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Abstract. In many urban areas the population is exposed to elevated levels of air pollution. However, real-time air quality is
usually only measured at few locations. These measurements provide a general picture of the state of the air, but they are
unable to monitor local differences. New low-cost sensor technology is available for several years now, and has the potential
to extend the official monitoring network significantly even though the current generation of sensors suffer from various
technical issues.

Citizen science experiments based on these sensors must be designed carefully to avoid generation of data which is of poor
or even useless quality. This study explores the added value of the 2016 Urban AirQ campaign, which focused on measuring
nitrogen dioxide (NO,) in Amsterdam, the Netherlands. 16 low-cost air quality sensor devices were built and distributed
among volunteers living close to roads with high traffic volume for a two-month measurement period.

Each electrochemical sensor was calibrated in-field next to an air monitoring station during an 8-day period, resulting in R?
ranging from 0.3 to 0.7. When temperature and relative humidity are included in a multilinear regression approach, the NO,
accuracy is improved significantly, with R? ranging from 0.6 to 0.9. Recalibration after the campaign is crucial, as all sensors
show a significant signal drift in the two-month measurement period. The measurement series between the calibration
periods can be corrected in hindsight by taking a weighted average of the calibration coefficients.

Validation against an independent air monitoring station shows good agreement. Using our approach, the standard deviation
of a typical sensor device for NO, measurements was found to be 7 ug m™, provided that temperatures are below 30°C.
Stronger ozone titration at street sides causes an underestimation of NO, concentrations, which 75% of the time is less than
2.3 pgm?,

Our findings show that citizen science campaigns using low-cost sensors based on the current generations of electrochemical
NO, sensors may provide useful complementary data on local air quality in an urban setting, provided that experiments are

properly set up and the data are carefully analysed.
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1 Introduction

Because air pollution is difficult to measure, instrumental and operational costs of official measurement stations are usually
high. Air quality networks in cities, if present at all, are therefore usually sparse. Diffusive sampling is a common addition to
these real-time measurements and are successfully used to monitor local differences (see e.g. Cape, 2009). However, these
differences are poorly attributed to an emission source due to the long averaging time of these measurements (usually 4-
weekly). Emerging low-cost sensor technology has the potential to extend the official monitoring network significantly, and
improve our understanding of local urban air pollution. Miniaturized and affordable sensors potentially enable citizens to
measure their environment in more detail in space and time (Kumar et al., 2015). Most commercially available sensors,
however, suffer from various technical issues which limit their applicability. Despite their limitations many experiments are
done with air quality devices containing these sensors, often by motivated but not necessarily scientifically trained people.
Comprehensive calibration and validation of these devices is crucial (see e.g. Lewis and Edwards, 2016; Lewis et al., 2016),
but often overlooked. The resulting poor data quality is of concern to health authorities, scientists and citizens themselves.
Several studies have been done to explore the performance of low-cost air quality sensors, e.g. Jiao et al., 2016, Duvall et al.,
2016; Mead et al., 2013; Moltchanov et al., 2015. For NO, monitoring, mostly metal oxide and electrochemical sensors are
used (Borrego et al., 2016; Spinelle et al., 2015b; Thompson, 2016). Typical ambient concentrations of NO, are at part-per-
billion (ppb) level. The main problems encountered in NO, sensor evaluations in these real-world environments are low
sensitivity, poor selectivity, low precision and accuracy, and drift. Especially metal oxide sensors are not very stable
(Spinelle et al., 2015b; Thompson, 2016) and suffer from lower selectivity. Therefore, in this study, we opted for
electrochemical sensors to measure NO,.

Mead et al. (2013) already noted the strong interference of ozone and other ambient factors in electrochemical NO, sensors.
The performance can be increased significantly when adding additional measurements of e.g. temperature and humidity in a
regression model or neural network, as shown by e.g. Piedrahita et al. (2014), Spinelle et al. (2015b), Masson et al. (2015).
Coping with sensor degradation remains a serious issue. Some studies, such as Jiao et al. (2016), include an additional
temporal term in their linear regression which improves the predicted NO, slightly.

In the following sections we assess the data quality of the 2016 Urban AirQ campaign. As many similar initiatives depending
on participating citizens, this campaign was not set up as a strictly controllable scientific experiment such as in the
previously mentioned studies. However, we will demonstrate that citizen air quality monitoring using the current generation
of electrochemical NO, sensors may provide useful data of urban air quality, by using a practical method for field calibration

and correcting for sensor degradation in hindsight.

2 The Urban AirQ project

The Urban AirQ project explores the added value of alternative air quality measurements in the city, by addressing citizens’

questions about their local air quality. It focusses on a 2x1 km? area around Valkenburgerstraat, a primary road in the East-
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central part of Amsterdam, see Figure 1. Its dense traffic causes regular exceedances of the European annual limit value for
nitrogen dioxide (40 ug m’).

Two town hall meetings were organized in which residents of this area were invited to raise their concerns about air
pollution in their neighborhood and to formulate related research questions. Topics included the relation between traffic
density and air pollution, the difference between main roads and side streets, the front side of an apartment compared to its
backside, the influence of apartment height, and the influence of cut-through traffic at nighttime. The residents were invited
to participate in finding answers to their questions by measuring their outdoor air quality with 16 experimental low-cost
sensor devices (labeled SD01 to SD16), built for this purpose by Waag Society.

Measurements were done from June to August 2016. Beforehand, the sensor devices were calibrated using side-by-side
measurements next to an official air quality measurement station. With a second calibration period after the campaign,
individual sensor drift was assessed and compensated in hindsight.

The Urban AirQ experiment is unique in the sense of the used number of devices, the duration of the experiment, the direct

involvement of citizens, and the use of open hardware and generation of open data.

3 Urban AirQ sensor devices

The concept of the Urban AirQ sensor is building a device with low-cost electronic components which is easy to operate, so
citizens can do their own air quality measurements. It builds on the basic design described by Jiang et al. (2016), having an
improved power supply, weather resistant housing, WiFi connectivity, and additional sensors for temperature, relative
humidity, and particulate matter. The sensor development is part of an open hardware project; detailed technical information

can be found at https://github.com/waagsociety/making-sensor.

Central is the microcontroller board (Arduino UNO) which handles the reading of the sensors and sends the data to the WiFi
module (ESP8266), see Figure 2.

For NO, measurements, an electrochemical cell is used from Alphasense Ltd (Essex, United Kingdom). The cell contains
four electrodes. The target gas, NO,, diffuses through a membrane where it is chemically reduced at the Working Electrode,
generating a current signal. This electric current is balanced by a opposite current from the Counter Electrode. The Reference
Electrode sets the operating potential of the Working electrode. The sensor also includes an Auxiliary Electrode, which is
used to compensate for baseline changes in the sensor. To get full sensor performance, low noise interface electronics is
necessary. An individual sensor board with amperometric circuitry, also provided by Alphasense, is used to guarantee a low
noise environment and to optimize the sensor resolution at low ppb levels. The sensor signal is read by a 16-bit analog to
digital (A/D) converter (ADS1115). Two sensor devices (SD01 and SDO02) contain model NO2-B42F for NO,

measurements, the other 14 contain the newer NO2-B43F sensor.
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12 of the 16 sensor devices are also equipped with a Shinyei PPD42NS sensor in order to measure particulate matter
optically. The present paper, however, will focus only on the assessment of the NO, measurements. All devices measure
internal temperature and relative humidity (RH) with a DHT22 sensor from Aosong Electronics.

The system is supplied with a 7.5V voltage output adapter and a regulator board which generates 5V for the Arduino and the
sensors. The microcontroller consumes a 10 mA current (measured). The PM sensor needs up to 80 mA (measured), the NO,
sensor about 10 mA (measured), and the DHT22 less than 1 mA. The WiFi module peaks periodically to 350 mA when

establishing an internet connection.

3.1 Averaging and filtering

Raw sensor measurements are stored in a central database on a one minute base. However, the calibration analysis is based
on hourly averages to enable direct comparison between the ground truth (also provided as hourly values), and to improve
the signal to noise ratio.

The NO, sensor measurements are done at the Working Electrode (Swe) and the Auxiliary Electrode (Sag). They are
provided as counts from the A/D converter. Sensor readings of temperature and RH are converted according to the indication
of the manufacturer to degrees Celsius and percentages respectively.

Raw, hourly averaged, sensor data are shown in Figure 3. The spread in temperature and RH displayed in the raw data is
partly explained by the sensor-to-sensor variability. By looking at nighttime temperatures (to eliminate the effect of local
heating by exposure to direct sunlight) we see that the internal sensor temperatures are 2-5°C higher than ambient
temperature. The devices are not actively ventilated, which means that the energy dissipation of the electronics influences
their internal temperature. The variable position of the temperature sensors with respect to these heat sources further explain
the variance in temperature and relative humidity.

Careful filtering is needed before the data can be further processed. We have applied the following rules:

e Raw, minute-based, Swg and Sae measurements outside a £10% range of their mean value during the entire
measuring period are considered outliers. This filters out 0.33% of all measurements. This criterion was used for its
simplicity and effectiveness. Note that, due to the large offset in the raw Sye and Sae signal, realistic NO, peak
values are still detectable as the corresponding sensor response is still within a 10% bandwidth.

e All readings at sensor temperatures above 30°C are discarded to avoid non-linear temperature dependence of the
electrochemical NO, sensor (see Sect. 4.4). This filters out 4.53% of the measurements during the entire period.

e At least 20 valid minute-based measurements are required to calculate a representative hourly mean. This criterion
was found to be a good trade-off between noise reduction by averaging and not losing too many hourly
measurements.

During the first calibration period, the sensors were measuring 79% of the time on average. After applying the criteria above,

this resulted in 70% valid hourly measurements. During the measurement campaign, the sensors produced 79% valid hourly
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measurements on average, with the uptime dropping to 50% in places were sensors experienced connectivity problems due

to limited range of the participant’s WiFi network.

3.2 Calibration periods

Calibration of the sensors devices have been done by placing the 16 sensors side by side on the rooftop of the air quality
station at VVondelpark, operated by the Public Health Service of Amsterdam (GGD). This station is classified as a city
background station. It measures nitrogen dioxide, nitrogen monoxide (NO), ozone (Os), particulate matter (PMyy, PM,s,
particle number and size distribution), black carbon, and carbon monoxide (CO). For NO and NO, measurements, GGD
alternates a Teledyne APl 200E and a Thermo Electron 421 NO/NO, analyser, both based on chemiluminescence. The
validated measurements used in this study are considered to be the ground truth. The calibration period spanned several days
to be able to test the sensors under a wide range of ambient conditions. To assess the stability of the calibration, the sensors
were brought back after the two-month measurement campaign to the calibration facility for a second calibration period. The
Urban AirQ campaign consisted therefore of three phases.

The first field calibration period at GGD Vondelpark station started at 2 June 2016, 00h LT (local time), and ended at 10
June 2016, 10h (8.5 days; 204 hours). Due to connectivity problems sensor data were missing between 4 June 19h and 6 June
9h.

During the following citizen campaign, 15 sensors were distributed among the participants. One sensor (SD03) was kept at
the VVondelpark station as a reference. The first sensor was installed and connected at 13 June 2016, 18h, and the last sensor
connected at 17 June 2016, 17h. At 15 August 2016, 9h, the first sensor was disconnected, and at 16 August 2016, 18h, the
last sensor was disconnected. In this 1537-hour period the devices produced 1204 valid hourly measurements on average.
The second field calibration period at GGD Vondelpark station started at 18 August 2016, 15h, and ended at 29 August
2016, 00h (10.4 days; 249 hours). Due to connectivity problems sensor data were missing between 26 August 12h and 27
August 11h.

Figure 4 shows the distribution of temperature, relative humidity, NO,, and Os during the different periods. Looking at the
75" percentile of the distributions, the calibration periods are characterized by higher temperatures and ozone levels than the
campaign period. The range of NO, concentrations at the Vondelpark station in the calibration periods is larger than in the
campaign, reaching more frequently higher NO, values. During the campaign the sensors are closer to the GGD station at
Oude Schans, where measured NO, values are generally a few ug m™ higher than at Vondelpark. The Oude Schans site does

not measure ozone.

4 NO, calibration

Electrochemical sensors such as the Alphasense NO2-B series are known to be sensitive to interfering species and ambient

factors. Especially ozone, temperature, and relative humidity influence the sensor reading (see e.g. Spinelle et al., 2015a).
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4.1 Explaining the NO, sensor signal

To understand better the behavior of the NO, sensor, we study its sensitivity to different ambient factors. We use the first
calibration period to test the correlation of the measured Swe and Sae signal with NO,, ozone, temperature and humidity by
making a best fit though the hourly time series, e.g.

Swe () = ¢o + ¢NO, (1) 1)

Temperature and RH were not readily available from the GGD Vondelpark station data. We take temperature and RH from
the average readings from the DHT22 sensors instead, which better reflect the internal sensor conditions than ambient air
measurements.

Figure 5 shows scatter plots for an average performing sensor and the R?, the coefficient of determination. The measured Swe
signal can be explained by ambient NO, (R?=0.20), but better by its anti-correlation with ozone (R?=0.49). Temperature
alone is an even better predictor for the sensor signal (R?=0.73), because of the sensors’s direct dependence on temperature,
and indirect dependence on temperature (being a reasonable proxy for both NO, and O3 concentrations). Also the correlation
with relative humidity is very strong (R?=0.73). The measured Sy signal can best be explained as a linear combination of
NO,, Os, T, and RH together, resulting in a correlation of 0.98 (R*=0.96).

The Sae signal is practically insensitive to NO,. This suggests that a combination of Sye and Sae is more sensitive to NO,

and less to the other interfering factors, as intended by the manufacturer.

4.2 NO, calibration models
For NO, measurements, the sensor manufacturer suggests to correct both Working Electrode and Auxiliary Electrode for a
zero-offset with Sye o and Sag o respectively. Then a sensitivity constant s is applied to convert from mV to ppb NO,:

Swe — S —(Sag — S
NO,[ppb] = ( WE WE,O)S ( AE AE,O) )

In practice, the factory-supplied constants Sweo, Sago, and s do not result in realistic values of NO,, see e.g. Cross et al.
(2017). As an alternative, we propose a linear combination of the signals Sye and Sae (calibration model A):

NO,[pug m™3] = ¢y + ¢;Swg + C2SaE (3)

The coefficients ¢, and c, are determined with data from the calibration period using ordinary least squares (OLS). As can be
seen from the fit results in Table 1, within the batch of sensors there is a large variability of direct sensitivity to ambient NO,.
During the calibration period, hourly ozone values (also taken from the VVondelpark station) happened to be a good proxy for
the ambient NO, concentration: NO,(t) = 44.6 — 0.40-O4(t) in [ug m™], with R? of 0.49.

When compared with Table 1, it can be seen that direct sensor readings from a fair part of the sensors cannot outperform this

result. To improve the results we use additional measurements and their statistical relation to NO,. We fit different
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calibration models with multiple linear regression (using OLS). The calibration models which were tested are listed in Table
2.

Temperature and RH are taken from the DHT22 sensor. Note that there is no need to calibrate the individual T and RH
sensor signals beforehand; the calibration coefficients for NO, are determined for the specific set of all sensors in the box.
However, this means that if an individual sensor is replaced, new calibration parameters for the sensor box have to be

derived.

4.3 Calibration results

A complete overview of the regression coefficients and their error estimates for all models can be found in the supplement.
The sign of the calibration parameters can be easily understood. As the electrochemical NO, sensor loses sensitivity at higher
temperatures (see the negative slope in Figure 7(b) for temperatures below 30°C), coefficients c; are positive to compensate
for this effect. The additional sensor response due to cross-sensitivity with ozone is compensated by negative values for cs.
From the fit results we see that Model B (including RH) performs better than Model A, but Model C (including T)
outperforms Model B. When both RH and T are included (Model D) the results of Model C are marginally improved. This
can be understood in terms of a strong sensor dependence on temperature, a weak dependence on RH, and the collinearity
between temperature and RH. Note that measuring RH is essential for guarding the data quality of electrochemical sensors,
as these sensors are very sensitive to sudden changes in RH, see e.g. AAN-110 (2013) and Pang et al. (2016).

The best calibration results (i.e. R? values closer to 1) are obtained by including ozone (Model E). The ozone values were
obtained from the GGD Vondelpark station, as the sensor devices do not measure ozone themselves.

As local ozone measurements were only available during the calibration periods, we used Model D for the Urban AirQ
campaign, i.e. generating an NO, value based on a linear combination of Syg, Sag, T, and RH. The regression analysis of
Model D and correlation with the NO, ground truth can be found in Table 3.

The two worst performing sensor devices (SD02 and SDO01) contain the older NO2-B42F sensor. The newer NO2-B43F
model is designed to have higher sensitivity to NO2 and less interference of ozone. The old sensor model has indeed smaller
coefficients for Sy and larger correction terms for ozone (see the ¢, and ¢ coefficients of model E in the Supplement). This,
however, can also be related to their longer operating time, as both sensors have been used in previous experiments for more
than a year. Again, it can be seen that even within the same batch of sensors there is a significant spread in performance,
around a median value for R? of 0.83. Figure 6 shows the results for the different calibration models for the average
performing sensor SD15. The time series in Figure 6(b) shows clearly how the performance of a typical sensor device
improves when temperature and humidity are included in the calibration analysis. The adjusted R?, which corrects R? for the

number of explanatory variables, increases from 0.29 to 0.82. Note that Rﬁdj is only slightly smaller than R?, as the number

of observations (n=150) is relatively high compared to the number of regression variables (k=2...5).



10

15

20

25

30

4.4 Dependency on temperature

Calibrated data without temperature filter show occasionally strong negative values, see Figure 7 below. These negative
peaks coincide with internal sensor temperatures exceeding 30 °C. This behavior can be explained from the dependency of
the electrochemical sensor on temperature becoming non-linear, see Figure 7(b): the sensitivity of the NO, sensor decreases
linearly with temperature up to around 30 degrees, while above 40 degrees the sensor gains sensitivity with rising
temperatures. In these regimes, the response of the sensor cannot be described well with our multilinear regression approach.
As temperatures during the measurement period only rose occasionally above 30 °C, we decided to filter these measurements

out.

4.5 Startup time

When a sensor device is switched on for service, the electrochemical cell must be stabilized by the potentiostatic circuit
which can take a few hours due to the high capacitance of the working electrode (AAN-105, 2009). Furthermore, when the
sensor is transported to another environment the sudden change in RH causes an equilibrium distortion with a relaxation time
of about 2h (Mueller et al., 2017). The startup-effect is translated by the calibration model as a strong positive NO, peak,
which should be filtered out. From our sensor data we estimate a stabilization time of 4 hours. Note that this startup effect
should not be confused with the response time, which is determined to be less than 2 minutes in Mead et al. (2013) and
Spinelle et al. (2015a).

4.6 Predictivity, sensor drift, and uncertainty estimation

Almost all electrochemical sensors have some degree of drift because of aging and poisoning (Di Carlo et al., 2011;
Hierlemann and Gutierrez-Osuna, 2008). This becomes a serious complication when the drift is in the order of the strength
of the signal of interest. The idea of keeping sensor SDO03 next to the reference station during the whole campaign was to
study sensor degradation in more detail. Unfortunately, the sensor was removed temporarily from 10 to 14 July for service,
when it was decided to add a PM module to the device. The increased energy dissipation after the modification (the Shinyei
PPD42NS module uses a heater resistor to force a convective flow of sampling air) caused an increase of the internal device
temperature by 2.5°C on average. This sudden jump in temperature disrupted the reference time series.

Instead, to assess the short-term stability of the calibration model, we use the first 60% of the measurements from the
calibration period (2-7 June) to derive the regression coefficients, and predict the NO, values for the remaining 40% (8-10
June), see Table 4. The average RMSE increases from 6.5 to 7.0 ug m*> when the regression is used for prediction.

We assess the long-term stability of the sensors with a second calibration period after measurement campaign, again at the
Vondelpark calibration site. As can be seen from the distribution of the residuals in Figure 8, most sensors drift significantly
in the intermediate two-month period. We describe this degradation effect as a bias b between the mean of the hourly

estimated NO, values x; and the mean of the hourly true NO, x; during the calibration period:
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and the root-mean-square error (RMSE) of the difference between the bias corrected calibrated measurement and the ground

truth. The latter is the same as the standard deviation of the residuals (SDR) %x; — x;:
1 . 2
SDR = R;}S((xi—'b)—‘xg (5)
i

As can be seen in Table 5, the bias is mostly positive. Note that sensor SD16 and SD01 had a limited uptime in the second

period, which makes their bias and RMS calculation not very representative.

The strongest bias after two months is found for SD02 and SDO1. Both are of model NO2-B42F and have been used in
others experiments for more than one year. These sensors have also the largest RMSE in the first calibration period (see also
Table 3), which is another indication of their poor performance. The range in RMSE of the remaining sensors is 4.5 — 7.2
ng m™ for the first period. The bias corrected RMSE increases to 5.3 — 9.3 pg m™ for the second period. The latter is a more
conservative yet more realistic estimation of the precision of the NO, estimates, as they are based on measurements which
were not used for calibration. Based on our results listed in the last columns of Table 4 and 5, we take 7 pg m™ as a typical
uncertainty for the estimated NO, values.

The increase of SDR is also due to a loss of sensitivity over time. The aging of the sensors can be further investigated by
recalibrating the devices, i.e. determining the coefficients of regression model D, using the data of the second calibration
period (see the Supplemental Material). All calibration coefficients of Sy (the only component which has direct sensitivity
to NO,) decrease in value, showing that all sensors suffer from sensitivity loss to NO,. This results in lower R® values,
although the performance loss is partly compensated by the other components in the regression. The older Alphasense
models NO2-B42F suffer the largest sensitivity loss, which (although the regression tries to compensate with an increased

temperature dependence) result in the worst performance loss in terms of R%

4.7 Weighted calibration

Taking 18 ug m™ as a typical NO, concentration in an urban environment (Figure 4), the sensor drift as listed in Table 5 is a
significant error component, even after a two month period. It is impossible to predict the progressing bias for an individual
sensor. However, using the second calibration period we can compensate for signal drift in hindsight. If x, (t) represents the
estimated NO, value at time t based on the first calibration period (starting at t;), and %, (t) the estimated NO, value based on
the second calibration period (ending at t;), the we take for intermediate times t; <t < t, a weighted average of both

calibrations:

20 = (1= )% (0) + FOR,() (6)
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Assuming that the sensor degradation is linear in time we select

f@=0C—-t)/t;—t) (7

such that f(t;)=0 and f(t,)=1.

4.8 Validation against an independent reference station

Citizen science can be unpredictable, and we were fortunate that sensor SD04 was handed over to an Urban AirQ participant
living at Korte Koningsstraat (ground floor), which happens to be 120m from another GGD station at Oude Schans (see
Figure 1). The Korte Koningsstraat is a side street away from traffic arteries, whereas Oude Schans also classifies as an
urban background location. The proximity to a reference station enabled us to perform an independent validation of the
sensor measurements, as the calibration of the sensor is based on side-by-side measurements with Vondelpark station, at 3
km distance. As can be seen from Figure 9, the sensor readings agree very well with the official measurements. Using the
weighted calibration explained in the previous section, the measurement bias largely disappears (Table 6). The RMSE (5.3
ng m?) is comparable to the RMSE found during the calibration period. The results give confidence that our calibration
method remains valid for similar urban locations, and that our assumption of sensor degradation being linear in time is

acceptable.

5 Discussion

The Alphasense NO2-B4 sensor is used in many low-cost air quality applications for measuring ambient NO,. As all
electrochemical NO, sensors, it is not very selective to the target gas. The sensor response can be explained well by a linear
combination of NO,, O;, temperature and relative humidity signals (R%= 0.9).

As a consequence, a linear combination of the Working Electrode and the Auxiliary Electrode alone give poor indication of
ambient NO, concentrations. The accuracy varies greatly between different sensors (R? between 0.3 and 0.7). For the Urban
AirQ campaign, temperature and relative humidity were included in a multilinear regression approach. The results improve
significantly with R? values typically around 0.8. This corresponds well with the findings of Jiao et al. (2016), who find an
adjusted R?=0.82 for the best performing electrochemical NO, sensor in their evaluation, when including T and RH.

Best results are obtained by also including ozone measurements in the calibration model: R? increases to 0.9. Spinelle et al.
(2015b) used a similar regression and found R? ranging from 0.35 to 0.77 for 4 electrochemical NO, sensors during a two-
week calibration period, but dropping to 0.03—0.08 when applied to a successive 5-month validation period. Low NO,
values at their semi-rural site partly explains this poor performance, but most likely also unaccounted effects such as
changing sensor sensitivity and signal drift.

The sensor devices were tested in an Amsterdam urban background in summertime, with NO, values ranging from 3 pg m

to 78 pug m>, and median values around 15 pg m™®. During the 3-month period most sensors show loss of sensitivity and
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significant drift, ranging from -9 to 21 pg m™. After bias correction we found a typical value for the accuracy of the NO,
measurements of 7 pug m>.

This error consists of several components. The reference measurements by the NO/NO, analysers have an estimated hourly
error of 3.65% (certified validation at a 200 pg m® NO, concentration), which would contribute to 0.5 pg m™ under typical
conditions. The low-cost DHT22 sensor has a reported error of 0.5 °C for temperature and 2-5% for RH. For a single
measurement, this would contribute to a propagated regression error of approximately 1 ug m™ and 0.5 ug m™, respectively.
It should be noted, however, that binning minute-based measurements to hourly averages removes large part of the
variability, while determining the best fitting regression model for each sensor device removes large part of the remaining
systematical biases. The largest part of the error term is therefore introduced by the linear regression model itself, which
does not include all interfering species or meteorological quantities, and is not able to describe non-linear dependencies of its
variables. One should therefore be careful to extrapolate the calibration model for conditions different than the calibration
period.

The validation results from Section 4.8 show that the calibration holds well for urban locations with similar NO,/O; ratios.
Neglecting Os as regression parameter, however, will introduce a bias at locations with different NO,/O; ratios found e.g.
closer to emission sources. To get a better understanding of the possible impact, we compared hourly 0zone measurements
from the GGD authorities at Van Diemenstraat (VDS, classified as street station) against Nieuwendammerdijk (NDD,
classified as urban background station) during June-August 2016. The relation can best be described by [Os]vps = 0.87
[Oz]nop + 0.85 (with 0.93 correlation), which means that ozone levels at the street station are typically 13% lower, due to
titration of O3 with NO. Due to the sensor’s cross-sensitivity for ozone, larger values must be subtracted from its signal when
the ozone concentration increases. This explains the negative sign of the ozone coefficient cs of model E (see Supplement).
Calibration with model D will overcorrect (i.e. subtract too much) for locations which have lower ozone concentrations than
at the calibration site, resulting in an underestimation of NO, concentrations. Using typical values ¢s=-0.3 and [03]=60 pg/m®
(75™ percentile of the distribution during the measurement camping, according to Figure 4) we estimate the underestimation
of NO, at street side as 0.3 x 13% x 60 =2.3 pg/m°.

The found sensor accuracy after weighted calibration is good enough to provide some complementary spatial information on
local air quality between reference stations. When looking at the difference between Vondelpark station and Oude Schans
station (both classified as city background stations) in the period June-August 2016, 22% of the hourly measurements differ
more than 7 pg m™, and 6% of the hourly measurements differ more than 14 pg m™. These differences increase further when
considering road side stations. From this perspective, even sensor devices with an accuracy around 7 pg m™ can contribute to
an improved understanding of spatial patterns. However, it must be further investigated if the calibration method used here

would provide realistic estimates for peak values (such as the EU hourly limit value, 200 pg m*).
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6 Conclusions and outlook

In this study, we examined low-cost electrochemical air quality sensors for citizen urban air quality monitoring. In other
words, we evaluated an imperfect air quality sensor in an imperfect scientific experiment. In general, we found that low-cost
electrochemical sensors have the potential to complement official environmental monitoring data to help answer questions
from the public, which usually cannot be fully answered from official data alone. To reach the potential, however, proper
measurement set-up, calibration and recalibration, and data analysis should be guaranteed.

The current generation of low-cost NO, sensors has some serious issues which trouble straightforward application. To make
electrochemical NO, sensor measurements accurate, careful filtering of the raw data is necessary. There is a strong spread in
sensor performance, even if the sensors come from the same batch, which make individual calibration essential. A practical
calibration method is measuring side-by-side to an air monitoring station. The accuracy of the measurements can be
improved by including temperature and humidity measurements from other low-cost sensors in a multilinear regression
approach. It is worth noting that more advanced calibration algorithms such as by Cross et al. (2017) and Mueller et al.
(2017) could give better results, but this is not the focus of this paper. It is hard to quantify an optimal length of a calibration
period without having a proper understanding of the sensor degradation rate beforehand. The measurement period should be
at least a few days to capture the sensors behavior under a wide range of pollution levels and meteorological conditions.
Very long calibration periods (in the order of months) will cause sensor degradation issues to interfere with the calibration
results.

Startup time of sensors is estimated 4 hours. To avoid nonlinear response of the electrochemical sensor at elevated
temperatures, we filter out measurements above 30 °C. This is not a serious restriction for applicability in moderate climates
such as in the Netherlands, provided that the sensor is protected from direct sunlight. However, for warmer regions or during
heat waves this may reduce the data stream considerably, unless the temperature dependencies are better captured by more
advanced regression models.

The calibration seems to be location independent, as long as the NO,/O; ratio is comparable. Application at a street side is
likely to introduce a small positive bias. Calibration coefficients are not constant in time. During the 3-month period most
sensors suffer from significant sensitivity loss and drift. The strongest drift and largest uncertainty are found for the older
NO2-B42F sensors. It remains unclear if the worse performance is related to the sensor model or the longer usage in field
experiments.

The sensor degradation troubles practical applications in operational urban networks. Smart re-calibration programs are
essential: bringing back sensors to a calibration facility on a regular basis, or recalibrating on the spot by a travelling
reference instrument. New data driven techniques, such as Bayesian networks (e.g. Xiang et al., 2016), might offer a solution
for this problem.

On the hardware side we recommend to include active ventilation to guarantee a constant air flow over the gas sensor and

suppresses unwanted internal temperature changes due to heating of electronic components. To improve the NO,
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measurements further we recommend to include an additional low-cost ozone sensor, e.g. Ox-B431 by Alphasense. It is
likely that the linear regression approach is able to resolve a significant part of the cross-sensitivity to ozone and NO,. The
RH sensor signal should be used more cleverly to detect and filter sudden changes in relative humidity. Adding a local data

logger is also recommended, to be able to recover data for periods when the WiFi connection to the central database is lost.

Data availability

A complete overview of fit results for all models can be found in the supplement. The hourly Urban AirQ sensor data,
calibrated in hindsight by interpolating the calibration in time between two calibration periods, can be downloaded at

https://github.com/waagsociety/making-sensor.
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Table 1 Fit results for regression model A. Older NO2-B42F sensors highlighted in grey.

Sensor ID Co c1 (Swe) C2 (Sag) R®

SDO01 455.4 0.6977 -1.0835 0.47
SD02 355.9 0.8862 -1.2633 0.62
SD03 -228.6 1.0877 -0.8029 0.72
SD04 -968.2 0.9138 -0.1237 0.69
SD05 -155.1 0.8368 -0.6841 0.48
SD06 -141.9 0.6136 -0.5241 0.44
SDO07 -576.4 0.9615 -0.4811 0.57
SD08 231.4 1.0802 -1.2514 0.68
SD09 100.5 0.8669 -0.8952 0.56
SD10 342.0 0.8221 -1.1629 0.50
SD11 338.4 0.9823 -1.2246 0.61
SD12 -375.2 0.7775 -0.4837 0.54
SD13 -1703.4 0.8218 0.5544 0.60
SD14 162.6 0.8156 -0.9075 0.46
SD15 1211.2 0.9008 -1.8984 0.30
SD16 -594.3 0.8007 -0.3192 0.49

Table 2 Regression models for NO,

Model A N02 =Cp+ Cl'SWE + CZ'SAE

Linear combination of Working Electrode

and Auxiliary Electrode

Model B NO, = cg + C1-Swe + C2-Sae + C4-RH Relative humidity correction

Model C  NO, =cg + C1-Sywe + Co-Sag + C3- T Temperature correction

Model D NO, =c¢g + C1-Swe + Co-Sae + C3- T + ¢4-RH Temperature and RH correction

MOGEIE NG, = G + Co-Sue + Cp-Sae + Co T + o-RH + 005 Correction for temperature, RH, and ozone

cross-sensitivity
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Table 3 Fit results for regression model D. Older NO2-B42F sensors highlighted in grey.

Sensor ID ¢, c1(Swe) €2 (Sag) cs (T) cs (RH) R’

SDO01 790.9 0.8707 -1.5645 -0.5051 0.4513 0.62
SD02 589.2 0.8618 -1.4742 0.2142 0.4204 0.67
SD03 -1272.1 1.2045 -0.1492 1.2690 -0.2944 0.87
SD04 -1613.3 1.1499 0.1818 0.3200 -0.4442 0.85
SD05 -1623.1 1.1235 0.2088 1.7161 -0.4430 0.75
SD06 -824.8 1.1850 -0.5839 1.6737 -0.3069 0.81
SDO07 -1217.6 1.1305 -0.1642 1.9435 0.0000 0.79
SD08 -1129.7 1.1835 -0.2705 2.2559 -0.2704 0.86
SD09 -586.3 1.1794 -0.6738 2.0415 -0.2192 0.90
SD10 -1152.7 1.1668 -0.3120 29112 -0.2147 0.72
SD11 -1109.8 1.1055 -0.2339 3.3191 -0.1693 0.81
SD12 -1074.9 1.0961 -0.2346 1.4954 -0.2799 0.84
SD13 -1074.6 1.1294 -0.3058 1.8671 -0.1561 0.83
SD14 8.1 1.1860 -1.1889 2.5401 0.0268 0.84
SD15 -104.5 1.8111 -1.7939 4.8373 0.0596 0.83
SD16 -1215.5 1.2551 -0.3038 2.1742 -0.1333 0.84
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Table 4 Descriptive and short-term predictive error of model D in pg m*

2-7 June (descriptive)  8-10 June (predictive)
Sensor ID Uptime RMSE Uptime RMSE

SD01 92h 9.25 54h 9.31
SD02 8%h 7.95 53h 13.74
SD03 88h 5.58 53h 4.37
SD04 90h 6.00 54h 4.94
SD05 90h 7.62 53h 8.75
SD06 97h 6.36 57h 5.57
SDO07 85h 7.09 52h 6.26
SD08 88h 5.95 52h 6.59
SD09 88h 4.94 52h 3.69
SD10 99h 7.44 59h 8.09
SD11 91h 6.78 53h 5.42
SD12 93h 6.08 52h 5.07
SD13 8%h 6.25 54h 531
SD14 83h 3.96 48h 14.61
SD15 8%h 6.75 52h 4.52
SD16 93h 6.06 55h 5.61

Table 5 Bias and random error in pg m™ when calibrated in the first period with model D

1% calibration period 2" calibration period
Sensor ID  Uptime Bias SDR  Uptime Bias SDR
SDO01 146h -0.1 8.8 106h 40.1 18.2
SD02 142h 0.0 8.2 199h 21.4 12.8
SD03 141h 0.0 5.1 205h 5.6 9.3
SD04 144h 0.0 55 202h -9.2 5.8
SD05 143h 0.0 7.0 192h 3.0 6.3
SD06 154h 0.0 6.0 197h 2.1 6.8
SDO07 137h 0.0 6.6 196h 6.6 6.8
SDO08 140h 0.0 5.4 199h 3.1 9.1
SD09 140h 0.0 4.5 196h 0.7 53
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SD10 158h 0.0 7.2 206h 0.2 7.9

SD11 144h 0.0 6.3 205h 0.5 8.5
SD12 145h 0.0 5.7 194h 10.1 6.0
SD13 143h 0.0 5.8 206h 9.8 1.7
SD14 131h 0.0 5.9 211h 16.6 6.9
SD15 141h 0.0 6.0 198h 21.3 6.8
SD16 148h 0.0 5.7 47h 15.6 8.7

Table 6 Comparison of sensor SD04 with Oude Schans station during the campaign period, according to different calibrations

1% calibration 2" calibration Weighted calibration
Mean NO,, GGD Oude Schans 19.96 ug m* 19.96 ug m* 19.96 ug m*
Mean NO,, sensor SD04 17.02 pg m* 2221 pgm* 19.87 pg m*
Bias -2.94 ugm? 225ugm? -0.09 pg m*
RMSE 6.10 pgm* 525 ugm? 5.20 pg m*
Correlation 0.89 0.89 0.88
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