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Abstract. A highly miniaturized limb sounder for the observation of the O2 A-Band to derive temperatures in the mesosphere

and lower thermosphere is presented. The instrument consists of a monolithic spatial heterodyne spectrometer (SHS), which

is able to resolve the rotational structure of the R-branch of that band. The relative intensities of the emission lines follow a

Boltzmann distribution and the ratio of the lines can be used to derive the kinetic temperature. The SHS operates at a Littrow

wavelength of 761.8 nm and heterodynes a wavelength regime between 761.9 nm and 765.3 nm with a resolving power of5

about 8,000 considering apodization effects. The size of the SHS is 38x38x27 mm3 and its acceptance angle is ±5o. It has an

etendue of 0.01 cm2 sr. Complemented by a front optics with an acceptance angle of ±0.65o and a detector optics, the entire

optical system fits into a volume of about 1.5 liters. This allows to fly this instrument on a 3 or 6 unit CubeSat. The vertical
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field of view of the instrument is about 60 km at the Earth’s limb if operated in a typical low Earth orbit. Integration times

to obtain an entire altitude profile of nighttime temperatures are in the order of one minute for a vertical resolution of 1.5 km

and a random noise level of about 1.5 K. Daytime integration times are one order of magnitude shorter. This work presents

the design parameters of the optics and a radiometric assessment of the instrument. Furthermore it gives an overview of the

required characterization and calibration steps. This includes the characterization of image distortions in the different parts of5

the optics, visibility and phase determination as well as flat fielding.

Copyright statement. TEXT

1 Introduction

Atmospheric waves drive important atmospheric circulation patterns such as the Brewer-Dobson circulation in the stratosphere

and mesosphere. Wave structures are detectable in atmospheric wind and temperature fields. Small-scale gravity waves are10

particularly important in the mesosphere and even lower thermosphere.

To demonstrate new ways to measure atmospheric waves at high spatial resolution, Song et al. (2017) presented a new

satellite observation strategy for the detection of gravity waves in the mesosphere and lower thermosphere (MLT). This mea-

surement mode requires an agile satellite platform to make multi-angle observations of a particular atmospheric volume and a

spectrometer particularly suited for the detection of faint emission lines.15

The concept and optical layout for such an instrument is presented, which fits onto a nano-satellite platform, such as a

CubeSat (e.g., Poghosyan and Golkar, 2017, and references therein). To customize an instrument to the constraints of a CubeSat

gives access to a variety of standardized satellite-bus components and flight opportunities, because CubeSat deployers are

nowadays an integral part of many launch vehicles. In return for these advantages, the payload has to cope with very restricted

mass, volume, and power resources.20

The most common technique to obtain temperatures in the upper mesosphere and lower thermosphere is to measure the

emission of CO2 in the mid infrared or to measure the absorption of sunlight by CO2. Although the modeling of CO2 emissions

has its own problems regarding the determination of the non-local thermodynamic equilibrium state of CO2, this method is well

accepted and gives temperatures over a broad altitude range at a good signal to noise ratio. The most prominent instruments

using infrared emissions to derive MLT temperature are ISAMS (Nightingale and Crawford, 1991), CRISTA (Offermann et al.,25

1999; Grossmann et al., 2002), MIPAS (Fischer et al., 2008), and SABER (Russell et al., 1999) for emission measurements

and HALOE (Russell et al., 1994) and ACE-FTS (Bernath, 2017) for occultation measurements.

Instruments measuring at infrared or longer wavelengths are quite large or high energy consuming, so that measurements

in the ultraviolet/visible/near-infrared spectral regime are most appropriate for a CubeSat platform. In this wavelength regime,

mesospheric temperature measurements can be performed by the evaluation of the rotational distribution of a molecular emis-30

sion band. The emitting states should be sufficiently long-lived, and the rotational distribution should be thermalized, such that
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it can be described by the kinetic temperature. It is best, if this emission is visible during day- and nighttime, such that temper-

atures can be obtained at all local times. The O2 atmospheric band system fulfills all of these requirements. The strongest band

within this system is the the O2 (0,0) atmospheric A-band at 762 nm, which was investigated in several studies (e.g., Rodrigo

et al., 1985; Torr et al., 1985; McDade and Llewellyn, 1986; Meriwether, 1989; Slanger and Copeland, 2003). The O2 A-band

has been used to derive global MLT temperatures in recent years using HRDI/UARS Fabry-Perot interferometer data (Ortland5

et al., 1998) and OSIRIS/ODIN grating spectrometer data (Sheese et al., 2010).

This temperature measurement technique builds upon relative intensity measurements. The requirements to monitor the

radiometric performance of such kind of instrument are much more relaxed than for measurement strategies which rely on

absolute intensities. Another advantage is that the A-band emits at wavelengths below 1 µm, so that silicon-based detectors

operating at ambient or moderately cooled conditions can be used for detection. This reduces the power consumption, mass,10

and costs of such an instrument significantly.

In this work we give an overview of the design of a highly miniaturized instrument to measure O2 A-band limb radiances.

We summarize various topics on the radiometric and optical design as well as the calibration and processing of the data. Further

and more detailed studies on these subjects are currently in preparation for publication. We are preparing such an instrument

for a detailed laboratory characterization and an in-orbit verification in the near future.15

2 O2 Atmospheric Band Emissions

Light emitted in the O2 atmospheric band system stems from the transition of O2(b1Σ+
g ) to O2(X3Σ−g ). There are three

absorption bands in this system (A, B, and γ bands). All of these bands end up in a vibrational ground state. The upper states

are at v=0, 1, 2 for the A, B, and γ bands, respectively. None of these bands can be observed from the ground because of the

high abundance of ground state molecular oxygen in the atmosphere. The radiative lifetime of the O2(b1Σ+
g ) state is about 1220

seconds (Burch and Gryvnak, 1969). This long lifetime assures that the molecule is in rotational equilibrium with the ambient

atmosphere, such that rotational and ambient temperature are identical. An overview of the chemistry and molecular dynamics

of excited O2 is given by, e.g., Slanger and Copeland (2003) and references cited therein. It can be briefly summarized as

follows: O2(b1Σ+
g ) is excited by collisions of ground state O2 with O(1D), which is produced in the photolysis of O2 in the

Schumann-Runge Continuum and in the photolysis of O3 in the Hartley band. Due to the long radiative lifetime of O(1D)25

(about 2 minutes), most of the energy of O(1D) is lost by quenching with N2 and O2, producing a multitude of excited N2 and

O2 states, including the ones emitting the atmospheric band system. Another excitation mechanism of O2(b1Σ+
g ) is resonance

scattering or absorption of photons in the atmospheric bands itself. The third process is the collision of ground state O2 with a

metastable, highly excited state of O2 produced in the recombination of two atomic oxygen atoms. This two step process was

first proposed by Barth and Hildebrandt (1961) and Barth (1964). It is the only excitation process which is active during day-30

and nighttime. Figure 1 shows simulated volume emission rates of O2(b1Σ+
g ) separated by excitation processes, as simulated

with the model described by Song et al. (2017). According to these simulations, the day- to nighttime ratio of the O2(b1Σ+
g )

number densities is about a factor of 50 in the vicinity of the mesopause.
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The spectral shape of the A-band for two different temperatures is illustrated in Figure 2. Higher temperatures give a flatter

spectrum. A 10 K change in temperature affects the rotational distribution of strong emission lines at 760–765 nm between

±6%. This means that the band structure must be measured better than 1% to derive temperatures with a precision of 2 K.
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Figure 1. Volume emission rate of O2(b1Σ+
g ) separated by excitation processes. ’Barth’ indicates the emission rates created by the recombi-

nation of atomic oxygen. This is the only excitation process being active during day and night. ’A-Band’ and ’B-Band’ label the fraction of

emissions excited by resonance absorption in those bands. ’O2’ and ’O3’ mark the excitation by collisions with O(1D), which is created by

photolysis of O2 and O3, respectively

3 Spatial Heterodyne Spectrometer

At the beginning of this project, different instrument concepts were considered to detect the mesospheric A-band limb emis-5

sions from a CubeSat (Deiml et al., 2014). For a variety of reasons, it was decided to realize the instrument with a spectrometer.

Performance considerations lead to the selection of a Fourier transform spectrometer (FTS). With its compact and monolithic

design (Shepherd et al., 2016), a spatial heterodyne spectrometer (SHS) deemed the most appropriate candidate, in accordance

with the findings of Watchorn et al. (2014) in the framework of another study.
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Figure 2. O2 A-band limb emission line calculations assuming a global temperature of 200 K and 210 K (upper panel). The spectra in the

upper panel have been normalized to show identical band intensities. The vertical bars and the blue signs mark the emission line intensities

for 200 K, the light gray area shows their intensities (multiplied by a factor of 10) as seen from an instrument with a spectral resolution of

0.1 nm . The red x signs show line intensities for 210 K. The dashed line is the filter transmission curve of the instrument presented later.

The dotted vertical line is drawn at the Littrow wavelength. Within the filter, more than 50% of the total band intensity (at 200 K) are emitted

(97 out of 183 photons/s/cm2/sr). The percentage difference of the line intensities at 200 K and 210 K are shown in the lower panel; the

symbol size scales with the absolute intensity of the lines. The atmospheric background data is taken from the HAMMONIA model, and the

spectroscopic data stems from the HITRAN database (Gordon et al., 2017).

In principle, a SHS is a Fourier transform spectrometer, where the mirrors in each arm are replaced by diffraction gratings

(Figure 3). The incoming wavefront is diffracted at the gratings, with a wavelength-dependent angle. The superposition of the

two wavefronts then produces straight, parallel, and equidistant fringes with a spatial frequency depending on the wavelength

of the light. The zero frequency of the fringe pattern is at the Littrow wavelength and small wavenumber changes result
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Figure 3. Basic design of the SHS with front and detector optics.

in fringes with a discernable spatial frequency, which can be observed with available imaging detectors. The concept

was originally proposed by Pierre Connes in a configuration called “Spectromètre interférential à selection par l’amplitude de

modulation (SISAM)” (Connes, 1958). With the advent of imaging detectors, this idea was taken up by, e.g., Harlander and

Roesler (1990); Douglas (1997); Smith and Harlander (1999); Watchorn et al. (2001); Harris et al. (2004); Roesler (2007);

Englert et al. (2010); Watchorn et al. (2010); Bourassa et al. (2016), and Lenzner and Diels (2016). The design of a SHS for5

a particular wavelength and spectral resolution follows a few simple relations, which are shortly summarized to illustrate the

main characteristics of this device. For a derivation of the mathematical expressions see, e.g., Harlander (1991); Cooke et al.

(1999); Smith and Harlander (1999), and references cited therein.

The tilt angle of the gratings with respect to the optical axis is called Littrow angle ΘL. Light at the Littrow wavenumber

σL is returned in the same direction as the incoming path, as described by the grating equation (for diffraction order one and10

grating groove density1/d):

σL =
1

2dsinΘL
(1)

Combining the intensity equation of a conventional FTS and the grating equation for small incident angles at the grating

gives the SHS equation for ideal conditions, relating the incoming radiation S at wavenumber σ to the spectral density I at

position x, parallel to the dispersion plane:15

I(x) =
1

2

∫
σ

S(σ)[1 + cos2π (κx)]dσ (2)
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κ is the heterodyned fringe frequency:

κ= 4tanΘL(σ−σL) (3)

The maximum resolving power R of a SHS is nearly proportional to the number of grating grooves illuminated by the

incoming beam or in other words the illuminated spot size W on the grating multiplied by the grating groove density g times

two:5

R= 2Wg (4)

The bandpass of a SHS is limited by the detector resolution due to the Nyquist theorem. This means, that the spectral

range λmax−λmin, which can be detected for given spectral resolution ∆λ, has to be lower than half the pixel number N :

λmax−λmin
∆λ

≤ N

2
(5)

As for conventional FTS or Fabry Perot instruments, the acceptance angle of light for a conventional SHS is inversely10

proportional to its resolving power R (e.g., Harlander, 1991), which is a few orders of magnitude larger than for conventional

grating spectrometers of the same size. The acceptance angle of a SHS can be increased significantly, if prisms are inserted

into the two interferometer arms. This configuration was first implemented for upper atmospheric temperature measurements

by Hilliard and Shepherd (1966) with a Michelson interferometer, and first introduced for a SHS by Roesler and Harlander

(1990). The prisms incline the image of the gratings so that they appear to be located in a common virtual plane which is15

oriented perpendicular to the optical axis for a wide range of incident angles. At the end, the acceptance angle of the SHS

including field widening prisms is only limited by spherical aberration for systems with small Littrow angles and astigmatism

for large Littrow angles (Harlander et al., 1992). Depending on the actual design, the prisms increase the etendue or throughput

of a SHS by 1–2 orders of magnitude. The calculation of the prism apex angle is given by, e.g., Harlander et al. (1992).

A general advantage of SHS is the relaxed alignment tolerances, because in most optical setups the gratings are imaged onto a20

focal plane array. As a result, each detector pixel sees only a small area of the optical elements, so that moderate misalignments

or inaccuracies in the surface quality affect limited spatial regions on the detector, only. This means that the interferogram is

distorted locally rather than reduced in contrast. The main benefit of the SHS is that they can be built monolithically, making

them very robust for harsh environments, e.g. during rocket launches.

The basic design parameters of the SHS were calculated analytically using the SHS equations mentioned above. The ma-25

terials of the optical glass components, the apex angle of the prisms as well as the distances between the various components

were optimized and iterated by means of optical ray tracing software (ZEMAX). The resulting basic design parameters are

summarized in Table 1. A simulated interferogram of the O2 A-Band as seen from this instrument is illustrated in Figure 4.

An integral part of a SHS design is the optical filter located between the SHS and the scene to be observed. For this

instrument, a six cavity design bandpass filter with a center wavelength of 763.6 nm and a bandwidth of 3.3 nm was chosen.30

The filter is illuminated at an angle of incidence of ±0.65o, resulting in a blue shift of 0.8 nm. The temperature coefficient of
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attribute property

fore optics (incl. filter)

wavelength range 761.9–765.3 nm

clear aperture diameter 66 mm

field of view ±0.65o

etendue (clear circular aperture) 0.014 cm2 sr

focal length 136 mm

rectangular image size (3.8 mm)2

etendue (rectangular image) 0.01 cm2 sr

SHS

grating groove density 1200 lines/mm

Littrow wavelength 761.8 nm

Littrow angle 27.2o

field of view ±5o

detector optics

numerical aperture (obj. space) 0.12

magnification 0.55

focal length 28 mm

length of imaging system (incl. SHS) 75 mm

detector

total pixel count 1920 x 1080

pixel size 5.04 x 5.04 µm2

quantum efficiency 0.4 at 760 nm

dark current per pixel at 20oC 2-4 e−/s

readout noise (rms) 1 e−

performance

optical resolving power 16,800

expected resolving power (approx.) 8,000

Table 1. Summary of optics and filter properties

this filter is 5 pm/K, resulting in a spectral shift of the bandpass of 0.3 nm between -10o and +50o. Since a SHS instrument

maps the spectrum on both sides of the Littrow wavelength symmetrically into Fourier space, the filter must be adapted in such

a way that there is no overlap of lines from different sides of the Littrow wavelength in the interferogram. In our design, the

Littrow wavelength is at 761.8 nm, e.g. the filter blocks most of the radiance from the shorter wavelength side of the Littrow

wavelength (Figure 2).5
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Figure 4. Simulated interferogram of the O2 A-Band nighttime emission for various altitudes

4 Front and Detector Optics

The purpose of the front optics is to image a scene at the Earth’s limb onto the gratings. The detector optics images the gratings

onto the focal plane of the 2-dimensional detector. The image at the detector contains spatial information about the scene in

both dimensions. An interferogram is superimposed on this scene in the direction perpendicular to the grating grooves. For

the instrument presented in this work, the gratings are oriented in such a way that the interferogram spans over the horizontal5

direction, assuming that intensity fluctuations in the horizontal direction are small or smeared out during the exposure of the

image compared to the modulation depth of the interferogram, which is valid in atmospheric limb sounding. The front-optics

(Figure 5) consists of four lenses, which image an object at infinity onto a square with an edge length of 7 mm on the virtual

image of the gratings. This corresponds to a theoretical spectral resolution of about 16,800 (Equation 4). The maximum chief

ray angle extent is about 1.9o, such that a rectangular object with an angular extent of 1.3o can be captured without10

vignetting. The clear aperture diameter of the front lens is 66 mm and the distance between the first lens and the SHS is

104 mm. The etendue of this configuration is 0.014 cm2 sr for the clear circular aperture and 0.01 cm2 sr for the rectangle

mentioned above.

The detector optics images the active area of the gratings onto the detector and consists of lenses as well. The magnification

is 0.55, i.e. the illuminated area at the detector has a diameter of about 3.8 mm. This value was chosen as a trade-off between15

the form factor required and the desired spectral and spatial resolution (see below). The distance between the beam splitter and

the detector focal plane is 46 mm.

The aperture stop of the optical system, which limits the amount of light passing through the instrument, is the mounting of

the first lens of the front optics. In the current version of the instrument, there is a Lyot stop after the last lens of the detector

optics.20
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Figure 5. Optical components of the instrument, including the interference filter, the front optics, the SHS, the detector optics and the

detector.

The detector chosen for this instrument is a low noise silicon-based CMOS image sensor from Fairchild Imaging (HWK1910A).

The optical format is 2/3 (9.7 mm x 5.4 mm) and the pixel size is 5 µm x 5 µm, resulting in 1920 x 1080 pixels in total, from

those 760 x 760 pixels are needed to capture a rectangular image of 3.8 mm2. The quantum efficiency of the detector at 762 nm

is about 0.4.

Like the SHS, the entire optical system was optimized using optical raytracing software as well. The wavefront peak-to-5

valley extension of the optical system is less than a half wavelength for center rays and one wavelength at maximum for the

edge region of the field. The extension of the point spread function is 5 µm for inner and 10 µm for outer pixels, which does not

deteriorate the determination of the different waves in the interferogram, because the highest spatial frequency to be observed

has a wavelength of about 45 µm. Optical distortions introduced in the common optical path are not part of the optimization

procedure, because they can be removed in the post-processing or calibration of the instrument.10

To evaluate the spectrometric performance of the system, the differences in the phase distortion of the two arms are most

relevant, because this would result in an irreversible loss of contrast. This quantity is not directly accessible by the figures of

merit mentioned above. This effect was investigated by calculating the wave aberrations in the exit pupil of the system for object

and reference arm, respectively. The corresponding complex amplitudes are then superposed and propagated into the detector

plane by a Fourier transformation. Taking the absolute square of the resulting amplitude gives the intensity distribution for the15

corresponding light source point (Figure 6). The detection plane was placed between the focal planes for the on-axis and

the 0.65o off-axis light source points as a compromise, and closer to the latter one to enhance the visibility on the edges

of the interferogram. Nevertheless, the visibility reduction is about 1/3 towards the edges. Interestingly, the highest

visibility is achieved by placing the detector plane outside both focal planes in a plane which is near the on axis focal

point. The suspected reason is that the shape of the focal spots, which are blurred by aberrations resulting in a reduction20
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Figure 6. Simulated interferogram for a focused configuration considering wave aberrations

of visibility, becomes more compact if the detector plane is positioned slightly out of the on axis focus, yielding to higher

contrast (Figure 7). The SHS has a fairly well athermal design, but the foci and the modulation transfer function (MTF)

of the entire optical system depend more on temperature. For low spatial frequencies, this effect is small, but for the

highest spatial frequencies seen by the instrument, the MTF reduces from about 85% at 20oC to about 70% at 0oC.

Further simulations and comparison with measurements are in preparation.5

5 Performance Assessment

To determine the expected signal-to-noise ratio of the instrument for a given integration time, we estimate the amount of

incoming light, which is available in the modulated part of the interferogram and the noise of the detector. In a SHS, 50% of

the incoming radiation are lost at the beam splitter. The holographic gratings used have an efficiency of about 2/3 at 765 nm, so

that another 1/3 of the radiation is not available in the modulated part of the radiance. Misalignments and aberrations of optical10

components are estimated to reduce the contrast of the interferogram, so that we expect to detect about 20% in the modulated

part of the interferogram.

The limb radiances of a strong line in the O2 A-band nightglow maximum recorded over an altitude range of 1.5 km are about

1·109 photons/(s cm2 sr) (c.f. Figure 2). Considering the etendue of the system and the fraction of the detector illuminated by
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Figure 7. Simulated interferograms for the center row of the 2-dimensional interferogram (Figure 6). The upper plot shows the interferogram

at the Gaussian focal point, and the lower one at a slightly shifted position, where the foci across the image considering wave aberrations are

more compact than at the Gaussian focus.

this emission layer (about 2%), and assuming that 20% of the photons end up in the modulated part of the signal, this yields

to about 50 photons/s at every pixel recording the interferogram. Since the intensities from a vertical layer of 1.5 km thickness

illuminate 20 detector rows, the average signal introduced by one emission line on an individual detector pixel is 3 photons/s.

Considering that the detector records light from all spectral elements within the bandpass of the instrument, and some radiance

will end up in the unmodulated part of the interferogram, each detector pixel will record about 40 photons/s.5

The noise of the signal is, by far, limited by shot noise, which scales with the square root of the (electrical) signal. The latter

consists of the electrons excited by the signal of interest and the dark current caused by thermal processes. According to our

own measurements, the dark current of the detector is 2–4 e−/s/pixel (corresponding to a photon flux of 5-10 photons/s/pixel)

at 20oC, which is a factor of 7–10 lower than the threshold given by the manufacturer. The dark current decreases a factor of

two every 7 K (Liu et al., 2017).10

At 20oC, the dark current is at least a factor of 5 lower than the atmospheric signal in the emission layer maximum

and therefore not a dominant source of random noise at these altitudes. This becomes more critical at other altitudes

and for higher detector temperatures. Therefore the detector should be operated below 20oC. The readout noise of the

detector was measured to 1 e−, which is in agreement with the specification given by the manufacturer. Taking into account,

that 20 detector rows are summed up for each altitude bin, this noise component is negligible for integration times larger than15

one second compared to the shot noise.

The required signal-to-noise ratio to achieve a given temperature precison was determined by Monte-Carlo simula-

tions: First, a simulated spectrum with the optical resolving power of 16,800 was calculated. This spectrum was inverse
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Fourier-transformed and white noise was added. In the next step, the spectral power in the various frequencies was

estimated by applying a Fourier-transformation using a windowing function. The resulting spectra were then used to

retrieve an atmospheric temperature profile and some other instrumential parameters, such as the spectral resolution

of the data. Considering the intensity of the A-band signal of the nightglow layer maximum and the detector perfor-

mance, the expected signal-to-noise ratio for a vertical resolution of 1.5 km and an integration time of 60 s will be 10-205

in the nightglow maximum, resulting in a retrieved temperature precision of 1–2 K.

6 Instrument Characterization

The conversion of the detector signal into calibrated spectra involves a number of calibration steps. As pointed out in the

previous section, the modulated to unmodulated signal ratio is one of the key points here. To quantify this ratio, the SHS

equation for idealized conditions (Equation 2) has to be extended (Englert and Harlander, 2006):10

I = Imodulated + Inon−modulated (6)

Inon−modulated =

∞∫
0

S(κ)R(κ)
[
t2A(x) + t2B(x)

]
dκ

Imodulated =

∞∫
0

2S(κ)R(κ)ε(x,κ)tA(x)tB(x)cos [2πκx+ ∆(x,κ)]dκ

For better clarity, the integration variable in these expression is the heterodyned fringe frequency κ instead of wavenumber

σ, which is a normal linear dependency. One of the extensions compared to Equation 2 is the introduction of different intensity15

transmission functions tA and tB for the two SHS arms. In addition, a term ε(x,κ) was added, which considers that the

modulation efficiency can depend on the location within the interferogram and its frequency. Finally, a phase distortion term

∆(x,κ) quantifying any phase and frequency distortions within the interferogram was introduced.

Before the interferograms of the instrument are analyzed, barrel or pincushion distortions of the image are corrected, because

they affect the distribution of spatial information and modify the frequency of the interferogram at the same time. Due to20

the highly compact design of the optics and the use of spherical lenses only, significant image distortions are expected. To

characterize image distortions of the entire optical system, a line grid target will be positioned in front of the instrument. Then,

the SHS arms are blocked one by one to record two images of the test target. The division model (Fitzgibbon, 2001) will be

used to correct for the spherical symmetric distortions. Within this model, radial distortion coefficients are fitted to straighten

lines in the image. These measurements will also verify the geometrical point spread functions, which are expected to be much25

smaller than the required spatial resolution of the instrument.

According to computer simulations, about 90% of the image distortions are introduced by the detector optics. Therefore it is

also possible to verify and to monitor the image distortions using interferograms. Here, the reference image is generated

from an interferogram by an adaptive edge detection algorithm. The edges correspond in a sense to the reference lines
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of a test image. It is expected, that image distortions affect interferograms with different spatial frequencies in the same

way.

To characterize and quantify the modulated part of the intensity, an optical setup with a tunable laser is used. First,

the laser light is homogenized using microlens arrays and imaged onto a rotating diffusor. The laser spot on the diffusor

is set to infinity by a large lens, such that the full aperture of the instrument is uniformly illuminated by plane waves with5

a divergence of at least ±0.65o. The laser frequency and power are continuously monitored during the measurement.

The laser power and the flux are calibrated before the measurements are taken.

The first step in the analysis of these measurements is to fit a frequency dependent polynomial correction of the

phase depending on the position in the localisation plane. Depending on the real instrument performance, the usage of

a lookup table is another option to homogenize the phase across the interferograms.10

Next, the modulated part of the signal is quantified by looking at a quantity called visibility ν, which is defined as

the amplitude of the modulation normalized to the average signal (times two):

ν =
Imax − Imin

Imax + Imin
(7)

The visibility depends on several factors, such as internal straylight, the grating performance, surface or material properties or

imperfections, misalignments, contamination, etc. Visibility depends on the modulation transfer function and can be frequency-15

dependent. It can also vary across the field as a consequence of strong aberrations or misalignments of the system. Since the

total power for each spectral element is needed for temperature retrieval, the visibility calibration is as important as a radiomet-

ric calibration, and it can even cover the radiometric calibration, if the power of the laser scene is known well enough. To get

the modulation or envelope function of the monochromatic interferogram as needed for the visibility calibration, we calculate

its Hilbert-transform, which is fundamentally the same idea as the methods described in Englert et al. (2004); Englert20

and Harlander (2006), where the corresponding complex/ imaginary interferogram is generated from the real interfer-

ogram. The sum of the signal and its Hilbert-transform as imaginary part gives an analytic or holomorphic representation of

the interferogram (e.g., Feldman, 2011). The absolute value of this complex-valued signal gives the instantaneous amplitude

or envelope of the signal.

In theory and for ideal conditions, the visibility characterization covers an additional calibration step called flatfielding cor-25

recting for non-uniformities caused by different sensitivities of detector elements, inhomogeneities within optical components,

or any kind of misalignment of the optical components including the SHS. Englert and Harlander (2006) give an overview

about different flatfielding approaches. To verify the uniformity of the calibrated signal, we plan to perform the ’balanced

arm flatfielding approach’, where the entire instrument is illuminated by our laser-driven optical setup or any other uniform

radiation source and one by one SHS arm is blocked. In this case, the measured radiation corresponds to the ’non-modulated’30

intensity term.

14



Figure 8. Design image of the instrument. The total length is 30 cm and the front face about 10x10 cm2.

7 Conclusions

We presented a design for a CubeSat-sized instrument to obtain mesospheric temperatures. A spatial heterodyne spectrometer

is used to measure the rotational structure of the O2 A-band, which is complemented by fore- and detector optics. The size of

the entire instrument including a straylight baffle is around 3.5 litres. A three-dimensional design image of the instrument

is shown in Figure 8. The utilization of an extendable baffle and some minor design modifications allow to fly the5

instrument on a three–unit CubeSat. The power consumption is about 6 W and the data-rate 50 kByte/image. The instrument

can deliver temperatures at a 1–2 K precision for an integration time of about one minute for nightglow and a few seconds

for dayglow. A prototype version of this instrument was tested in March 2017 on a sounding rocket by a student team (Deiml

et al., 2017). The instrument survived the rocket launch and worked nominally. Unfortunately, it was not possible to record

limb spectra with a stable attitude due to a failure of the detumbling mechanism of the rocket. The next step in this project is10

the advancement of this instrument for an in-orbit verification on a satellite. The main requirements on a satellite platform are

a stable line-of-sight attitude, which should be a few arc minutes for the time of one measurement (a few seconds) (Kaufmann

et al., 2017). The control of that angle could be an order of magnitude less precise, since it can be compensated to some degree

by an extended vertical field of view of the instrument.
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