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Cover letter major revision amt-2017-43 
First we would like to thank the three referees for their time to evaluate our manuscript and provide useful 
comments. It helped us to restructure the paper and add additional results, and so improve the quality of the 
presented work. The detailed changes which lead to this mayor revision can be found in the Track Changes 
version below.  5 

Outline of the most important changes: 

• New title which better captures the presented study: “Field calibration of electrochemical NO2 sensors 
in a citizen science context”. 

• More focus on citizen science context of the described experiment, including more recommendations 
for improved follow-up experiments. 10 

• Inclusion of predictive regression, showing that the calibration model is able to predict values on a short 
time scale. 

• An improved analysis of the introduced bias when using the sensor devices at sites where the NO2/O3 
ratio is different than at the calibration site. 

• An improved analysis of the temperature readings in relation to the internal sensor temperature. 15 
• Reduction and update of figures. 
• New (better readable) labelling of sensor IDs. 
• Revision of the English grammar throughout the manuscript. We are willing to do a stricter language 

check by native speakers if the paper is selected for publication. 
 20 
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Response to Referee #1,  amt-2017-43 
First I want to say that I appreciate the hard work that goes into this. You’ve selected a good sensor with a good 
reputation, and you’re methodology for a neighborhood study is at a high-level the right approach– colocation 
calibration, a few weeks in the field, and then colocation calibration. I think this kind of work in the citizen 
sensing community is important, and I’m glad that your methodology incorporates good sensor technology and 5 
recent best practice. That said, I’m not sure what the precise contribution of this paper is. 

New low-cost sensor technology for air quality application is available for several years now, and is used in 
many experiments often done by motivated but not necessarily scientifically trained people. This can result in 
gathering of data which, due to their poor quality, is unusable for quantifying air pollution. Our study shows 
that, if proper attention is payed to calibration, such experiments with low-cost sensors can result in useful 10 
measurements. 

In its first submission, however, the paper focussed more on the technicalities of the calibration we applied, 
which might have confused the reader (or reviewer) that we are dealing with a strict scientific experiment in 
which all variables can be controlled. On the contrary, as our study deals with data which is generated in a 
citizen science campaign, one has to be creative to make sense of the gathered data. 15 

Therefore, we have shifted the focus to how to deal with the analysis of air quality data which is collected with 
imperfect sensors under imperfect conditions (e.g. in a citizen science campaign). We will explain our calibration 
approach, but put more attention to our lessons learnt and recommendations on hardware, experimental set-
up, and data analysis approach, as we believe that many future campaigns will benefit greatly from this 
information. This is now reflected in the new title “Field calibration of electrochemical NO2 sensors in a citizen 20 
science context”. We left the “Practical” out, as the sensor degradation issue prevent a really practical 
calibration scheme which can be used for similar initiatives. 

In the realm of calibration technique and design, this is not state-of-the-art, nor is the methodology the right one 
if the point is the verification of a calibration algorithm. See this paper [http://www.atmos-meas-tech-
discuss.net/amt-2017-138/amt-2017-138.pdf] for an example of the latest techniques and best practice– here 25 
HDMR takes into account more complex relationships than linear dependence and more complex variable 
interactions. In the linked submission, superior techniques with a longer co-location periods are applied to the 
Alphasense NO2 sensor.  

The mentioned paper, Cross et al. (2017), was submitted to AMT on April 28, while our paper was submitted 
more than two months earlier. HDMR might be a more sophisticated method than the widely understood linear 30 
regression method used in our study. For NO2, however, the authors find a RMSE of 8.6 μg/m3 (4.56 ppb) for 
their test data, which is comparable to our estimated 7 μg/m3 when applying our weighted calibration method 
based on multilinear regression. Unfortunately, Cross et al. do not give insight in their optimal HDMR model for 
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NO2 nor the sensitivity indices for input pairs (maybe because of the propriety nature of the ARISense device?); 
it remains unrevealed which signal relation best describes the NO2 concentration in their study.  

They use training data which is distributed over a 4.5 month interval to derive a calibration model.  

Given the fact that all devices must be calibrated individually, this is an impractical long period before they can 
be deployed at locations where no reference data is available. Furthermore, by using training data which is 5 
distributed over the entire period, sensor degradation within that period cannot be detected. Our study shows 
that, using training data from a consecutive period, degradation during a successive multiple-month period is 
significant.  

Their methodology is also strong– instead of fitting their calibrations to their entire colocation dataset, they 
train a calibration on part of it and validate it on a holdout set. This is the proper methodology if your 10 
contribution is about multilinear calibration for electrochemical sensors.  

In the revised version, we included a predictive analysis in which the calibration is based on the first half of the 
calibration period, and the second half of this period is used for validation. The results show that the regression 
model describes well the measurements on short term, but loses predictability on the long term (e.g. two 
months) due to sensor degradation. 15 

I presume the intended contribution has more to do with the installation/campaign and data collection between 
co-located calibration, but I have some reservations here as well. While I do believe your data is likely reasonable 
given the calibration process/sensor selection/hour averaging, you haven’t provided strong evidence to 
substantiate this belief, other than anecdotal evidence about one sensor located near another reference device. 
You also allude to the fact that (1) your colocation measurement has a lower normal ambient NO2 level than 20 
your campaign area, and (2) you don’t measure O3 in your campaign area though it more strongly affects your 
measurement signal than NO2. This combination of facts leaves me quite concerned– the ratio of NO2/O3 might 
be consistent in your calibration area, and slightly different in your campaign area, and leave you with a 
systematic bias that you haven’t properly accounted for. I don’t think assuming the relative contribution of these 
two components is constant when you know that NO2 levels are different in the campaign area is a safe/fair 25 
assumption. 

We believe that the good agreement of sensor 54200 with the readings of an independent reference station OS 
(located at 3 km distance from the calibration site at Vondelpark) is more than anecdotal evidence. As can be 
shown in Table 5, RMSE of this sensor is 5.2 μg/m3 during the two-month campaign period. From Figure 4 can 
be seen that ozone levels were generally lower than during the calibration period, but still the bias is acceptably 30 
small (-0.09 μg/m3) meaning that the collinearity between temperature and ozone holds for both locations.  

It must be said that both OS and Vondelpark station qualify as a city background station, which implies that they 
have similar NO2/O3 ratios. The Referee is right in his concern about the influence of different NO2/O3 ratios 
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found at locations closer to emission sources. To get a better understanding of the possible impact, we 
compared hourly ozone measurements from the GGD authorities at Van Diemenstraat (VDS, classified as street 
station) against Nieuwdammerdijk (NDD, classified as urban background station) during June-August 2016. The 
location of these stations can be found at www.luchtmeetnet.nl. The relation can best be described by [O3]VDS = 
0.87 [O3]NDD + 0.85, which means that ozone levels at the street station are typically 13% lower that at the 5 
background station, due to titration of O3 with NO. As the electrochemical NO2 sensor is cross-sensitive for 
ozone, larger values must be subtracted from the sensor signal when the ozone concentration increases. This 
explains the negative ozone coefficient c5 we find with calibration model E. According to the regression results 
in the Supplement a typical value for c5 is -0.3. Calibration with model D will overcorrect (i.e. subtract too much) 
for locations which have lower ozone concentrations than at the calibration site, resulting in an 10 
underestimation of NO2 concentrations. For [O3]=60 μg/m3 (75 percentile of the distribution during the 
measurement camping, according to Figure 4) we estimate the underestimation in NO2 at street side as 0.3 × 
13% × 60 = 2.3 μg/m3. 

We included this elaboration on location dependency of the calibration model now in the Discussion section. As 
already indicated in the Conclusions and Outlook, we believe that the inclusion of an additional low-cost ozone 15 
sensor (e.g. Ox-B431 by Alphasense) in an updated version of the device will reduce the bias due to different 
NO2/O3 ratios at different locations. 

The ’sudden and unexplained’ offset in the only sensor you kept colocated with your reference is also slightly 
concerning, and deserves more explanation/treatment than your paper provides. 

We further analyzed the data of the reference sensor (55303) and found the cause of this sudden jump. Initially, 20 
this device not equipped with a PM10 module. Half-way the campaign, the technical operators decided to add 
this module, and removed the sensor between 10 and 14 July for service. Once placed back, temperature 
measurements by its DHT-22 sensor show that the internal device temperature increased by 2.5 degree on 
average. This can be attributed to increased power dissipation: after the periodic WiFi connection (350 mA 
peak), the PM module is the largest consumer of electricity (80 mA). This sudden jump in temperature is the 25 
main cause for the disrupted reference series. This is now included in Section 4.6. 

There are many papers published that look at citizen science installations like this, and present novel work in 
other regards– things like spatio-temporal models that are validated against slightly better reference devices 
(’AirCloud’, Sensys 2014), interesting UI for citizen interaction (’HazeWatch’, Sensys 2013), etc. They are 
generally explicit about their contribution as a user interaction or have a slightly more compelling story around 30 
validation of their campaign data. They are also typically in human-interaction focused conferences. 

More focus has been put on the citizen science aspect of our experiment. Unlike the mentioned projects, our 
study focusses on low-cost NO2 sensing, which due to its specific calibration issues needs special attention to be 
successfully applied in a citizen science setting.  

http://www.luchtmeetnet.nl/
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I’m not convinced that having a citizen campaign by itself warrants a publication, though it forms a strong 
foundation to experiment/build work on top of.  

The revised paper is now stronger on the ‘lessons learnt’ side, so that the paper also can be read as a guide for 
more successfully setting up similar citizen science campaigns. 

I do commend you on the open-sourcing of your data, and I think perhaps there is a case to be made that this 5 
aspect of it is worth publishing, but I’m still a little wary that validation of your data and key assumptions should 
be a little tighter (that NO2/O3 in your calibration/measurement region are similar, that your calibration 
technique is the proper one in the location of your measurement, etc). The lack of quantification of error in the 
locations you are measuring and the weak/qualitative claims about usefulness of the data are also a little 
disconcerting in this regard. 10 

We feel that the inclusion of new analyses in the revised paper adds to the validity of our results. However, the 
set-up of the experiment limits the possibilities to answer some of these questions in detail at this stage, but it 
gives us directions how to better organize future experiments. 

Finally, there are several grammatical issues floating around the paper. (…) More in depth grammatical review is 
definitely required.  15 

Thank you for pointing this out. We revised the grammar throughout the paper. We are willing to do a stricter 
language check by native speakers if the paper is selected for publication, and it is still considered necessary. 
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Response to Referee #2,  amt-2017-43 
Decoupling the interference between NO2 and O3 with Alphasense sensors is a difficult task, as highlighted 
throughout the literature. However, after reading through the manuscript several times, it does not appear the 
author’s goal was accomplished based on their thesis: to describe a “practical method for in-field calibration and 
regression modeling” of electrochemical NO2 sensors. Several major concerns including the use of a reference 5 
instrument (ozone) as an independent variable within the model and lack of rigorous validation data must be 
addressed. 

The best-performing model includes data from a reference ozone monitor which does not constitute a “practical 
method” for using low-cost NO2 sensors, and the regression modeling nearly completely describes how well 
these sensors performed in the past, without properly withholding validation data to describe how they will hold 10 
up in the future (predictive versus descriptive modeling). The modeling approach (multivariate linear regression 
using WE and AE) is not novel in the literature concerning Alphasense electrochemical sensors, especially when 
considering species other than NO2 (see Lewis 2015[1]) as an example that uses both linear regression and other 
statistical models). 

New low-cost sensor technology for air quality is available for several years now, and is used in many 15 
experiments often done by motivated but not necessarily scientifically trained people. This can result in 
gathering of data which, due to their poor quality, is unusable for quantifying air pollution. Our study shows 
that, if proper attention is payed to calibration, such experiments with low-cost sensors can result in useful 
measurements. 

In its first submission, however, the paper focussed more on the technicalities of the calibration we applied, 20 
which might have confused the reader (or reviewer) that we are dealing with a strict scientific experiment in 
which all variables can be controlled. On the contrary, as our study deals with data which is generated in a 
citizen science campaign, one has to be creative to make sense of the gathered data. 

Therefore, we have shifted the focus to how to deal with the analysis of air quality data which is collected with 
imperfect sensors under imperfect conditions (e.g. in a citizen science campaign). We still explain our 25 
calibration, but put more attention to our lessons learnt and recommendations on hardware, experimental 
setup, and data analysis approach, as we believe that many future campaigns will benefit greatly from this 
information. This is now reflected in the new title “Field calibration of electrochemical NO2 sensors in a citizen 
science context”. We left the “Practical” out, as the sensor degradation issue prevent a really practical 
calibration scheme which can be used for similar initiatives. 30 

In addition to a few major corrections, many minor corrections should be addressed as well (outlined below). 
Therefore, publication of this manuscript in AMT should only be considered after the comments below have been 
addressed. 

Major Comments 
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P. 6, line 24: Including a reference ozone measurement as an independent variable in the linear model is 
inappropriate for low-cost sensing. If the goal is to describe a method by which you can use low-cost NO2 
sensors to obtain a decent NO2 concentration, then including data from a $5000+ instrument in the analysis 
simply cannot be included. I understand that there is a strong cross-sensitivity to ozone, but claiming even a poor 
ozone measurement would improve results without any evidence to support the claim is invalid. This should be 5 
removed completely from the analysis. 

Cross-sensitivity to ozone is an important sensor issue, and should be corrected for to get more accurate low-
cost NO2 measurements. We think it is appropriate to include it in the analysis to get a better understanding of 
cross-sensitivity to ozone. We show that the accuracy of the low-cost measurements increase when ozone is 
included in the correction. This does not mean that the sensor devices should be equipped with a $5000+ 10 
instrument. We soften our claim that the performance of the device will improve significantly when low-cost 
ozone sensors are included (Section 6): “To improve the NO2 measurements further we recommend to include 
an additional low-cost ozone sensor, e.g. Ox-B431 by Alphasense. It is likely that the linear regression approach 
is able to resolve a significant part of the cross-sensitivity to ozone and NO2.” . 

To show the model is predictive (rather than descriptive), previously withheld validation data should be used to 15 
evaluate the model. Currently, this work only shows that these sensors can reasonably describe what has been 
measured in the past, but provides no insight into well they will hold up in the future. 

Good point. We included a predictive analysis in Section 4.6 in which the calibration is based on the first half of 
the calibration period, and the second half of this period is used for validation. The results show that the 
regression model describes well the measurements on short term, but loses predictability on the long term (e.g. 20 
two months) due to sensor degradation. 

All fit parameters in the tables (and throughout the paper) should have error estimates/confidence intervals. 

The standard deviations of the regression coefficients are now included in the tables of the Supplement. 

A focus on the absolute RMSE, rather than just the bias-corrected RMSE should be highlighted in the abstract 

Our claim that “the standard deviation of a typical sensor device for NO2 measurements was found to be 7 25 
μg m-3” in the Abstract is based on  the assumption that the weighted calibration approach (described in Section 
4.7) removes the sensor bias largely, which is supported by our findings in Section 4.8. 

Minor Comments 

There are many English language errors (mostly grammar) that need to be worked out 

We revised the grammar throughout the paper. We are willing to do a stricter language check by native 30 
speakers if the paper is selected for publication, and it is still considered necessary. 
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P. 2, line 6: These sensors are commercial, not experimental, despite their quality. Stating otherwise supports the 
idea that they are not currently on the market, which they are. 

Adjusted to “many low-cost air quality sensors suffer from various technical issues which limit their 
applicability.” 

P. 4, lines 3-4: Rather than just throwing away data based on arbitrary filters, a digital filter could be used. 5 
Throwing away data that is not within 10% of the mean is probably not the best methodology; one gives up the 
ability to measure higher concentrations if a local source were to emerge! 

This filter criteria was selected after carefully studying the raw (1-minute) data. As can be seen in Figure 3, the 
+- 10% bandwidth is wide enough to contain all valid measurements in the linear regime. The filter criterion is 
simple, yet effective. We did tests with advanced noise filtering using a Fourier transform, but this did not result 10 
in significant improvement of the hourly data quality. Added to the text: “This criterion was used for its 
simplicity and effectiveness. Note that, due to the large offset in the raw SWE and SAE signal, realistic NO2 peak 
values are still detectable as the corresponding sensor response is still within a 10% bandwidth.” 

If the analysis is going to be based on the “more linear” regime of these sensors (dropping all data > 30C), it 
should be more pronounced in the abstract and introduction (page 4, lines 5-6). This is a huge limitation and one 15 
of the most important research topics for electrochemical sensors (as used for ambient measurements). 

This is now included in the abstract: “Using our approach, the standard deviation of a typical sensor device for 
NO2 measurements was found to be 7 μg m-3, provided that temperatures are below 30°C.”. This limitation is 
further addressed in the Conclusion/Outlook. 

P. 6 line 10: If the DHT22 sensor does not need to be individually calibrated, the authors should explain why they 20 
observed such large variance between DHT22 sensors and how this affects their model results 

The spread in temperature and RH displayed in the raw data is partly explained by the sensor-to-sensor 
variability. By looking at nighttime temperatures (to eliminate the effect of local heating by exposure to direct 
sunlight) we discovered that all derived sensor temperatures are 2-5 degrees higher than the ambient 
temperature. The devices are not actively ventilated (updating the hardware with active ventilation is now 25 
included in the recommendations!), which means that the energy dissipation of the device influences their 
internal temperature. The variable position of the temperature sensors with respect to these heat sources 
further explain the variance in temperature. This analysis is now included in the analysis of the raw 
measurement in Section 3.1. 

P. 6, line 15: Comments suggest the sensor loses sensitivity at higher temperatures. This seems counterintuitive 30 
given that diffusion across the membrane should be faster at higher T. What is the explanation for this effect? 
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From the technical data sheet shown in Figure 8(b), one can see that sensitivity of the NO2 sensor decreases 
linearly with temperature up to around 30 degrees. Above 40 degrees the sensor gains sensitivity with rising 
temperatures. This is now mentioned in Section 4.4. The application of a detailed temperature dependency 
model to describe this non-linear behavior was considered outside the scope of our research. 

P. 11, lines 5-6: Diverging results for two different models of Alphasense NO2 sensors are discussed; Alphasense 5 
explains why the newer version of the sensor obtains better selectivity towards NO2 and has a reference 
(Hossain 2016 [2]) that should be examined/discussed.  

Loss of sensitivity during lifetime and improved sensor design are now mentioned in Section 4.3: “The two 
worst performing sensor devices (SD02 and SD01) contain the older NO2-B42F sensor. The newer NO2-B43F 
model is designed to have higher sensitivity to NO2 and less interference of ozone. The old sensor model has 10 
indeed smaller coefficients for SWE and larger correction terms for ozone (see the c1 and c5 coefficients of model 
E in the Supplement). This, however, can also be related to their longer operating time, as both sensors have 
been used in previous experiments for more than a year.” 

Equations 6, 7: A time-based interpolation for back-calculation of NO2 is used without sufficient evidence the 
decay in sensitivity/accuracy is linear in time. 15 

We feel that the assumption that the degradation is linear in time is the best to be made, given the limited data 
of our experiment and the absence of relevant scientific literature assessing electrochemical sensor 
degradation. 

P. 9, line 22: Is there a reason the authors decide to use r2 rather than adjusted-r2 for comparing to adjusted-r2? 

Thank you for pointing this out. We now include an analysis of the adjusted R2 in the analysis of the NO2 20 
calibration models in Section 4.3 and in Figure 7(a). However, the adjusted R2 does not change dramatically 
from R2, as the number of observations (n≈150) is relatively high compared to the number of regression 
variables (k=2…5). 

The median value throughout the campaign is 15 ugm-3 and the stated 95% CI is 14 ugm-3 (2*RMSE); what is 
signal and what is noise? 25 

From our error estimation of the sensor devices one can conclude that for low NO2 values the noise dominates 
the signal. However, from Figure 4 can be seen that about 25% of the measurements at Oude Schans station 
were above 25 ug/m3 during the campaign (one is usually more interested in detecting occurrences of high 
pollution levels). At these levels the signal to noise is significantly better. 

What makes a measurement “good enough” (page 10, line 15)? 30 
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Gradients in NO2 over the city are often too local that all features can be captured by the limited amount of 
official air quality stations. When looking at the difference between Vondelpark station and Oude Schans station 
(both classified as city background stations) between June and August 2016, 22% of the hourly measurements 
differ more than 7 ug/m3, and 6% of the hourly measurements differ more than 14 ug/m3. These ratios 
increase further when considering road side stations. From this perspective, sensor devices with an accuracy 5 
around 7 ug/m3 can contribute to an improved understanding of spatial patterns. 

Claiming the calibration period should be “as long as possible” isn’t very helpful. Eventually, the sensitivity of the 
sensor would begin to decay and one would lose valuable time to move the device and measure other places! Is 
there a quantitative way to phrase “as long as possible”? 

The Referee is right in his remark that sensor degradation would interfere with long calibration times. We 10 
changed the text to: “It is hard to quantify an optimal length of a calibration period without having a proper 
understanding of the sensor degradation rate beforehand. The measurement period should be at least a few 
days to capture the sensors behavior under a wide range of pollution levels and meteorological conditions. Very 
long calibration periods (in the order of months) will cause sensor degradation issues to interfere with the 
calibration results.” 15 

The description of the in-field co-location (when an NO2 sensor is compared to a closeby reference sensor) is 
quite confusing. It took several read-throughs to really under- stand when and where everything was taking 
place. This could be greatly simplified by adapting the map figure with notes. 

Thank you for this suggestion. We added more information on the map in Figure 1, which now should explain 
better the set-up of our study. 20 

P. 9, lines 6-14: The authors claim an in-field co-located NO2 sensor stays calibrated at another site, but the 
error bars on those measurements are the same as the absolute value of those measurements. How can one be 
sure they are not just looking at noise? 

The correlation with measurements of the nearby site (Oude Schans) is 0.88 (Table 5), showing that the sensor 
device is measuring NO2 reasonably well (see also Figure 12). If we were looking at noise, correlations would be 25 
close to 0. 

Figure Comments 

Each figure should be able to stand alone and tell a story; many of the figures do not contribute substantially to 
the paper and could be omitted. Specific comments include: 

Figure 1 needs labels for the co-location stations (text) to make it easier to understand what was taking place 30 

We added more information on the map in Figure 1, which now should explain better the set-up of our study. 
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Figure 3 demonstrates a large absolute error on some of the RH and T measurements (15 C swing on Temp and 
20% on RH). Why? Should counts be converted to volts to ease comparisons with existing literature? What is 
going on with the clear outlier? 

Temperature and RH are converted from mV according to the specs of the DHT-22 sensor manufacturer. The 
spread in temperature and RH displayed in the raw data is partly explained by the sensor-to-sensor variability. 5 
As explained above, all derived internal sensor temperatures were found to be 2-5 degrees higher than the 
ambient temperature, indicating that the energy dissipation of the device influences its internal temperature. 
During daytime, the exposure to direct sunlight (the devices were places the rooftop of the monitoring station) 
contributes further to the temperature outliers seen in Figure 3. These happen in the strong non-linear regime 
of the NO2 sensor, which explains the corresponding strong dips in the SWE signal. This elaboration is now 10 
included in Section 3.1. 

Figure 5 should have more descriptive axis labels – using just the title to describe the plot makes it hard for the 
reader to understand what is going on. Many of these plots are not needed ([row 2, col 2], [row 3, col 1], [row 3, 
col 2], [row 4, col 3]). The authors claim ozone is correlated with AE response, but clearly, that is just a 
temperature effect. Otherwise, the authors need to describe how ozone can diffuse across the analyte and 15 
undergo a redox reaction at the AE surface. 

We clarified the plots by adjusting the title and including the regression coefficients. We decided not to leave 
out panels, as we feel that all panels illustrate a different aspect of the behavior of the sensor. However, we 
improved our description of this figure in the text.   

Figure 6 is not needed. It does not add anything to the paper and is well known through basic photochemistry. 20 

We agree. We took this plot out and explain textually. 

Figure 7a should not include the model with ozone in the regression (row 2, col 2) 

We think it is appropriate to leave it in the analysis to get a better understanding of cross-sensitivity to ozone. 

Figure 8a does not do a good job at conveying the point (that transient temperature spikes affect the signal) 
since temperature is not shown anywhere. 25 

We included a second y-axis in this plot with the internal sensor temperatures to better illustrate this non-linear 
temperature effect. 

Figure 8b is not needed. These details are in the technical spec sheet and previous literature – just cite those. 

We feel that this figure is illustrative for better understanding the non-linear temperature behavior, losing 
sensitivity with increasing temperatures, followed by a strong gain in sensitivity for higher temperatures. 30 
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Figure 9 is not needed – simply describing the start-up/warm-up period in the methods section along with other 
filtering methodology was sufficient. 

We agree. We took this plot out and explain textually. 

Figure 10a and 10b do not seem to convey what you are trying to convey – plotting a distribution of the residuals 
during the two co-location periods would be much more helpful. 5 

Good suggestion. We adjusted the figure accordingly. 

Figure 11 was already described in a Table – no need for a plot as well. They are very confusing and don’t add 
anything in terms of advancing the story. It just makes it seem like the linear model is not very robust or 
repeatable. It also appears to suggest the is a drift in the y-intercept of nearly 1000 ugm3 in some instances! 

We agree and took this figure out. 10 

Figure 12b could also be plotted as a distribution of residuals – one would then be able to see clear overlap (or 
not) if there is/isn’t bias. 

Good suggestion. We adjusted the figure accordingly, and extended Table 5 with statistic summaries for the 1st 
and 2nd calibration periods. 

 15 
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Response to Referee #3,  amt-2017-43 
General Comments: 

1. The work presents the process involved in trying to calibrate a low-cost NO2 sensor for citizen science work. 
The sensor was collocated near a regulatory monitor for a period of 6 days, deployed in a community for 2 
months, and then collocated again for a period of about 9 days. The work explored a number of calibration 5 
equations and determined that the best calibration equation would consider the temperature and relative 
humidity influences and the co-sensitivity to ozone. However, the sensors were not built to also measure ozone 
and thus, a calibration scheme omitting this factor was selected. 

We conclude that the calibration without the ozone signal gives good results e.g. from the agreement of sensor 
54200 with the readings of an independent reference station located at 3 km distance from the calibration site 10 
(RMSE of 5.2 μg/m3 and negligible bias, see Figure 12). The collinearity between temperature, RH and ozone 
solves part of the sensor’s cross-sensitivity to ozone. We now include a discussion how this calibration 
generates a bias at locations where the NO2/O3 ratio deviates from the calibration site. We estimate 
underestimations of NO2 concentrations at street sides to be smaller than 2.3 μg/m3 75% of the time (see 
response to Referee #1). 15 

2. Unfortunately, the calibration procedure discussed is not novel or state of the art. Based on the title, I 
expected that it would be one or other or dynamic and easy to apply on the fly in the field. This definitely doesn’t 
fit the bill. I think the manuscript would be better received if it were refocused to include a look at the data from 
the 2-month citizen science deployment. 

In the revision, we shift the focus to how to deal with the analysis of air quality data which is collected with 20 
imperfect sensors under imperfect conditions (e.g. in a citizen science campaign). We still explain our 
calibration, but put more attention to our lessons learnt and recommendations on hardware, experimental 
setup, and data analysis approach, as we believe that many future campaigns will benefit from this information. 
This is now reflected in the new title “Field calibration of electrochemical NO2 sensors in a citizen science 
context”. An in-depth analysis of the campaign data will be the subject of a following paper. 25 

3. I agree with the comments already posted by other reviews/researchers and have tried simply to add 
additional information in this review. 

Specific Comments: 

1. P4, Line 7 – Why was this criteria chosen? 33% of an hour seems rather low and at best arbitrary. 

This criterion was found to be a good trade-off between noise reduction by averaging and not losing too many 30 
hourly measurements. This is now included in the text. 
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2. P4, Line 14 – Why was the collocation effort conducted at Vondelpark (urban back- ground) and not Oude 
Schans (urban)? This might have minimized the differences between the calibration and study periods. 

Both Vondelpark as Oude Schans are classified as urban background stations. Vondelpark measures a broad 
range of species such as NO, NO2, PM2.5 and PM10, whereas Oude Schans only measures NO and NO2. 
Furthermore, Vondelpark station has better facilities such as accessibility, physical space, power supply, and 5 
internet connection. 

3. P4, Line 25 – Include the average deployment period/time to the citizen campaign discussion. 

Added to text: “In this 1537-hour period the devices produced 1204 valid hourly measurements on average.” 

4. P4, Line 33 – Throughout this manuscript, be more specific about your descriptors like higher and better. 
Discuss the metric used to make those determinations. For examples, regarding temperature on this line, the 10 
absolute highest temperature nor the mean temperature appears to be higher during both calibration periods so 
what metric are you looking at? 

Our discussion of the distributions is based on the values of the 75th percentile. This is now included in the text. 
Also added to P6, Line 16: “As the electrochemical NO2 sensor loses sensitivity at higher temperatures (see the 
negative slope in Figure 7(b) for temperatures below 30°C)” 15 

5. P6, Line 18 – These two paragraphs should be re-visited to try to simplify. The model letters are not in order of 
best fit and that might help. 

We swapped the B and C labels of the calibration models, so model A to E are now in order of increasing 
performance. We rewrote the mentioned paragraph to:  

“From the fit results  we see that Model B (including RH) performs better than Model A, but Model C (including 20 
T) outperforms Model B. When both RH and T are included (Model D) the results of Model C are improved 
marginally. This can be understood in terms of a strong sensor dependence on temperature, a weak 
dependence on RH, and the collinearity between temperature and RH. Note that measuring RH is essential for 
guarding the data quality of electrochemical sensors, as these sensors are very sensitive to sudden changes in 
RH, see e.g. AAN (2013) and Pang et al. (2016).” 25 

6. P6, Line 26 – Why is ozone considered as a metric if it wasn’t routinely measured during the campaign? It 
reinforces your argument that it should be measured but it’s really no good to you in your current work. To really 
lend weigh to your argument that ozone should also be measured if using this NO2 sensor, you should explore 
whether the ozone concentrations from the nearest monitor would be a helpful addition and if a sensor based 
ozone measurement is good enough to help. 30 
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Ozone is measured at three locations in Amsterdam: two urban background locations, and one street side 
location (see www.luchtmeetnet.nl). Due to the chemical lifetime of ozone (which is long compared to NO2), the 
ozone gradients over the city are rather smooth, except in the vicinity of NOx sources (such as motorized traffic) 
where ozone levels are generally lower due to titration by NO. From ozone measurement during the considered 
three-month period we derive that this reduction in ozone is around 13% (see our response to Referee #1). The 5 
relevance of including calibration model E in our study is that it quantifies the cross-sensitivity to ozone and 
enables us to make an estimation of the introduced bias when the sensor devices are located at a street side. 
This analysis is now included in the revised text. 

7. P6, Line 30 – Discuss the technical differences between these sensor models. 

Added to Section 4.3: “The two worst performing sensor devices (SD02 and SD01) contain the older NO2-B42F 10 
sensor. The newer NO2-B43F model is designed to have higher sensitivity to NO2 and less interference of 
ozone. The old sensor model has indeed smaller coefficients for SWE and larger correction terms for ozone (see 
the c1 and c5 coefficients of model E in the Supplement). This, however, can also be related to their longer 
operating time, as both sensors have been used in previous experiments for more than a year. “ 

8. P7, Line 2 – Use a statistical measure rather than a figure of demonstrate improved performance. 15 

We copy the corresponding results from the Supplement to specify: “R2 increases from 0.30 to 0.83” 

9. P7, Line 5 – What does calibrated but uncorrected mean? 

Changed to “Calibrated data without temperature filter”. 

10. P7, Line 13 – What factors do you think affect the stabilization time. You mention ‘most’ sensors stabilized 
within this time. How many is most? Why not provide a range? What was different about the outliers? 20 

When the device is switched on, the electrochemical cell must be stabilized by the potentiostatic circuit which 
takes a few hours (Alphasense Application Note AAN-105)  due to the high capacitance of the working 
electrode. Furthermore, when the sensor is transported to another environment the sudden change in RH 
causes an equilibrium distortion with a relaxation time of about 2h (Mueller et al., Atmos. Meas. Tech., amt-10-
3783-2017). 25 

11. P7, Line 26 – Aging of temp and RH sensor is not widely reported as a problem. I realize the sensor was 
measuring in-box temperature and RH rather than ambient but is there really no available data (nearby temp 
and RH station) by which to but some bounds on this potential affect. Are you considering testing that 
hypothesis? 

We assessed the possible degradation of DHT22 temperatures by comparing nighttime temperatures with 30 
temperature measurements of the GGD Vondelpark station (thus avoiding the effect of local heating by 

http://www.luchtmeetnet.nl/
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exposure to direct sunlight). Apart from device 55303 (which was modified halfway the campaign), all DHT22 
sensor maintain a stable offset with regard to ambient temperature before and after the campaign. In the 
revision, we therefore removed our suspicion that “part of the drift could also be partly related to the aging of 
the DHT22 temperature and RH sensor”. 

12. P10, Line 17 – I think it might also be worth noting what this method would not be able to detect like 5 
transient spikes from nearby sources (because you are eliminating any spike outside of 10% of the mean). 
Because of this exclusion criteria, why do you think you could use this model to provide realistic estimates of 
peak values? 

Due to the large offset in the raw SWE and SAE signal (around 1200, see Figure 3), realistic NO2 peak values are 
still detectable as the corresponding sensor response  is within the 10% bandwidth around the average raw 10 
sensor signal. We added this remark in the description of the filter criteria in Section 3.1 

13. Figure 1 – I would like to see the Vondelpark station on this map to better appreciate the distance and 
variation in the urban environment. It would also help to see how large of an area this study area is in 
comparison with the city of Amsterdam. 

We agree and extended the map accordingly. 15 

14. Figure 2 – Rather than the photo of the sensor boxes charging, I think it would be helpful to see how they sit 
within this housing to better understand the appropriateness of the temperature and relative humidity 
measurement, etc. 

We included a new panel in Figure 2 showing the position of the components in their housing. 

15. Figure 3 – it appears that one sensor, in particular, appears to be an outlier in most of this figures. Was its 20 
removal from the study ever considered? Why/why not? 

Temperature and RH are converted from mV according to the specs of the DHT-22 sensor manufacturer. The 
spread in temperature and RH displayed in the raw data is partly explained by the sensor-to-sensor variability. 
However, the devices are not actively ventilated (this will be included in the recommendations!), which means 
that they are susceptible for direct sunlight and heat generation from the electronic modules. For the apparent 25 
outlier this occasionally happens in the strong non-linear regime of the NO2 sensor, which explains the 
corresponding strong dips in the SWE signal. After temperature filtering (explained in Section 4.4) and 
calibration, its performance gave no reason to exclude it from our study. 

16. Figure 4 – Please check the text to make reference to Vondelpark and Oude Schans (OS) more consistent and 
clear. I believe at one post one of the stations is just referred to as GGD.  30 

Ambiguous references in the text to ‘GGD station’ have been changed to ‘GGD Vondelpark station’. 
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17. Figure 6 – Graph is not needed, equation and R2 in the text is sufficient for making this point. 

We agree. We took this plot out and explain textually. 

18. Figure 7b – A Figure is not the best way to support the assertion that improved performance is clearly shown. 
It appears to me to be true only about 50% of the time from this figure. 

Figure 7b should be interpreted as an illustration how the improved scatter of Figure 7(a) (panel D versus panel 5 
A) represents as time series. The series show that, apart from 7 June, model D (blue lines) is closer to the 
ground truth (grey line). We added in the text to further specify: “R2 increases from 0.30 to 0.83”. 

19. Figure 8a – I would remove this Figure. If you leave it, include temperature. 

We included a second y-axis in this plot with the internal sensor temperatures to better illustrate the non-linear 
temperature effect. 10 

20. Figure 8b – Just reference the data sheet. 

We prefer to keep this Figure, as we think it illustrates the direct cause of the non-linear temperature 
dependence, and we are not sure if the manufacturer will still provide this NO2-B43F data sheet on their 
website once they release a new sensor model. 

21. Figure 9 – Figure, in this format not needed. If you want a figure, it would more useful to show error between 15 
measurements vs. time and for each sensor as it starts. 

We agree. We took this plot out and explain textually. 

22. Figure 10 – Using similar scales would help illustrate the drift. 

We decided to replace this figure with a plot showing the distribution of the residuals during the two co-
location periods. 20 

23. Figure 11 – Error bars/estimates for the coefficients before and after would be a helpful comparison in this 
Figure. 

We decided to leave this figure out (see Referee #2). 

24. Figure 12b – Present R2. 

We replaced Figure 12b by a plot of the distribution of residuals and we extended Table 5 with statistic 25 
summaries for the first and second calibration periods (see Referee #2). 

25. Tables – Find a way to visually note the older sensors by ID number. 
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To increase readability, we decided to rename all device IDs to SDnn, with nn from 01 to 16. A table is added in 
the Supplement with the relation between old and new IDs. The older NO2-B42F sensors are now labelled SD01 
and SD02. To make a better distinction between the different models we highlight SD01 and SD02 in grey in 
Table 1, Table 3 and Table 4. 

  5 
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Abstract.  

In many urban areas the population is exposed to elevated levels of air pollution. However, real-time air quality is usually 

only measured at few locations. These measurements provide a general picture of the state of the air, but they are unable to 15 

monitor local differences. New low-cost sensor technology is available for several years now, and has the potential to extend 

the official monitoring network significantly even though the current generation of sensors suffer from various technical 

issues.  

Citizen science experiments based on these sensors must be designed carefully to avoid generation of data which is of poor 

or even useless quality. This study explores the added value of the 2016 Urban AirQ campaign, which focused on measuring 20 

nitrogen dioxide (NO2) in Amsterdam, the Netherlands. 16 low-cost air quality sensor devices were built and distributed 

among volunteers living close to roads with high traffic volume for a two-month measurement period. 

Each electrochemical sensor was calibrated in-field next to an air monitoring station during an 8-day period, resulting in R2 

ranging from 0.3 to 0.7. When temperature and relative humidity are included in a multilinear regression approach, the NO2 

accuracy is improved significantly, with R2 ranging from 0.6 to 0.9. Recalibration after the campaign is crucial, as all sensors 25 

show a significant signal drift in the two-month measurement period. The measurement series between the calibration 

periods can be corrected in hindsight by taking a weighted average of the calibration coefficients. 

Validation against an independent air monitoring station shows good agreement. Using our approach, the standard deviation 

of a typical sensor device for NO2 measurements was found to be 7 μg m-3, provided that temperatures are below 30°C. 

Stronger ozone titration at street sides causes an underestimation of NO2 concentrations, which 75% of the time is less than 30 

2.3 μg m-3. 

mailto:mijling@knmi.nl
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Our findings show that citizen science campaigns using low-cost sensors based on the current generations of electrochemical 

NO2 sensors may provide useful complementary data on local air quality in an urban setting, provided that experiments are 

properly set up and the data are carefully analysed.In many urban areas the population is exposed to elevated levels of air 

pollution. However, air quality is usually only measured at a few locations. These measurements provide a general picture of 

the state of the air, but they are unable to monitor local differences. Since a few years new low-cost sensor technology is 5 

available, which has the potential to extend the official monitoring network significantly. These sensors, however, are still in 

an experimental stage and suffer from various technical issues which limit their applicability.  

This study explores the added value of alternative air quality measurements, focusing on nitrogen dioxide (NO2) in 

Amsterdam, the Netherlands. 16 low-cost air quality sensor devices were built and distributed among volunteers living close 

to roads with high traffic volume for a two-month measurement campaign. 10 

Careful calibration of individual sensors is essential to measure ambient concentrations of NO2 significantly. Field 

calibration was done next to an air monitoring station during an 8-day period, resulting in R2 ranging from 0.3 to 0.7. The 

NO2 accuracy can be improved by including temperature and humidity measurements from an additional low-cost sensor, R2 

ranging from 0.6 to 0.9. Recalibration is crucial, as all sensors show significant signal drift after the two-month measurement 

campaign. The measurement series between the calibration periods can be corrected in hindsight by taking a weighted 15 

average of the calibration coefficients. 

Validation against an independent air monitoring station shows good agreement. Using our approach, the standard deviation 

of a typical sensor device for NO2 measurements was found to be 7 μg m-3. This shows that, if properly treated, low-cost 

sensors based on the current generations of electrochemical NO2 sensors may provide useful complementary data on local air 

quality in an urban setting. 20 

 

1 Introduction 

Because air pollution is difficult to measure, instrumental and operational costs of official measurement stations are usually 

high. Air quality networks in cities, if present at all, are therefore usually sparse. Diffusive sampling is a common addition to 

these real-time measurements and are successfully used to monitor local differences (see e.g. Cape, 2009). However, these 25 

differences are poorly attributed to an emission source due to the long averaging time of these measurements (usually 4-

weekly). Emerging low-cost sensor technology has the potential to extend the official monitoring network significantly, and 

improve our understanding of local urban air pollution. Miniaturized and affordable sensors potentially enable citizens to 

measure their environment in more detail in space and time (Kumar et al., 2015). However, mMost commercially available 

sensors are still in an experimental stage and , however, suffer from various technical issues which limit their applicability. 30 

Despite their limitations many experiments are done with air quality devices containing these sensors, often by motivated but 

not necessarily scientifically trained people. Comprehensive calibration and validation of these devices is crucial (see e.g. 
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Lewis and Edwards, 2016; Lewis et al., 2016), but often overlooked. The resulting poor data quality is of concern to health 

authorities, scientists and citizens themselves.The poor data quality is of concern to health authorities, scientists and citizens 

themselves. Before conclusions can be drawn from the measurements, comprehensive calibration and validation is essential 

(e.g. Lewis and Edwards, 2016; Lewis et al., 2016).  

Several studies have been done to explore the performance of low-cost air quality sensors, e.g. Jiao et al., 2016, Duvall et al., 5 

2016; Mead et al., 2013; Moltchanov et al., 2015. For NO2 monitoring, mostly metal oxide and electrochemical sensors are 

used (Borrego et al., 2016; Spinelle et al., 2015b; Thompson, 2016). Typical ambient concentrations of NO2 are at part-per-

billion (ppb) level. The main problems encountered in NO2 sensor evaluations in these real-world environments are low 

sensitivity, poor selectivity, low precision and accuracy, and drift. Especially metal oxide sensors are not very stable 

(Spinelle et al., 2015b; Thompson, 2016) and suffer from lower selectivity. Therefore, in this study, we opted for 10 

electrochemical sensors to measure NO2. 

Mead et al. (2013) already noted the strong interference of ozone and other ambient factors in electrochemical NO2 sensors. 

The performance can be increased significantly when adding additional measurements of e.g. temperature and humidity in a 

regression model or neural network, as shown by e.g. Piedrahita et al. (2014), Spinelle et al. (2015b), Masson et al. (2015). 

Coping with sensor degradation remains a serious issue. Some studies, such as Jiao et al. (2016), include an additional 15 

temporal term in their linear regression which improves the predicted NO2 slightly. 

In the following sections we assess the data quality of the 2016 Urban AirQ campaign. As many similar initiatives depending 

on participating citizens, this campaign was not set up as a strictly controllable scientific experiment such as in the 

previously mentioned studies. However, we will demonstrate that citizen air quality monitoring using the current generation 

of electrochemical NO2 sensors may provide useful data of urban air quality, by using a practical method for field calibration 20 

and correcting for sensor degradation in hindsight.The following sections will further explore the applicability of 

electrochemical NO2 sensors for measurements of urban air quality, using a practical method for in-field calibration and 

regression modelling for assessment of accuracy and sensor degradation. 

2 The Urban AirQ project 

The Urban AirQ project explores the added value of alternative air quality measurements in the city, by addressing citizens’ 25 

questions about their local air quality. . It focusses on a 2×1 km2 area around Valkenburgerstraat, a primary road in the East-

central part of Amsterdam, see Figure 1. Its dense traffic causes regular exceedances of the European annual limit value for 

nitrogen dioxide (40 μg m-3). 

Two town hall meetings were organized in which residents of this area were invited to raise their concerns about air 

pollution in their neighborhood and to formulate related research questions. Topics included the relation between traffic 30 

density and air pollution, the difference between a main road and a side street, the front side of an apartment compared to its 

backside, the influence of apartment height, and the influence of cut-through traffic at nighttime. The residents were invited 
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to participate in finding answers to their questions by measuring their outdoor air quality with 16 experimental low-cost 

sensor devices (labeled SD01 to SD16), built for this purpose by Waag Society.  

Measurements were done from June to August 2016. Beforehand, the sensor devices were calibrated using side-by-side 

measurements next to an official air quality measurement station. With a second calibration period after the campaign, 

individual sensor drift was assessed and compensated in hindsight. 5 

The Urban AirQ experiment is unique in the sense of the used number of devices, the duration of the experiment, the direct 

involvement of citizens, and the use of open hardware and generation of open data. 

 

3 Urban AirQ NO2 sensor devices  

The concept of  the Urban AirQ sensor is building a device with low-cost electronic components which is easy to operate, so 10 

citizens can do their own air quality measurements. It builds on the basic design described by Jiang et al. (2016), having an 

improved power supply, weather resistant housing, WiFi connectivity, and additional sensors for temperature, relative 

humidity, and particulate matter. The sensor development is part of an open hardware project; detailed technical information 

can be found at https://github.com/waagsociety/making-sensor.  

Central is the microcontroller board (Arduino UNO) which handles the reading of the sensors and sends the data to the WiFi 15 

module (ESP8266), see Figure 2.  

For NO2 measurements, an amperometric electrochemical cell is  used from Alphasense Ltd (Essex, United Kingdom). The 

cell contains four electrodes. The target gas, NO2, diffuses through a membrane where it is chemically reduced at the 

Working Electrode, generating a current signal. This electric current is balanced by a opposite current from the Counter 

Electrode. The Reference Electrode sets the operating potential of the Working electrode. The sensor also includes an 20 

Auxiliary Electrode, which is used to compensate for baseline changes in the sensor. To get full sensor performance, low 

noise interface electronic is necessary. An individual sensor board with amperometric circuitry, also provided by 

Alphasense, is used to guarantee a low noise environment and to optimize the sensor resolution at low ppb levels. The sensor 

signal is read by a 16-bit analog to digital (A/D) converter (ADS1115). 14 sensor devices contain model NO2-B43F for NO2 

measurements, the other two use model NO2-B42F. Two sensor devices (SD01 and SD02) contain model NO2-B42F for 25 

NO2 measurements, the other 14 contain the newer NO2-B43F sensor.  

12 of the 16 sensor boxes are also equipped with a Shinyei PPD42NS sensor in order to measure particulate matter optically. 

The present paper, however, will focus only on the assessment of the NO2 measurements. 

All devices are equippedmeasure internal temperature and relative humidity (RH) with a DHT22 sensor from Aosong 

Electronics measuring temperature and relative humidity (RH). 30 

12 of the 16 sensor boxes are also equipped with a Shinyei PPD42NS sensor in order to measure particulate matter optically. 

The present paper, however, will focus only on the assessment of the NO2 measurements.The system is supplied with a 7.5V 

https://github.com/waagsociety/making-sensor
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output adapter and a regulator board which generates 5V for the Arduino and the sensors. The microcontroller consumes 

around 10 mA. The PM sensor needs a 80 mA current, the NO2 sensor about 10 mA, and the DHT22 less than 1 mA. The 

WiFi module peaks periodically to 350 mA when establishing an internet connection. 

3.1 Averaging and filtering 

Raw sensor measurements are stored in a central database on a one minute base. However, the calibration analysis is based 5 

on hourly averages to enable direct comparison between the ground truth (also provided as hourly values), and to improve 

the signal to noise ratio. 

The NO2 sensor measurements are done at the Working Electrode (SWE) and the Auxiliary Electrode (SAE). They are 

provided as counts from the A/D converter. Sensor readings of temperature and RH are converted according to the indication 

of the manufacturer to degrees Celsius and percentages respectively.  10 

Raw, hourly averaged, sensor data is shown in Figure 3. The spread in temperature and RH displayed in the raw data is 

partly explained by the sensor-to-sensor variability. By looking at nighttime temperatures (to eliminate the effect of local 

heating by exposure to direct sunlight) we see that the internal sensor temperatures are 2-5°C higher than ambient 

temperature. The devices are not actively ventilated, which means that the energy dissipation of the electronics influences 

their internal temperature. The variable position of the temperature sensors with respect to these heat sources further explain 15 

the variance in temperature and relative humidity. 

Careful filtering is needed before the data can be further processed. We have applied the following rules: 

• Raw, minute-based, SWE and SAE measurements outside a ±10% range of their mean value during the entire 

measuring period are considered outliers. This affects filters out 0.33% of all measurements. This criterion was used 

for its simplicity and effectiveness. Note that, due to the large offset in the raw SWE and SAE signal, realistic NO2 20 

peak values are still detectable as the corresponding sensor response is still within a 10% bandwidth. 

• All readings at sensor temperatures above 30°C are discarded to avoid non-linear temperature dependence of the 

electrochemical NO2 sensor (see Sect. 4.4). This affects filters out 4.53% of the measurements during the entire 

period. 

• At least 20 valid minute-based measurements are required to calculate a representative hourly mean. This criterion 25 

was found to be a good trade-off between noise reduction by averaging and not losing too many hourly 

measurements. 

During the first calibration period, the sensors were measuring 79% of the time on average. After applying the criteria above, 

this resulted in 70% valid hourly measurements. During the measurement campaign, the sensors produced 79% valid hourly 

measurements on average, with the uptime dropping to 50% in places were sensors experienced connectivity problems due 30 

to limited range of the participant’s WiFi network. 
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3.2 Calibration periods 

Calibration of the sensors devices have been done by placing the 16 sensors side by side on the rooftop of the air quality 

station at Vondelpark, operated by the Public Health Service of Amsterdam (GGD). This station is classified as a city 

background station. It measures nitrogen dioxide, nitrogen monoxide (NO), ozone (O3), particulate matter (PM10, PM2.5, 

particle number and size distribution), black carbon, and carbon monoxide (CO). For NO and NO2 measurements, GGD 5 

alternates Teledyne API 200E and Thermo Electron 42I NO/NOx analysers, both based on chemiluminescence. The 

validated measurements used in this study are considered to be the ground truth. The calibration period spanned several days 

to be able to test the sensors under a wide range of ambient conditions. To assess the stability of the calibration, the sensors 

were brought back after the two-month measurement campaign to the calibration facility for a second calibration period. The 

Urban AirQ campaign consisted therefore of three phases.  10 

The first field calibration period at GGD Vondelpark station started at 2 June 2016, 00h LT (local time), and ended at 10 

June 2016, 10h (8.5 days; 204 hours). Due to connectivity problems sensor data was missing between 4 June 19h and 6 June 

9h. 

During the following citizen campaign, 15 sensors were distributed among the participants. One sensor (55303SD03) was 

kept at the Vondelpark station as a reference. The first sensor was installed and connected at 13 June 2016, 18h, the last 15 

sensor connected at 17 June 2016, 17h. At 15 August 2016, 9h, the first sensor was disconnected, at 16 August 2016, 18h, 

the last sensor was disconnected. In this 1537-hour period the devices produced 1204 valid hourly measurements on average. 

The second field calibration period at GGD Vondelpark station started at 18 August 2016, 15h, and ended at 29 August 

2016, 00h (10.4 days; 249 hours) . Due to connectivity problems sensor data was missing between 26 August 12h and 27 

August  11h. 20 

Figure 4 shows the distribution of temperature, relative humidity, NO2, and O3 during the different periods. Looking at the 

75th percentile of the distributions, Tthe calibration periods are characterized by higher temperatures and ozone levels than 

the campaign period. The range of hourly NO2 concentrations at the Vondelpark station in the calibration periods is larger 

than in the campaign, reaching more frequently higher NO2 values. During the campaign the sensors are more closely 

locatedcloser to the GGD station at Oude Schans, where measured. NO2 values measured here are generally a few μg m-3 25 

higher than at Vondelpark. The Oude Schans site does not measure ozone. 

4 NO2 calibration 

Electrochemical sensors such as the Alphasense NO2-B series, are known to be sensitive to interfering species and ambient 

factors. Especially ozone, temperature, and relative humidity influence the sensor reading (see e.g. Spinelle et al., 2015a). 



25 
 

4.1 Explaining the NO2 sensor signal  

To understand better the behavior of the NO2 sensor, we study its sensitivity to different ambient factors. We use the first 

calibration period to test the correlation of the measured SWE and SAE signal with NO2, ozone,  temperature and humidity by 

making a best fit though the hourly time series, e.g. 

𝑆𝑆WE(𝑡𝑡) =  𝑐𝑐0 + 𝑐𝑐1NO2(𝑡𝑡) (1) 

 Temperature and RH were not available from the obtained GGD Vondelpark station data. Instead of taking from ambient air 5 

measurements, wWe take temperature and RH from the average readings from the DHT22 sensors instead, which, as these 

reflect better reflect the internal sensor conditions than ambient air measurements. 

Figure 5 shows scatter plots for an average performing sensor and the R2, the coefficient of determination. The measured SWE 

signal can be explained by ambient NO2 (R2=0.20), but better by its anti-correlation with ozone (R2=0.49). Temperature 

alone is an even better predictor for the sensor signal (R2=0.73), probably because of direct temperature dependence of the 10 

sensor, and indirect dependence (temperature being a reasonable proxy for both NO2 and O3 concentrations). Also the 

correlation with humidity is very strong (R2=0.73). The measured SWE signal can best be explained as a linear combination of 

NO2, O3, T, and RH together, resulting in a correlation of 0.98 (R2=0.96). 

The SAE signal is practically insensitive to NO2. This suggests that a combination of SWE and SAE is more sensitive to NO2 

and less to the other interfering factors, as intended by the manufacturer. 15 

4.2 NO2 calibration models 

For NO2 measurements, theThe sensor manufacturer suggests to correct both Working Electrode and Auxiliary Electrode for 

a zero-offset with SWE,0 and SAE,0 respectively. Then a sensitivity constant s is applied to convert from mV to ppb NO2: 

NO2[ppb] =  
�𝑆𝑆WE − 𝑆𝑆WE,0� − �𝑆𝑆AE − 𝑆𝑆AE,0�

𝑠𝑠
 (2) 

In practice, the factory-supplied constants SWE,0, SAE,0, and s do not result in realistic values of NO2, see e.g. Cross et al. 

(2017). As an alternative, we propose a linear combination of signal SWE and SAE (calibration model A): 20 

NO2[µg m−3] =  𝑐𝑐0 + 𝑐𝑐1𝑆𝑆WE + 𝑐𝑐2𝑆𝑆AE (3) 

with tThe coefficients c1 and c2 to beare determined with data from the calibration period using ordinary least squares (OLS). 

Table 1 shows the fit results and the corresponding correlation with true NO2 signal. As can be seen from the fit results in 

Table 1, within the batch of sensors there is a large variability of direct sensitivity to ambient NO2. 

During the calibration period, hourly ozone values (also taken from the Vondelpark station) happened to be a good proxy for 

the ambient NO2 concentration: NO2(t) = 44.6 – 0.40·O3(t)  in [μg m-3], with R2 of 0.49 (see Figure 6).  25 

When compared with Table 1, one can see that direct sensor readings from a fair part of the sensors cannot outperform this 

result. To improve the results we use additional measurements and their statistical relation to NO2. We fit different 
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calibration models with multiple linear regression (using OLS). The calibration models which were tested are listed in Table 

2. 

Temperature and RH are taken from the DHT22 sensor. Note that Tthere is no need to calibrate the individual T and RH 

sensor values signals beforehand; the calibration coefficients for NO2 are determined for the specific set of all sensors in the 

box. However, this means that if an individual sensor is replaced, new calibration parameters for the sensor box have to be 5 

derived. 

4.3 Calibration results 

A complete overview of fit resultsthe regression coefficients and their error estimates for all models can be found in the 

supplement. The sign of the calibration parameters can be easily understood. As the electrochemical NO2 sensor loses 

sensitivity at higher temperatures (see the negative slope in Figure 7(b) for temperatures below 30°C), coefficients c3 are 10 

positive to compensate for this effect. The additional sensor response due to cross-sensitivity with ozone is compensated by 

negative values for c5. 

From the fit results we see that Model C (including RH) performs better than Model A, but model B (including T) 

outperforms model C. Model D (including both RH and T) only marginally improves the results of Model B. This can be 

understood from the strong sensor dependence on temperature directly, and indirectly on temperature as a proxy for ozone. 15 

The better performance of model C with respect to model A can be explained by RH being a reasonably proxy for 

temperature. Note that measuring RH is essential for guarding the data quality of electrochemical sensors, as these sensors 

are very sensitive to sudden changes in RH, see e.g. AAN (2013) and Pang et al. (2016). From the fit results  we see that 

Model B (including RH) performs better than Model A, but Model C (including T) outperforms Model B. When both RH 

and T are included (Model D) the results of Model C are marginally improved. This can be understood in terms of a strong 20 

sensor dependence on temperature, a weak dependence on RH, and the collinearity between temperature and RH. Note that 

measuring RH is essential for guarding the data quality of electrochemical sensors, as these sensors are very sensitive to 

sudden changes in RH, see e.g. AAN-110 (2013) and Pang et al. (2016). 

The best calibration results (i.e. R2 values closer to 1) are obtained by including ozone (Model E). The ozone values were 

obtained from the GGD Vondelpark station, as the sensor devices do not measure ozone themselves.  25 

As local ozone measurements were only available during the calibration periods, we used Model D for the Urban AirQ 

campaign, i.e. generating an NO2 value based on a linear combination of SWE, SAE, T, and RH. The regression analysis of 

Model D and correlation with the NO2 ground truth can be found in Table 3.  

The two worst performing sensor boxes devices (14560051SD02 and 1184206SD01) contain the older NO2-B42F sensor. 

The newer NO2-B43F model is designed to have higher sensitivity to NO2 and less interference of ozone. The old sensor 30 

model has indeed smaller coefficients for SWE and larger correction terms for ozone (see the c1 and c5 coefficients of model E 

in the Supplement). This, however, can also be related to their longer operating time, as both sensors have been used in 

previous experiments for more than a year. It is not clear if their poor performance can be attributed to the different sensor 
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model, or to their longer operating time (both sensors have been used in previous experiments for more than a year). Again, 

one can see that even within the same batch of sensors, there is a significant spread in performance, around a median value 

for R2 of 0.83. Figure 76 shows the results for the different calibration models for an the average performing sensor SD15. 

The time series in Figure 67(b) shows clearly how the performance of a typical sensor device improves when temperature 

and humidity are included in the calibration analysis. The adjusted R2, which corrects R2 for the number of explanatory 5 

variables, increases from 0.29 to 0.82. Note that 𝑅𝑅adj2  is only slightly smaller than R2, as the number of observations (n≈150) 

is relatively high compared to the number of regression variables (k=2…5). 

4.4 Dependency on temperature 

Calibrated data without temperature filter Calibrated, but uncorrected, data show occasionally strong negative values, see 

Figure 8 7 below. These negative peaks coincide with internal sensor temperatures exceeding 30 °C. This behavior can be 10 

explained from the dependency of the electrochemical sensor on temperature becoming non-linear, see Figure 87(b): the 

sensitivity of the NO2 sensor decreases linearly with temperature up to around 30 degrees, while above 40 degrees the sensor 

gains sensitivity with rising temperatures. In theseis regimes, the response of the sensor cannot be described well with our 

multilinear regression approach. As temperatures during the measurement period only rose occasionally above 30 °C, we 

decided to filter these measurements out. 15 

4.5 Startup time 

When a sensor device is switched on for service, the electrochemical cell must be stabilized by the potentiostatic circuit 

which can take a few hours due to the high capacitance of the working electrode  (AAN-105, 2009). Furthermore, when the 

sensor is transported to another environment the sudden change in RH causes an equilibrium distortion with a relaxation time 

of about 2h (Mueller et al., 2017).When the sensors are switched on after an unused period they need time to stabilize. 20 

Figure 9 give some examples of 4 sensors which are switched on at their campaign sites after being offline for a couple of 

days.  The startup-effect is translated by the calibration model as a strong positive NO2 peak, which should be filtered out. 

From our sensor data we estimate a stabilization time of 4 hours.After 4 hours most sensors are sufficiently stabilized. Note 

that this startup effect should not be confused with the response time, which is determined to be less than 2 minutes in Mead 

et al. (2013) and Spinelle et al. (2015a). 25 

4.6 Predictivity, Sensor sensor driftt, aging, and uncertainty estimation 

Almost all electrochemical sensors have some degree of drift because of aging and poisoning (Di Carlo et al., 2011; 

Hierlemann and Gutierrez-Osuna, 2008). This becomes a serious complication when the drift is in the order of the strength 

of the signal of interest. The idea of keeping sensor 55303 next to the reference station during the whole campaign was to 

study sensor degradation in more detail. Unfortunately, the sensor was removed temporarily from 10 to 14 July for service, 30 
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which introduced a sudden and unexplained offset in measurements. By introducing a second calibration period after the 

measurement campaign, we have another possibility to assess the stability of the sensors, and calibrate the measurements in 

hindsight. All sensors were brought back to the GGD station at the Vondelpark. In Figure 10, the sensor signals (calibrated 

with coefficients from the first calibration period) are compared to the official station measurements. As can be seen in 

Figure 10(b), most sensors have been drifting in the intermediate two-month period. Note that part of the drift could also be 5 

partly related to the aging of the DHT22 temperature and RH sensor. 

Almost all electrochemical sensors have some degree of drift because of aging and poisoning (Di Carlo et al., 2011; 

Hierlemann and Gutierrez-Osuna, 2008). This becomes a serious complication when the drift is in the order of the strength 

of the signal of interest. The idea of keeping sensor SD03 next to the reference station during the whole campaign was to 

study sensor degradation in more detail. Unfortunately, the sensor was removed temporarily from 10 to 14 July for service, 10 

when it was decided to add a PM module to the device. The increased energy dissipation after the modification  (the Shinyei 

PPD42NS module uses a heater resistor to force a convective flow of sampling air) caused an increase of the internal device 

temperature by 2.5°C on average. This sudden jump in temperature disrupted the reference time series. 

Instead, to assess the short-term stability of the calibration model, we use the first 60% of the measurements from the 

calibration period (2-7 June) to derive the regression coefficients, and predict the NO2 values for the remaining 40% (8-10 15 

June), see Table 4. The average RMSE increases from 6.5 to 7.0 μg m3 when the regression is used for prediction. 

We assess the long-term stability of the sensors with a second calibration period after measurement campaign, again at the 

Vondelpark calibration site. As can be seen from the distribution of the residuals in Figure 8, most sensors drift significantly 

in the intermediate two-month period. We describe this degradation effect as a bias b between the mean of the hourly 

estimated NO2 values 𝑥𝑥�𝑖𝑖  and the mean of the hourly true NO2 𝑥𝑥𝑖𝑖 during the calibration period: 20 

𝑏𝑏 =
1
𝑁𝑁
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−
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and the root-mean-square error (RMSE) of the difference between the bias corrected calibrated measurement and the ground 

truth. The latter is the same as the standard deviation of the residuals (SDR)  𝑥𝑥�𝑖𝑖 − 𝑥𝑥𝑖𝑖: 

SDR =  �
1
𝑁𝑁
��(𝑥𝑥�𝑖𝑖 − 𝑏𝑏) − 𝑥𝑥𝑖𝑖�

2

𝑖𝑖

 (5) 

As can be seen in Table 4 5 below, the bias is mostly positive. Note that sensor 54911SD16 and 1184206SD01 had a limited 

uptime in the second period, which makes their bias and RMS calculation not very representative. 

The strongest bias after two months is found for 14560051SD02 and 1184206SD01, both of model NO2-B42F and having 25 

been used in others experiments for more than one year. These sensors have also the largest RMSE in the first calibration 

period (see also Table 3), another indication of their poor performance. The range in RMSE of the remaining sensors is 4.5 – 

7.2 μg m-3 for the first period. The bias corrected RMSE increases to 5.3 – 9.3 μg m-3 for the second period. The latter is a 
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more conservative yet more realistic estimation of the precision of the NO2 estimates, as they are based on measurements 

which were not used for calibration. Based on our results listed in the last columns of Table 4 and 5, we take 7 μg m-3 as a 

typical uncertainty for the estimated NO2 values. 

The increase of SDR is also due to a loss of sensitivity over time. The aging of the sensors can be further investigated by 

recalibrating the devices, i.e. determining the coefficients of regression model D, using the data of the second calibration 5 

period (see the Supplemental Material). All calibration coefficients of SWE (the only component which has direct sensitivity 

to NO2) decrease in value, showing that all sensors suffer from sensitivity loss to NO2. This results in lower R2 values, 

although the performance loss is partly compensated by the other components in the regression. The older Alphasense 

models NO2-B42F suffer the largest sensitivity loss, which (although the regression tries to compensate with an increased 

temperature dependence) result in the worst performance loss in terms of R2. 10 

The panels in Figure 11 show how the calibration coefficients change after two months of deployment. Having in mind that 

the SWE signal is the only component which has direct sensitivity to NO2, one can see in Figure 11(b) (all dots below the y=x 

line) that all sensors suffer from sensitivity loss to NO2. This results in lower R2 values in Figure 11(f), although the 

performance loss is partly compensated by the other components in the multivariate linear regression. 

The older Alphasense models NO2-B42F (red dots in Figure 11(b)) are the most insensitive to NO2, and have the largest 15 

sensitivity loss, which the regression tries to compensate with an increased temperature dependence (Figure 11(d)), although 

this can not avoid that they have the worst performance and the worst performance loss in terms of R2. 

4.7 Weighted calibration 

Taking 18 μg m-3 as a typical NO2 concentration in an urban environment (Figure 4), the sensor drift as listed in Table 4 5 is 

a significant error component, even after a two month period. It is impossible to predict the progressing bias for an individual 20 

sensor. However, using the second calibration period we can compensate for signal drift in hindsight. If 𝑥𝑥�1(𝑡𝑡) represents the 

estimated NO2 value at time t based on the first calibration period (starting at t1), and 𝑥𝑥�2(𝑡𝑡) the estimated NO2 value based on 

the second calibration period (ending at t2), the we take for intermediate times 𝑡𝑡1 ≤ 𝑡𝑡 ≤ 𝑡𝑡2  a weighted average of both 

calibrations: 

𝑥𝑥�(𝑡𝑡) = �1 − 𝑓𝑓(𝑡𝑡)�𝑥𝑥�1(𝑡𝑡) + 𝑓𝑓(𝑡𝑡)𝑥𝑥�2(𝑡𝑡) (6) 

Assuming that the sensor degradation is linear in time we select 25 

𝑓𝑓(𝑡𝑡) = (𝑡𝑡 − 𝑡𝑡1) (𝑡𝑡2 − 𝑡𝑡1)⁄  (7) 

such that f(t1)=0 and f(t2)=1. 
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4.8 Validation against an independent reference stationOude Schans station 

Citizen science can be unpredictable, and we were fortunate that From 14 June to 16 August, sensor 54200SD04 was placed 

athanded over to an Urban AirQ participant living at Korte Koningsstraat (ground floor/street side), which happens to be 

120m from another GGD station at Oude Schans, also classified as an urban background station(see Figure 1). The Korte 

Koningsstraat characterizes as is a side street, away from traffic arteries, whereas Oude Schans also classifies as an urban 5 

background location. The proximity to a reference station enables us to perform an independent validation of the sensor 

measurements, as the calibration of the sensor is based on side-by-side measurements with Vondelpark station, at 3 km 

distance. As can be seen from Table 5Figure 9, the sensor readings agree very well with the official measurements. Figure 

12(a) and 12(b) show the time series and the scatter plot. 

Using the weighted calibration explained in the previous section, the measurement bias largely disappears (Table 6). The 10 

RMSE (5.3 μg m-3) is comparable to the RMSE found during the calibration period (see Table 4). The results give 

confidence that our calibration method is independent ofremains valid for similar urban locations, and that our assumption of 

sensor degradation being linear in time is acceptable.  

5 Discussion 

The Alphasense NO2-B4 sensor is used in many low-cost air quality applications for measuring ambient NO2. As all 15 

electrochemical NO2 sensors, the Alphasense NO2-B4 sensor is not very selective to the target gas. The sensor response can 

best be explained as a linear combination of NO2, O3, temperature and relative humidity signals (R2≈ 0.9).  

As a consequence, a linear combination of the Working Electrode and the Auxiliary Electrode alone give poor indication of 

ambient NO2 concentrations. The accuracy varies greatly between different sensors (R2 between 0.3 and 0.7). For the Urban 

AirQ campaign, temperature and relative humidity were included in a multilinear regression approach. The results improve 20 

significantly with R2 values typically around 0.8. This corresponds well with the findings of Jiao et al. (2016), who find an 

adjusted R2=0.82 for the best performing electrochemical NO2 sensor in their evaluation, when including T and RH. 

Best results are obtained by also including ozone measurements in the calibration model: R2 increases to 0.9. Spinelle et al. 

(2015b) used a similar regression and found R2 ranging from 0.35 to 0.77 for 4 electrochemical NO2 sensors during a two-

week calibration period, but dropping to 0.03—0.08 when applied to a successive 5-month validation period. Low NO2 25 

values at their semi-rural site partly explains this poor performance, but most likely also unaccounted effects such as 

changing sensor sensitivity and signal drift. 

The sensor devices were tested in an Amsterdam urban background in summertime, with NO2 values ranging from 3 μg m-3 

to 78 μg m-3, and median values around 15 μg m-3. During the 3-month period most sensors show loss of sensitivity and 

significant drift, ranging from -9 to 21 μg m-3. After bias correction we found a typical value for the accuracy of the NO2 30 

measurements of 7 μg m-3. 
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This error consists of several components. The reference measurements by the NO/NOx analysers have an estimated hourly 

error of 3.65% (certified validation at a 200 μg m-3 NO2 concentration), which would contribute to 0.5 μg m-3 under typical 

conditions. The low-cost DHT22 sensor has a reported error of 0.5 °C for temperature and 2–5% for RH. For a single 

measurement, this would contribute to a propagated regressionn error of approximately 1 μg m-3 and 0.5 μg m-3, respectively 

(Figure 11(d) and 11€). It should be noted, however, that binning minute-based measurements to hourly averages removes 5 

large part of the variability, while determining the best fitting regression model for each sensor device removes large part of 

the remaining systematical biases. The largest part of the error term is therefore introduced by the linear regression model 

itself, which does not include all interfering species or meteorological quantities, and is not able to describe non-linear 

dependencies of its variables. One should therefore be careful to extrapolating extrapolate the calibration model for 

conditions different than the calibration period. 10 

The validation results from Section 4.8 show that the calibration holds well for urban locations with similar NO2/O3 ratios. 

Neglecting O3 as regression parameter, however, will introduce a bias at locations with different NO2/O3 ratios found e.g. 

closer to emission sources. To get a better understanding of the possible impact, we compared hourly ozone measurements 

from the GGD authorities at Van Diemenstraat (VDS, classified as street station) against Nieuwdammerdijk (NDD, 

classified as urban background station) during June-August 2016. The relation can best be described by [O3]VDS = 0.87 15 

[O3]NDD + 0.85 (with 0.93 correlation), which means that ozone levels at the street station are typically 13% lower, due to 

titration of O3 with NO. Due to the sensor’s cross-sensitivity for ozone, larger values must be subtracted from its signal when 

the ozone concentration increases. This explains the negative sign of the ozone coefficient c5 of model E (see Supplement). 

Calibration with model D will overcorrect (i.e. subtract too much) for locations which have lower ozone concentrations than 

at the calibration site, resulting in an underestimation of NO2 concentrations. Using typical values c5=-0.3 and [O3]=60 μg/m3 20 

(75th percentile of the distribution during the measurement camping, according to Figure 4) we estimate the underestimation 

of NO2 at street side as 0.3 × 13% × 60 = 2.3 μg/m3. 

The found sensor accuracy after two calibrations and corrections weighted calibration is good enough to provide some 

complementary spatial information to complement official measurements by providing additional information on local air 

quality between reference stations, and detect unexpected hot spots (or low values) of urban NO2.  When looking at the 25 

difference between Vondelpark station and Oude Schans station (both classified as city background stations) in the period 

June-August 2016, 22% of the hourly measurements differ more than 7 μg m-3, and 6% of the hourly measurements differ 

more than 14 μg m-3. These differences increase further when considering road side stations. From this perspective, even 

sensor devices with an accuracy around 7 μg m-3 can contribute to an improved understanding of spatial patterns. However, 

it must be further investigated if the regression calibration method used here would provide realistic estimates for peak 30 

values (such as the EU hourly limit value, 200 μg m-3). 
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6 Conclusions and outlook 

In this study, we examined low-cost electrochemical air quality sensors for citizen urban air quality monitoring. In other 

words, we evaluated an imperfect air quality sensor in an imperfect scientific experiment. In general, we found that low-cost 

electrochemical sensors have the potential to complement official environmental monitoring data to help answer questions 

from the public, which usually cannot be fully answered from official data alone. To reach the potential, however, proper 5 

measurement set-up, calibration and recalibration, and data analysis should be guaranteed.  

The current generation of low-cost NO2 sensors has some serious issues which trouble straightforward application. To make 

electrochemical NO2 sensor measurements accurate, careful filtering of the raw data is necessary. There is a strong spread in 

sensor performance, even if the sensors come from the same batch, which make individual calibration essential. A practical 

calibration method is measuring side-by-side to an air monitoring station. The accuracy of the measurements can be 10 

improved by including temperature and humidity measurements from other low-cost sensors in a multilinear regression 

approach. A practical calibration method is measuring side-by-side to an air monitoring station. It is worth noting that more 

advanced calibration algorithms such as by Cross et al. (2017) and Mueller et al. (2017) could give better results, but this is 

not the focus of this paper. It is hard to quantify an optimal length of a calibration period without having a proper 

understanding of the sensor degradation rate beforehand. This The measurement period should be as long as possible (but at 15 

least a few days), to capture the sensors behavior under a wide range of pollution levels and meteorological conditions. Very 

long calibration periods (in the order of months) will cause sensor degradation issues to interfere with the calibration results. 

Startup time of sensors is estimated 4 hours. To avoid nonlinear response of the electrochemical sensor at elevated 

temperatures, we filter out measurements above 30 °C. This is not a serious restriction for applicability in moderate climates 

such as in the Netherlands, provided that the sensor is protected from direct sunlight. However, for warmer regions or during 20 

heat waves this may reduce the data stream considerably, unless the temperature dependencies are better captured by more 

advanced regression models. 

The calibration coefficients seems to be location independent, as long as the NO2/O3 ratio is comparable. Application at a 

street side is likely to introduce a small positive bias. Calibrationas independent validation in the proximity of a second 

monitoring station suggests. However, calibration coefficients are not constant in time. During the 3-month period most 25 

sensors suffer from significant sensitivity loss and drift. The standard deviation of the random error is estimated 7 μg m-3 for 

a typical sensor. The strongest drift and largest uncertainty are found for the older NO2-B42F sensors. It remains unclear if 

the poorer worse performance is related to the sensor model or the longer usage in field experiments.  

Individual sensor drift can be compensated in hindsight by taking a weighted average of the calibration coefficients 

determined before and after the campaign, assuming that the sensor degradation is linear in time. The sensor degradation 30 

troubles practical applications in operational urban networks. makes it necessary to think about sSmart re-calibration 

programs are essential: bringing back sensors to a calibration facility on a regular basis, or recalibrating on the spot by a 

travelling reference instrument. New data driven techniques, such as Bayesian networks (e.g. Xiang et al., 2016), might offer 
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a solution for this problem. when one wants to use electrochemical sensors operationally in a low-cost urban networks. More 

research is needed to gain better insight of how sensors age in field applications. This will provide better calibration 

strategies which improve data quality. 

On the hardware side we recommend to include active ventilation to guarantee a constant air flow over the gas sensor and 

suppresses unwanted internal temperature changes due to heating of electronical components. To improve the NO2 5 

measurements furtherTo further improve accuracy of electrochemical NO2 measurements in low-cost sensor devices we 

recommend to include an additional low-cost ozone sensor, e.g. Ox-B431 by Alphasense. It is likely that the linear 

regression approach is able to resolve a significant part of the cross-sensitivity to ozone and NO2. to better resolve cross-

sensitivity issues. Even imperfect ozone measurements will improve the NO2 estimation, as large part of the sensor’s cross- 

dependency issues are solved by the linear regression approach. The RH sensor signal should be used more cleverly to detect 10 

and filter for sudden changes in relative humidity. Adding a local data logger is also recommended, to be able to recover data 

for periods when the WiFi connection to the central database is lost. 

The necessity for recalibration troubles practical applications in operational urban networks. Sensors must be brought back 

to a calibration facility on a regular basis, or must be recalibrated on the spot by a travelling reference instrument. New data 

driven techniques, such as Bayesian networks (e.g. Xiang et al., 2016), might offer a solution for this problem. 15 

 

Data availability 

A complete overview of fit results for all models can be found in the supplement. The hourly Urban AirQ sensor data, 

calibrated in hindsight by interpolating the calibration in time between two calibration periods, can be downloaded at 

https://github.com/waagsociety/making-sensor. 20 
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Figure 1 Locations of the sensor devices during the citizen measurement campaign. The green marker indicates the calibration 
location at GGD Vondelpark. In the circle the location of SD04 and the GGD station at Oude Schans (in red).  The red marker 
indicates the GGD station at Oude Schans. Not shown is the GGD Vondelpark station, 2.5 km in south-west direction.The location 
of Valkenburgerstraat is highlighted in yellow. 5 
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Figure 2 Hardware components modules of a sensor device (left), and the integration in the casing: open (middle) and closed 
(right).and sensors in their housing (right) 

 

 

Figure 3 Raw sensor data, unfiltered but hourly averaged, from the 16 sensors during the first calibration period, 2-10 June 2016. 5 
The data gap around 5 June is due to a connectivity problem to the central database. 

 
Figure 4 Box whisker diagrams of hourly ambient parameters during the two calibration periods and the measurement campaign. 
The box edges indicate the 25th -– 75th  percentile; the whiskers the minimum and maximum values. The median is indicated in 
red. Temperature and RH are based on the average values of all sensors devices, NO2 and ozone are taken from the reference 10 
station at Vondelpark. For comparison, NO2 from the reference station at Oude Schans (OS) is also shown. 
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Figure 5 The reading of a typical performing NO2-B43F sensor (ID 1185325SD10) explained as a linear regression of respectively 
NO2, O3, T, RH, and all variables. The top two rows show the results for the Working Electrode ; the bottom two rows for the 
Auxiliary Electrode. On tThe axis axes represent the A/D converter counts, which are proportional to the currents generated by 
the sensor at the corresponding electrodecan be considered as arbitrary units. 5 

Figure 6 Ozone as a proxy of ambient NO2. 
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Figure 67(a) Calibration model results for an average performing sensor (ID 1184838SD15). Bottom row shows the recommended 
calibration by Model D (left), and the results when ozone would be included (right). 

 

Figure 76(b) Time series compared to ground truth with calibration parameters of Model A and D. 5 
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Figure 78(a) Examples of negative spikes in the calibrated NO2 measurements (solid line) due to internal sensor temperatures 
(dotted line) exceeding 30 °C. 

 
Figure 78(b) Variation of zero output of the working electrode caused by changes in temperature for a typical batch of 5 
electrochemical sensors. Image taken from Alphasense Data Sheet for NO2-B43F (ADS, 2016). 

 
Figure 9 Examples of sensor startup effects when switched on. 

 

Figure 10(a) Time series of a batch of sensors, calibrated with model D, compared with the reference measurements (grey line). 10 
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Figure 10(b) Comparison of the time series of the same batch of sensors with the reference measurements (grey line), after two 
months of operation.

 

Figure 8 Sensor drift during two months of operation, shown as the distribution of residuals with the reference measurements 
during the first calibration period (black bars) and during the second period (red bars). 5 
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Figure 11 Change in calibration coefficients of model D from the first calibration period (horizontal axis) when recalibrating after 
two months of deployment (vertical axis). The red dots correspond to sensor devices containing the Alphasense NO2-B42F. 

  5 
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Figure 129(a) Comparison of sensor 54200SD04 NO2 time series with the nearby Oude Schans station (8-day snap shot), and the 
effect of bias correction. For comparison, measurements of Vondelpark station are also shown. 

 

Figure 129(b) Scatterplot of sensor 54200 against Oude Schans station NO2 measurements during the campaign 5 
period.Distribution of residuals of NO2 measurements between sensor SD04 and Oude Schans station during the campaign period, 
with and without bias correction. 

 

 

  10 
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Table 1 Fit results for regression model A. Older NO2-B42F sensors highlighted in grey., sorted from best to worst sensor 

Sensor ID c0 c1 (SWE) c2 (SAE) R2 

SD01 455.4 0.6977 -1.0835 0.47 

SD02 355.9 0.8862 -1.2633 0.62 

SD03 -228.6 1.0877 -0.8029 0.72 

SD04 -968.2 0.9138 -0.1237 0.69 

SD05 -155.1 0.8368 -0.6841 0.48 

SD06 -141.9 0.6136 -0.5241 0.44 

SD07 -576.4 0.9615 -0.4811 0.57 

SD08 231.4 1.0802 -1.2514 0.68 

SD09 100.5 0.8669 -0.8952 0.56 

SD10 342.0 0.8221 -1.1629 0.50 

SD11 338.4 0.9823 -1.2246 0.61 

SD12 -375.2 0.7775 -0.4837 0.54 

SD13 -1703.4 0.8218 0.5544 0.60 

SD14 162.6 0.8156 -0.9075 0.46 

SD15 1211.2 0.9008 -1.8984 0.30 

SD16 -594.3 0.8007 -0.3192 0.49 

 

 
Table 2 Regression models for NO2 

Model A NO2 = c0 + c1·SWE + c2·SAE 
Linear combination of Working Electrode 

and Auxiliary Electrode 

Model B NO2 = c0 + c1·SWE + c2·SAE + c3·T Temperature correction 

Model 

BC 
NO2 = c0 + c1·SWE + c2·SAE + c4·RH Relative humidity correction 

Model C NO2 = c0 + c1·SWE + c2·SAE + c3·T Temperature correction 

Model D NO2 = c0 + c1·SWE + c2·SAE + c3·T + c4·RH Temperature and RH correction 

Model E NO2 = c0 + c1·SWE + c2·SAE + c3·T + c4·RH + c5·O3 
Adding also cCorrection for temperature, 

RH, and ozone cross-sensitivity 

 5 
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Table 3 Fit results for regression model D, ordered from best to worst sensor. Older NO2-B42F sensors highlighted in grey. 

Sensor ID c0 c1 (SWE) c2 (SAE) c3 (T) c4 (RH) R2 

SD01 790.9 0.8707 -1.5645 -0.5051 0.4513 0.62 

SD02 589.2 0.8618 -1.4742 0.2142 0.4204 0.67 

SD03 -1272.1 1.2045 -0.1492 1.2690 -0.2944 0.87 

SD04 -1613.3 1.1499 0.1818 0.3200 -0.4442 0.85 

SD05 -1623.1 1.1235 0.2088 1.7161 -0.4430 0.75 

SD06 -824.8 1.1850 -0.5839 1.6737 -0.3069 0.81 

SD07 -1217.6 1.1305 -0.1642 1.9435 0.0000 0.79 

SD08 -1129.7 1.1835 -0.2705 2.2559 -0.2704 0.86 

SD09 -586.3 1.1794 -0.6738 2.0415 -0.2192 0.90 

SD10 -1152.7 1.1668 -0.3120 2.9112 -0.2147 0.72 

SD11 -1109.8 1.1055 -0.2339 3.3191 -0.1693 0.81 

SD12 -1074.9 1.0961 -0.2346 1.4954 -0.2799 0.84 

SD13 -1074.6 1.1294 -0.3058 1.8671 -0.1561 0.83 

SD14 8.1 1.1860 -1.1889 2.5401 0.0268 0.84 

SD15 -104.5 1.8111 -1.7939 4.8373 0.0596 0.83 

SD16 -1215.5 1.2551 -0.3038 2.1742 -0.1333 0.84 

 



46 
 

Table 4 Descriptive and short-term predictive error of model D in μg m-3 

 

2-7 June (descriptive) 8-10 June (predictive) 

Sensor ID Uptime RMSE Uptime RMSE 

SD01 92h 9.25 54h 9.31 

SD02 89h 7.95 53h 13.74 

SD03 88h 5.58 53h 4.37 

SD04 90h 6.00 54h 4.94 

SD05 90h 7.62 53h 8.75 

SD06 97h 6.36 57h 5.57 

SD07 85h 7.09 52h 6.26 

SD08 88h 5.95 52h 6.59 

SD09 88h 4.94 52h 3.69 

SD10 99h 7.44 59h 8.09 

SD11 91h 6.78 53h 5.42 

SD12 93h 6.08 52h 5.07 

SD13 89h 6.25 54h 5.31 

SD14 83h 3.96 48h 14.61 

SD15 89h 6.75 52h 4.52 

SD16 93h 6.06 55h 5.61 

 

 
Table 45 Bias and random error in μg m-3 when calibrated in the first period with model D 

 1st calibration period 2nd calibration period 

Sensor ID Uptime Bias SDR Uptime Bias SDR 

SD01 146h -0.1 8.8 106h 40.1 18.2 

SD02 142h 0.0 8.2 199h 21.4 12.8 

SD03 141h 0.0 5.1 205h 5.6 9.3 

SD04 144h 0.0 5.5 202h -9.2 5.8 

SD05 143h 0.0 7.0 192h 3.0 6.3 

SD06 154h 0.0 6.0 197h -2.1 6.8 

SD07 137h 0.0 6.6 196h 6.6 6.8 

SD08 140h 0.0 5.4 199h 3.1 9.1 

SD09 140h 0.0 4.5 196h 0.7 5.3 



47 
 

SD10 158h 0.0 7.2 206h 0.2 7.9 

SD11 144h 0.0 6.3 205h 0.5 8.5 

SD12 145h 0.0 5.7 194h 10.1 6.0 

SD13 143h 0.0 5.8 206h 9.8 7.7 

SD14 131h 0.0 5.9 211h 16.6 6.9 

SD15 141h 0.0 6.0 198h 21.3 6.8 

SD16 148h 0.0 5.7 47h 15.6 8.7 

 

 

Table 65 Comparison of sensor 54200SD04 with Oude Schans station during the campaign period, according to different 
calibrations 

 1st calibration 2nd calibration Weighted calibration 

Mean NO2, GGD Oude Schans 19.96 μg m-3 19.96 μg m-3 19.96 μg m-3 

Mean NO2, sensor 54200SD04 17.02 μg m-3 22.21 μg m-3 19.87 μg m-3 

Bias -2.94 μg m-3 2.25 μg m-3 -0.09 μg m-3 

RMSE residuals 6.10 μg m-3 5.25 μg m-3 5.20 μg m-3 

Correlation 0.89 0.89 0.88 

 5 
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Supplement: NO2 regression model coefficients 

Units c0 (Intercept): μg m-3 

Units c1 (SWE):  μg m-3/count 

Units c2 (SAE):  μg m-3/count 

Units c3 (T):  μg m-3/°C 5 

Units c4 (RH):  μg m-3/% 

Units c5 (O3):  μg m-3/μg·m-3 

 

Table S1 Relation sensor ID and its network ID, which is used as reference in raw data 

Sensor device ID WiFi chip ID 

SD01 1184206 

SD02 14560051 

SD03 55303 

SD04 54200 

SD05 1184527 

SD06 1184739 

SD07 1183931 

SD08 53788 

SD09 26296 

SD10 1185325 

SD11 1184453 

SD12 717780 

SD13 55300 

SD14 13905017 

SD15 1184838 

SD16 54911 

 10 
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Table S2 Regression results for sensor devices 

SD01 a 
 

 Intercept  SWE  SAE  T  RH b  O3   

Model A  1st period  455.38 ± 55.18  0.6977 ± 0.0649  -1.0835 ± 0.0970 
   

 
 2nd period c  -6.04 ± 36.69  0.2475 ± 0.0488  -0.2343 ± 0.0604 

   
 

Model B  1st period  715.45 ± 59.71  0.8394 ± 0.0592  -1.4811 ± 0.1001 
 

 0.5326 ± 0.0743 
 

 
 2nd period c  2.24 ± 43.51  0.2469 ± 0.0490  -0.2431 ± 0.0654 

 
 0.0280 ± 0.0782 

 
 

Model C  1st period  827.92 ± 87.54  0.8688 ± 0.0680  -1.5498 ± 0.1262  -1.6344 ± 0.3130 
  

 
 2nd period c  -173.77 ± 64.95  0.3000 ± 0.0499  -0.1698 ± 0.0618  1.5927 ± 0.5177 

  
 

Model D  1st period  790.88 ± 82.04  0.8707 ± 0.0635  -1.5645 ± 0.1178  -0.5051 ± 0.3778  0.4513 ± 0.0958 
 

 
 2nd period c  -178.93 ± 64.10  0.3133 ± 0.0497  -0.2007 ± 0.0628  2.1055 ± 0.5715  0.1650 ± 0.0827 

 
 

Model E  1st period  274.85 ± 78.12  0.3186 ± 0.0703  -0.4805 ± 0.1346  -0.5447 ± 0.2820  -0.4744 ± 0.1126  -0.5349 ±   
 2nd period c  56.69 ± 54.19  0.2864 ± 0.0371  -0.3343 ± 0.0490  1.4917 ± 0.4309  -0.1120 ± 0.0686  -0.3883 ±   

a Alphasense NO2-B42F sensor, used in previous experiments for more than one year 
b RH sensor overestimates and often saturated at 100% 
c Only 42% uptime in 2nd calibration period. 
 5 

SD02 a 
 

 Intercept  SWE  SAE  T  RH  O3   

Model A  1st period  355.92 ± 65.74  0.8862 ± 0.0621  -1.2633 ± 0.0921 
   

 
 2nd period  303.68 ± 86.54  0.2770 ± 0.0667  -0.5599 ± 0.1034 

   
 

Model B  1st period  624.53 ± 85.42  0.8686 ± 0.0583  -1.5077 ± 0.1017 
 

 0.3916 ± 0.0863 
 

 
 2nd period  629.53 ± 97.17  0.3356 ± 0.0624  -0.9477 ± 0.1159 

 
 0.3625 ± 0.0615 

 
 

Model C  1st period  502.09 ± 109.36  0.9007 ± 0.0624  -1.4001 ± 0.1229  -0.5684 ± 0.3410 
  

 
 2nd period  68.85 ± 147.75  0.2973 ± 0.0671  -0.3864 ± 0.1357  0.8454 ± 0.4327 

  
 

Model D  1st period  589.20 ± 105.35  0.8618 ± 0.0596  -1.4742 ± 0.1174  0.2142 ± 0.3720  0.4204 ± 0.1000 
 

 
 2nd period  34.28 ± 123.80  0.4429 ± 0.0584  -0.6025 ± 0.1161  2.8976 ± 0.4263  0.5956 ± 0.0651 

 
 

Model E  1st period  -87.90 ± 101.40  0.3690 ± 0.0645  -0.2424 ± 0.1460  0.1739 ± 0.2770  -0.6170 ± 0.1234  -0.5754 ±   
 2nd period  -174.15 ± 107.47  0.4075 ± 0.0496  -0.3524 ± 0.1023  3.8518 ± 0.3769  0.2585 ± 0.0672  -0.3428 ±   

a Alphasense NO2-B42F sensor, used in previous experiments for more than one year 
 

SD03 
 

 Intercept  SWE  SAE  T  RH  O3   

Model A  1st period  -228.65 ± 137.58  1.0877 ± 0.0578  -0.8029 ± 0.1113 
   

 
 2nd period  -470.06 ± 98.31  0.8521 ± 0.0388  -0.4193 ± 0.0772 

   
 

Model B  1st period  -1335.96 ± 157.68  1.2551 ± 0.0482  -0.1132 ± 0.1127 
 

 -0.6560 ± 0.0686 
 

 
 2nd period  -991.61 ± 161.21  0.8898 ± 0.0386  -0.0591 ± 0.1168 

 
 -0.1618 ± 0.0404 

 
 

Model C  1st period  -972.80 ± 115.40  1.1445 ± 0.0410  -0.3343 ± 0.0878  1.7279 ± 0.1455 
  

 
 2nd period  -913.18 ± 132.27  0.8192 ± 0.0375  -0.0765 ± 0.1031  0.8840 ± 0.1867 

  
 

Model D  1st period  -1272.13 ± 137.05  1.2045 ± 0.0425  -0.1492 ± 0.0979  1.2690 ± 0.1867  -0.2944 ± 0.0798 
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 2nd period  -1050.59 ± 159.66  0.8448 ± 0.0410  0.0095 ± 0.1172  0.6707 ± 0.2328  -0.0758 ± 0.0497 
 

 

Model E  1st period  -818.09 ± 120.96  0.8961 ± 0.0487  -0.1706 ± 0.0782  0.5898 ± 0.1678  -0.5387 ± 0.0695  -0.2749 ±   
 2nd period  -728.05 ± 108.84  0.8202 ± 0.0275  -0.1908 ± 0.0795  1.0731 ± 0.1579  -0.2465 ± 0.0350  -0.3029 ±   

 

SD04 
 

 Intercept  SWE  SAE  T  RH  O3   

Model A  1st period  -968.20 ± 145.13  0.9138 ± 0.0538  -0.1237 ± 0.1254 
   

 
 2nd period  -371.22 ± 144.45  0.9786 ± 0.0500  -0.6833 ± 0.1329 

   
 

Model B  1st period  -1729.95 ± 119.61  1.1641 ± 0.0430  0.2736 ± 0.0939 
 

 -0.5386 ± 0.0444 
 

 
 2nd period  -1190.28 ± 141.99  1.0625 ± 0.0413  -0.0659 ± 0.1236 

 
 -0.4225 ± 0.0414 

 
 

Model C  1st period  -1044.89 ± 110.06  1.0490 ± 0.0427  -0.2245 ± 0.0954  1.4562 ± 0.1412 
  

 
 2nd period  -864.22 ± 116.48  0.9909 ± 0.0378  -0.3182 ± 0.1048  1.5499 ± 0.1269 

  
 

Model D  1st period  -1613.28 ± 153.33  1.1499 ± 0.0445  0.1818 ± 0.1204  0.3200 ± 0.2638  -0.4442 ± 0.0896 
 

 
 2nd period  -1055.65 ± 131.76  1.0203 ± 0.0384  -0.1723 ± 0.1144  1.1527 ± 0.1844  -0.1639 ± 0.0561 

 
 

Model E  1st period  -1129.35 ± 115.34  0.8046 ± 0.0426  0.1830 ± 0.0848  -0.3285 ± 0.1936  -0.7627 ± 0.0685  -0.3671 ±   
 2nd period  -848.14 ± 97.58  0.8909 ± 0.0298  -0.1992 ± 0.0836  1.5326 ± 0.1378  -0.3227 ± 0.0427  -0.2241 ±   

 

SD05 
 

 Intercept  SWE  SAE  T  RH  O3   

Model A  1st period  -155.10 ± 197.19  0.8368 ± 0.0743  -0.6841 ± 0.1768 
   

 
 2nd period  475.82 ± 194.53  0.9137 ± 0.0542  -1.2719 ± 0.1730 

   
 

Model B  1st period  -1953.53 ± 246.66  1.1485 ± 0.0672  0.5047 ± 0.1881 
 

 -0.9840 ± 0.1050 
 

 
 2nd period  -805.01 ± 261.61  1.0611 ± 0.0538  -0.3549 ± 0.2090 

 
 -0.6526 ± 0.0988 

 
 

Model C  1st period  -1056.05 ± 162.02  1.0371 ± 0.0562  -0.1946 ± 0.1340  2.3488 ± 0.2045 
  

 
 2nd period  -983.97 ± 191.54  0.9821 ± 0.0414  -0.2015 ± 0.1588  2.3771 ± 0.1997 

  
 

Model D  1st period  -1623.07 ± 222.70  1.1235 ± 0.0592  0.2088 ± 0.1715  1.7161 ± 0.2649  -0.4430 ± 0.1245 
 

 
 2nd period  -1162.98 ± 221.80  1.0114 ± 0.0452  -0.0756 ± 0.1771  2.1686 ± 0.2386  -0.1564 ± 0.0989 

 
 

Model E  1st period  -1079.04 ± 158.48  0.7104 ± 0.0522  0.2328 ± 0.1174  0.5648 ± 0.2032  -0.8305 ± 0.0906  -0.4053 ±   
 2nd period  -1067.82 ± 174.06  0.8927 ± 0.0371  -0.0218 ± 0.1389  2.4442 ± 0.1887  -0.4412 ± 0.0818  -0.2397 ±   

 

SD06 
 

 Intercept  SWE  SAE  T  RH  O3   

Model A  1st period  -141.88 ± 158.37  0.6136 ± 0.0607  -0.5241 ± 0.1168 
   

 
 2nd period  437.30 ± 151.50  0.8025 ± 0.0589  -1.2130 ± 0.1582 

   
 

Model B  1st period  -931.37 ± 123.99  1.2158 ± 0.0619  -0.4780 ± 0.0800 
 

 -0.7288 ± 0.0555 
 

 
 2nd period  -300.44 ± 174.06  0.9395 ± 0.0566  -0.7145 ± 0.1600 

 
 -0.4714 ± 0.0692 

 
 

Model C  1st period  -639.87 ± 102.28  1.0652 ± 0.0470  -0.6367 ± 0.0721  2.3781 ± 0.1504 
  

 
 2nd period  -581.47 ± 122.97  0.9636 ± 0.0413  -0.5853 ± 0.1151  2.6484 ± 0.1756 

  
 

Model D  1st period  -824.79 ± 106.47  1.1850 ± 0.0529  -0.5839 ± 0.0695  1.6737 ± 0.2198  -0.3069 ± 0.0728 
 

 
 2nd period  -666.44 ± 134.13  0.9811 ± 0.0427  -0.5242 ± 0.1212  2.4866 ± 0.2035  -0.0941 ± 0.0604 

 
 

Model E  1st period  -463.82 ± 73.02  0.8150 ± 0.0426  -0.4419 ± 0.0459  0.8318 ± 0.1531  -0.5519 ± 0.0499  -0.3402 ±   
 2nd period  -592.51 ± 107.94  0.8732 ± 0.0358  -0.4531 ± 0.0976  2.6967 ± 0.1647  -0.2927 ± 0.0522  -0.2249 ±   
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SD07 
 

 Intercept  SWE  SAE  T  RH a  O3   

Model A  1st period  -576.41 ± 188.25  0.9615 ± 0.0716  -0.4811 ± 0.1520 
   

 
 2nd period  -239.15 ± 155.74  0.8866 ± 0.0486  -0.6834 ± 0.1418 

   
 

Model B  1st period  -576.41 ± 188.25  0.9615 ± 0.0716  -0.4811 ± 0.1520 
   

 
 2nd period  -239.15 ± 155.74  0.8866 ± 0.0486  -0.6834 ± 0.1418 

   
 

Model C  1st period  -1217.57 ± 144.34  1.1305 ± 0.0528  -0.1642 ± 0.1110  1.9435 ± 0.1678 
  

 
 2nd period  -977.93 ± 145.57  0.8717 ± 0.0393  -0.0987 ± 0.1284  1.6673 ± 0.1647 

  
 

Model D  1st period  -1217.57 ± 144.34  1.1305 ± 0.0528  -0.1642 ± 0.1110  1.9435 ± 0.1678 
  

 
 2nd period  -977.93 ± 145.57  0.8717 ± 0.0393  -0.0987 ± 0.1284  1.6673 ± 0.1647 

  
 

Model E  1st period  -578.07 ± 142.70  0.7891 ± 0.0606  -0.3243 ± 0.0934  1.7254 ± 0.1405 
 

 -0.2656 ±   
 2nd period  -495.36 ± 120.13  0.7724 ± 0.0316  -0.3963 ± 0.1025  2.3365 ± 0.1401 

 
 -0.2254 ±   

a RH sensor not working 
 

SD08 
 

 Intercept  SWE  SAE  T  RH  O3   

Model A  1st period  231.44 ± 103.68  1.0802 ± 0.0639  -1.2514 ± 0.1086 
   

 
 2nd period  428.20 ± 110.91  1.0221 ± 0.0609  -1.3582 ± 0.1103 

   
 

Model B  1st period  -521.55 ± 174.37  1.1806 ± 0.0618  -0.7141 ± 0.1443 
 

 -0.4831 ± 0.0937 
 

 
 2nd period  141.16 ± 175.82  1.0604 ± 0.0631  -1.1578 ± 0.1454 

 
 -0.0651 ± 0.0311 

 
 

Model C  1st period  -798.25 ± 114.09  1.1319 ± 0.0454  -0.5061 ± 0.0995  2.4721 ± 0.2100 
  

 
 2nd period  -941.92 ± 168.22  0.9603 ± 0.0505  -0.2244 ± 0.1480  2.5145 ± 0.2593 

  
 

Model D  1st period  -1129.69 ± 139.87  1.1835 ± 0.0454  -0.2705 ± 0.1136  2.2559 ± 0.2085  -0.2704 ± 0.0716 
 

 
 2nd period  -983.10 ± 189.26  0.9685 ± 0.0534  -0.1975 ± 0.1586  2.4876 ± 0.2659  -0.0127 ± 0.0265 

 
 

Model E  1st period  -725.55 ± 113.06  0.8481 ± 0.0478  -0.2249 ± 0.0860  1.2801 ± 0.1849  -0.4709 ± 0.0577  -0.2966 ±   
 2nd period  -685.96 ± 131.35  0.8376 ± 0.0377  -0.2914 ± 0.1089  2.5194 ± 0.1824  -0.1211 ± 0.0196  -0.2898 ±   

 

SD09 
 

 Intercept  SWE  SAE  T  RH  O3   

Model A  1st period  100.52 ± 221.21  0.8669 ± 0.0671  -0.8952 ± 0.1979 
   

 
 2nd period  407.81 ± 127.41  0.9154 ± 0.0458  -1.1897 ± 0.1159 

   
 

Model B  1st period  -1138.92 ± 172.00  1.1781 ± 0.0498  -0.1707 ± 0.1407 
 

 -0.8205 ± 0.0609 
 

 
 2nd period  -132.85 ± 146.09  1.0685 ± 0.0488  -0.8851 ± 0.1171 

 
 -0.2933 ± 0.0477 

 
 

Model C  1st period  -332.23 ± 109.76  1.1460 ± 0.0353  -0.8613 ± 0.0965  2.4841 ± 0.1183 
  

 
 2nd period  -504.18 ± 113.38  1.0011 ± 0.0334  -0.5837 ± 0.0943  2.0206 ± 0.1492 

  
 

Model D  1st period  -586.25 ± 132.75  1.1794 ± 0.0358  -0.6738 ± 0.1103  2.0415 ± 0.1799  -0.2192 ± 0.0687 
 

 
 2nd period  -688.42 ± 119.56  1.0694 ± 0.0368  -0.4885 ± 0.0944  1.8326 ± 0.1522  -0.1460 ± 0.0380 

 
 

Model E  1st period  -383.42 ± 107.85  0.8973 ± 0.0424  -0.5253 ± 0.0892  1.1754 ± 0.1726  -0.4695 ± 0.0613  -0.2518 ±   
 2nd period  -498.89 ± 100.31  0.9728 ± 0.0319  -0.5403 ± 0.0778  2.1983 ± 0.1309  -0.2250 ± 0.0323  -0.1837 ±   

 5 
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SD10 
 

 Intercept  SWE  SAE  T  RH  O3   

Model A  1st period  342.04 ± 94.07  0.8221 ± 0.0657  -1.1629 ± 0.1206 
   

 
 2nd period  417.68 ± 78.62  0.8047 ± 0.0546  -1.2119 ± 0.1009 

   
 

Model B  1st period  -89.45 ± 187.91  0.9168 ± 0.0738  -0.8859 ± 0.1583 
 

 -0.2824 ± 0.1071 
 

 
 2nd period  103.71 ± 118.52  0.8641 ± 0.0558  -0.9951 ± 0.1164 

 
 -0.2487 ± 0.0717 

 
 

Model C  1st period  -847.45 ± 133.34  1.1001 ± 0.0566  -0.5102 ± 0.1108  2.9678 ± 0.2803 
  

 
 2nd period  -784.93 ± 122.97  0.8745 ± 0.0432  -0.3272 ± 0.1113  3.2652 ± 0.2889 

  
 

Model D  1st period  -1152.70 ± 175.33  1.1668 ± 0.0611  -0.3120 ± 0.1325  2.9112 ± 0.2760  -0.2147 ± 0.0820 
 

 
 2nd period  -862.03 ± 131.60  0.8947 ± 0.0449  -0.2759 ± 0.1154  3.1490 ± 0.2968  -0.0950 ± 0.0593 

 
 

Model E  1st period  -825.25 ± 115.40  0.7707 ± 0.0478  -0.1058 ± 0.0867  1.8251 ± 0.1930  -0.4975 ± 0.0564  -0.3808 ±   
 2nd period  -622.53 ± 103.17  0.8094 ± 0.0352  -0.3689 ± 0.0890  3.2492 ± 0.2283  -0.2528 ± 0.0475  -0.2555 ±   

 

SD11 
 

 Intercept  SWE  SAE  T  RH  O3   

Model A  1st period  338.42 ± 80.88  0.9823 ± 0.0665  -1.2246 ± 0.1025 
   

 
 2nd period  748.59 ± 74.96  0.9642 ± 0.0547  -1.5368 ± 0.0924 

   
 

Model B  1st period  0.26 ± 133.88  1.0444 ± 0.0675  -0.9995 ± 0.1229 
 

 -0.2995 ± 0.0961 
 

 
 2nd period  752.43 ± 95.23  0.9629 ± 0.0587  -1.5387 ± 0.0973 

 
 0.0038 ± 0.0575 

 
 

Model C  1st period  -962.71 ± 126.96  1.0735 ± 0.0485  -0.3309 ± 0.1070  3.4356 ± 0.2980 
  

 
 2nd period  30.62 ± 145.29  1.0385 ± 0.0526  -1.0668 ± 0.1198  1.8190 ± 0.3228 

  
 

Model D  1st period  -1109.75 ± 139.25  1.1055 ± 0.0495  -0.2339 ± 0.1128  3.3191 ± 0.2972  -0.1693 ± 0.0709 
 

 
 2nd period  33.02 ± 143.00  0.9974 ± 0.0539  -1.0453 ± 0.1182  2.2205 ± 0.3501  0.1582 ± 0.0580 

 
 

Model E  1st period  -480.10 ± 118.32  0.7539 ± 0.0490  -0.3363 ± 0.0839  1.6813 ± 0.2670  -0.3806 ± 0.0560  -0.3277 ±   
 2nd period  99.69 ± 109.82  0.9454 ± 0.0416  -1.0242 ± 0.0907  2.4400 ± 0.2692  -0.0973 ± 0.0494  -0.2625 ±   

 

SD12 
 

 Intercept  SWE  SAE  T  RH  O3   

Model A  1st period  -375.21 ± 197.57  0.7775 ± 0.0611  -0.4837 ± 0.1851 
   

 
 2nd period  -406.98 ± 191.77  0.8879 ± 0.0500  -0.5767 ± 0.1841 

   
 

Model B  1st period  -1332.74 ± 156.87  1.1032 ± 0.0497  0.0257 ± 0.1345 
 

 -0.6993 ± 0.0561 
 

 
 2nd period  -1248.39 ± 178.05  0.9608 ± 0.0414  0.0870 ± 0.1644 

 
 -0.4312 ± 0.0437 

 
 

Model C  1st period  -819.17 ± 126.64  1.0416 ± 0.0420  -0.4203 ± 0.1154  2.0988 ± 0.1400 
  

 
 2nd period  -800.71 ± 148.10  0.9405 ± 0.0379  -0.3286 ± 0.1402  1.6465 ± 0.1364 

  
 

Model D  1st period  -1074.88 ± 140.40  1.0961 ± 0.0430  -0.2346 ± 0.1219  1.4954 ± 0.2136  -0.2799 ± 0.0770 
 

 
 2nd period  -1012.78 ± 166.26  0.9545 ± 0.0377  -0.1466 ± 0.1541  1.2583 ± 0.1985  -0.1562 ± 0.0589 

 
 

Model E  1st period  -595.45 ± 113.66  0.7813 ± 0.0435  -0.2757 ± 0.0908  0.8578 ± 0.1697  -0.4865 ± 0.0605  -0.2965 ±   
 2nd period  -701.86 ± 121.46  0.8586 ± 0.0280  -0.3051 ± 0.1111  1.6906 ± 0.1460  -0.2922 ± 0.0434  -0.2300 ±   

 

SD13 
 

 Intercept  SWE  SAE  T  RH  O3   

Model A  1st period  -1703.40 ± 201.83  0.8218 ± 0.0583  0.5544 ± 0.1554 
   

 
 2nd period  -1008.31 ± 189.21  0.8631 ± 0.0504  -0.0632 ± 0.1732 
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Model B  1st period  -1826.17 ± 148.81  1.1334 ± 0.0515  0.3588 ± 0.1156 
 

 -0.5732 ± 0.0523 
 

 
 2nd period  -1161.34 ± 190.56  0.8856 ± 0.0497  0.0550 ± 0.1729 

 
 -0.1936 ± 0.0589 

 
 

Model C  1st period  -872.76 ± 146.63  1.1012 ± 0.0437  -0.4577 ± 0.1269  2.3418 ± 0.1732 
  

 
 2nd period  -968.33 ± 167.16  0.8761 ± 0.0445  -0.1315 ± 0.1532  1.1078 ± 0.1454 

  
 

Model D  1st period  -1074.57 ± 179.99  1.1294 ± 0.0458  -0.3058 ± 0.1490  1.8671 ± 0.3032  -0.1561 ± 0.0822 
 

 
 2nd period  -999.93 ± 174.21  0.8800 ± 0.0450  -0.1057 ± 0.1584  1.0664 ± 0.1587  -0.0381 ± 0.0582 

 
 

Model E  1st period  -594.35 ± 134.76  0.7795 ± 0.0444  -0.2874 ± 0.1062  1.0126 ± 0.2282  -0.4704 ± 0.0645  -0.3327 ±   
 2nd period  -505.72 ± 107.36  0.8246 ± 0.0271  -0.4485 ± 0.0964  2.1700 ± 0.1113  -0.2329 ± 0.0363  -0.3003 ±   

 

SD14 
 

 Intercept  SWE  SAE  T  RH  O3   

Model A  1st period  162.64 ± 165.94  0.8156 ± 0.0903  -0.9075 ± 0.1248 
   

 
 2nd period  -3.20 ± 202.78  0.8580 ± 0.0540  -0.8237 ± 0.1811 

   
 

Model B  1st period  369.33 ± 139.19  1.0602 ± 0.0807  -1.2825 ± 0.1134 
 

 -0.6434 ± 0.0819 
 

 
 2nd period  -1011.65 ± 198.00  1.0253 ± 0.0480  -0.1369 ± 0.1663 

 
 -0.4382 ± 0.0452 

 
 

Model C  1st period  19.56 ± 91.93  1.1888 ± 0.0544  -1.1987 ± 0.0709  2.4905 ± 0.1454 
  

 
 2nd period  -1147.64 ± 153.38  0.9569 ± 0.0366  -0.0244 ± 0.1311  2.1478 ± 0.1342 

  
 

Model D  1st period  8.09 ± 97.95  1.1860 ± 0.0552  -1.1889 ± 0.0766  2.5401 ± 0.2039  0.0268 ± 0.0770 
 

 
 2nd period  -1278.51 ± 159.07  0.9905 ± 0.0383  0.0621 ± 0.1333  1.8680 ± 0.1693  -0.1217 ± 0.0460 

 
 

Model E  1st period  114.64 ± 71.51  0.8144 ± 0.0527  -0.8532 ± 0.0635  1.2001 ± 0.1929  -0.4387 ± 0.0705  -0.3356 ±   
 2nd period  -844.54 ± 120.58  0.9049 ± 0.0287  -0.1972 ± 0.0992  2.2316 ± 0.1266  -0.2564 ± 0.0350  -0.2176 ±   

 

SD15 
 

 Intercept  SWE  SAE  T  RH a  O3   

Model A  1st period  1211.20 ± 242.16  0.9008 ± 0.1180  -1.8984 ± 0.2883 
   

 
 2nd period  1455.17 ± 155.20  1.2443 ± 0.0810  -2.4648 ± 0.1843 

   
 

Model B  1st period  911.69 ± 319.97   0.9893 ± 0.1330  -1.7240 ± 0.3122 
 

-0.2561 ± 0.1797 
 

 
 2nd period  1455.17 ± 155.20  1.2443 ± 0.0810  -2.4648 ± 0.1843 

   
 

Model C  1st period  -166.53 ± 139.22  1.8265 ± 0.0748  -1.7541 ± 0.1448  4.8106 ± 0.2373 
  

 
 2nd period  -438.20 ± 143.92  1.4576 ± 0.0516  -1.1488 ± 0.1363  3.6043 ± 0.2039 

  
 

Model D  1st period  -104.50 ± 169.26   1.8111 ± 0.0786  -1.7939 ± 0.1576  4.8373 ± 0.2413,  0.0596 ± 0.0921   
 2nd period  -438.20 ± 143.92  1.4576 ± 0.0516  -1.1488 ± 0.1363  3.6043 ± 0.2039 

  
 

Model E  1st period  -56.70 ± 134.13  1.2676 ± 0.0865  -1.2255 ± 0.1397  3.1038 ± 0.2705 -0.3717 ± 0.0871  -0.3226 ±   
 2nd period  -217.54 ± 133.72  1.2729 ± 0.0539  -1.1467 ± 0.1228  3.7105 ± 0.1844 

 
 -0.1401 ±   

a RH sensor breaks down after July 25 
 

SD16 
 

 Intercept  SWE  SAE  T  RH  O3   

Model A  1st period  -594.31 ± 220.12  0.8007 ± 0.0704  -0.3192 ± 0.1976 
   

 
 2nd period a  -254.68 ± 307.78  0.3469 ± 0.0885  -0.1361 ± 0.2747 

   
 

Model B  1st period  -1537.42 ± 194.12  1.1674 ± 0.0655  0.1164 ± 0.1584 
 

 -0.5503 ± 0.0550 
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 2nd period a  -1053.52 ± 346.39  0.5320 ± 0.0926  0.3510 ± 0.2752 
 

 -0.2220 ± 0.0601 
 

 

Model C  1st period  -1045.41 ± 129.96  1.2206 ± 0.0476  -0.4227 ± 0.1144  2.4971 ± 0.1466 
  

 
 2nd period a  -1118.84 ± 294.51  0.5547 ± 0.0805  0.3426 ± 0.2357  1.3564 ± 0.2612 

  
 

Model D  1st period  -1215.51 ± 146.15  1.2551 ± 0.0490  -0.3038 ± 0.1229  2.1742 ± 0.1972  -0.1333 ± 0.0555 
 

 
 2nd period a  -1156.53 ± 316.09  0.5629 ± 0.0846  0.3693 ± 0.2498  1.2518 ± 0.3962  -0.0290 ± 0.0819 

 
 

Model E  1st period  -623.06 ± 135.29  0.8844 ± 0.0575  -0.3786 ± 0.0993  1.5146 ± 0.1753  -0.2937 ± 0.0482  -0.2883 ±   
 2nd period a  -553.67 ± 329.07  0.7349 ± 0.0897  -0.2996 ± 0.2928  1.7739 ± 0.3817  -0.2115 ± 0.0894  -0.2733 ±   

a Only 18% uptime in 2nd calibration period 
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