinc−εmat

εinc+2εmat

)
(21)

where εeff is the effective permittivity of the composite material, and f incvol is the volume fraction of the inclusions.
Note that other EMAs exist, such as the Bruggemann (1935) and Oguchi (1983) approximations. If none of the15

components is a strong dielectric, all these EMAs approximately agree to first order (Bohren and Huffman, 1983).
The interested reader is referred to Blahak (2016), for an intercomparison of these EMA in the context of simulated
reflectivity fields.
Dry solid hydrometeors consist of inclusions of ice in a matrix of air. In this case εmat ≈ 1, which leads to a

simplified form of the mixing formula (e.g., Ryzhkov et al., 2011).20

ε(j) =
1 + 2f icevol

εice−1
εice+2

1− f icevol
εice−1
εice+2

(22)

where f icevol is the volume fractions of ice within the given hydrometeor (snow, graupel or hail) and εice is the
complex permittivity of ice, which can be estimated with Hufford (1991)’s formula.
The densities ρ(j) can be easily obtained from the COSMO mass-diameter relations ρ(j) = a(j)D(b)

π/6D3 and the density
of ice is assumed to be constant ρi = 916 kg m−3.25

3.6.3 Integration of scattering properties

The matrices Cb,(j)(D) (Equation 12) and Sf,(j)(D) (Equation 13) are obtained by integration over distributions of
canting angles and, for snow and graupel, aspect-ratios. For Cb,(j) this gives for snow and graupel:
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Cb,(j)(D) = 1
2π

2π∫
0

π/2∫
−π/2

1∫
0

cb,(j)(D,ar,α,o) cos(o) go(o,D) gar (ar,D) dα do dar (23)

And for rain and hail, where ar is constant for a given diameter:

Cb,(j)(D) = 1
2π

2π∫
0

π/2∫
−π/2

cb,(j)(D,α,o) cos(o) go(o,D) dα do (24)

where cb,(j)(D,α,o) are the scattering properties for a fixed diameter, canting angle o and yaw Euler angle (az-
imuthal orientation) α. go(o) and gar are the probabilities of o and ar for a given diameter D as obtained from5

Equations 15 and 18. Note that the final scattering properties are averaged over all azimuthal angles α, which are
all considered to be equiprobable. The cos(o) in the equation is the surface element which arises from the fact that
the integration over α and o is a surface integration in spherical coordinates. The procedure for Sf is exactly the
same.
Since the computation of the T-matrix for a large number of canting angles and aspect-ratios can be quite10

expensive, two different quadrature schemes were used, one Gauss-Hermite scheme for the integration over the
Gaussian distributions of canting angles, and one recursive Gauss-Lobatto scheme (Gander and Gautschi, 2000) for
the integration over aspect-ratios.

3.6.4 Taking into account the radar sensitivity

The received power at the radar antenna decreases with the square of the range, which leads to a decrease of signal-15

to-noise ratio (SNR) with the distance. To take into account this effect, all simulated radar variables at range rg are
censored if:

ZH(rg)< S+G+SNRthr + 20 · log10

(
rg
r0

)
(25)

where G is the overall radar gain in dBm, S is the radar antenna sensitivity in dBm, ZH is the horizontal reflectivity
factor in dBZ, and SNRthr corresponds to the desired signal-to-noise threshold in dB (typically 8 dB in the following).20

r0 is a distance used to normalize the argument of the logarithm. If all units are consistent then r0 = 1.

3.7 Simulation of the melting layer effect

Stratiform rain situations are generally associated with the presence of a melting layer (ML), characterized by a strong
signature in polarimetric radar variables (e.g., Szyrmer and Zawadzki, 1999; Fabry and Zawadzki, 1995; Matrosov,
2008; Wolfensberger et al., 2016). In order to simulate realistic radar observables, this effect needs to be taken25

into account by the radar operator. Unfortunately COSMO does not operationally simulate wet hydrometeors, even
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though a non-operational parameterization was developed by Frick and Wernli (2012). Jung et al. (2008) proposed
a method to retrieve the mass concentration of wet snow aggregates by considering co-existence of rain and dry
hydrometeors as an indicator of melting. A certain fraction of rain and dry snow is then converted to wet snow
which shows intermediate properties between rain and dry snow, depending on the fraction of water within (wet
fraction). As a first try to simulate the melting layer we have implemented Jung et al. (2008)’s method and adapted5

it to also consider wet graupel. However, two issues with this method have been observed. First of all the co-existence
of liquid water and wet hydrometeors causes a secondary mode in the Doppler spectrum within the melting layer,
due to the different terminal velocities, a mode that was never observed in the corresponding radar measurements.
Secondly, the splitting of the total mass into separate hydrometeor classes (rain and wet hydrometeors) causes
an unrealistic decrease in reflectivity just underneath the melting layer. It was thus decided to use an alternative10

parameterization in which only wet aggregates and wet graupel exist within the melting layer. At the bottom of
the melting layer, where the wet fraction is usually almost equal to unity, these particle behave almost like rain
and at the top of the melting layer, where the wet fraction is usually very small, these particles behave like their
dry counterparts. Note that in contrary to Frick and Wernli (2012) which explicitly consider separate prognostic
variables for the meltwater on snowflakes, our scheme is purely diagnostic and is meant to be used in post-processing,15

when the COSMO model has been run without a parameterization for melting snow.

3.7.1 Mass concentrations of wet hydrometeors

The fraction of wet hydrometeor mass is obtained by converting the total mass of rain and dry hydrometeors within
the melting layer into melting aggregates and melting graupel.

Qms =Qs +
(
Qr

Qs

Qs +Qg

)
(26)20

Qmg =Qg +
(
Qr

Qg

Qs +Qg

)
(27)

where the superscripts s, g and r indicate dry snow, dry graupel and rain, and ms and mg indicate wet snow and
graupel. Note that the mass of rainwater is added to the mass of wet hydrometeors proportionally to their relative
fractions.
The wet fraction within melting hydrometeors can be estimated by the fraction of mass coming from rainwater25

over the total mass. This results in equal wet fraction for wet snow and wet graupel:

fmswet = fmgwet = Qr

Qs +Qg +Qr
(28)
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3.7.2 Diameter dependent properties

Mass
For the mass of wet hydrometeors, the quadratic relation proposed by Jung et al. (2008) is used:

mm(D) = (fmwet)
2
mr(D) +

[
1− (fmwet)

2
]
md(D) (29)

where the superscript d indicates the corresponding dry hydrometeor and the superscript m indicates the melting5

hydrometeor. The considered diameter D is the actual maximum dimension of a melting particle, and not the melted
diameter.
Terminal velocity
For the terminal velocity vmt of melting hydrometeors, the equation is computed from the terminal velocities of

rain and dry hydrometeors, using a best-fit obtained from wind tunnel observations by Mitra et al. (1990).10

vmt (D) = φvrt (Dr) + (1−φ)vdt (D) (30)

where φ= 0.246fmwet + (1− 0.246)(fmwet)
7. Dr is the equivalent melted diameter of the particle. Dr is related to D

by:

Dr(D) =
(
ρm(D)
ρwater

)1/3
D (31)

This relation is also used by Frick and Wernli (2012) and Szyrmer and Zawadzki (1999).15

Canting angle distributverions
For the canting angle distributions, a linear shift of σcant (the standard deviation of the Gaussian distribution of

canting angle) with fmwet is considered:

σmcant(D) = fmwetσ
r
cant(D) + (1− fmwet)σdcant(D) (32)

Aspect-ratio20

For a given diameter, the distribution of aspect-ratio for melting hydrometeors is the renormalized sum of the
gamma distribution of dry aspect-ratios obtained from the MASC observations (Equation 18) and the aspect-ratio
distribution of rain, linearly weighted by the melting fraction fmwet. Since for rain the aspect-ratio is considered
constant for a given diameter, the distribution would be a Dirac. Instead, in order to perform the weighted sum, the
distributions of aspect-ratios in rain are represented by a very narrow Gaussian distribution (σra-r = 0.001) centered25

around the corresponding aspect-ratio.
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Permittivity
In Equation 21, we have previously introduced the general two-component Maxwell-Garnett EMA. However,

melting hydrometeors are a mixture of three components: water, ice, and air. To compute their permittivity, the
general two-component formulation is used recursively, first to derive the permittivity of dry snow (as was done
previously for dry snow, graupel, hail and ice crystals), and then the permittivity of the dry snow and water5

mixture.
The necessary volume fractions of all components fvol can again be estimated with the mass-diameter model:

fwatervol = fmwet
ρm

ρwater
(33)

f icevol = ρm− fwatervol ρwater

ρice
(34)

fairvol = 1− fwatervol − f icevol (35)10

where ρm = mm(D)
π/6D3 is the density of the melting hydrometeor.

In a first step, Equation 21 is used with f incvol = f ice
vol

f ice
vol+f

air
vol

, εmat ≈ 1, εinc = εice, to yield εd, the permittivity of
the dry part of the melting hydrometeor. For the second step, however, the estimated permittivity of the melting
hydrometeor will depend on whether water is treated as the matrix and snow as the inclusions or the opposite, giving
two different possible outcomes. To overcome this issue, a formulation proposed by Meneghini and Liao (1996) is15

used, where the final permittivity is a weighted sum of both permittivities and where the weights are function of the
wet fraction. This method is also used by Ryzhkov et al. (2011). Precisely, Equation 21 is used first with f incvol = fwatervol

and εmat = εd, εinc = εwater, to yield εm,(1), and at second with f incvol = fairvol + f icevol and εmat = εwater, εinc = εd, to yield
εm,(2). The final εm is a weighted sum of εm,(1) and εm,(2):

εm = 1
2

[
(1 + τ)εm,(1) + (1− τ)εm,(2)

]
(36)20

where parameter τ is a function of fmwet:

τ = Erf
(

21− fmwet
fmwet

− 1
)

if fmwet > 0.01, (37)

3.7.3 Particle size distribution for melting hydrometeors

Once the mass concentrations and the wet fractions are known, it is possible to retrieve a particle size distribution for
melting hydrometeors. Two different retrieval methods have been implemented and compared: a flux-based approach25

and a more empirical weighted PSD approach.
Flux-based approach
This approach is based on Szyrmer and Zawadzki (1999) and assumes a one-to-one correspondence between

rain and dry solid hydrometeors, i.e. one snowflake/graupel leads to one raindrop during the melting process (no
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shedding/aggregation). This implies that one can match the flux of melting hydrometeors with the equivalent flux
of rainwater:

Nr(Dr)vrt (Dr) dDr =Nm(D)vmt (D) dD =⇒ Nm(D) =Nr(D) v
r
t (D)
vmt (D)

dDr

dD
(38)

where vt is the hydrometeor terminal velocity.
The functional form dDr

dD can be estimated from Equations 29 and 31, by taking into account the fact that the5

mass-diameter relation of the dry hydrometeor equivalent is a power-law: md(D) = adDbd .

dDr

dD
= 1

3

[
(f2

wet) +CDbd−3
]−2/3

C(bd− 3)Dbd−3 +
[
(f2

wet) +CDbd−3
]1/3

(39)

with C = ad
6(1−f2

wet)2

πρwater .
Note that in Szyrmer and Zawadzki (1999), the functional form dDr

dD was neglected.
In our model, this PSD is further adjusted by multiplying it with a mass conservation factor κ to ensure that the10

integral of the PSD weighted by the particle mass matches the mass concentrations of wet hydrometeors Qm. Hence
Nm,corr(D) = κNm(D) with:

κ= Qm

Dmax∫
Dmin

mm(D)Nm(D)dD
(40)

where mm(D) is the mass of a melting particle of diameter D (Equation 29).
Weighted PSD approach15

This approach is more empirical and simply assumes that, during melting, the PSD of melting hydrometeors will
gradually shift from the PSD of their dry counterpart to the DSD of rain, with increasing wet fraction.

Nm(D) = fwetN
r(Dr)

dDr

dD
+ (1− fwet)Nd(D) (41)

As in the flux-based approach, this PSD is then corrected to ensure conservation of the simulated mass concen-
tration by Nm,corr(D) = κNm(D), with κ as in Equation 40.20

These two methods were compared by simulating all RHI scans of the PARADISO campaign (label B in Table 3),
and comparing them with radar observations recorded by MXPol at X-band. These events correspond mostly to
stratiform precipitation with an omnipresent melting layer.
Figure 8 shows the vertical of profile of ZH and ZDR averaged over all scans at which time a melting layer

was detected on the radar observations, using the method of Wolfensberger et al. (2016). In the computation of25

this vertical profile, for every scan only the 10 first kilometers from the radar have been considered for ZH, and
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kilometers 7 to 10 have been considered for ZDR, which is ill-defined at high elevation. To remove biases in the
simulated precipitation intensities, the values of ZH and ZDR have been normalized by subtracting from every scan
the average value in the liquid phase below the melting layer. Moreover, to remove biases in the height of the
isotherm 0◦, the reference height is the height relative to the peak of the detected bright-band peak (maximum of
ZH). It can be seen clearly, that the weighted PSD approach produces a much more realistic bright-band peak in ZH,5

when compared with the radar observations. Moreover, the transition to the solid phase is also more realistic, even
though the simulated reflectivities in dry snow seem too small, which is a different problem. In terms of ZDR, the
simulations tend to produce a peak that is too narrow, and no approach seems significantly better than the other.
Besides agreeing better with the radar observations in terms of bright-band peak, the weighted PSD approach has
another major advantage: it allows for a seamless transition between the PSD of melting hydrometeors and the PSD10

of dry solid hydrometeors above the melting layer. In contrary, in the flux-based approach, there is no continuity for
fwet = 0, as the modeled wet PSD does not converge perfectly towards the PSD of dry hydrometeors. This results in
very abrupt transitions in polarimetric variables above the melting layer (several dBZ over one or two radar gates),
and to unrealistic increases in reflectivity when very weak concentrations of rain are present above the isotherm 0◦.

As a conclusion, as it allows for a more realistic simulation of the melting layer and agrees better with radar15

observation, the empirical weighted PSD approach was retained in the radar operator.
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Figure 8. Average vertical observed and simulated (with the flux-based and weighted approaches) profiles of ZH and ZDR.
The x-axis corresponds to the average shift with respect to the average values in the liquid phase below the ML. The y-axis
corresponds to the distance with respect to the peak of the bright-band.
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3.7.4 Integration scheme

Due to the sharp transition it causes in the simulated polarimetric variables, the melting layer effect causes major
difficulties when integrating radar variables over the antenna power density. Indeed, the Gauss-Hermite quadrature
scheme is appropriate only for continuous functions and will work well with a small number of quadrature points only
for a relatively smooth function. Using a small number of quadrature points in the case of a melting layer was found5

to create unrealistic artifacts with the presence of several shifted melting layers of decreasing intensities. Globally
increasing the number of quadrature points by a significant amount is not a viable solution since the computation
time will increase linearly. Instead, the best compromise was found by increasing the number of quadrature points
only at the edges of the melting layer, where the transitions are the strongest. In practice this is done by using ten
times more quadrature points (oversampling factor of 10) in the vertical than normally, but taking into account10

only the 10% of quadrature points with the highest weights for the computation of radar variables, except near the
melting layer edges where all points are used.
Unfortunately, some trades-off are required to run such a simple oversampling scheme. Because the number of

quadrature points is not constant at every radar gate (as not all sub-beams cover the whole radar beam trajectory),
the order of attenuation computation and integration have to be reversed, i.e. attenuation computation is done only15

at the very end, once all radar variables (including kh and kv) have been integrated over the antenna diagram.
This is a somewhat strong simplification but it is the only way to perform a local oversampling, which is the only
computationally feasible way to simulate the melting layer effect with volumetric integration. The effect of this
approximation was investigated for the strong convective event of the 13 August 2015 (with J = 5, K = 7 and an
oversampling factor of 10). The results indicate an overestimation of the final ZH by an average of 0.58 dBZ, with20

respect to the normal integration scheme. This bias is caused by the underestimation of the attenuation effect. For
ZDR however, the bias is negligible (0.03 dB), which is likely due to the fact that this simplification affects ZH and
Zv to a similar extent.

3.8 Retrieval of Doppler velocities

3.8.1 Average radial velocity25

As illustrated in Figure 9, the average radial velocity vrad is the power-weighted sum of the projections of U (eastward
wind component), V (northward wind component), W (vertical wind component), and vt, the hydrometeor terminal
velocity, onto the axis of the radar beam defined by elevation θ0 and azimuth φ0.

Estimating vrad requires to know the terminal velocity of precipitating hydrometeors. In this work, we use the
power-law relations prescribed by COSMO’s microphysical parameterizations with parameters as given in Table 1.30

It can be shown (e.g., Bringi and Chandrasekar, 2001) that, in the hypothesis of radial homogeneity inside a
radar resolution volume, the average radial velocity at a given radar gate characterized by coordinates r (range),
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Figure 9. Trigononometric expression of the radial velocity as the power-weighted sum of the projection into the beam axis
of the 3-dimensional wind field (U,V,W ) and the hydrometeor terminal velocity vt.

vrad(r,φo,θo) =

I

∑H

j=1

D
(j)
max∫

D
(j)
min

v
(j)
rad(D,r,φo,θo)σ(j)

h (D)N (j)(D) dD



I

 H∑
j=1

D
(j)
max∫

D
(j)
min

σ
(j)
h (D)N (j)(D) dD


︸ ︷︷ ︸

η(r,φ,θ)

where

v
(j)
rad(D,r,φ,θ) = [U(r,φ,θ)sinφ+V (r,φ,θ)cosφ] cosθ+

[
W (r,φ,θ)− v(j)

t (D)
]

sinθ

(42)

φ (azimuth) and θ (elevation) is given by Equation 42, where σb,(j)h (D) is the backscattering radar cross-section at
horizontal polarizations for an hydrometeor of type j and diameter D,
where I is the quadrature antenna integration operator defined in Equation 9.

3.9 Doppler spectrum

In this section we propose a simple scheme able to compute the Doppler spectrum at any incidence at a very small5

computational cost (less than 10% of the total cost). Unlike Cheong et al. (2008), this approach is not based on
sampling and is thus deterministic, but the computational cost is much smaller.
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Using the specified hydrometeor terminal velocity relations, it is possible to not only compute the average radial
velocity, but also the Doppler spectrum: the power weighted distribution of scatterer radial velocities within the
radar resolution volume.
This is done by first computing the resolved velocity classes of the Doppler spectrum vr,bins[i], for every bin i,

based on the specified radar FFT window length NFFT and Nyquist velocity vNyq.5

vrad,bins[i] = (i− NFFT

2 ) vnyq
NFFT

∀i=−N2 , ...,
N

2 (43)

where vNyq is the Nyquist velocity, in m s−1, given by

vNyq = 100PRF ·λ2 (44)

where λ is the radar wavelength in cm.
For every hydrometeor j and every velocity bin i, given the three-dimensional wind components (U , V , W ), one10

can estimate the hydrometeor terminal velocity vt that would be needed to yield the radial velocity vrad,edges[i]:

v
(j)
t (r,φ

′
,θ

′
)[i] =W (r,φ

′
,θ

′
) + U(r,φ′

,θ
′)sinφ′ +V (r,φ′

,θ
′)cosφ′

tanθ′ − vrad,bins[i]
sinθ′ (45)

Once this is done, the corresponding diameters D(j)[i] can be retrieved by inverting the diameter-velocity power-
laws (see Table 1). Finally, for a given radar gate defined by coordinates (ro,φo,θo) the Doppler spectrum S in linear
Ze units (mm6 m−3), for a given velocity bin i is15

S(ro,φo,θo)[i] = I

 H∑
j=1

D(j)[i]∫
D(j)[i+1]

σ
b,(j)
h (D)N (j)(D) dD

 (46)

Any statistical moment can then be computed from this spectrum. The average radial velocity, for example is
simply the first moment of the Doppler spectrum:

vrad(ro,φo,θo) =
∑N
i=0 vrad,bins[i]S(r,φ,θ)[i]∑N

i=0S(ro,φo,θo)[i]
(47)

3.10 Turbulence and antenna motion correction20

The standard deviation of the Doppler spectrum, often referred to as the spectral width, is a function of both
radar system parameters and meteorological parameters that describe the distribution of hydrometeor density and
velocity within the sampling volume (Doviak and Zrnić, 2006). Assuming independence of the spectral broadening
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mechanisms, the square of the velocity spectrum width σ2
v (i.e. standard deviation of the spectrum) can be considered

as the sum of all contributions (Doviak and Zrnić, 2006).

σ2
v = σ2

s +σ2
α +σ2

d +σ2
o +σ2

t (48)

where σ2
s is due to the wind shear, σ2

α to the rotation of the radar antenna, σ2
d to variations in hydrometeor

terminal velocities, σ2
o to changes in orientations or vibration of hydrometeors and σ2

t to turbulence.5

In the forward radar operator, σ2
s is already taken into account by the integration scheme, σ2

d by the use of the
diameter-velocity relations and σ2

o by the integration of the scattering properties over distributions of canting angles.
Thus, the spectrum computed in Equation 3.9 needs to be corrected only for turbulence and antenna motion. Doviak
and Zrnić (2006) gives the following estimation for σα.

σα =
(
ωλcosθo
2π∆3dB

)√
log2 (49)10

where ω is the angular velocity (in rad s−1). Note that σα is equal to zero at vertical incidence, which is the most
common configuration for Doppler spectrum retrievals.
For σt, Doviak and Zrnić (2006) gives the following estimation, originally derived by Labitt (1981), which is based

on the hypothesis of isotropic and homogeneous turbulence, with all contributions to turbulence coming from the
inertial subrange.15

σt =



[
εtro (1.35B)3/2

0.72

]1/3

if σr� rσθ[
εtσr (1.35B)3/2[ 11

15 + 4
15 (r2σ2

θσ
−2
r

]−3/2

]1/3

else
(50)

where B is a constant between 1.53 and 1.683 and εt is the eddy dissipation rate (EDR) expressed in units of
m2s−3. εt is the rate at which turbulent kinetic energy is converted into thermal internal energy. It is a model
variable, simulated by the turbulence parameterization and can be obtained as any other variable used in the radar
operator, by interpolation to the radar gates. Finally σr and σθ depend on the radar specifications: σr = 0.35cτ/220

(τ is the pulse duration in s) and σθ = ∆3dB/4
√

log(2).
This makes it possible to estimate both σo and σt using the specified radar system parameters and simulated

turbulence variables. If one assumes the spectral broadening caused by the antenna motion and turbulence to be
Gaussian with zero mean (e.g., Babb et al., 2000; Kang, 2008), the corrected spectrum can be obtained by convolution
with the corresponding Gaussian kernel.25

3A constant value of 1.6 is used in the radar operator.
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Scorr[i] =

NFFT∑
j=0

S[j]G(vrad,bins[i]− vrad,bins[j])

NFFT∑
j=0

G(vrad,bins[i]− vrad,bins[j])
(51)

where G is the Gaussian kernel defined by:

G(x) = 1
σt+α

√
2π

exp
[
− x2

2σ2
t+α

]
(52)

where σt+α = σt +σα

3.11 Attenuation computation in the Doppler spectrum5

In reality, attenuation will cause a decrease in observed radar reflectivities at all velocity bins within the spectrum. To
take into account this effect, the path integrated attenuation in linear units at a given radar gate (kh in Equations C2)
is distributed uniformly throughout the spectrum.

S(rg,φg,θg)att[i] = S(rg,φg,θg)[i] · exp

−2
rg∫

r=0

kh(r,θg,φg) dr

 (53)

3.12 Simulation of satellite swaths10

The radar operator was adapted to be able to simulate swaths from spaceborne radar systems such as the GPM
dual-frequency radar (Iguchi et al., 2003) at both Ku and Ka bands. The main modifications to the standard routine
concern the beam tracing, which is estimated from the GPM data (in HDF5 format) by using the WGS84 coordinates
at the ground and the radar position in Earth-centered Earth-fixed coordinates to retrieve the coordinates of every
radar gate. Currently, the atmospheric refraction is neglected which leads to an average positioning error of 55 m,15

the error being minimal at the center of the swath (where the incidence angle is nearly vertical) and maximal at the
edges of the swath. The integration scheme remains unchanged and a fixed beamwidth of 0.5 ◦ is used according to
GPM specifications. An important advantage of simulating satellite radar measurements over simply comparing the
precipitation intensities at the ground, is that it allows a three-dimensional evaluation of the model data.

3.13 Computation time20

Though being mostly written in Python, the forward radar operator was optimized for speed as all computations
are parallelized and its most time consuming routines are implemented in C. In addition, the scattering properties
of individual hydrometeors are pre-computed and stored in lookup tables. Table 4 gives some indication of the

33



computation times encountered for different types of simulated scans. The RHI scan consists of 150 different elevations
in the main direction of the precipitation system, with a maximal range of 20 km and a radial resolution of 75 m. The
melting layer is simulated with the quadrature oversampling scheme described in Section 3.7.4. The RHI scan was
also computed with the full Doppler scheme (Section 3.9). The PPI scan consists of 360 different azimuth angles at
1◦ elevation at C-band, with a maximal range of 150 km and a radial resolution of 500 m. All scans were performed5

in a stratiform rain situation (8 April 2014 for ground radars and 4 April 2014 for GPM), with a wide precipitation
coverage. The advanced refraction scheme by Zeng et al. (2014) was used for all scans except the GPM swath. To
integrate over the antenna density pattern 3 quadrature points in the horizontal and 5 in the vertical were used for
all scans (with an oversampling factor of 10 at the ML edges).
The computation times are usually reasonable even on a standard desktop computer, except when simulating the10

melting layer effect on a PPI scan at low elevation. However, it can be seen that the forward radar operator scales
very well with increasing number of computation power and nodes, since the computation time decreases more or
less linearly with increasing computer performance.

RHI, with
ML and
spectrum

PPI, no ML PPI, with
ML

GPM Ku
band, no

ML

Desktop 2.1 min 5.3 min. 11.1 min. 8.9 min.
Server 1 min. 2.1 min. 6.16 min. 5.3 min.

Table 4. Observed computation times for three types of scans and two computers. The desktop has an 8 cores i7-4770S CPU
with 3.1 GHz (30.5 GFlops/s) and 32 GB of RAM, the server has a 12 cores i7-3930K with 3.20GHz (59 GFlops/s) and 32
GB of RAM

4 Evaluation of the operator

In this section, a comparison of simulated radar fields with radar observations is performed. It is important to realize15

that discrepancies between measured and simulated radar variables can be caused both by:

1. The inherent inexactitude of the model which manifests itself by differences in magnitude as well as temporal
and spatial shifts in the simulated state of the atmosphere, compared with the real state of the atmosphere.

2. Limitations of the forward radar operator, e.g. imperfect assumptions on hydrometeor shapes, density and
permittivity, inaccuracies due to numerical integration, non-consideration of multiple scattering effects.20

When validating the radar operator, only the second factor is of interest but as the discrepancies are often
dominated by the first factor, validation becomes a difficult task.

34



Hence, for evaluation purposes, it is important to run the model in its best configuration, in order to limit as much
as possible its inaccuracy. This is is why the model was run in analysis mode, with a 12 hours spin-up time, using
analysis runs of the coarser COSMO-7 (7 km resolution) as input and boundary condition. Note that even though
COSMO has recently become operational at a resolution of 1km over Switzerland, the simulations performed in this
work were still done at a 2km resolution. Note that the present evaluation was done with the standard one-moment5

scheme, for sake of simplicity, but Appendix B gives some additional indications and results for the two-moments
scheme.
Evaluation of the radar operator was first done by visual inspection on a time step basis and was followed by a

more quantitative evaluation over the course of the whole precipitation events.

4.1 Qualitative comparisons10

4.1.1 PPI scans at C-band

Figures 10 and 11 show two examples of simulated and observed PPI scans from the La Dôle radar in western
Switzerland at 1◦ elevation during one mostly convective event (13 August 2015) and one mostly stratiform event
(8 April 2014). The displayed radar reflectivites are raw uncorrected ones, and the attenuation effect is taken into
account for simulated reflectivities. It can be seen that in both cases, the model is able to locate the center of the15

precipitation event quite accurately but tends to overestimate its extent, especially in the convective case. Generally,
the simulated ZH, ZDR and Kdp are of the same order of magnitude as the observed ones, with the exception of the
stratiform case, where the simulated Kdp is underestimated on the edges of the precipitating system. The simulated
radial velocities seem very realistic and agree well with observations both in terms of amplitude and spatial structure.

4.1.2 RHI with melting layer at X-band20

Figure 12 shows one example of simulated and observed RHI scan in a stratiform situation (22 March 2014) with a
clearly visible melting layer at low altitude. It can be seen that the forward radar operator is indeed able to simulate
a realistic polarimetric signature within the melting layer with a clearly visible bright-band in ZH, an increase in
ZDR followed by a sharp decrease in the solid phase above and higher values of Kdp. The extent of the melting layer
seems also to be quite accurate when compared with radar measurements. Note that, in this case, the model slightly25

overestimates the signature in ZDR and ZHbelow the melting layer, but this is related to the fact that COSMO
tends to overestimate the rain intensity during this particular event. In terms of radial velocities, again the model
simulates some very realistic patterns that agree well with the observations, with two shear transitions at around 1
and 3.5 km altitude followed by a strong increase in velocities at higher altitudes.
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4.1.3 GPM swath

Figure 13 shows an example of simulated and measured GPM swath at Ku band at different altitudes. Again the
forward radar operator produces a realistic horizontal and vertical structure as well as plausible values of reflectivities,
given the fact that in this case the simulated average rain rate is lower than the GPM estimated average rain rate
(0.38 mm s−1 vs 0.46 mm s−1).5

4.2 Doppler variables

Evaluation of the simulated average radial velocities was performed by comparison of simulated velocities with
observations from the MXPol X-band radar deployed in Payerne in Western Switzerland in Spring 2014 in the
context of the PARADISO measurement campaign.
A total of 720 RHI scans (from 0 to 180◦ elevation) were simulated over six days of mostly stratiform precipitation10

(c.f. Table 3). Figure 14 shows a comparison of the distributions of radial velocities between the simulation and the
radar observations. Note that in the scope of this work, the term density indicates the frequency density, in analogy
with a probability density function. It represents the proportion of samples within every bin divided by the width of
the bin, such that the integral of the empirical distribution is equal to one. It is thus in units of x−1, where x is the
unit of the considered variable (in this particular case x= m s−1). The scatter-plot in Figure 15 shows the excellent15

overall agreement when considering all events and scans. Simulations match very well observations, both in terms
of distributions and in terms of one-to-one relations, which shows that the radar operator is indeed able to simulate
accurate radial velocities. Since wind observations from the radiosoundings performed in Payerne are assimilated
into the model, one can expect it to perform well in this regard. These results indeed confirm these expectations.
During the PARADISO campaign, MXPol was also retrieving the Doppler spectrum at vertical incidence, which20

allows to compare simulated spectra with real measurements. Figure 16 shows the daily averaged simulated and
measured Doppler spectra during the same six days of precipitation. Generally, the simulated spectrum is able
to reproduce the transition from high velocities near the ground (in liquid precipitation) to smaller velocities in
altitude (solid precipitation). The height of this transition, which corresponds roughly to the isotherm 0◦, as well
as the simulated velocities above and below the isotherm 0◦ agree quite well with the observations. Thanks to the25

melting layer scheme, the operator is able to produce a quite realistic transition between solid and liquid phase.
Indeed, when the melting scheme is disabled, the simulated Doppler spectra show a very abrupt and unrealistic
transition in velocities. In terms of reflectivity, the bright-band effect is clearly visible on the simulated spectra
and its magnitude relative to the reflectivites below and above the melting layer agrees well with observations. In
absolute terms however, some events show a good agreement (22 March 2014, 7 May 2014), while in others, the30

simulated reflectivites tend to be ovestimated over the whole spectrum (8 April 2014, 14 May 2014, 1st May 2014).
We think however that these discrepancies are mostly caused by the larger precipitation intensities simulated by the
model during these days. Precipitation measurements with a rain gauge collocated with the radar tend to confirm
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this hypothesis. For the two events with the strongest discrepancies (1st May and 14 May), the gauge measured in
total 1.9 and 1.2 mm of precipitation, whereas the model simulated 16.9 and 2.1 mm of precipitation in the closest
grid cell.

4.3 Polarimetric variables

Evaluation of polarimetric variables (ZH, ZDR and Kdp) is difficult, because their agreement with radar observations5

depends heavily on the temporal and spatial accuracy of simulated precipitation fields. However, when averaging over
a sufficiently large number of samples, the radar operator should at least be able to simulate realistic distributions
of polarimetric variables, as well as realistic relations between these polarimetric variable. Augros et al. (2016) for
example, validated their operator, inter alia, by comparing simulated and observed membership functions between
the polarimetric functions.10

In order to test the quality of the simulated polarimetric variables, five events corresponding to different synop-
tic situations with widespread precipitation over Switzerland were selected (Table 3). The simulated polarimetric
variables were compared with observations from three operational C-band radars (La Dôle, Albis and Monte Lema).
The duration of all events ranges between 12 and 24 hours with a resolution in time of 5 minutes (which corresponds

to the temporal resolution of the available radar data). A total of 1017 PPI scans were simulated at 1◦ elevation15

with a maximum range of 100 km (in order to limit the effect of beam-broadening). Both observed and simulated
radar data were censored with an SNRthr value of 8 dB (Equation 25).
The shape parameter of the gamma DSD used in COSMO for rain has a strong influence on the outcome of the

radar operator. Indeed, the skewness of the gamma distribution is inversely proportional to µrain, so DSDs with small
values of µrain will have longer right tails. This is of particular importance when simulating polarimetric variables20

that are related to statistical moments of a high order, such as ZDR. Two values of µrain have been tested, µrain = 0.5,
which is the default value in the model and µrain = 2 which corresponds to the upper range of recommended values
in the model. Note that the COSMO model has been run twice, once with µrain = 0.5 and once with µrain = 2.

The comparison between simulated and observed radar variables was performed separately in the liquid and
solid phases. Indeed, the uncertainty in the liquid phase is expected to be lower than in the ice phase because the25

scattering properties of raindrops are more reliable than in snowfall. The simulated model temperatures were taken
as a criterion to separate the phases; the liquid phase corresponds to T > 5◦ and the solid phase to T <−5◦ as in
Augros et al. (2016). Areas with temperatures in between have been ignored in order to limit the contribution of wet
snow which is not directly simulated by COSMO. It was observed that increasing the temperature margin between
liquid and solid phases did not change significantly the main results and conclusions. Decreasing it, however, would30

affect quite significantly the observed radar signatures due to the inclusion of measurements from the melting layer,
which have a much stronger polarimetric signature than dry snow.
Figure 17 shows the corresponding histograms of observed and simulated polarimetric variables and precipitation

intensities at the ground in the liquid phase, for µrain = 2. The histograms for µrain = 0.5 (not displayed) show only
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minor differences. The simulated distributions agree well with the observed ones in terms of broad features, which
confirms the fact that the operator is able to simulate realistic radar observables at least in liquid phase. One can
observe that the radar operator is not able to simulate negative ZDR, which can be explained by the assumptions
about the drop shapes and orientations, which make it almost impossible for a drop to have a vertical dimension
larger than its horizontal dimension. In addition, the radar operator seems to produce slightly smaller values of ZH5

than observed, but this can be attributed to the fact that COSMO tends to simulate smaller precipitation intensities
than the ones estimated from the radar reflectivities (bottom-right of Figure 17). Indeed, the discrepancies in ZH

agree well with the discrepancies in precipitation intensities.
Figure 18 shows the observed (from MeteoSwiss radars) and the simulated ZH−ZDR and ZH−Kdp relations

averaged over all radars and all events in the liquid and solid phases. It appears that the radar operator is able to10

simulate realistic relations between polarimetric variables at least in the liquid phase. In terms of ZDR, a value of
µrain = 2 seems more appropriate than a value of 0.5, which tends to overestimate the differential reflectivity for a
given horizontal reflectivity. For Kdp the trend is reversed. A possible explanation is that ZDR is independent of
the mass concentration and highly dependent on the length of the DSD tail, i.e. small differences in the numbers of
large and oblate drops can cause large differences in differential reflectivity. Kdp however, depends on both the mass15

concentration and the tail of the DSD, and is quite sensitive to the mode of the DSD. However, one must also keep
in mind that the “observed” Kdp values are in fact estimated from noisy Ψdp measurements and as such are likely to
be underestimated (Grazioli et al., 2014). This dependency of simulated polarimetric variables on small changes in
the DSD shape illustrates quite well the difficulty to parameterize the DSDs to match both the lower order moments
used in weather prediction (number and mass concentration) and the higher order moments, to which the radar20

observables are related.
In the solid phase, the radar operator tends to underestimate ZDR and Kdp, which is a trend also observed

by Augros et al. (2016). This is likely due to the combination of the imperfect parameterization of snow PSD in
the model, the crude assumptions about the permittivity of snow and graupel (mixture model derived from the
COSMO density parameterizations), and the estimation of the scattering properties (T-matrix is likely not correct25

for ice-phase hydrometeors).

4.4 Comparison of the COSMO rain DSDs with ground measurements

In order to further investigate these surprisingly large discrepancies in the distributions of polarimetric variables
between the different COSMO rain DSD parameterizations, a comparison with ground measurements from three
Parsivel disdrometer was performed. The disdrometers measurements were integrated over a time interval of 530

minutes to yield volumic DSDs. The same events used for the Doppler evaluation were used: six events over Payerne
in Switzerland dominated by stratiform rainfall. The COSMO DSDs were obtained at the lowest model level, on the
grid cell comprising all three Parsivels.
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Figure 19 shows a comparison of the average measured rain DSD and the COSMO parameterized DSDs over
the six days of precipitation. It is obvious that the COSMOS DSDs with µrain = 0.5 tends to produce too many
small drops when compared with the Parsivel data. However one must keep in mind that due to the instrument’s
limitations, the Parsivel, as most disdrometers, has difficulty to measure very small drops and might underestimate
their numbers (Thurai et al., 2017). However, one can still observe with certitude that the mode of the COSMO5

parameterized DSDs is located too much on the left, especially for µrain = 0.5. When fitting a gamma DSD on
the measured data, the optimal value of µrain is around 3.4, which indicates that the match with the real radar
observations could possibly be even better by increasing even more the value of µrain. However, one must keep in
mind the numerous difficulties in the comparison of these DSDs. First of all, the sampling volumes are vastly different
(around 80 millions of cubic meters for the COSMO grid cell, around 10000 cubic meters for the three Parsivels10

integrated over a time interval of 5 minutes and averaged over 520 of these time intervals. Secondly, the shape of
the DSDs depend strongly on the simulated precipitation intensity which is not always agreeing with observations
(rain gauges). Regarding the first point, giving the large homogeneity of the studied precipitation events (widespread
stratiform rain), the representativity issue comparison still has some relevance. Concerning the second point, since
precipitation intensity is a moment of the DSD, one can expect a better agreement with Parsivel observations with15

more realistic COSMO microphysics, especially for larger particles.
As conclusion, changing the shape parameter in the COSMO microphysics is a delicate task, as without re-tuning

other parameters in the model, it might lead, in fine, to a degradation of the surface precipitation. Using it solely
off-line in the context of the forward radar operator might be a better choice, as it can help to reduce the bias in
simulated polarimetric variables.20

4.5 GPM swaths

In order to evaluate the simulation of GPM swaths, the distributions of simulated and observed reflectivities at both
Ku and Ka band were compared for 100 GPM overpasses over Switzerland, corresponding to the overpasses with
the largest precipitation fluxes (c.f. Section 2.4).
Figure 20 shows the overall distributions of reflectivity at both frequency bands as well as the distributions of25

estimated GPM precipitation intensities and COSMO simulated intensities at the ground. Note that all reflectivities
below 14 dBZ have been discarded as this corresponds roughly to the radar sensitivities at Ka and Ku band
(Toyoshima et al., 2015). Although the distributions are very consistent, some minor discrepancies are present, mostly
for low reflectivities (at Ka band only) and high reflectivities which appear more frequently in the simulations than
in the measurements from the GPM-DPR. Again, this is consistent with the differences in simulated precipitation30

intensities (in panel c). COSMO tends to produce a larger number of precipitation intensities ≥ 30 mm hr−1 as
well as a larger number of precipitation intensities below 0.15 mm hr−1 which corresponds roughly to 14 dBZ.
Note that similar observations in terms of underestimation of surface rainfall intensities by GPM with respect to the
Swiss operational rain gauge and radar precipitation products have been reported by Speirs et al. (2017). Overall, the

39



simulated distributions of reflectivity at both frequency bands are realistic and agree quite well with the observations
for both microphysical schemes. Note that when neglecting ice crystals the match is much poorer (see Section 4.6).

4.6 Effect of ice crystals

In order to evaluate the addition of ice crystals to the forward operator, a two-fold analysis was performed. First,
the simulated polarimetric variables obtained with and without considering ice crystals were compared with real5

observations by MXPol during three pure snowfall events in the Swiss Alps in Davos (Table 3). Since no liquid
precipitation or melting layer was present during these events, the attenuation effect is expected to be negligible.
Note that the analysis focused on the one-moment scheme but the effect on the two-moment scheme is expected
to be quite similar. Figure 21 shows a comparison of the distributions of polarimetric variables in the solid phase
averaged over all three events for the one-moment microphysical scheme. On ZH, the effect of adding ice crystals is10

characterized by an additional mode around 8 dBZ, which is not present on radar observations. This mode is caused
by the large homogeneity in the simulated ice crystals, which, according to the microphysical parameterization, are
all assumed to be hexagonal plates. In reality, ice crystals can have a large variability of shapes (e.g., Magono and Lee,
1966; Bailey and Hallett, 2009), and their backscattering coefficients can be quite different (Liu, 2008), which would
result in a much more spread out reflectivity signature of ice crystals. On ZDR, one can see that, when neglecting ice15

crystals, one completely removes the right tail of the distribution (values above 0.2 dBZ) that is clearly visible on the
observed values. When considering ice crystals, which have a quite strong signature in differential reflectivity, this
right tail gets accurately reproduced and matches well with the observations. However, even when adding ice crystals,
the radar operator is not able to reproduce the negative ZDR values that are quite frequent in the observations. On
Kdp, a similar effect can be observed, though not as clear. Still, the addition of ice crystals creates an additional20

mode in the distribution of simulated values which slightly better matches with the observed one (longer tail and
good agreement of the additional mode with the mode of the observed distribution). Just as with ZDR, the radar
operator is not really able to simulate negative values of Kdp, which are also frequent in the observations. These
discrepancies could however also be due in part to uncertainties in the radar observations, coming from possible
miscalibration (for ZDR) and inaccuracies in the retrieved Kdp values. Still, overall at X-band, the addition of ice25

crystals leads to a much better representation of ZDR in solid precipitation, a slightly better representation of Kdp

and no significant improvement in ZH.
Due to their smaller sizes, the effect of ice crystals on ZH should increase with the frequency. To investigate

this effect, a second comparison was performed on the simulation of GPM swaths, with and without ice crystals.
The resulting distributions of ZH at Ku and Ka band were compared with means of QQ-plots of observed versus30

simulated quantiles. Figure 22 shows these QQ-plots at Ka band for both the one-moment and the two-moments
scheme. The red line is the 1:1 which implies a perfect match with the observed quantiles. The results at Ku band
are not displayed as they are visually very similar to the results at Ka band. For the one-moment scheme, a much
better agreement with observations is observed for small quantiles (up to 20 dBZ) when adding ice crystals. Without
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ice crystals, small quantiles tend to be underestimated. Large simulated quantiles tend to be overestimated when
compared with GPM observations. For very large quantiles, this overestimation is slightly stronger when adding ice
crystals but this might be a sampling effect as large quantiles are very sensitive to outliers. For the two-moments
scheme, adding ice crystals does not seem to significantly improve the agreement with observed quantiles.
As a conclusion, adding ice crystals improves the quality of the simulated ZDR and Kdp in pure solid precipitation5

at X-band and when simulating horizontal reflectivities at K band.

5 Conclusions

In this work we propose a new polarimetric radar forward operator for the COSMO NWP model which is able to
simulate measurements of reflectivity at horizontal polarization, differential reflectivity and specific differential phase
shift on propagation for ground based or spaceborne (e.g. GPM) radar scans, while taking into account most physical10

effects affecting the propagation of the radar beam (atmospheric refractivity, beam-broadening, partial beam-blocking
and attenuation). Integration over the antenna pattern is done with a simple Gauss-Hermite quadrature scheme. This
scheme was compared with more advanced schemes that also take into account antenna side lobes, but was shown
to offer on average the best trade-off, due to its better representation of the main lobe and lower computational
cost. The operator was extended with a new Doppler scheme, which allows to efficiently estimate the full Doppler15

spectrum, by taking into account all factors affecting the spectral width (antenna rotation, turbulence, wind shear
and attenuation), as well as a melting layer scheme able to reproduce the very specific polarimetric signature of
melting hydrometeors, even though the COSMO model does not explicitely simulate them. Finally, the operator
was adapted both to the operational one-moment microphysical scheme of COSMO and to its more advanced two-
moment scheme. Performance tests showed that the operator is sufficiently fast and efficient to be run on a simple20

desktop computer.
The scattering properties of individual hydrometeors are pre-computed with the T-matrix method and stored into

lookup tables for various frequencies. The permittivities for the complex hydrometeors (snowflakes, hail and graupel)
are obtained with a mixture model by using the mass-diameter relations of COSMO to estimate their densities. The
other required parameters for the T-matrix method (canting angle distributions and aspect-ratios) are obtained from25

the literature (for rain, hail and ice crystals) and from measurements performed in the Swiss Alps with a multi-angle
snowflake camera (MASC), for snow and graupel. A large number of MASC pictures were used to estimate realistic
parameterizations of the distributions of aspect-ratio and canting angle of graupels and aggregates, leading to a good
agreement with measured quantiles. Integration of the hydrometeors scattering properties over these distributions
was shown to increase the polarimetric signature of solid hydrometeors, which tends to be often underestimated in30

radar operators.
The operator was evaluated by a comparison of the simulated fields of radar observables with observations from

the operational Swiss radar network, from a high resolution X-band research radar and from GPM swaths. Visual

41



comparisons between simulated and measured polarimetric variables showed that the operator is indeed able to
simulate realistic looking fields of radar observables both in terms of spatial structure and intensity and to simulate
a realistic melting layer both in terms of thickness and polarimetric signature. Comparisons of the radial velocities
measured by the X-band radar and simulated by the radar operator, in the vicinity of the Payerne radiosounding
site showed an excellent agreement with a high determination coefficient. The operator was also able to simulate5

realistic Doppler spectra at vertical incidence, with realistic fall velocities and reflectivites below and above the
melting layer, as well as within the melting layer, thanks to the melting scheme. A comparison of the distributions of
polarimetric variables as well as the relations between these variables with measurements from the Swiss operational
C-band radar network was performed. In the liquid phase, the radar operator is generally able to simulate realistic
distributions of polarimetric variables and realistic relations between them. A comparison with measurements from10

Parsivel disdrometers revealed that the agreement between simulated and observed polarimetric variables depends
strongly on the shape parameter used in the drop size distribution of raindrops.
In the solid phase, however, the polarimetric variables tend to be underestimated when using the T-matrix method

to simulate hydrometeor scattering properties, even with the local MASC parameterization. Finally the effect of
considering or not ice crystals in the simulation was investigated and it was observed that at X-band the agreement15

with observed differential reflectivity and differential phase shift improves significantly, whereas at GPM frequencies,
the simulated distributions of reflectivity are more realistic, especially for smaller reflectivities.
Ultimately, this operator provides a convenient way to relate outputs of a NWP model (state of the atmosphere,

precipitation) to polarimetric radar measurements. The evaluation of the operator has shown that this tool is a
promising way to test the validity of some of the hypothesis of the microphysical parameterization of COSMO.20

Future work will focus on a detailed sensitivity analysis of the main parameters and assumptions of the radar
operator, taking again a large dataset of radar observations as reference. In the liquid phase, the analysis should
focus on the geometry of raindrops as well as the parameterization of the DSD. In the ice phase, the potential benefit
of using more sophisticated methods to estimate the scattering properties of solid hydrometeors will be investigated.

Code availability. The radar operator code is available at https://github.com/wolfidan/cosmo_pol25

Appendix A: Trilinear interpolation

interpolation is computationally faster if the radar gate coordinates are first converted from the World Geodetic
System 1984 (WGS) lat/lon coordinates to the local pole-rotated model coordinates, where the model variables are
defined on a regular grid. To this end, the spherical WGS coordinates of the radar gate (ψWGS = lon, λWGS = lat)
are first projected to Earth-centered,earth-fixed (ECEF) coordinates (x,y,z) and then rotated to the pole-rotated30
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system using two rotations matrices, one for the longitudinal rotation of the pole ∆λWGS , and one for the latitudinal
rotation of the pole ∆ψWGS , to yield (xm,ym,zm).


xm

ym

zm

=


cos∆λWGS sin∆λWGS 0
−cos∆λWGS cos∆λWGS 0

0 0 1




cos∆ψWGS 0 sin∆ψWGS

0 1 0
−sin∆ψWGS 0 1



x

y

z

 (A1)

Finally, the Cartesian coordinates (xm,ym,zm) in the model pole-rotated system, are projected back to spherical5

coordinates to yield (ψm,λm), the spherical coordinates of radar gates in the model pole-rotated system.
For every radar gate, the eight neighbor model nodes can efficiently be identified by direct mapping of the (ψm,λm)

coordinates (which as stated are on a regular grid) and by binary search through all vertical model levels. Once the
neighbors have been identified (Figure A1), interpolation is done by first linearly interpolating all neighbors with
identical (ψm,λm) to the height z of the radar gate: (Au,Al)→A?, (Bu,Bl)→B?, (Cu,Cl)→A?, (Du,Dl)→D? .10

The resulting points (A?,B?,C?,D?) are then bilinearly interpolated to the horizontal location of the radar gate.

Appendix B: Specificities of the two-moments scheme

In the two-moment scheme all prescribed PSDs are initially defined as a function of particle mass.

Nm(x) =N0,mx
µmexp(−Λmxνm) (B1)

where the subscript m denotes that the quantity is mass-based and Nm(x) is in units of kg−1m−3.15

However in the context of this radar operator, it is much more convenient to work with diameter-based PSDs.
This conversion can be done by using the prescribed mass-diameter relations which are part of the microphysical
scheme: D(x) = amx

bm ⇒ x= D
am

1
bm and by considering that Nm(D) =Nd(x) · dDdx = am(bm− 1)xbm−1Nd(x), where

the subscript d denotes that the quantity is diameter-based and Nd(x) is in units of mm−1m−3. Replacing this in
Equation B1 yields:20

Nd(x) =N0,dD
µdexp(−ΛdDνd) (B2)

with
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N0,d = N0,m
bm

(
1
am

)µm+1
bm

µd = µm+1
bm
− 1

Λd = Λm
a
νm/bm
m

νd = νm
bm

(B3)

By equating M0 with the number concentration QN and adMbd with the mass concentration QM , where ad =
a
−1/bm
m and bd = 1/bm, one is able to retrieve the N0,d and Λd from the prognostic parameters of the PSDs.

N0,d = νdQN

Γ
(
µd+1
νd

)Λ
µd+1
νd

d and Λd =

 1
ad

Γ
(
µd+1
νd

)
Γ
(
µd+bd+1

νd

)x
−νd/bd (B4)

where x=QM/QN is the average particle mass.5

Note that besides these differences in PSD retrieval, the two-moment scheme also yields slightly different hydrom-
eteor scattering properties, since the mass-diameter relations differ from the one-moment scheme.

Appendix C: Polarimetric equations

Equations C1 give the basic polarimetric equations integrated over ensembles of hydrometeors for every radar gate
defined by a given set of spherical coordinates xg = (rg,θg,φg), where rg is the range, θg is the elevation angle θg and10

φg is the azimuth angle. The backscattering covariance matrix Cb, forward scattering vector Sf , and backscattering
cross-sections σb for a given hydrometeor (j), are defined as in Equations 12, 13 and 14. λ is the wavelength in cm.
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Zh(xg) = λ4

π5|Kw|2
H∑
j=0

D(j)
max∫

D
(j)
min

N (j)(D,xg) ·σb,(j)h (D,xg) dD
[
mm6m−3]

Zv(xg) = λ4

π5|Kw|2
H∑
j=0

D(j)
max∫

D
(j)
min

N (j)(D,xg) ·σb,(j)v (D,xg) dD
[
mm6m−3]

Kdp(xg) = 0.18
π

λ

H∑
j=0

D(j)
max∫

D
(j)
min

N (j)(D,xg) · <
(
S
f,(j)
1 (D,xg)−Sf,(j)2 (D,xg)

)
dD

[◦ km−1]

δhv(xg) = 180
π

λ arg

 H∑
j=0

D(j)
max∫

D
(j)
min

N (j)(D,xg)Cb,(j)2,1 (D,xg) dD

 [◦]

kh(xg) = λ

H∑
j=0

D(j)
max∫

D
(j)
min

N (j)(D,xg)=
(
S
f,(j)
1 (D,xg)

)
dD

[
km−1 ]5

kv(xg) = λ

H∑
j=0

D(j)
max∫

D
(j)
min

N (j)(D,xg)=
(
S
f,(j)
2 (D,xg)

)
dD

[
km−1 ]

(C1)

where Zh and Zv are the linear reflectivity factors at horizontal and vertical polarizations, Kdp, is the specific
differential phase shift upon propagation, δhv is the total differential phase shift upon backscattering, and kh and kv
are the attenuation coefficients in linear scale.10

The phase shift upon backscattering δhv is not taken into account in Kdp, because the radar Kdp retrieval method
that is being used (Schneebeli et al., 2013) is able to remove the contribution of δhv. However besides Kdp, the
total phase shift Ψdp is also simulated4, which combines the phase shift due to backscattering and propagation.
Additionally, the effect of two-way attenuation is taken into account for Zh and Zv. This yields the following
polarimetric products at every radar gate and for every sub-beam (Equations C3).15

4Despite being simulated, this quantity was not used in the context of this thesis as it cumulative and thus cannot be related in an
easy way to other radar observables. Besides, it is often very noisy on real radar data. In fact its derivative Kdp, estimated from radar
observations with robust differentiation techniques, is much more useful and widely used.
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Zatt
h (xg) = Zh(xg) · exp

2
rg∫

r=0

kh(r,θo,φo) dr

 [
mm6m−3]

Zatt
v (xg) = Zv(xg) · exp

2
rg∫

r=0

kv(r,θo,φo) dr

 [
mm6m−3]

Ψdp(xg) = 2
rg∫

r=0

Kdp(r,θg,φg) + δhv(xg) [◦] (C2)

The final volume-integrated polarimetric estimates Zatt
H , Zatt

DR, Kdp and Ψdp are obtained by integrating the
necessary quantities over all sub-beams with the quadrature antenna integration operator I defined in Equation 9.5

The linear reflectivity factors are also converted to logarithmic scale.

Zatt
H (xg) = 10 log10

(
I
[
Zatt
h (xg)

])
Zatt
V (xg) = 10 log10

(
I
[
Zatt
v (xg)

])
Zatt
DR(xg) = Zatt

H (xg)−Zatt
V (xg)

Kdp(xg) = (I [Kdp(xg)])10

Ψdp(xg) = (I [Ψdp(xg)])

(C3)
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Figure 10. Example of simulated and observed (with the Swiss La Dôle C-band radar) PPI at 1◦ elevation during the 13
August 2015 convective event (Table 3). The left side panel corresponds to the simulated radar observables and the right
side to the observed ones. The displayed variables are, from top to bottom, the horizontal reflectivity factor (in dBZ), the
differential reflectivity (in dB), the specific differential phase shift upon propagation (in ◦km−1, and the radial velocity (in m
s−1).
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Figure 11. Same as Figure 10 but for the stratiform event on the 8 April 2014 (Table 3).
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Figure 12. Example of RHI showing the observed and simulated melting layer during the PARADISO campaign in Spring
2014 (Table 3). The left panel corresponds to the simulated radar observables, the right panel to the observed values at
X-band. Note that there is an area with velocity folding (blue area in the middle of a larger red area) around 5 km altitude
and 10-15 km horizontal distance on the radar RHI scan.
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Figure 13. Example of comparison at several altitude levels between GPM radar observations at Ka band (top) and the
corresponding radar operator simulation from the COSMO model (bottom) for one GPM overpass.
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Figure 14. Distributions of simulated (blue) and observed (red) radial velocities at X-band during six days of precipitation
in Western Switzerland.

Figure 15. Scatter-plot of the measured and simulated radial velocities (for all events). The red line shows the 1:1 relation.
The coefficient of determination (R2) is 0.9.
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Figure 16. Simulated and measured daily averaged Doppler spectrum at X-band at vertical incidence during six days of
precipitation inWestern Switzerland. The dashed line represents the radial velocity calculated from the spectrum (Equation 47)
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Figure 17. Observed (red) and simulated (green) distributions of polarimetric variables (ZH,ZDR and Kdp) as well as the
precipitation intensities on the ground (in log scale) for the one-moment scheme with µrain = 2 in the liquid phase.
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Figure 18. Observed (red) and simulated (green) ZH−ZDR and ZH−Kdp relationships for the COSMO one-moment scheme
in liquid and solid phases. These membership functions are computed by dividing all simulated values in bins of reflectivity
of 1 dBZ of width, and computing the quantiles of the dependent variable (on the y-axis) within every bin.
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Figure 19. Average measured (blue bins) and parameterized rain DSDs at the ground in Payerne over six stratiform precip-
itation events. The dashed black line corresponds to the best fit of a gamma DSD on the measurements
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Figure 20. Observed (red) and simulated (blue = one-moment, green = two-moments) reflectivities at Ku band (a) and Ka
band (b), as well as the precipitation intensities (in log-scale) at the ground (c) estimated by GPM and simulated by COSMO
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Figure 21. Observed and simulated (with and without ice crystals) distributions of polarimetric variables during three pure
snowfall events for the one-moment microphysical scheme.
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Figure 22. QQ-plots of the quantiles of simulated ZH values versus the quantiles of observed GPM ZH values at Ka band.
The red line corresponds to the 1:1 line indicating a perfect match with observed quantiles.
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