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Abstract. Over the past decade, polarized weather radars have been at the forefront of the search 19 

for a replacement of estimating precipitation over the spatially, and temporally inferior tipping buckets. 20 

However, many radar-coverage gaps exist within the Continental US (CONUS), proposing a dilemma in 21 

that radar rainfall estimate quality degrades with range. One possible solution is that of X-band weather 22 

radars. However, the literature as to their long-term performance is lacking. Therefore, the overarching 23 

objective of the current study was to analyze two year’s worth of radar data from the X-band dual-24 

polarimetric MZZU radar in central Missouri at four separate ranges from the radar, utilizing tipping-25 

buckets as ground-truth precipitation data. The conventional R(Z)-Convective equation, in addition to 26 

several other polarized algorithms, consisting of some combinations of reflectivity (Z), differential 27 

reflectivity (ZDR), and the specific differential phase shift (KDP) were used to estimate rainfall. Results 28 

indicated that the performance of the algorithms containing ZDR were superior in terms of the normalized 29 

standard error (NSE), missed and false precipitation amounts, and the overall precipitation errors. 30 
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Furthermore, the R(Z,ZDR) and R(ZDR,KDP) algorithms were the only ones which reported NSE values 31 

below 100%, whereas R(Z) and R(KDP) equations resulted in false precipitation amounts equal to or 32 

greater than 65% of the total gauge recorded rainfall amounts. The results show promise in the utilization 33 

of the smaller, more cost-effective X-band radars in terms of quantitative precipitation estimation at 34 

ranges from 30 to 80 km from the radar. 35 

 36 

Introduction 37 

Since the late 20th Century, weather radars have been at the forefront of multiple studies to 38 

determine their accuracy in determining precipitation estimation (e.g., Kitchen and Jackson, 1993; Smith 39 

et al., 1996; Ryzhkov et al., 2003; Cunha et al., 2013; Simpson et al., 2016). Multiple researchers have 40 

reported accurate measurements in radar rainfall estimates when compared to terrestrial-based 41 

precipitation gauges (e.g., tipping buckets). This has several important implications for multi-disciplinary 42 

fields which rely on highly spatialized and temporal precipitation data, which can be obtained from radar 43 

estimates compared to the spatially inferior rain gauges. 44 

 Most studies in the US have utilized the National Weather Service (NWS) Next Generation 45 

Radar (NEXRAD) system, comprised of Weather Surveillance Radar – 1988 Doppler (WSR-88D) series 46 

instruments, operating at S-band (approximately, 10 – 11 cm) wavelength for their analyses. However, the 47 

cost of installation and maintenance of these instruments are much larger in comparison to the smaller, 48 

lighter-weighted X-band radars, operating at, approximately, 3 cm wavelength (Matrosov 2010). Berne 49 

and Krajewski (2013) have stated that, primarily due to the sparse coverage of the WSR-88D S-band 50 

radar system, smaller, more frequently-placed X-band radars are a viable option for remediating radar 51 

rainfall errors that have been recorded at large distances (e.g., Smith et al., 1996; Ryzhkov et al., 2005; 52 

Simpson et al., 2016). Although long-term NWS studies have been conducted (Haylock et al., 2008; 53 
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Fairman et al., 2012; Goudenhoofdt and Delobbe 2012, 2016), the literature of multi-year studies of X-54 

band weather radars is not as abundant. 55 

Matrosov et al. (2002) conducted a study analyzing 15 separate rainfall events during an eight-56 

week field campaign in Virginia while utilizing the National Oceanic and Atmospheric Administration’s 57 

(NOAA) X-band dual-polarimetric radar. Several radar rainfall algorithms were implemented, including 58 

combinations of the equivalent reflectivity (Ze), differential reflectivity (ZDR), and the specific 59 

differential phase-shift (KDP), an R(KDP) equation, and two R(Ze) relations, over a region with three 60 

ground-truthed rain gauges. It was found that the combined polarimetric estimator (i.e., utilization of Ze, 61 

KDP, and ZDR) resulted in the overall least standard deviation (22%), while the case-tuned R(Ze) relation 62 

was slightly higher of 23%. It is noted that R(Ze) measurements are derived from a priori knowledge of 63 

Ze, KDP, and ZDR values, whereas the combined polarimetric estimator was not, implying the latter is 64 

superior for real-time use. However, the performance of the combined polarimetric estimator works best 65 

when rain rates exceeded 1.5 mm h-1, while R(Ze) algorithms were superior at lighter rain rates. Results 66 

from the R(KDP) algorithm reported an overall negative bias of 6-9% when compared to the gauge data, 67 

in addition to a standard deviation of 30%, primarily due to the sensitivity of KDP measurements while 68 

utilizing X-band radars. 69 

Expanding upon the literature of implemented R(KDP) algorithms through X-band radars, Wang 70 

and Chandrasekar (2010) assessed the performance of three separate R(KDP) algorithms from the 71 

Collaborative Adaptive Sensing of the Atmosphere (CASA) Engineering Research Center through the use 72 

of the distributed collaborative adaptive sensing (DCAS) network. The DCAS network, essentially, 73 

implements multiple radar networks within a relatively small spatial extent, all operating at different 74 

volume coverage patterns (VCP’s) such that high spatiotemporal resolution data is achieved in addition to 75 

overall lower beam height over the area of interest (McLaughlin et al., 2009), mitigating effects that have 76 

been observed due to rain rate estimations at large ranges (Kitchen and Jackson, 1993; Ryzhkov et al., 77 

2005; Simpson et al., 2016). The results indicated that through the use of several different R(KDP) 78 
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algorithms from multiple different radars, radar Quantitative Precipitation Estimates (QPE) can be 79 

improved significantly. Furthermore, the R(KDP) algorithms exhibited similar bias values (between -6 80 

and 8 %) that were reported by Matrosov (2002) and Matrosov et al. (2010). However, the normalized 81 

standard error (NSE) values ranged from, approximately, 16 to 54%, indicating that the overall error in 82 

R(KDP) rain rate estimates were less than half of the total amount of rain observed for the study. 83 

The overarching objective of the current study is to add to the relatively few articles on X-band 84 

dual-polarization radar rain rate performance. Authors have proposed (e.g., Berne and Krajewski 2013) 85 

that the capability of implementing more X-band radars in comparison to the relatively sparse and 86 

expensive S-band WSR-88D NEXRAD system to enhance precipitation estimation is a viable option 87 

(particularly over the inter-mountain West), especially for hydrologic analyses. However, others (e.g., 88 

McLaughlin et al., 2009) suggest the sheer number of radars to achieve such a difference in radar rain rate 89 

estimation is impractical. Further justification for increasing, at least partially, the construction of X-band 90 

weather radars is necessary through analyses of those that already exist.  91 

The current study analyzes two year’s of radar data from the newly-installed dual-polarimetric 92 

MZZU X-band radar located in Central Missouri. Over 100 different algorithms were implemented to test 93 

the performance of the radar while utilizing measurements of reflectivity (Z), differential reflectivity 94 

(ZDR), and the specific differential phase shift (KDP). Rain rates were calculated based on combinations 95 

of the aforementioned variables and compared to four separate tipping buckets, which served as ground-96 

truth. To determine the performance of all algorithms, multiple statistical analyses were conducted, 97 

including the bias, mean absolute error, and normalized standard error. Additionally, several contingency 98 

factors were calculated, such as the overall number of hits, misses, false alarms, and correct negatives. 99 

Lastly, quantitative analyses, including the missed precipitation amount (MPA), false precipitation 100 

amount (FPA), and overall error were computed to determine the performance of the 108 algorithms. 101 

Analyses, such as the current study, are important for determining the accuracy and limitations of dual-102 

polarimetric radars such that their incorporation into hydrologic models may be correctly assessed (Ogden 103 
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et al., 1997; Vieux, 2004; Vieux et al., 2004; Vieux and Bedient, 2004; Gourley et al., 2010; Cunha et al., 104 

2015). Furthermore, studies analyzing the performance of X-band radars will allow further indications as 105 

to whether they should be installed in regions devoid of optimal NWS WSR-88D coverage. 106 

 107 

Data and methodology 108 

Study location and gauge data 109 

The dates analyzed ranged from August 2015 to August 2017 which, when accounting for radar 110 

down time for maintenance and offline issues, yielded 608 days, or 14952 hours for analyses. The current 111 

study was conducted in Boone County, located in Central Missouri (Figure 1), where the MZZU radar is 112 

located at 38.906°N and 92.269°W. Several Missouri Mesonet rain gauges lie within the domain of the 113 

MZZU radar, located in Versailles, Auxvasse, Williamsburg, and Vandalia, MO, located at, 114 

approximately, 75-km, 30-km, 45-km, and 80-km from the radar, respectively.  115 

Missouri is characterized as a continental type of climate, marked by relatively strong seasonality. 116 

Furthermore, Missouri is subject to frequent changes in temperature, primarily due to its inland location 117 

and its lack of proximity to any large lakes. All of Missouri experiences below-freezing temperatures on a 118 

yearly-basis. The TE525 tipping bucket series performs optimally in temperature conditions between 0 119 

and 50°C. Albeit no events recorded a daily maximum temperature above 50°C, 72 days in the cool 120 

season (e.g., January and February) recorded temperatures below 0°C. However, only 8 days that 121 

exhibited sub-freezing average daily temperatures registered precipitation. Thus, less than 1% of the 122 

entire data might be further unrepresentative of the actual precipitation. For this study, it was assumed 123 

since the amount of precipitation recorded by the gauges during these events were below 5 mm in 124 

precipitation, no significant errors would affect the overall statistics.  125 

One tip from the fulcrum device registers 0.254 mm of precipitation, which is the minimum 126 

resolution required for statistics to be analyzed between the radar and the tipping gauge. In spite of the 127 
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well-documented literature discussing the errors associated with tipping buckets (e.g., Ciach and 128 

Krajewski, 1999a, 1999b; Habib and Krajewski 1999; Habib et al., 2001; Ciach 2002), the gauges are 129 

well-maintained and well-documented in terms of instrumentation failure, clogging, or other 130 

discrepancies with the devices. Therefore, they are assumed to be valid as ground-truth devices. 131 

 132 

Radar discussion and data 133 

The radar for the current study is part of the Missouri Experimental Project to Stimulate 134 

Competitive Research (EPSCoR) program, primarily aimed at enhancing Missouri’s modelling capacity 135 

of weather and climate on plants and communities at the local, and regional scale. The X-band radar 136 

(MZZU) was installed in the Summer of 2015, in which data acquisition became possible by the Fall of 137 

2015 near the South Farm Research Center, located in central Boone County, MO (Figure 1). The 138 

instrument is utilized, primarily, for research purposes, but is also quasi-operational. Specifics regarding 139 

the radar are detailed in Table 1. 140 

Raw radar data were analyzed using the Weather Decision Support System – Integrated 141 

Information (WDSS-II) program (Lakshmanan et al., 2007a) to assess reflectivity (Z) in addition to dual-142 

polarized radar variables including differential reflectivity (ZDR) and specific differential phase shift 143 

(KDP). Many different quality control techniques (e.g., Lakshmanan et al., 2007b, 2010, 2014) were 144 

implemented to the weather radar data processing with WDSS-II. Three other variables were also 145 

generated based on a KDP-based smoothing field (Ryzhkov et al., 2003) for reflectivity, differential 146 

reflectivity, and specific differential phase: DSMZ, DZDR, and DKDP, respectively. These were 147 

analyzed to determine whether the additional KDP-smoothing fields tend to over- or underestimate QPE’s 148 

(Simpson et al., 2016).  149 

All six variables (Z, ZDR, KDP, DSMZ, DZDR, and DKDP) were converted from their native 150 

polar grid to 256 x 256 1 km Cartesian grids, where the lowest radar elevation scans (0.5°) were used to 151 
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mitigate uncalculated effects from evaporation and wind drift. An average of 5-minute scans were used 152 

for each of the variables, which were aggregated to hourly totals to be compared to the hourly tipping-153 

bucket accumulations. In spite of previous reports suggesting 5 minute to hourly aggregates can have 154 

significant effects on QPE (Fabry et al., 1994), evidence has been presented that overestimation in 155 

accumulations may not exceed 26% for a pixel size of 1 km (Shucksmith et al., 2011).  156 

The latitude and longitude of each of the 15 gauges were matched with the radar pixel that 157 

corresponds to the Cartesian grid value of the seven radar variables which were then implemented in rain 158 

rate calculations. Three single-polarized R(Z) algorithms were tested, including R(Z)-Convective, R(Z)-159 

Stratiform, and R(Z)-Tropical. The dual-polarized algorithms implemented are based from previous S- 160 

and X-band research to more closely resemble the sensitivity of the radars on KDP estimates. Although, 161 

theoretically, the relationship between R and Z for a well calibrated radar as controlled by the drop size 162 

distribution should be independent of radar wavelength. However, as the phase shift of the wave is a 163 

function of the ratio of wavelength to drop radius, the R(KDP) relationships are wavelength dependent.  164 

The five R(Z,ZDR) S-band equations tested by Simpson et al. (2016) were implemented, whereas 165 

six, three, and two X-band R(KDP) algorithms were adopted from Matrosov (2010), Wang and 166 

Chandrasekar (2010), and Koffi et al. (2014) (Table 2). Additionally, two X-band R(Z,ZDR) and 167 

R(ZDR,KDP) algorithms were adopted from Matrosov (2010) and Koffi et al. (2014), respectively. All 168 

measures of Z, ZDR, and KDP were tested in addition to their KDP-smoothed derivatives, DSMZ, 169 

DZDR, and DKDP. A rain rate echo classification variable (RREC) was also computed, which chooses 170 

whether an R(Z), R(KDP), R(Z,ZDR), or R(ZDR, KDP) algorithm is implemented in estimating rain rates 171 

based on the radar fields of Z, ZDR, and KDP (Kessinger et al., 2003). This echo classifier will provide 172 

evidence as to whether a multi-parameter algorithm is superior to the single algorithms.  173 

Furthermore, algorithms were grouped based on the variables implemented to estimate rain rates. 174 

Collectively, three R(Z) algorithms were tested, R(Z)-Convective, R(Z)-Stratiform, and R(Z)-Tropical, in 175 

addition to the DSMZ counterparts. Five separate R(Z,ZDR) equations were also implemented, including 176 
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five R(Z,DZDR), five R(DSMZ,ZDR), and the five R(DSMZ,DZDR) combinations. These 26 equations 177 

encompass the S-band algorithms to be tested on the X-band radar, to determine how versatile the 178 

equations are. Conversely, there were eleven R(KDP) X-band algorithms (and, thus, eleven R(DKDP) 179 

equations), two R(Z,ZDR), and two R(ZDR,KDP) equations in addition to their DSMZ, DZDR, and 180 

DKDP variables. 181 

Statistical, contingency, and quantitative analyses 182 

The results were split between three different categories: statistical, contingency, and quantitative. 183 

The three statistics utilized included the bias, mean absolute error (MAE), and normalized standard error 184 

(NSE). The NSE was chosen in place of the root-mean-square-error (RMSE) due to the ambiguity of the 185 

measure (Willmott and Matsuura, 2005; Jerez et al., 2013). Contingency analyses included the number of 186 

hits, misses, and false alarms. Accounting for the quantitative measure of precipitation due to the number 187 

of misses and false alarms, the missed precipitation amount (MPA) and false precipitation amount (FPA) 188 

were calculated. Additionally, the sum of precipitation is presented to render a long-term performance 189 

(i.e., two year’s) of the radar in comparison to the ground-truthed gauges.  190 

 191 

Results and discussion 192 

From the four separate gauges, Auxvasse was the closest to the radar (approximately, 30 km) 193 

while Vandalia was the furthest (80 km), with Versailles slightly closer at 75 km (Figure 1). 194 

Williamsburg lies 45 km from the radar, placing it near the middle of the group of gauges in terms of 195 

distance. The overall average amount of gauge recorded precipitation between the four sites was, 196 

approximately, 1650 mm (Figure 2). Excluding the warm season (approximately from April – 197 

September), the amount of gauge-recorded rainfall was similar across the four gauges. The large variance 198 

in precipitation during the warm season were due, primarily, from several isolated convective cells which 199 

were recorded at the certain gauges (e.g., Williamsburg), but missed at others (e.g., Versailles). The 200 
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normalized standard error (NSE) was chosen as the statistic to assess the overall performance of each 201 

algorithm due to the (typical) non-Gaussian representation of precipitation (Kleiber et al., 2012; Alaya et 202 

al., 2017). 203 

- 204 

Smoothed versus non-smoothed QPE 205 

For the 26 S-band equations analyzed, the R(Z)-Convective had the lowest NSE at Auxvasse 206 

(1.6), Williamsburg (1.51), and Versailles (1.59) whereas the R(Z)-Stratiform outperformed at the furthest 207 

gauge, Vandalia (1.64) (Figure 3). A pattern of the R(DSMZ)-Tropical and then R(Z)-Tropical 208 

performing the worst was exhibited, with the RREC performing worse than either the R(Z)- or R(DSMZ)-209 

Convective and Stratiform equations. Although there were no significant (p < 0.10) differences between 210 

R(Z) and R(DSMZ), the difference between R(Z)-Tropical and R(DSMZ)-Tropical was significant (p < 211 

0.10). These R(Z) algorithms in addition to the RREC performed best at 75 km from the radar, whereas 5 212 

km further (Vandalia) displayed the largest NSE values. This may be due, at least in part, to the fact that 213 

single gauges were utilized as ground truth, whereby any of the numerous errors associated with tipping 214 

bucket rain gauges (Ciach and Krajewski 1999a; Habib et al. 2001; Ciach 2002) occurred.  215 

Due to the small impact of smoothing the ZDR field (i.e., DZDR) on QPE, neither the 216 

R(Z,DZDR) nor R(DSMZ,DZDR) are reported. The addition of the DSMZ field was inferior for all 217 

R(Z,ZDR) equations in terms of NSE. Two National Severe Storm Laboratory (NSSL) derived R(Z,ZDR) 218 

equations (Ryzhkov et al., 2003) were superior compared to their R(DSMZ,ZDR) counter-parts. The 219 

R(Z,ZDR) and R(DSMZ,ZDR) equation 2 recorded the largest NSE values (neither recording values less 220 

than 2.5) since the equation was derived from a sub-tropical environment (Brandes et al., 2002). The NSE 221 

values for the single- and dual-pol equations ranged from 1.6 to 2.5 and 1.6 to 4.3 at a distance of 30 km 222 

from the radar, respectively. The range in NSE values were least for the gauge at 75 km from MZZU (less 223 

than 1.5 units). 224 
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Only the R(Z,ZDR)2 and R(DSMZ,ZDR)2 equations displayed a significant (p < 0.10) at each of 225 

the four gauges, demonstrating the significant impact smoothed reflectivity has on QPE. The other 226 

significant difference in QPE was at the closest gauge between R(Z,ZDR)1 and R(DSMZ,ZDR)1. These 227 

two algorithms were not derived by NSSL and, typically, performed the worst overall as the climatology 228 

of precipitation in which these equations were derived (Bringi and Chandrasekar, 2001; Brandes et al., 229 

2002) were more tropical compared to the continental properties at the NSSL. 230 

 231 

Statistical analyses 232 

From the 68 algorithms overall, the best R(Z) equation was R(Z)-Convective, similar to the 233 

findings of Simpson et al. (2016). However, R(Z,ZDR)4 outperformed R(Z,ZDR)5, which displayed the 234 

lowest NSE in Simpson et al. (2016). Furthermore, the best R(KDP) algorithm was from Matrosov 235 

(2010), while the best performing R(ZDR,KDP) equation was from Koffi et al., (2014), algorithms 6 and 236 

11 from Table 2, respectively. These were chosen to be the best overall algorithms from each grouping of 237 

equations due to their lowest MAE and NSE values (Table 3).  238 

With Auxvasse being the closest gauge to the radar (30 km), this location registered the least bias 239 

across all grouping of algorithms, excluding RREC. In fact, the R(Z,ZDR) equation showed no bias (0.0 240 

mm), while R(KDP), R(ZDR,KDP), and RREC displayed slightly positive biases (0.3, 0.3, and 0.5 mm, 241 

respectively). This is surprising since ZDR has not been calibrated for the MZZU radar, which has been 242 

shown to significantly alter QPE (Hubbert and Bringi, 1995; Atlas, 2002; Illingworth, 2004; Williams et 243 

al., 2005; Zrnic et al., 2010; Ice et al., 2013). Only the R(Z) equation registered a negative bias (-0.1 mm), 244 

consistent with the fact that the conventional R(Z) algorithm is inappropriate for stratiform precipitation 245 

(Klazura and Kelly, 1995; Seo et al., 2015). Interestingly, the RREC registered less bias as distance from 246 

the radar increased (0.5, 0.2, 0.2, and 0.1 mm for distances of 30, 45, 75, and 80 km, respectively) 247 

whereas most other algorithms displayed an increase in magnitude as the distance from MZZU increased. 248 
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In general, Williamsburg, the second-furthest gauge from MZZU (45 km), registered the second-249 

best bias with the notable exception of the R(Z) equation. For example, underestimation on the order of -250 

0.3 mm was recorded at Williamsburg for R(Z), while -0.2 mm and -0.4 mm were registered at Versailles 251 

(75 km) and Vandalia 80 km), accordingly. Furthermore, Auxvasse was the only of the four gauges which 252 

did not register a negative bias for R(Z,ZDR). The largest biases were recorded by R(KDP).  253 

The mean absolute errors values recorded by the R(Z,ZDR) equation were 1.3, 1.4, 1.4, and 1.5 254 

mm at distances of 30, 45, 75, and 80 km, respectively. Otherwise, the other four algorithms represented 255 

increasing error with increasing range from MZZU, with the lowest MAE being R(ZDR,KDP) with 1.2 256 

mm, and the largest being RREC (1.7 mm). This indicates that the RREC algorithms was incapable in 257 

correctly determining the proper QPE algorithm based on the values of radar variables and near storm 258 

environment surroundings.  259 

 At no locations for R(Z), R(KDP), or RREC did the normalized standard error fall below 100%. 260 

Therefore, the two algorithms containing the differential reflectivity recorded NSE’s less than 100%, in 261 

particular at the two closest gauge locations. The R(ZDR,KDP) registered 84.7 and 93.1% at Auxvasse 262 

and Williamsburg, whereas R(Z,ZDR) displayed NSE values of 89.2 and 99.0%, respectively. 263 

Furthermore, these two algorithms calculated less NSE at the furthest location (Vandalia) than at the third 264 

furthest location (Versailles), in spite of there being a 5 km difference in range between the two locations, 265 

further demonstrating the impact of gauge errors on QPE (Sevruk, 2005; Rasmussen et al., 2012). 266 

 267 

Contingency analyses 268 

To determine where the bulk of errors implicit within the bias, mean absolute error, and 269 

normalized standard error originate from, contingency analyses were calculated, including hits, misses, 270 

and false alarms.  271 

The number of tips recorded at Auxvasse, Vandalia, Versailles, and Williamsburg were 810, 725, 272 

762, and 855, accordingly (Figure 5). In terms of the number of hits, misses, and false alarms, an analysis 273 
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of variance (ANOVA) table was constructed to determine whether any significant differences exist 274 

between the five algorithms. Results indicate that, with 99% confidence, the number of hits between the 275 

five algorithms, in addition to the number of misses and false alarms did not differ significantly from one 276 

algorithm to the next. Therefore, the results of contingency analyses will be conducted utilizing the 277 

R(ZDR,KDP) algorithm to reduce redundancies.  278 

The number of hits were 688, 603, 647, and 736 at Auxvasse, Vandalia, Versailles, and 279 

Williamsburg, respectively, indicating that 85, 83, 85, and 86% of the precipitation events were correctly 280 

assessed by the radar. With 122, 122, 115, and 119 misses, only 15, 17, 15, and 14% of rainfall events 281 

were missed. However, the occurrences of false alarms were similar to the number of hits and, for 282 

Vandalia, exceeded the number of gauge tips. For example, Auxvasse, Williamsburg, Versailles, and 283 

Vandalia registered 7 more, 4 more, 9 less, and 135 more false alarms than the number of hits. Therefore, 284 

it may be concluded that the bulk of the errors in the QPE’s were, primarily, due to false alarms. 285 

In spite of the prevalent occurrences of the number of false alarms, the correlation coefficient 286 

values between the gauge recorded and radar estimated precipitation were as large as 0.70, particularly for 287 

the R(Z)-Convective and RREC algorithms (Figure 6). Furthermore, these two algorithms had the same 288 

R2 values for all of the four stations of 0.7, 0.68, 0.56, and 0.5 for Auxvasse, Williamsburg, Versailles, 289 

and Vandalia, respectively. The R(KDP) equation had similar values with the exception of Auxvasse, 290 

which was 0.69 (0.01 less). 291 

The ZDR-containing algorithms have been shown to be superior to the other three equations in 292 

terms of NSE (Table 3), yet produced the, overall, lowest R2 values. Therefore, the added benefit of dual-293 

polarized parameters may be limited to certain types of hydrometeors (Cunha et al., 2015). The best 294 

values were 0.63 and 0.62 at Auxvasse for R(Z,ZDR) and R(ZDR,KDP), respectively, while the lowest 295 

values were 0.43 and 0.41 at Vandalia, accordingly. The reason for the findings may be due to the fact 296 

that the R(Z,ZDR) and R(ZDR,KDP) algorithms showed more spread in the correlation data, particularly 297 

at Auxvasse. Although the RREC displayed spread in the data as well, the magnitudes of error were, 298 
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typically, contained below 15 mm as estimated by the radar. Furthermore, the radar tended to 299 

underestimate precipitation for R(Z) and RREC, but showed larger radar estimated precipitation for 300 

R(KDP) and R(ZDR,KDP), correlating with the bias values described earlier (Table 3). 301 

 302 

Quantitative analyses 303 

The quantitative analyses are the amount of precipitation associated with each miss, false alarm, 304 

or due to error overall. Additionally, the overall accumulation of precipitation over the course of the study 305 

is presented to determine whether the errors cancel out over longer time periods. 306 

Although it was found that 15, 17, 15, and 14% of rainfall events were missed, this accounted for 307 

6.5, 5.6, 11.0, and 11.6% of the error relative to the gauge for the R(Z)-Convective equation (Table 4). 308 

This indicates that, on average, most of the missed precipitation events were for values less than 1.0 mm. 309 

This may be due, at least in part, to the fact that tipping buckets are incapable of measuring the beginning 310 

of a precipitation event, or, very light rainfall periods (Ciach, 2002). For algorithms that did not contain 311 

ZDR, the furthest location (Vandalia) typically registered the largest MPA values, in addition to 312 

contributing the most amount of MPA compared to the gauge accumulated total for any of the four 313 

locations. The largest MPA for R(Z) was at Vandalia (180.8 mm), which was 11.6 of the total gauge 314 

amount, where QPE’s estimated at Williamsburg only recorded 99.4 mm of MPA (5.6% of total). 315 

Although Williamsburg (second-furthest gauge) recorded the least amount of MPA for R(Z), R(KDP) and 316 

RREC, the closest gauge (Auxvasse) registered the least amount of missed precipitation for R(Z,ZDR) 317 

(101.1 mm) and R(ZDR,KDP) (105.1 mm). Overall, the R(Z,ZDR) algorithm registered the least amount 318 

of missed precipitation overall at Auxvasse. 319 

 Conversely, the R(KDP) equation was calculated to have the lowest MPA (95.6) at Williamsburg, 320 

with R(Z) and RREC both recording 98.7 mm. This accounted for 5.4 and 5.6% of the total gauge 321 

recorded rainfall amount (1769.3 mm), while R(Z,ZDR) and R(ZDR,KDP)’s MPA percentages were 9.9 322 

and 11.3%, accordingly. Therefore, algorithms containing ZDR tend to underestimate the rain rate at 323 
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Williamsburg such that values less than 0.25 mm were registered and, ultimately, assumed no 324 

precipitation to be present. Larger magnitudes of ZDR were thus estimated by the radar, lowering the 325 

overall QPE for both R(Z,ZDR) and R(ZDR,KDP). 326 

Due to the fact Versailles and Vandalia were 75 and 80 km from the MZZU radar, their 327 

differences in overall error were dependent upon the algorithm chosen. For example, similar to the 328 

instances when R(Z), R(KDP), and RREC were lower in MPA and the MPA percentage at Williamsburg 329 

than Auxvasse, these algorithms were more accurate at Versailles than Vandalia. This result demonstrates 330 

that the algorithms containing ZDR were superior at close (Auxvasse) and further (Vandalia) ranges from 331 

the MZZU radar, whereas the other three equations were best at intermediate distances (i.e., between 30 332 

and 75 km).  333 

 As noted in the contingency analyses section, the number of false alarms outnumbered the counts 334 

of misses by more than six times, mirroring the number of hits, overall. Therefore, the false precipitation 335 

amount (FPA) is, unsurprisingly, approximately six times the MPA, particularly for the algorithms that 336 

did not contain ZDR. Conversely, R(Z,ZDR) and R(ZDR,KDP) recorded, approximately, twice the 337 

amount of FPA as MPA. For example, the FPA for R(Z,ZDR) at the gauge locations at increasing 338 

distances from the radar were 265.1, 295.8, 417.1, and 382.9 mm, whereas the MPA were 101.1, 175.5, 339 

224.1, and 204.3 mm, respectively. This indicates that no MPA for R(Z,ZDR) was more than 15% of total 340 

precipitation measured at the gauge locations, whereas FPA did not exceed 27% (but was no lower than 341 

15%). However, R(ZDR,KDP) displayed the lowest FPA, overall, at each locations such that it did not 342 

exceed 375 mm (373.1 mm at Versailles) nor did it register any less than 230 mm (233.7  mm at 343 

Auxvasse). 344 

 At all locations, the R(Z), R(KDP), and RREC overestimated the amount of total radar estimated 345 

QPE compared to the gauge recorded rainfall (Figure 7). Furthermore, the FPA tend to exceed the overall 346 

gauge recorded rainfall amount for these algorithms as well (Table 4). The only algorithm which had a 347 

lower total accumulation of radar estimated QPE than the gauge recorded amount of rainfall was 348 
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R(ZDR,KDP) at both Williamsburg and Vandalia. However, R(Z,ZDR) had more similar values (within 349 

20 mm) at Vandalia than R(ZDR,KDP) than at Williamsburg.  350 

The total precipitation error is the quantitative value of all errors in the QPE. In other words, it is 351 

the quantitative value of precipitation analyzed by the normalized standard error, and follows a similar 352 

pattern. The TPE for all locations analyzed by the R(KDP) equation did was not lower than 2000 mm 353 

(Table 4). Conversely, none of the ZDR-containing equations had a TPE larger than 1800 mm, but the 354 

only locations where the TPE was less than the gauge accumulated precipitation amount were at 355 

Auxvasse and Williamsburg for both R(Z,ZDR) and R(ZDR,KDP). For these two algorithms, less than 356 

40% of the total error were due to either MPA or FPA, whereas the FPA resulted in the bulk of error for 357 

the other 3 algorithms. This indicates that most of the errors, when utilizing ZDR, were due to errors by 358 

hits.   359 

The sum of precipitation (Figure 7) represents the amount of precipitation that would result if the 360 

direct accumulation of radar estimated QPE were conducted, such that missed precipitation were not 361 

included and false alarms were accounted for. Essentially, it acts as a long-term performance of the QPE 362 

from each algorithm at each site. From the quantitative analyses, it is seen that the ZDR-containing 363 

algorithms R(Z,ZDR) and R(ZDR,KDP) not only displayed the overall lowest MAE and NSE, but are 364 

more accurate with their overall accumulation of precipitation with respect to time (Figure 7). In other 365 

words, in spite of the relatively large FPA and MPA across all algorithms at each location, the ZDR-366 

containing equations cancelled the FPA, MPA, and overall MAE over time, resulting in accurate gauge-367 

accumulation precipitation amounts represented as the closeness in values to the gauge recorded rainfall 368 

and total sum of precipitation black and magenta contours in Figure 7, accordingly). 369 

 370 

Conclusions 371 
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 The current study analyzed two years’ worth of X-band dual-polarimetric quantitative 372 

precipitation estimates (QPE) from Central Missouri. Four separate terrestrial-based precipitation gauges 373 

(i.e., tipping buckets) served as ground-truth. Over 50 algorithms were tested, of which the analyses of the 374 

five best from each grouping of algorithms from R(Z), R(Z,ZDR), R(KDP), R(ZDR,KDP), and echo 375 

classifiers, were reported. Statistical, contingency, and overall quantitative analyses were reported to 376 

determine not only the best performing algorithms overall, but to determine the course of the error. 377 

 The best equations were determined to be the R(Z)-Convective algorithm, an NSSL-derived 378 

R(Z,ZDR) equation from Ryzhkov et al., (2003, 2005), an R(KDP) equation from Matrosov (2010), an 379 

R(ZDR,KDP) equation from Koffi et al. (2014), and the rain rate echo classifier. Algorithms containing 380 

reflectivity typically exhibited negative biases, of which, the R(Z,ZDR) had the lowest bias values, 381 

overall. Conversely, the KDP-containing algorithms showed positive biases, with the R(KDP) being the 382 

largest, overall.  383 

 Overall, the R(Z,ZDR) and R(ZDR,KDP) equations performed the best. This was evidenced as 384 

these algorithms having the lowest MAE and NSE at nearly every gauge location. Furthermore, these 385 

were the only equations which exhibited NSE values below 100 %, particularly at the two closest gauge 386 

locations (30 and 45 km from the radar). However, these equations had the overall lowest correlation 387 

coefficient (R2) values in comparison to the other algorithms. It is theorized that these low R2 values were 388 

due, primarily, from an overall larger spread in the QPE’s from these particular equations. The R(Z), 389 

R(KDP), and RREC algorithms exhibited correlation values as large as 0.70 at the closest gauge location, 390 

while values as low as 0.5 were reported at the furthest location (Vandalia, 80 km). A typical reduction in 391 

R2 values were observed as range from the radar increased. 392 

 The majority of the error from the QPE’s at each location were due to false alarms, potentially 393 

due to evaporation (Kumjian and Ryzhkov, 2010; Martinaitis et al., 2017). In some instances, particularly 394 

for R(Z), R(KDP), and RREC, the false precipitation amounts were up to 65% of the total of the gauge 395 

accumulated rainfall amounts. Conversely, the ZDR-containing equations displayed not only the lowest 396 
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missed and false precipitation amounts, but the overall accumulation of precipitation from these two 397 

equations were most similar to the accumulated gauge rainfall amounts, thus indicating the robust 398 

performance of the utilization of ZDR in QPE estimates. 399 

 The results presented display the accuracy of X-band QPE estimates. It is noted that, however, no 400 

equations were derived and tested for the current study. The results of the performance of the radar may 401 

be improved by not only comparing results to disdrometer data, but also from combinations of the 402 

algorithms at specific rain rates, much like the overall Joint Polarization (Ryzhkov et al., 2005; 403 

Giangrande and Ryzhkov 2008) and CSU-CHILL (Cifelli et al., 2011) algorithms. The promising results, 404 

particularly through the implementation of the differential reflectivity, further the considerations as to 405 

installing the devices as permanent, cost-effective solutions to the WSR-88D NEXRAD system, 406 

especially in regions where a gap in the radar coverage exists. 407 
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Figures 570 

 571 

 572 

Figure 1. Study location including to the four gauges utilized for the current study. From left-to-right, 573 

the gauges are Versailles, Auxvasse, Williamsburg, and Vandalia, MO. The MZZU X-band radar is 574 

plotted in addition to 25-, 50-, 75-, and 100-km range rings. 575 
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 583 

Figure 2. Accumulated gauge-recorded precipitation from the beginning to the end of the study for the 584 
four-separate terrestrial-based tipping buckets. 585 
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 605 

Figure 3. Performance of the 3 R(Z) and 3 R(DSMZ), RREC, 5 R(Z,ZDR) and 5 R(DSMZ,ZDR) S-band 606 
equations at each of the four gauge locations. 607 
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 627 

Figure 4. Performance of the 11 R(KDP), 2 R(Z,ZDR), 2 R(DSMZ,ZDR), 2 R(ZDR,KDP), and 2 628 
R(ZDR,DKDP) X-band algorithms at each of the four gauge locations. 629 
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 649 

Figure 5. Contingency analyses at each of the four gauges utilized for the current study 650 

utilizing the R(ZDR,KDP) equation, including the accumulated number of tipping bucket 651 

tips, hits, misses, and false alarms. 652 
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 669 

Figure 6. Correlation coefficient values based on the comparison of the gauge recorded (abscissa) 670 

and radar estimated (ordinate) rainfall amounts for each of the five-best performing algorithms at 671 

each of the four gauges utilized. 672 
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 689 

Figure 7. Cumulative sum of the gauge recorded precipitation, missed precipitation amount 690 

(MPA), false precipitation amount (FPA), total precipitation error (TPE), and the overall 691 

accumulation of precipitation estimated by the specified radar QPE algorithm at each of the four 692 

gauges locations. 693 
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Tables 709 

 710 

Table 1. MZZU X-band radar characteristics. 711 

Variable Value 

Location (x,y) 

Altitude Above Ground Level 

Dual Pulse Repetition Frequency 

Radar Type 

 

Peak Power 

Frequency 

Pulse Width 

Diameter 

Beamwidth 

Gain 

Sensitivity 

Elevation Angle 

38.906°N, -92.269°W 

308 m 

5:4 Stagger: 2,000 Hz – 124 kts 

EWR Solid State: Parabolic prime focus 

composite reflector (Dish mounted radome cover) 

1 kW standard 

9.35 GHz + 50 MHz (User Selectable) 

1 – 80 µs 

1.82 m 

1.27° 

42 dB 

(80 μs at 50 km range): -1.5 dBZ 

-5° to 120° 

 712 
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Table 2. List of X-band polarimetric algorithms used for radar rainfall estimates. 713 

baKDPKDPR )(      

Algorithm number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

a 

17.0 

16.5 

16.6 

14.4 

16.4 

14.9 

47.3 

18.2 

19.6 

13.6 

21.0 

b 

0.73 

0.71 

0.82 

0.71 

0.80 

0.79 

0.79 

0.79 

0.82 

0.83 

0.57 

c 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

References 

Matrosov (2010) 

Matrosov (2010) 

Matrosov (2010) 

Matrosov (2010) 

Matrosov (2010) 

Matrosov (2010) 

WC (2010) 

WC (2010) 

WC (2010) 

Koffi et al. (2014) 

Koffi et al. (2014) 

cbZDRaZZDRZR ),(      

Algorithm number 

1 

2 

 

0.0039 

0.0056 

 

1.07 

1.02 

 

-5.97 

-5.60 

References 

Matrosov (2010) 

Matrosov (2010) 

cb KDPaZDRKDPZDRR ),(      

Algorithm number 

1 

2 

 

15.1 

20.9 

 

-0.29 

-0.05 

 

0.94 

0.59 

References 

Koffi et al. (2014) 

Koffi et al. (2014) 

 714 

 715 

 716 
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Table 3. Statistical analyses for the MZZU radar and the best algorithms from each grouping of 717 

equations with their respective distance from the radar. 718 

 719 
Algorithm Auxvasse 

30 km 

Williamsburg 

45 km 

Versailles 

75 km 

Vandalia 

80 km 

R(Z) Bias: -0.1 

MAE: 1.3 

NSE: 102.6 

Bias: -0.3 

MAE: 1.4 

NSE: 107.8 

Bias: -0.2 

MAE: 1.4 

NSE: 119.9 

Bias: -0.4 

MAE: 1.5 

NSE: 134.6 

R(Z,ZDR) Bias: 0.0 

MAE: 1.3 

NSE: 89.2 

Bias: -0.2 

MAE: 1.6 

NSE: 99.0 

Bias: -0.3 

MAE: 1.6 

NSE: 110.5 

Bias: -0.2 

MAE: 1.5 

NSE: 106.9 

R(KDP) Bias: 0.3 

MAE: 1.3 

NSE: 119.1 

Bias: 0.4 

MAE: 1.3 

NSE: 126.1 

Bias: 0.5 

MAE: 1.5 

NSE: 142.5 

Bias: 0.6 

MAE: 1.6 

NSE: 158.6 

R(ZDR,KDP) Bias: 0.3 

MAE: 1.2 

NSE: 84.7 

Bias: 0.3 

MAE: 1.3 

NSE: 93.1 

Bias: 0.5 

MAE: 1.4 

NSE: 104.7 

Bias: 0.5 

MAE: 1.5 

NSE: 101.8 

RREC Bias: 0.5 

MAE: 1.6 

NSE: 103.1 

Bias: 0.2 

MAE: 1.7 

NSE: 108.1 

Bias: 0.2 

MAE: 1.7 

NSE: 120.0 

Bias: 0.1 

MAE: 1.7 

NSE: 135.1 

 720 

 721 

 722 

 723 

 724 

 725 

 726 

 727 

 728 

 729 

 730 

 731 

 732 

 733 

 734 

 735 

 736 

 737 
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Table 4. Quantitative analyses, including the missed precipitation amount (MPA), false 738 

precipitation amount (FPA), and total precipitation error (TPE). Percent indicates the relative 739 

error due to either MPA or FPA relative to the gauge accumulated precipitation amount (Gauge 740 

Precip row). 741 

 742 

 Auxvasse Williamsburg Versailles Vandalia 

Gauge Precip 1695.7 1769.3 1583.7 1557.4 

R(Z) MPA: 110.3 

Percent: 6.5 

FPA: 634.0 

Percent: 37.4 

TPE: 1739.6 

MPA: 99.4 

Percent: 5.6 

FPA: 633.9 

Percent: 35.8 

TPE: 1906.7 

MPA: 174.4 

Percent: 11.0 

FPA: 674.23 

Percent: 42.6 

TPE: 1899.3 

MPA: 180.8 

Percent: 11.6 

FPA: 811.3 

Percent: 52.1 

TPE: 2096.9 

R(Z,ZDR) MPA: 101.1 

Percent: 6.0 

FPA: 265.1 

Percent: 15.6 

TPE: 1512.0 

MPA: 175.5 

Percent: 9.9 

FPA: 295.8 

Percent: 16.7 

TPE: 1751.0 

MPA: 224.1 

Percent: 14.2 

FPA: 417.1 

Percent: 26.3 

TPE: 1750.2 

MPA: 204.3 

Percent: 13.1 

FPA: 382.9 

Percent: 24.6 

TPE: 1664.3 

R(KDP) MPA: 107.6 

Percent: 6.3 

FPA: 794.7 

Percent: 46.9 

TPE: 2020.3 

MPA: 95.6 

Percent: 5.4 

FPA: 797.7 

Percent: 45.1 

TPE: 2230.6 

MPA: 172.1 

Percent: 10.9 

FPA: 840.6 

Percent: 53.1 

TPE: 2256.6 

MPA: 171.9 

Percent: 11.0 

FPA: 1012.1 

Percent: 65.0 

TPE: 2470.4 

R(ZDR,KDP) MPA: 105.1 

Percent: 6.2 

FPA: 233.7 

Percent: 13.8 

TPE: 1436.5 

MPA: 200.4 

Percent: 11.3 

FPA: 254.2 

Percent: 14.4 

TPE: 1647.1 

MPA: 268.8 

Percent: 17.0 

FPA: 373.1 

Percent: 23.6 

TPE: 1657.3 

MPA: 224.4 

Percent: 14.4 

FPA: 321.8 

Percent: 20.7 

TPE: 1586.0 

RREC MPA: 109.3 

Percent: 6.4 

MPA: 98.7 

Percent: 5.6 

MPA: 174.2 

Percent: 11.0 

MPA: 180.8 

Percent: 11.6 
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FPA: 635.2 

Percent: 37.5 

TPE: 1748.0 

FPA: 635.2 

Percent: 35.9 

TPE: 1912.7 

FPA: 674.2 

Percent: 42.6 

TPE: 1899.9 

FPA: 811.3 

Percent: 52.1 

TPE: 2103.6 

 743 
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