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Abstract. In many urban areas the population is exposed to elevated levels of air pollution. However, real-time air quality is 10 

usually only measured at few locations. These measurements provide a general picture of the state of the air, but they are 

unable to monitor local differences. New low-cost sensor technology is available for several years now, and has the potential 

to extend the official monitoring network significantly even though the current generation of sensors suffer from various 

technical issues.  

Citizen science experiments based on these sensors must be designed carefully to avoid generation of data which is of poor 15 

or even useless quality. This study explores the added value of the 2016 Urban AirQ campaign, which focused on measuring 

nitrogen dioxide (NO2) in Amsterdam, the Netherlands. 16 low-cost air quality sensor devices were built and distributed 

among volunteers living close to roads with high traffic volume for a two-month measurement period. 

Each electrochemical sensor was calibrated in-field next to an air monitoring station during an 8-day period, resulting in R2 

ranging from 0.3 to 0.7. When temperature and relative humidity are included in a multilinear regression approach, the NO2 20 

accuracy is improved significantly, with R2 ranging from 0.6 to 0.9. Recalibration after the campaign is crucial, as all sensors 

show a significant signal drift in the two-month measurement period. The measurement series between the calibration 

periods can be corrected in hindsight by taking a weighted average of the calibration coefficients. 

Validation against an independent air monitoring station shows good agreement. Using our approach, the standard deviation 

of a typical sensor device for NO2 measurements was found to be 7 μg m-3, provided that temperatures are below 30°C. 25 

Stronger ozone titration at street sides causes an underestimation of NO2 concentrations, which 75% of the time is less than 

2.3 μg m-3. 

Our findings show that citizen science campaigns using low-cost sensors based on the current generations of electrochemical 

NO2 sensors may provide useful complementary data on local air quality in an urban setting, provided that experiments are 

properly set up and the data are carefully analysed. 30 
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1 Introduction 

Because air pollution is difficult to measure, instrumental and operational costs of official measurement stations are usually 

high. Air quality networks in cities, if present at all, are therefore usually sparse. Diffusive sampling is a common addition to 

these real-time measurements and are successfully used to monitor local differences (see e.g. Cape, 2009). However, these 

differences are poorly attributed to an emission source due to the long averaging time of these measurements (usually 4-5 

weekly). Emerging low-cost sensor technology has the potential to extend the official monitoring network significantly, and 

improve our understanding of local urban air pollution. Miniaturized and affordable sensors potentially enable citizens to 

measure their environment in more detail in space and time (Kumar et al., 2015). Most commercially available sensors, 

however, suffer from various technical issues which limit their applicability. Despite their limitations many experiments are 

done with air quality devices containing these sensors, often by motivated but not necessarily scientifically trained people. 10 

Comprehensive calibration and validation of these devices is crucial (see e.g. Lewis and Edwards, 2016; Lewis et al., 2016), 

but often overlooked. The resulting poor data quality is of concern to health authorities, scientists and citizens themselves.  

Several studies have been done to explore the performance of low-cost air quality sensors, e.g. Jiao et al., 2016, Duvall et al., 

2016; Mead et al., 2013; Moltchanov et al., 2015. For NO2 monitoring, mostly metal oxide and electrochemical sensors are 

used (Borrego et al., 2016; Spinelle et al., 2015b; Thompson, 2016). Typical ambient concentrations of NO2 are at part-per-15 

billion (ppb) level. The main problems encountered in NO2 sensor evaluations in these real-world environments are low 

sensitivity, poor selectivity, low precision and accuracy, and drift. Especially metal oxide sensors are not very stable 

(Spinelle et al., 2015b; Thompson, 2016) and suffer from lower selectivity. Therefore, in this study, we opted for 

electrochemical sensors to measure NO2. 

Mead et al. (2013) already noted the strong interference of ozone and other ambient factors in electrochemical NO2 sensors. 20 

The performance can be increased significantly when adding additional measurements of e.g. temperature and humidity in a 

regression model or neural network, as shown by e.g. Piedrahita et al. (2014), Spinelle et al. (2015b), Masson et al. (2015). 

Coping with sensor degradation remains a serious issue. Some studies, such as Jiao et al. (2016), include an additional 

temporal term in their linear regression which improves the predicted NO2 slightly. 

In the following sections we assess the data quality of the 2016 Urban AirQ campaign. As many similar initiatives depending 25 

on participating citizens, this campaign was not set up as a strictly controllable scientific experiment such as in the 

previously mentioned studies. However, we will demonstrate that citizen air quality monitoring using the current generation 

of electrochemical NO2 sensors may provide useful data of urban air quality, by using a practical method for field calibration 

and correcting for sensor degradation in hindsight. 

2 The Urban AirQ project 30 

The Urban AirQ project explores the added value of alternative air quality measurements in the city, by addressing citizens’ 

questions about their local air quality. It focusses on a 2×1 km2 area around Valkenburgerstraat, a primary road in the East-



3 
 

central part of Amsterdam, see Figure 1. Its dense traffic causes regular exceedances of the European annual limit value for 

nitrogen dioxide (40 μg m-3). 

Two town hall meetings were organized in which residents of this area were invited to raise their concerns about air 

pollution in their neighborhood and to formulate related research questions. Topics included the relation between traffic 

density and air pollution, the difference between main roads and side streets, the front side of an apartment compared to its 5 

backside, the influence of apartment height, and the influence of cut-through traffic at nighttime. The residents were invited 

to participate in finding answers to their questions by measuring their outdoor air quality with 16 experimental low-cost 

sensor devices (labeled SD01 to SD16), built for this purpose by Waag Society.  

Measurements were done from June to August 2016. Beforehand, the sensor devices were calibrated using side-by-side 

measurements next to an official air quality measurement station. With a second calibration period after the campaign, 10 

individual sensor drift was assessed and compensated in hindsight. 

The Urban AirQ experiment is unique in the sense of the used number of devices, the duration of the experiment, the direct 

involvement of citizens, and the use of open hardware and generation of open data. 

3 Urban AirQ sensor devices  

The concept of the Urban AirQ sensor is building a device with low-cost electronic components which is easy to operate, so 15 

citizens can do their own air quality measurements. It builds on the basic design described by Jiang et al. (2016), having an 

improved power supply, weather resistant housing, WiFi connectivity, and additional sensors for temperature, relative 

humidity, and particulate matter. The sensor development is part of an open hardware project; detailed technical information 

can be found at https://github.com/waagsociety/making-sensor.  

Central is the microcontroller board (Arduino UNO) which handles the reading of the sensors and sends the data to the WiFi 20 

module (ESP8266), see Figure 2.  

For NO2 measurements, an electrochemical cell is used from Alphasense Ltd (Essex, United Kingdom). The cell contains 

four electrodes. The target gas, NO2, diffuses through a membrane where it is chemically reduced at the Working Electrode, 

generating a current signal. This electric current is balanced by a opposite current from the Counter Electrode. The Reference 

Electrode sets the operating potential of the Working electrode. The sensor also includes an Auxiliary Electrode, which is 25 

used to compensate for baseline changes in the sensor. To get full sensor performance, low noise interface electronics is 

necessary. An individual sensor board with amperometric circuitry, also provided by Alphasense, is used to guarantee a low 

noise environment and to optimize the sensor resolution at low ppb levels. The sensor signal is read by a 16-bit analog to 

digital (A/D) converter (ADS1115). Two sensor devices (SD01 and SD02) contain model NO2-B42F for NO2 

measurements, the other 14 contain the newer NO2-B43F sensor.  30 

https://github.com/waagsociety/making-sensor
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12 of the 16 sensor devices are also equipped with a Shinyei PPD42NS sensor in order to measure particulate matter 

optically. The present paper, however, will focus only on the assessment of the NO2 measurements. All devices measure 

internal temperature and relative humidity (RH) with a DHT22 sensor from Aosong Electronics. 

The system is supplied with a 7.5V voltage output adapter and a regulator board which generates 5V for the Arduino and the 

sensors. The microcontroller consumes a 10 mA current (measured). The PM sensor needs up to 80 mA (measured), the NO2 5 

sensor about 10 mA (measured), and the DHT22 less than 1 mA. The WiFi module peaks periodically to 350 mA when 

establishing an internet connection. 

3.1 Averaging and filtering 

Raw sensor measurements are stored in a central database on a one minute base. However, the calibration analysis is based 

on hourly averages to enable direct comparison between the ground truth (also provided as hourly values), and to improve 10 

the signal to noise ratio. 

The NO2 sensor measurements are done at the Working Electrode (SWE) and the Auxiliary Electrode (SAE). They are 

provided as counts from the A/D converter. Sensor readings of temperature and RH are converted according to the indication 

of the manufacturer to degrees Celsius and percentages respectively. 

Raw, hourly averaged, sensor data are shown in Figure 3. The spread in temperature and RH displayed in the raw data is 15 

partly explained by the sensor-to-sensor variability. By looking at nighttime temperatures (to eliminate the effect of local 

heating by exposure to direct sunlight) we see that the internal sensor temperatures are 2-5°C higher than ambient 

temperature. The devices are not actively ventilated, which means that the energy dissipation of the electronics influences 

their internal temperature. The variable position of the temperature sensors with respect to these heat sources further explain 

the variance in temperature and relative humidity. 20 

Careful filtering is needed before the data can be further processed. We have applied the following rules: 

• Raw, minute-based, SWE and SAE measurements outside a ±10% range of their mean value during the entire 

measuring period are considered outliers. This filters out 0.33% of all measurements. This criterion was used for its 

simplicity and effectiveness. Note that, due to the large offset in the raw SWE and SAE signal, realistic NO2 peak 

values are still detectable as the corresponding sensor response is still within a 10% bandwidth. 25 

• All readings at sensor temperatures above 30°C are discarded to avoid non-linear temperature dependence of the 

electrochemical NO2 sensor (see Sect. 4.4). This filters out 4.53% of the measurements during the entire period. 

• At least 20 valid minute-based measurements are required to calculate a representative hourly mean. This criterion 

was found to be a good trade-off between noise reduction by averaging and not losing too many hourly 

measurements. 30 

During the first calibration period, the sensors were measuring 79% of the time on average. After applying the criteria above, 

this resulted in 70% valid hourly measurements. During the measurement campaign, the sensors produced 79% valid hourly 
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measurements on average, with the uptime dropping to 50% in places were sensors experienced connectivity problems due 

to limited range of the participant’s WiFi network. 

3.2 Calibration periods 

Calibration of the sensors devices have been done by placing the 16 sensors side by side on the rooftop of the air quality 

station at Vondelpark, operated by the Public Health Service of Amsterdam (GGD). This station is classified as a city 5 

background station. It measures nitrogen dioxide, nitrogen monoxide (NO), ozone (O3), particulate matter (PM10, PM2.5, 

particle number and size distribution), black carbon, and carbon monoxide (CO). For NO and NO2 measurements, GGD 

alternates a Teledyne API 200E and a Thermo Electron 42I NO/NOx analyser, both based on chemiluminescence. The 

validated measurements used in this study are considered to be the ground truth. The calibration period spanned several days 

to be able to test the sensors under a wide range of ambient conditions. To assess the stability of the calibration, the sensors 10 

were brought back after the two-month measurement campaign to the calibration facility for a second calibration period. The 

Urban AirQ campaign consisted therefore of three phases.  

The first field calibration period at GGD Vondelpark station started at 2 June 2016, 00h LT (local time), and ended at 10 

June 2016, 10h (8.5 days; 204 hours). Due to connectivity problems sensor data were missing between 4 June 19h and 6 June 

9h. 15 

During the following citizen campaign, 15 sensors were distributed among the participants. One sensor (SD03) was kept at 

the Vondelpark station as a reference. The first sensor was installed and connected at 13 June 2016, 18h, and the last sensor 

connected at 17 June 2016, 17h. At 15 August 2016, 9h, the first sensor was disconnected, and at 16 August 2016, 18h, the 

last sensor was disconnected. In this 1537-hour period the devices produced 1204 valid hourly measurements on average. 

The second field calibration period at GGD Vondelpark station started at 18 August 2016, 15h, and ended at 29 August 20 

2016, 00h (10.4 days; 249 hours). Due to connectivity problems sensor data were missing between 26 August 12h and 27 

August 11h. 

Figure 4 shows the distribution of temperature, relative humidity, NO2, and O3 during the different periods. Looking at the 

75th percentile of the distributions, the calibration periods are characterized by higher temperatures and ozone levels than the 

campaign period. The range of NO2 concentrations at the Vondelpark station in the calibration periods is larger than in the 25 

campaign, reaching more frequently higher NO2 values. During the campaign the sensors are closer to the GGD station at 

Oude Schans, where measured NO2 values are generally a few μg m-3 higher than at Vondelpark. The Oude Schans site does 

not measure ozone. 

4 NO2 calibration 

Electrochemical sensors such as the Alphasense NO2-B series are known to be sensitive to interfering species and ambient 30 

factors. Especially ozone, temperature, and relative humidity influence the sensor reading (see e.g. Spinelle et al., 2015a). 
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4.1 Explaining the NO2 sensor signal  

To understand better the behavior of the NO2 sensor, we study its sensitivity to different ambient factors. We use the first 

calibration period to test the correlation of the measured SWE and SAE signal with NO2, ozone, temperature and humidity by 

making a best fit though the hourly time series, e.g. 

𝑆𝑆WE(𝑡𝑡) =  𝑐𝑐0 + 𝑐𝑐1NO2(𝑡𝑡) (1) 

Temperature and RH were not readily available from the GGD Vondelpark station data. We take temperature and RH from 5 

the average readings from the DHT22 sensors instead, which better reflect the internal sensor conditions than ambient air 

measurements. 

Figure 5 shows scatter plots for an average performing sensor and the R2, the coefficient of determination. The measured SWE 

signal can be explained by ambient NO2 (R2=0.20), but better by its anti-correlation with ozone (R2=0.49). Temperature 

alone is an even better predictor for the sensor signal (R2=0.73), because of the sensors’s direct dependence on temperature, 10 

and indirect dependence on temperature (being a reasonable proxy for both NO2 and O3 concentrations). Also the correlation 

with relative humidity is very strong (R2=0.73). The measured SWE signal can best be explained as a linear combination of 

NO2, O3, T, and RH together, resulting in a correlation of 0.98 (R2=0.96). 

The SAE signal is practically insensitive to NO2. This suggests that a combination of SWE and SAE is more sensitive to NO2 

and less to the other interfering factors, as intended by the manufacturer. 15 

4.2 NO2 calibration models 

For NO2 measurements, the sensor manufacturer suggests to correct both Working Electrode and Auxiliary Electrode for a 

zero-offset with SWE,0 and SAE,0 respectively. Then a sensitivity constant s is applied to convert from mV to ppb NO2: 

NO2[ppb] =  
�𝑆𝑆WE − 𝑆𝑆WE,0� − �𝑆𝑆AE − 𝑆𝑆AE,0�

𝑠𝑠
 (2) 

In practice, the factory-supplied constants SWE,0, SAE,0, and s do not result in realistic values of NO2, see e.g. Cross et al. 

(2017). As an alternative, we propose a linear combination of the signals SWE and SAE (calibration model A): 20 

NO2[µg m−3] =  𝑐𝑐0 + 𝑐𝑐1𝑆𝑆WE + 𝑐𝑐2𝑆𝑆AE (3) 

The coefficients c1 and c2 are determined with data from the calibration period using ordinary least squares (OLS). As can be 

seen from the fit results in Table 1, within the batch of sensors there is a large variability of direct sensitivity to ambient NO2. 

During the calibration period, hourly ozone values (also taken from the Vondelpark station) happened to be a good proxy for 

the ambient NO2 concentration: NO2(t) = 44.6 – 0.40·O3(t)  in [μg m-3], with R2 of 0.49.  

When compared with Table 1, it can be seen that direct sensor readings from a fair part of the sensors cannot outperform this 25 

result. To improve the results we use additional measurements and their statistical relation to NO2. We fit different 
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calibration models with multiple linear regression (using OLS). The calibration models which were tested are listed in Table 

2. 

Temperature and RH are taken from the DHT22 sensor. Note that there is no need to calibrate the individual T and RH 

sensor signals beforehand; the calibration coefficients for NO2 are determined for the specific set of all sensors in the box. 

However, this means that if an individual sensor is replaced, new calibration parameters for the sensor box have to be 5 

derived. 

4.3 Calibration results 

A complete overview of the regression coefficients and their error estimates for all models can be found in the supplement. 

The sign of the calibration parameters can be easily understood. As the electrochemical NO2 sensor loses sensitivity at higher 

temperatures (see the negative slope in Figure 7(b) for temperatures below 30°C), coefficients c3 are positive to compensate 10 

for this effect. The additional sensor response due to cross-sensitivity with ozone is compensated by negative values for c5. 

From the fit results we see that Model B (including RH) performs better than Model A, but Model C (including T) 

outperforms Model B. When both RH and T are included (Model D) the results of Model C are marginally improved. This 

can be understood in terms of a strong sensor dependence on temperature, a weak dependence on RH, and the collinearity 

between temperature and RH. Note that measuring RH is essential for guarding the data quality of electrochemical sensors, 15 

as these sensors are very sensitive to sudden changes in RH, see e.g. AAN-110 (2013) and Pang et al. (2016). 

The best calibration results (i.e. R2 values closer to 1) are obtained by including ozone (Model E). The ozone values were 

obtained from the GGD Vondelpark station, as the sensor devices do not measure ozone themselves.  

As local ozone measurements were only available during the calibration periods, we used Model D for the Urban AirQ 

campaign, i.e. generating an NO2 value based on a linear combination of SWE, SAE, T, and RH. The regression analysis of 20 

Model D and correlation with the NO2 ground truth can be found in Table 3.  

The two worst performing sensor devices (SD02 and SD01) contain the older NO2-B42F sensor. The newer NO2-B43F 

model is designed to have higher sensitivity to NO2 and less interference of ozone. The old sensor model has indeed smaller 

coefficients for SWE and larger correction terms for ozone (see the c1 and c5 coefficients of model E in the Supplement). This, 

however, can also be related to their longer operating time, as both sensors have been used in previous experiments for more 25 

than a year.  Again, it can be seen that even within the same batch of sensors there is a significant spread in performance, 

around a median value for R2 of 0.83. Figure 6 shows the results for the different calibration models for the average 

performing sensor SD15. The time series in Figure 6(b) shows clearly how the performance of a typical sensor device 

improves when temperature and humidity are included in the calibration analysis. The adjusted R2, which corrects R2 for the 

number of explanatory variables, increases from 0.29 to 0.82. Note that 𝑅𝑅adj2  is only slightly smaller than R2, as the number 30 

of observations (n≈150) is relatively high compared to the number of regression variables (k=2…5). 
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4.4 Dependency on temperature 

Calibrated data without temperature filter show occasionally strong negative values, see Figure 7 below. These negative 

peaks coincide with internal sensor temperatures exceeding 30 °C. This behavior can be explained from the dependency of 

the electrochemical sensor on temperature becoming non-linear, see Figure 7(b): the sensitivity of the NO2 sensor decreases 

linearly with temperature up to around 30 degrees, while above 40 degrees the sensor gains sensitivity with rising 5 

temperatures. In these regimes, the response of the sensor cannot be described well with our multilinear regression approach. 

As temperatures during the measurement period only rose occasionally above 30 °C, we decided to filter these measurements 

out. 

4.5 Startup time 

When a sensor device is switched on for service, the electrochemical cell must be stabilized by the potentiostatic circuit 10 

which can take a few hours due to the high capacitance of the working electrode (AAN-105, 2009). Furthermore, when the 

sensor is transported to another environment the sudden change in RH causes an equilibrium distortion with a relaxation time 

of about 2h (Mueller et al., 2017).  The startup-effect is translated by the calibration model as a strong positive NO2 peak, 

which should be filtered out. From our sensor data we estimate a stabilization time of 4 hours. Note that this startup effect 

should not be confused with the response time, which is determined to be less than 2 minutes in Mead et al. (2013) and 15 

Spinelle et al. (2015a). 

4.6 Predictivity, sensor drift, and uncertainty estimation 

Almost all electrochemical sensors have some degree of drift because of aging and poisoning (Di Carlo et al., 2011; 

Hierlemann and Gutierrez-Osuna, 2008). This becomes a serious complication when the drift is in the order of the strength 

of the signal of interest. The idea of keeping sensor SD03 next to the reference station during the whole campaign was to 20 

study sensor degradation in more detail. Unfortunately, the sensor was removed temporarily from 10 to 14 July for service, 

when it was decided to add a PM module to the device. The increased energy dissipation after the modification  (the Shinyei 

PPD42NS module uses a heater resistor to force a convective flow of sampling air) caused an increase of the internal device 

temperature by 2.5°C on average. This sudden jump in temperature disrupted the reference time series. 

Instead, to assess the short-term stability of the calibration model, we use the first 60% of the measurements from the 25 

calibration period (2-7 June) to derive the regression coefficients, and predict the NO2 values for the remaining 40% (8-10 

June), see Table 4. The average RMSE increases from 6.5 to 7.0 μg m3 when the regression is used for prediction. 

We assess the long-term stability of the sensors with a second calibration period after measurement campaign, again at the 

Vondelpark calibration site. As can be seen from the distribution of the residuals in Figure 8, most sensors drift significantly 

in the intermediate two-month period. We describe this degradation effect as a bias b between the mean of the hourly 30 

estimated NO2 values 𝑥𝑥�𝑖𝑖  and the mean of the hourly true NO2 𝑥𝑥𝑖𝑖 during the calibration period: 
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and the root-mean-square error (RMSE) of the difference between the bias corrected calibrated measurement and the ground 

truth. The latter is the same as the standard deviation of the residuals (SDR)  𝑥𝑥�𝑖𝑖 − 𝑥𝑥𝑖𝑖: 

SDR =  �
1
𝑁𝑁
��(𝑥𝑥�𝑖𝑖 − 𝑏𝑏) − 𝑥𝑥𝑖𝑖�

2

𝑖𝑖

 (5) 

As can be seen in Table 5, the bias is mostly positive. Note that sensor SD16 and SD01 had a limited uptime in the second 

period, which makes their bias and RMS calculation not very representative. 

The strongest bias after two months is found for SD02 and SD01. Both are of model NO2-B42F and have been used in 5 

others experiments for more than one year. These sensors have also the largest RMSE in the first calibration period (see also 

Table 3), which is another indication of their poor performance. The range in RMSE of the remaining sensors is 4.5 – 7.2 

μg m-3 for the first period. The bias corrected RMSE increases to 5.3 – 9.3 μg m-3 for the second period. The latter is a more 

conservative yet more realistic estimation of the precision of the NO2 estimates, as they are based on measurements which 

were not used for calibration. Based on our results listed in the last columns of Table 4 and 5, we take 7 μg m-3 as a typical 10 

uncertainty for the estimated NO2 values. 

The increase of SDR is also due to a loss of sensitivity over time. The aging of the sensors can be further investigated by 

recalibrating the devices, i.e. determining the coefficients of regression model D, using the data of the second calibration 

period (see the Supplemental Material). All calibration coefficients of SWE (the only component which has direct sensitivity 

to NO2) decrease in value, showing that all sensors suffer from sensitivity loss to NO2. This results in lower R2 values, 15 

although the performance loss is partly compensated by the other components in the regression. The older Alphasense 

models NO2-B42F suffer the largest sensitivity loss, which (although the regression tries to compensate with an increased 

temperature dependence) result in the worst performance loss in terms of R2. 

4.7 Weighted calibration 

Taking 18 μg m-3 as a typical NO2 concentration in an urban environment (Figure 4), the sensor drift as listed in Table 5 is a 20 

significant error component, even after a two month period. It is impossible to predict the progressing bias for an individual 

sensor. However, using the second calibration period we can compensate for signal drift in hindsight. If 𝑥𝑥�1(𝑡𝑡) represents the 

estimated NO2 value at time t based on the first calibration period (starting at t1), and 𝑥𝑥�2(𝑡𝑡) the estimated NO2 value based on 

the second calibration period (ending at t2), the we take for intermediate times 𝑡𝑡1 ≤ 𝑡𝑡 ≤ 𝑡𝑡2  a weighted average of both 

calibrations: 25 

𝑥𝑥�(𝑡𝑡) = �1 − 𝑓𝑓(𝑡𝑡)�𝑥𝑥�1(𝑡𝑡) + 𝑓𝑓(𝑡𝑡)𝑥𝑥�2(𝑡𝑡) (6) 
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Assuming that the sensor degradation is linear in time we select 

𝑓𝑓(𝑡𝑡) = (𝑡𝑡 − 𝑡𝑡1) (𝑡𝑡2 − 𝑡𝑡1)⁄  (7) 

such that f(t1)=0 and f(t2)=1. 

4.8 Validation against an independent reference station 

Citizen science can be unpredictable, and we were fortunate that sensor SD04 was handed over to an Urban AirQ participant 

living at Korte Koningsstraat (ground floor), which happens to be 120m from another GGD station at Oude Schans (see 5 

Figure 1). The Korte Koningsstraat is a side street away from traffic arteries, whereas Oude Schans also classifies as an 

urban background location. The proximity to a reference station enabled us to perform an independent validation of the 

sensor measurements, as the calibration of the sensor is based on side-by-side measurements with Vondelpark station, at 3 

km distance. As can be seen from Figure 9, the sensor readings agree very well with the official measurements. Using the 

weighted calibration explained in the previous section, the measurement bias largely disappears (Table 6). The RMSE (5.3 10 

μg m-3) is comparable to the RMSE found during the calibration period. The results give confidence that our calibration 

method remains valid for similar urban locations, and that our assumption of sensor degradation being linear in time is 

acceptable.  

5 Discussion 

The Alphasense NO2-B4 sensor is used in many low-cost air quality applications for measuring ambient NO2. As all 15 

electrochemical NO2 sensors, it is not very selective to the target gas. The sensor response can be explained well by a linear 

combination of NO2, O3, temperature and relative humidity signals (R2≈ 0.9).  

As a consequence, a linear combination of the Working Electrode and the Auxiliary Electrode alone give poor indication of 

ambient NO2 concentrations. The accuracy varies greatly between different sensors (R2 between 0.3 and 0.7). For the Urban 

AirQ campaign, temperature and relative humidity were included in a multilinear regression approach. The results improve 20 

significantly with R2 values typically around 0.8. This corresponds well with the findings of Jiao et al. (2016), who find an 

adjusted R2=0.82 for the best performing electrochemical NO2 sensor in their evaluation, when including T and RH. 

Best results are obtained by also including ozone measurements in the calibration model: R2 increases to 0.9. Spinelle et al. 

(2015b) used a similar regression and found R2 ranging from 0.35 to 0.77 for 4 electrochemical NO2 sensors during a two-

week calibration period, but dropping to 0.03—0.08 when applied to a successive 5-month validation period. Low NO2 25 

values at their semi-rural site partly explains this poor performance, but most likely also unaccounted effects such as 

changing sensor sensitivity and signal drift. 

The sensor devices were tested in an Amsterdam urban background in summertime, with NO2 values ranging from 3 μg m-3 

to 78 μg m-3, and median values around 15 μg m-3. During the 3-month period most sensors show loss of sensitivity and 



11 
 

significant drift, ranging from -9 to 21 μg m-3. After bias correction we found a typical value for the accuracy of the NO2 

measurements of 7 μg m-3. 

This error consists of several components. The reference measurements by the NO/NOx analysers have an estimated hourly 

error of 3.65% (certified validation at a 200 μg m-3 NO2 concentration), which would contribute to 0.5 μg m-3 under typical 

conditions. The low-cost DHT22 sensor has a reported error of 0.5 °C for temperature and 2–5% for RH. For a single 5 

measurement, this would contribute to a propagated regression error of approximately 1 μg m-3 and 0.5 μg m-3, respectively. 

It should be noted, however, that binning minute-based measurements to hourly averages removes large part of the 

variability, while determining the best fitting regression model for each sensor device removes large part of the remaining 

systematical biases. The largest part of the error term is therefore introduced by the linear regression model itself, which 

does not include all interfering species or meteorological quantities, and is not able to describe non-linear dependencies of its 10 

variables. One should therefore be careful to extrapolate the calibration model for conditions different than the calibration 

period. 

The validation results from Section 4.8 show that the calibration holds well for urban locations with similar NO2/O3 ratios. 

Neglecting O3 as regression parameter, however, will introduce a bias at locations with different NO2/O3 ratios found e.g. 

closer to emission sources. To get a better understanding of the possible impact, we compared hourly ozone measurements 15 

from the GGD authorities at Van Diemenstraat (VDS, classified as street station) against Nieuwendammerdijk (NDD, 

classified as urban background station) during June-August 2016. The relation can best be described by [O3]VDS = 0.87 

[O3]NDD + 0.85 (with 0.93 correlation), which means that ozone levels at the street station are typically 13% lower, due to 

titration of O3 with NO. Due to the sensor’s cross-sensitivity for ozone, larger values must be subtracted from its signal when 

the ozone concentration increases. This explains the negative sign of the ozone coefficient c5 of model E (see Supplement). 20 

Calibration with model D will overcorrect (i.e. subtract too much) for locations which have lower ozone concentrations than 

at the calibration site, resulting in an underestimation of NO2 concentrations. Using typical values c5=-0.3 and [O3]=60 μg/m3 

(75th percentile of the distribution during the measurement camping, according to Figure 4) we estimate the underestimation 

of NO2 at street side as 0.3 × 13% × 60 = 2.3 μg/m3. 

The found sensor accuracy after weighted calibration is good enough to provide some complementary spatial information on 25 

local air quality between reference stations. When looking at the difference between Vondelpark station and Oude Schans 

station (both classified as city background stations) in the period June-August 2016, 22% of the hourly measurements differ 

more than 7 μg m-3, and 6% of the hourly measurements differ more than 14 μg m-3. These differences increase further when 

considering road side stations. From this perspective, even sensor devices with an accuracy around 7 μg m-3 can contribute to 

an improved understanding of spatial patterns. However, it must be further investigated if the calibration method used here 30 

would provide realistic estimates for peak values (such as the EU hourly limit value, 200 μg m-3). 
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6 Conclusions and outlook 

In this study, we examined low-cost electrochemical air quality sensors for citizen urban air quality monitoring. In other 

words, we evaluated an imperfect air quality sensor in an imperfect scientific experiment. In general, we found that low-cost 

electrochemical sensors have the potential to complement official environmental monitoring data to help answer questions 

from the public, which usually cannot be fully answered from official data alone. To reach the potential, however, proper 5 

measurement set-up, calibration and recalibration, and data analysis should be guaranteed.  

The current generation of low-cost NO2 sensors has some serious issues which trouble straightforward application. To make 

electrochemical NO2 sensor measurements accurate, careful filtering of the raw data is necessary. There is a strong spread in 

sensor performance, even if the sensors come from the same batch, which make individual calibration essential. A practical 

calibration method is measuring side-by-side to an air monitoring station. The accuracy of the measurements can be 10 

improved by including temperature and humidity measurements from other low-cost sensors in a multilinear regression 

approach. It is worth noting that more advanced calibration algorithms such as by Cross et al. (2017) and Mueller et al. 

(2017) could give better results, but this is not the focus of this paper. It is hard to quantify an optimal length of a calibration 

period without having a proper understanding of the sensor degradation rate beforehand. The measurement period should be 

at least a few days to capture the sensors behavior under a wide range of pollution levels and meteorological conditions. 15 

Very long calibration periods (in the order of months) will cause sensor degradation issues to interfere with the calibration 

results. 

Startup time of sensors is estimated 4 hours. To avoid nonlinear response of the electrochemical sensor at elevated 

temperatures, we filter out measurements above 30 °C. This is not a serious restriction for applicability in moderate climates 

such as in the Netherlands, provided that the sensor is protected from direct sunlight. However, for warmer regions or during 20 

heat waves this may reduce the data stream considerably, unless the temperature dependencies are better captured by more 

advanced regression models. 

The calibration seems to be location independent, as long as the NO2/O3 ratio is comparable. Application at a street side is 

likely to introduce a small positive bias. Calibration coefficients are not constant in time. During the 3-month period most 

sensors suffer from significant sensitivity loss and drift. The strongest drift and largest uncertainty are found for the older 25 

NO2-B42F sensors. It remains unclear if the worse performance is related to the sensor model or the longer usage in field 

experiments.  

The sensor degradation troubles practical applications in operational urban networks. Smart re-calibration programs are 

essential: bringing back sensors to a calibration facility on a regular basis, or recalibrating on the spot by a travelling 

reference instrument. New data driven techniques, such as Bayesian networks (e.g. Xiang et al., 2016), might offer a solution 30 

for this problem.  

On the hardware side we recommend to include active ventilation to guarantee a constant air flow over the gas sensor and 

suppresses unwanted internal temperature changes due to heating of electronic components. To improve the NO2 
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measurements further we recommend to include an additional low-cost ozone sensor, e.g. Ox-B431 by Alphasense. It is 

likely that the linear regression approach is able to resolve a significant part of the cross-sensitivity to ozone and NO2. The 

RH sensor signal should be used more cleverly to detect and filter sudden changes in relative humidity. Adding a local data 

logger is also recommended, to be able to recover data for periods when the WiFi connection to the central database is lost. 

 5 

Data availability 

A complete overview of fit results for all models can be found in the supplement. The hourly Urban AirQ sensor data, 

calibrated in hindsight by interpolating the calibration in time between two calibration periods, can be downloaded at 

https://github.com/waagsociety/making-sensor. 
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Figure 1 Locations of the sensor devices during the citizen measurement campaign. The green marker indicates the calibration 
location at GGD Vondelpark. In the circle the location of SD04 and the GGD station at Oude Schans (in red).  The location of 
Valkenburgerstraat is highlighted in yellow. 

   5 

   
    

Figure 2 Hardware modules of a sensor device (left), and the integration in the casing: open (middle) and closed (right). 
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Figure 3 Raw sensor data, unfiltered but hourly averaged, from the 16 sensors during the first calibration period, 2-10 June 2016. 
The data gap around 5 June is due to a connectivity problem to the central database. 

 5 
Figure 4 Box whisker diagrams of hourly ambient parameters during the two calibration periods and the measurement campaign. 
The box edges indicate the 25th – 75th percentile; the whiskers the minimum and maximum values. The median is indicated in red. 
Temperature and RH are based on the average values of all sensors devices, NO2 and ozone are taken from the reference station at 
Vondelpark. For comparison, NO2 from the reference station at Oude Schans (OS) is also shown. 
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Figure 5 The reading of a typical performing NO2-B43F sensor (SD10) explained as a linear regression of respectively NO2, O3, T, 
RH, and all variables. The top two rows show the results for the Working Electrode; the bottom two rows for the Auxiliary 
Electrode. The axes represent the A/D converter counts, which are proportional to the currents generated by the sensor at the 
corresponding electrode. 5 
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Figure 6(a) Calibration model results for an average performing sensor (SD15). Bottom row shows the recommended calibration 
by Model D (left), and the results when ozone would be included (right). 

 
Figure 6(b) Time series compared to ground truth with calibration parameters of Model A and D. 5 



20 
 

 

Figure 7(a) Examples of negative spikes in the calibrated NO2 measurements (solid line) due to internal sensor temperatures 
(dotted line) exceeding 30 °C. 

 
Figure 7(b) Variation of zero output of the working electrode caused by changes in temperature for a typical batch of 5 
electrochemical sensors. Image taken from Alphasense Data Sheet for NO2-B43F (ADS, 2016). 
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Figure 8 Sensor drift during two months of operation, shown as the distribution of residuals (in 2 μg m-3 bins) with the reference 
measurements during the first calibration period (black bars) and during the second period (red bars). 

  



22 
 

 

 

 

Figure 9(a) Comparison of sensor SD04 NO2 time series with the nearby Oude Schans station (8-day snap shot), and the effect of 
bias correction. For comparison, measurements of Vondelpark station are also shown. 5 

 

Figure 9(b) Distribution of residuals of NO2 measurements between sensor SD04 and Oude Schans station during the campaign 
period, with and without bias correction. 
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Table 1 Fit results for regression model A. Older NO2-B42F sensors highlighted in grey. 

Sensor ID c0 c1 (SWE) c2 (SAE) R2 

SD01 455.4 0.6977 -1.0835 0.47 

SD02 355.9 0.8862 -1.2633 0.62 

SD03 -228.6 1.0877 -0.8029 0.72 

SD04 -968.2 0.9138 -0.1237 0.69 

SD05 -155.1 0.8368 -0.6841 0.48 

SD06 -141.9 0.6136 -0.5241 0.44 

SD07 -576.4 0.9615 -0.4811 0.57 

SD08 231.4 1.0802 -1.2514 0.68 

SD09 100.5 0.8669 -0.8952 0.56 

SD10 342.0 0.8221 -1.1629 0.50 

SD11 338.4 0.9823 -1.2246 0.61 

SD12 -375.2 0.7775 -0.4837 0.54 

SD13 -1703.4 0.8218 0.5544 0.60 

SD14 162.6 0.8156 -0.9075 0.46 

SD15 1211.2 0.9008 -1.8984 0.30 

SD16 -594.3 0.8007 -0.3192 0.49 

 

 
Table 2 Regression models for NO2 

Model A NO2 = c0 + c1·SWE + c2·SAE 
Linear combination of Working Electrode 

and Auxiliary Electrode 

Model B NO2 = c0 + c1·SWE + c2·SAE + c4·RH Relative humidity correction 

Model C NO2 = c0 + c1·SWE + c2·SAE + c3·T Temperature correction 

Model D NO2 = c0 + c1·SWE + c2·SAE + c3·T + c4·RH Temperature and RH correction 

Model E NO2 = c0 + c1·SWE + c2·SAE + c3·T + c4·RH + c5·O3 
Correction for temperature, RH, and ozone 

cross-sensitivity 

 5 
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Table 3 Fit results for regression model D. Older NO2-B42F sensors highlighted in grey. 

Sensor ID c0 c1 (SWE) c2 (SAE) c3 (T) c4 (RH) R2 

SD01 790.9 0.8707 -1.5645 -0.5051 0.4513 0.62 

SD02 589.2 0.8618 -1.4742 0.2142 0.4204 0.67 

SD03 -1272.1 1.2045 -0.1492 1.2690 -0.2944 0.87 

SD04 -1613.3 1.1499 0.1818 0.3200 -0.4442 0.85 

SD05 -1623.1 1.1235 0.2088 1.7161 -0.4430 0.75 

SD06 -824.8 1.1850 -0.5839 1.6737 -0.3069 0.81 

SD07 -1217.6 1.1305 -0.1642 1.9435 0.0000 0.79 

SD08 -1129.7 1.1835 -0.2705 2.2559 -0.2704 0.86 

SD09 -586.3 1.1794 -0.6738 2.0415 -0.2192 0.90 

SD10 -1152.7 1.1668 -0.3120 2.9112 -0.2147 0.72 

SD11 -1109.8 1.1055 -0.2339 3.3191 -0.1693 0.81 

SD12 -1074.9 1.0961 -0.2346 1.4954 -0.2799 0.84 

SD13 -1074.6 1.1294 -0.3058 1.8671 -0.1561 0.83 

SD14 8.1 1.1860 -1.1889 2.5401 0.0268 0.84 

SD15 -104.5 1.8111 -1.7939 4.8373 0.0596 0.83 

SD16 -1215.5 1.2551 -0.3038 2.1742 -0.1333 0.84 
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Table 4 Descriptive and short-term predictive error of model D in μg m-3 

 

2-7 June (descriptive) 8-10 June (predictive) 

Sensor ID Uptime RMSE Uptime RMSE 

SD01 92h 9.25 54h 9.31 

SD02 89h 7.95 53h 13.74 

SD03 88h 5.58 53h 4.37 

SD04 90h 6.00 54h 4.94 

SD05 90h 7.62 53h 8.75 

SD06 97h 6.36 57h 5.57 

SD07 85h 7.09 52h 6.26 

SD08 88h 5.95 52h 6.59 

SD09 88h 4.94 52h 3.69 

SD10 99h 7.44 59h 8.09 

SD11 91h 6.78 53h 5.42 

SD12 93h 6.08 52h 5.07 

SD13 89h 6.25 54h 5.31 

SD14 83h 3.96 48h 14.61 

SD15 89h 6.75 52h 4.52 

SD16 93h 6.06 55h 5.61 

 

 
Table 5 Bias and random error in μg m-3 when calibrated in the first period with model D 

 1st calibration period 2nd calibration period 

Sensor ID Uptime Bias SDR Uptime Bias SDR 

SD01 146h -0.1 8.8 106h 40.1 18.2 

SD02 142h 0.0 8.2 199h 21.4 12.8 

SD03 141h 0.0 5.1 205h 5.6 9.3 

SD04 144h 0.0 5.5 202h -9.2 5.8 

SD05 143h 0.0 7.0 192h 3.0 6.3 

SD06 154h 0.0 6.0 197h -2.1 6.8 

SD07 137h 0.0 6.6 196h 6.6 6.8 

SD08 140h 0.0 5.4 199h 3.1 9.1 

SD09 140h 0.0 4.5 196h 0.7 5.3 
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SD10 158h 0.0 7.2 206h 0.2 7.9 

SD11 144h 0.0 6.3 205h 0.5 8.5 

SD12 145h 0.0 5.7 194h 10.1 6.0 

SD13 143h 0.0 5.8 206h 9.8 7.7 

SD14 131h 0.0 5.9 211h 16.6 6.9 

SD15 141h 0.0 6.0 198h 21.3 6.8 

SD16 148h 0.0 5.7 47h 15.6 8.7 

 

 

Table 6 Comparison of sensor SD04 with Oude Schans station during the campaign period, according to different calibrations 

 1st calibration 2nd calibration Weighted calibration 

Mean NO2, GGD Oude Schans 19.96 μg m-3 19.96 μg m-3 19.96 μg m-3 

Mean NO2, sensor SD04 17.02 μg m-3 22.21 μg m-3 19.87 μg m-3 

Bias -2.94 μg m-3 2.25 μg m-3 -0.09 μg m-3 

RMSE 6.10 μg m-3 5.25 μg m-3 5.20 μg m-3 

Correlation 0.89 0.89 0.88 
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