
Reply to anonymous Referee 1 comments to Neural network cloud
top pressure and height for MODIS
Nina Håkansson et al.

1 General comment

1.1 Referee comment:

This paper describes a new approach to retrieving cloud-top height using a neural network. It is an interesting report and gives

us hope for improved retrievals. It will be more valuable if additional information is provided. It is much improved from the

original submission. I realize that this is a first step, but a bit more analysis would provide the springboard for the next steps.

This is an important paper, but too brief.

Reply:

We thank Referee 1 for acknowledging the paper as important and for all interesting comments that will help us extend the

analysis of the paper.

2 Specific comments

2.1 Referee comment:

"Nowcasting" should be "nowcasting"

Reply:

We have correct this.

Changes in manuscript:

– page 1 line: 2

– page 2 line: 27

2.2 Referee comment:

Here and elsewhere: please spell out the acronyms the first time they are used (e.g., MODIS, AVHRR)
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Reply:

We have correctes this. We had misinterpreted manuscript-preparation guidelines regarding AVHRR and MODIS. We have also

updated the manuscript to use the correct acronym CPR (CloudSat) (Cloud Profiling Radar for CloudSat (CLOUD SATellite))

everywhere.

Changes in manuscript:

– page 1 line: 3-5, 7-12

– page 2 line: 7, 16-23, 27-28, 31-33

– page 3 line: 11-12, 17, 20

– page 4 line: 4, 15-16

– page 5 line: 31-33

– page 7 line: 5-6

– CloudSat changed to CPR (CloudSat) many occurances

2.3 Referee comment:

Sec. 2.2 and 2.3: Please indicate nadir or viewing angles of the CALIOP and CPR.

Reply:

We have added that the viewing angle for CALIOP is 3◦, and for CPR 0.16◦. In Section 2.1 we have also added information

of the satellite zenith angles for the MODIS data. For the matches with CPR the MODIS satellite zenith angle varies between

0.04◦ and 19.26◦; and for matches with CALIOP between 0.04◦ and 19.08◦.

Changes in manuscript:

– page 4 line: 4-5, 10, 17

– page 9 line 31-32 made clear what was meant by near NADIR observations.

Reply:

2.4 Referee comment:

Sec. 3.2 pg. 4, 25: while the CO2 absorbing band is generally referred to as the 15− µm band, the MODIS channels are in the

13.3− 14.4µm range.
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Reply:

We have corrected the channel ranges mentioned.

Changes in manuscript:

– page 5 line: 29

2.5 Referee comment:

Sec 3.3.2: Were the clouds single-layered or both single and multi-layered? It is not clear here. Please indicate if you are

training only for single layered clouds or training for the topmost layer. Is there a lower optical depth limit of the clouds

detected in the CALIOP 1-km product?

Reply:

To make it clearer we have explicitly stated that both single and multilayer clouds where included. We have also clarified that

we used the uppermost layer of the top layer pressure variable as this is missing in the text (also noted by Referee 2).

Changes in manuscript:

– page 6 line: 6-7

Clouds optically thick enough to be detected when averaging the lidar data on 1km resolution should be included in the

CALIOP 1km data. As we actually have the total optical depth from the 5km included in our match-up data (needed for other

studies) we checked the lowest reported optical depth in 5km data for clouds that are detected in the 1km data, it was 1.5e-05.

2.6 Referee comment:

Sec. 4 Are there biases in any of the results for both CALIOP and CloudSat? The mean absolute error does not tell us any

tendencies one way or the other. Knowing biases is critical. While MAE is an interesting and informative variable, it gives us

less information about variability, which the standard deviation of the differences (SDD) along with the bias would provide us,

especially when added to the MAE. Additions of the bias should be included in the tables and discussed. If there is no bias,

then the SDD would still provide useful additional information and place the results in the same context as many previously

published comparison studies. Addition of biases may help the discussion.

2.6.1 Referee comment (RC3):

Thanks for the explanation for not including the bias and SDD. This is precisely the kind of discussion that belongs in the

paper. Without this explanation and discussion, it would appear to many readers that something is being hidden by the authors.

The obvious question to most interested parties, particularly those who are potential users of the data, is, "Is the cloud height

3



retrieved with this method, on average, in the right location? If not, how far away from the right altitude is it?" That is essentially

the question both reviewers have asked. If I am assimilating or verifying a model output, I will want to put the cloud in the

correct layer. An MAE of 500 m can just as easily be produced by all positive or all negative differences and thus I might expect

to be within 500 m of the correct height on average, but I will not know if it is plus or minus 500 or if I am always biased high or

low. The distributions in the current figures help but are not quantitative. If I look at other cloud height data sources and see that

they tell me whether I should expect to be too low or too high on average, I might be more inclined to use one of their datasets.

For example, Hamann et al. (AMT, 2014) summarized their differences in bias, stdv and rmsd. Straightforward. It is not the

whole story as argued in the response, but an important part. and one most people can relate to. The reader is not well served

when obvious statistics are excluded. An explanation for why the bias and SDD are not included has been provided to the

reviewers, but not to the readers. There is a lot of good discussion and information in your explanation about the retrievals that

are important to understand. For example, the breakdown of biases according to cloud height is very helpful. The differences in

bias between CPR and CALIPSO follows from some of my other comments. I find the paper unacceptable without such basic

statistics. I think that the paper should include all of it: bias, SDD, Skew, Median, and MAE. The discussion then should be

directed at explaining what the best measure should be and why one is better than the other. Part of that is already done in the

supplement.

Reply:

In our first reply we argued that bias and SD should be excluded because the error ditributions are non-Gaussian. We where

convinced by the arguments of Reviewer 1 that all the measures along with the discussion of them belong in the paper. Specially

as the bias and SDD are something most people can relate to, and that the intuitive way is to interpret them as describing a

Gaussian distribution.

Therefore the paper is updated with bias, SDD, Skew, median and to help the dicussion and interpretation of the statistics

also IQR (interquartile range), RMSE (root mean square error) and mode where included. To give the potential users more

quantitative information on the errors to expect and to help the discussion also percentage of absolut error above 0.25, 0.5, 1

and 2 km were included.

The extended discussion and result sections where combined into one section with several subsections: Validation with

CALIOP top layer pressure, Discussion of statistics measures for non-Gaussian error distributions, Validation with CALIOP

and CPR (CloudSat) height, Validation separated for low, medium and high level clouds, Validation with CALIOP separated

for different cloudtypes, Geografical aspects of the NN-CTTH performance and Future work and challenges.

Changes in manuscript:

– Discussion of measures and result added to abstract at page 1 line: 17-24.

– Removed lines from abstract to keep it short at page 1 line 27 and page 2 line: 1-2.
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– Moved lines to page 8 line 27-33 (from page 13 line 33-35 and page 14 line 1-4) as they make more sense here after the

reorganization of the Result section.

– Reformulated (see answer to 2.21 to Reviwer 2) and moved lines to page 9 line 1-5 (from page 15 line 4-6) as it makes

more sense here.

– This is most of the part of the old Results section conserning pressure is now found in Section 4.1 at page 9. Notice that

lines 28-30 where moved to line 9-11.

– The new section with discussion of measures for non-Gaussian error distributions are added at page 10 and 11 Section

4.2.

– The old part of the Result section that were treating height is now in Section 4.3 and 4.4 page 12-14. Results of the

additional measures (mode, median RMSE etc.) are included here.

– The geographical aspects of the NN-CTTH now as a separate section at page 14 Section 4.6.

– Removed page 15 line 8-9 due to section reorganization.

– Moved page 15 line 10-11 moved to conclusion page 17 line 14-16

– Moved page 15 line 13-15 to page 16 line 4-6.

– Moved one sentence from page 16 line 22-23 to page 17 line 16-18. Also reformulated it (See answer 2.9).

– Conclusions regarding the added masures included at page 16 line 29-33 and at page 17 line 1-2.

– Added conclusions related to non-Gaussian error distributions at page 17 line 8-13.

– Table 6 and Table 7 replaced with four new tables pages 27-32.

– The figure referenced in section 4.2 is added at page 41.

2.7 Referee comment:

Pg. 8, 14: What is the motivation for comparing with CloudSat? Is this a better reference? If so, why use CALIPSO? If not,

why is it here? How were the matches made on the larger CPR footprint? Are there sampling differences between CALIOP

and CPR? The CPR often misses the top portions of ice clouds and has difficulty detecting clouds with small particles. If the

biases discussed earlier are known, the CPR information might be useful if the results are interpreted more in the discussion

section. Also, what is the vertical resolution of CloudSat? Would that impact the differences?
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Reply:

The CloudSat validation are included to get an independent source of validation, not better just different. We have improved the

discussion regarding this, see also reply to comment 2.9. Nearest neighbour matching is used; we have added this information

in the article as the description of the matching method was missing.

Clouds not detected at all by CPR (CloudSat) are not a problem as it simply means that we will have less data. That the CPR

often misses the top portions could partly explain why results are not improving for NN-MetImage and NN-MetImage-NoCO2

(compared to NN-MERSI-2) when validating with CloudSat. We have added this discussion. The vertical resolution of CPR

(CloudSat) is 0.5km this means that we should expect MAE higher than 250m, this information is also added.

Changes in manuscript:

– Matching described at page 6 line 4-5.

– Motivation for using CPR (CloudSat) included at page 8 line 20-26.

– Discussion of differences in result between CPR (CloudSat) and CALIOP added at page 12 line 11-16, page 13 line 6-11

and page 14 line 5-10.

2.8 Referee comment:

Pg.8, 26: The plots are distributions of the differences. Bias is the average of those differences. Please correct.

Reply:

We have correct that.

Changes in manuscript:

– page 35 line: 1

2.9 Referee comment:

Sec. 5 The discussion section is very thin. There is a paucity of what the results shown in the figures and table might mean.

For example, what do the differences computed using two different references, CALIOP and CPR, tell us? All samples, except

in polar regions are taken in midday or near midnight for Aqua. Could there be any diurnal impacts of training only with this

dataset? What happens if the neighbouring pixel is turned off in the training? The conclusions state that that is an important

input. Can its impact be quantified to support that conclusion?

Reply:

We thank Referee 1 for the suggestions and valuable comments that will help to improve the discussion.
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The usage of two validation truths strengthens our results. The CloudSat results confirm that the improvements are not only

due to that the neural networks have learnt to replicate errors of CALIOP. (For the argumentation let us pretend that CALIOP

would always place clouds at 5km height if the surface pressure is 1000 hPa, a neural network could learn this but it would not

really improve the accuracy of the retrieved cloud top height). Considering the large improvement it was not an alarming risk

that the neural network was learning only to mimic CALIOP errors, but with the independent validation truth CloudSat this is

confirmed. We have better motivated the inclusion of CloudSat in the paper.

Changes in manuscript:

– page 8 line: 20-26

What happens if the neighbouring pixels are not used is better described. We have discussed these results in more detail to

support better the statement in the conclusion.

Changes in manuscript:

– page 9 line: 18-20

– The conclusion was moved and reformulated at page 17 line 16-18 (moved from page 16 line 22-23).

There might be diurnal impact not captured in the current dataset. However results are valid for Aqua which we trained

for. Applying similar neural networks to other sensors with different filter functions and ECT will require additional work or

validation not in the scope of this paper.

2.10 Referee comment:

Pg. 9, 22: It seems that using matches with Terra will not help much in the non-polar regions. Is this a realistic possibility given

the orbital differences?

Reply:

As latitude is not used as a variable, data for higher satellite zenith angles included for Polar regions could help also in non-

Polar regions. However it might be that the high latitude matches will not help the network the if varity of weather situations

and cloud heights at high latitudes are too small. This must be tested. We have extend the discussion regarding adding Terra

matches.

Changes in manuscript:

– page 15 line: 20-23
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2.11 Referee comment:

Pg. 9, 30: This section is where the futher work on the sources of error (e.g., various cloud types) could be presented. It would

help the discussion considerably.

Reply:

The Validation with CALIOP separated for different cloudtypes where included to answer the question on sources of errors

from different cloud types. This was not possible to do with version 3 of CALIOP data as several of the classes of the feature

classification are empty for CALIOP version 3 data. Therefore the validation was updated to use CALIOP version 4 data.

As the validation with CALIOP are now done with the latest version, also the CPR (CloudSat) was updated to use the most

recent version. The discussion and result section where merged into one section with several subsections. And the validation

for different cloud types where included in section 4.5 Validation with CALIOP separated for different cloudtypes.

Changes in manuscript:

– Update of used version page 4 line 12-14, 18.

– A new Section 4.5 with results for different cloud types at page 14.

– Updates to the conclusion section at page 16 line 26-27 and page 17 line 5-6.

– Included the results for different cloud types in a new table at page 33.

– Figures, Tables and results concerned were updated to use the new versions.

2.12 Referee comment:

Sec. 6. More analysis in the discussion section would help flesh out this section.

Reply:

We have extended the Conclusion section, reflecting what was added to the Results and Discussion section.

Changes in manuscript:

– page 16 and 17 Section 5

– One scentence at page 17 line 29-20 were reformulated to be clearer.
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Reply to anonymous Referee 2 comments to Neural network cloud
top pressure and height for MODIS
Nina Håkansson et al.

1 Overall quality of the discussion paper ("general comments"):

1.1 Referee comment:

In the paper a novel retrieval of cloud top pressure and height using neural networks is presented. The presented retrieval

technique is state of the art and an accurate technique. To account for different availabilities of channels on different satellites,

a few modification of the neural network are investigated revealing the information content of the different channels. The

new algorithms are compared to two reference algorithms, the CTTH algorithm of the NWCSAF PPS-v2014 and the MODIS

collection 6 L2 height product. Additionally the algorithms is compared to CALIOP and CPR measurements. The quality of

the algorithm is evaluated in terms of the mean absolute error (MAE). The improved quality of the results is impressive. From

my point of view, I would request for at least another quality measure like standard deviation (similar to Tables 6 and 7). In

overall, good work!

Reply:

We thank Referee 2 for this positive comment, and for the other valuable comments that will help us improve the paper further.

Regarding adding standard deviation, which was also requested by Referee 1, we chose the MAE as evaluation metric, over

bias and standard deviation of differences (SDD), for many good reasons. However, some of the good reasons became clear

to us first when we where faced with the request to include them in the article. Most important is that including bias and SDD

of the error distribution intuitively gives the reader the mental picture of a Gaussian error distribution, centred at the bias.

However we are dealing with skewed and even bimodal distributions as shown in Figure 2 and the mean is not at the centre of

the distribution; i.e. the bias is not located at the peak of the error distribution.

The overall standard deviation is much affected by the largest errors. Some large errors are expected due to the differences

between the passive and active sensors and the different FOV (field of view). Therefore we argue that the MAE is a better

measure of variation of the error compared to SDD. The largest errors are of course also interesting, but when investigating

these some care should be made to separate true errors from expected differences due to for example cloud edges in the FOV.

We have included also the interquartile range (IQR) as it is more robust measures of variablity less sensitve to outliers compared

to SDD.
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As the bias and SDD are traditionally used when evaluating cloud top height retrieval algorithms these are included along

with the discussion of why they are not so useful or even misleading. To help the discussion also IQR, RMSE (root mean

square error), mode, median and percentage of absoulte errors above 0.25, 0.5, 1 and 2 km were included.

Changes in manuscript:

– See reply to Referee 1 point 2.6.

2 Individual scientific questions/issues ("specific comments")

2.1 Referee comment:

p1 line 23: CTH might also be used in data assimilation of atmospheric motion vectors.

Reply:

We have added this to the text.

Changes in manuscript:

– page 2 line 8

2.2 Referee comment:

Introduction: A short description of the traditional technics to retrieve cloud top pressure and height could be added to the

introduction. (or cite an overview paper like Hamann et al. "Remote sensing of cloud top pressure/height from SEVIRI: analysis

of ten current retrieval algorithms." Atmospheric Measurement Techniques 7.9 (2014): 2839-2867.)

Reply:

We have added the suggested reference.

Changes in manuscript:

– page 2 line 12-13

2.3 Referee comment:

The introduction should motivate, why it is expected that using machine learning, in particular neural networks, could improve

the expected results.
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Reply:

Many CTH retrieval algorithms including MODIS-C6 and PPS-v2014 include some fitting of temperatures to NWP tempera-

ture profiles. This is most difficult in the case of inversions both as one temperature occurs at several pressure heights in the

profile but also as the inversions are often not captured accurately enough in the NWP temperature profile. Many different

techniques are used to deal with this, for example PPS-v2014 will place the cloud at the inversion height if the temperature is

not more than 0.5 to 2K lower than the temperature at the inversion. MODIS-C6 has another approach using climatological

lapse rates over sea for clouds likely to be low. These kinds of fitting techniques a statistical machine learning technique could

probably do better. A motivation is included in the introduction.

Changes in manuscript:

– page 3 line 1-3

2.4 Referee comment:

Merge chapter 2.1.1 into chapter 3.2. (and skip the sentence (p3 line 10) “The MODIS Collection 6 cloud product were used

as an independent. . .”, you said that before).

Reply:

We have removed section 2.1.1 and moved the information from it to section 2.1 and removed the repeated information.

Changes in manuscript:

– page 3 line 28, 30, 31

2.5 Referee comment:

Chapter 2.2 Add a short sentence, why you chose the CALIOP 1km product and not also 5km or 10km product which are more

sensitive to optically thin clouds.

Reply:

The 1km CALIOP product was selected because it has the resolution closest to the MODIS resolution. It is expected that the

thinnest cloud seen by CALIOP lidar is invisible to the passive imagers, so it should not be a problem that the thinnest clouds

are missing in the 1km data. However we have also done some tests using AVHRR-GAC data and CALIOP 5km (Version 4)

resolution for training (this is outside the scope of this article). The first tests show that results improve if the thinnest (0.05

or 0.1 in optical depth) clouds are excluded from the training. If these networks (trained on AVHRR-GAC) are applied on the

validation data (MODIS) of this article the MAEs of the retrievals are between 76hPa to 79hPa. We have added a sentence

about why 1km data was chosen.
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Changes in manuscript:

– page 4 line 12

2.6 Referee comment:

Chapter 2.4 add the version number of the ECMWF model and add product name and version number of the OSISAF data

used in this study.

Reply:

We have added the versions and product names in section 2.4.

Changes in manuscript:

– page 4 line 24-26

2.7 Referee comment:

You might consider to add the PPS-v2014 and MODIS C6 algorithm to table 3 and 4.

Reply:

We have added them to Table 4, this will give the clear view of what channels are used for which method also for them. We

suggest that they are not included in Table 3 as it describes Network specific variables. There was also an error in table 4,

the NN-OPAQUE uses channel 12µm as described in Table 3 not channel 11µm. We have correct this as well and sorted the

columns from lowest to highest wave length.

Changes in manuscript:

– page 25 Table 4

2.8 Referee comment:

Please make the order of algorithms in table 3, 4 and 5 consistent.

Reply:

We did this in the first revision, and can not find any remaning inconsistencies.

2.9 Referee comment:

p5 line 5: how often is a pressure lower than 70 hPa retrieved?

4



Reply:

It varies with each network from 0 up to 0.05%, we have added this to the text.

Changes in manuscript:

– page 6 line 9-10

2.10 Referee comment:

p5 line 10: Why did you choose this number of levels? Is it sufficient to use 6 levels to represent the boundary layer inversions

or other small scale features?

Reply:

Five of the levels (surface, 950, 850, 700, 500) where already used in the PPS-v2014, so this was our starting point. We tested

to use the troposphere pressure, but then the networks became very sensitive to the type of NWP-data used. Instead we added

the 250hPa level to have one more high level. We did tested increasing the number of levels near the ground by adding levels

at 800, 900 and 1000hPa, but the improvement was not large enough to motivate the extra computational time. One common

problem for cloud height retrieval algorithms is that inversions are not represented accurately enough in the NWP data. As

mentioned previously, MODIS-C6 instead uses climatological lapse-rates over sea to avoid this problem, other algorithms use

sharpening techniques at the inversion. So it is not clear that more levels which would better represent the inversions in the

NWP data would improve the neural network results, but this could be further investigated.

2.11 Referee comment:

p5 line 21: do you skip non cloudy pixels in the 5x5 pixel standard deviations?

Reply:

No, all pixels are included.

2.12 Referee comment:

p5 line 20: the B3.7 has a solar component. Did you correct for this during day/night?

Reply:

No correction was made, that channel is used just like the others. The information that the solar component is not treated was

added to the text.
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Changes in manuscript:

– page 9 line 26-27

2.13 Referee comment:

p6 chapter 3.3.2: You chose to use specific days for training and others for validation. Given that you only use a limited number

of days, wouldn’t it be more to randomly select independent pixels from all available dates for training, validation, and testing

to represent a larger variety of weather situations?

Reply:

Unfortunately all pixels in the dataset we have are not independent. A typical cloud is much larger than one pixel; there could

be hundreds of pixels with almost identical data in the datasets. If we would randomly select independent pixels from all days

for each dataset we would in practice use the same data all the time. This would cause the neural network to overtrain as the

during training validation data would be the same as the training data. And in the last validation step results would be overly

positive as also the validation data would be in practice the same as the training data.

Random sampling from all data has been suggested to us previously. We have therefore added the discussion to the article

why it is not possible.

Changes in manuscript:

– page 3 line 25-27

2.14 Referee comment:

p 6 line 19: Did you test other configurations that 30/15 neurons in the first/second layer? If yes, how was the performance?

Reply:

We did one test with 20/15 this network (NN-AVHRR) was 1 hPa worse and one with 30/45/45 (NN-AVHRR) this was 2.5hPa

better but also took 5 times as long time to retrieve pressure. This information have been included in the text.

Changes in manuscript:

– page 15 line 28-31

2.15 Referee comment:

Chapter 3.3.3: May batch size and momentum be changed during the training process?
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Reply:

No they can’t.

2.16 Referee comment:

p 7 line 27: consider to discuss the solar component of the 3.7 mue m channel. To my opinion this NN could perform better

when corrected for that (e.g. adding the solar time as input variable).

Reply:

We considered adding the sun zenith angle as variable; however we can not decide how the neural network would use it. In the

data we do not have all sun zenith angles present globally. It could be that the neural network would use the sun zenith angle

to decide that during this time of day clouds of a particular height are most common. It does not have to be bad though and

can be tested in future studies. The performance of NN-AVHRR1 could probably be improved it the solar component of 3.7 is

treated explicitly. We have added discussion about the solar component of 3.7 µm.

Changes in manuscript:

– page 9 line 26-27

2.17 Referee comment:

p8 line 5: Maybe express it positively: All NN can reproduce a clear bi-modal pdf very similar to CALIPSO, the pdf of

PPS-v2014 deviates from this shape . . .

Reply:

We have changed the formulation, thank you for the suggestion.

Changes in manuscript:

– page 10 line 3-7

2.18 Referee comment:

p8 line 7: It is written “for the best performing network”. Did you train several networks for one channel configuration? If so,

could you describe the number of trained networks in chapter 3.2.2, please?

Reply:

With the the best performing networks we meant that the NN-NWP, NN-OPAQUE, NN-BASIC and NN-BASIC-CIWV was

excluded. We have clarified this in the text.
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Changes in manuscript:

– page 10 line 22-23

2.19 Referee comment:

p 8, line 11: according to my table 6, the NN-MetImage is better than the NN-MetImage- NoCO2.

Reply:

Yes it does! However the NN-MetImage does not perform well for higher satellite zenith angles. Only networks that perform

well for all satellite zenith angles are discussed in this sentence. We have added a sentence to make it clearer.

Changes in manuscript:

– page 12 line 21-22

2.20 Referee comment:

p 8, line 15: do you have an idea, why the MAE against CPR is larger than the MAE against CALIOP for NN-MetImage and

NN-MetImage-NoCO2?

Reply:

This we think it partly because the NN-MetImage and NN-MetImage-NoCO2 have some skill in predicting very thin high

clouds that are not detected by the CPR-Radar. We have added discussion about this.

Changes in manuscript:

– page 12 line 11-16

2.21 Referee comment:

p 9, line 9: could you please describe a bit more in detail the differences seen in Figure 7?

Reply:

We have described the differences in more detail.

Changes in manuscript:

– page 9 line 1-5 (moved from page 15 line 4-6 due to the reorganization of the Result section)

8



2.22 Referee comment:

Chapter 5 Discussion: Could you also comment on applying your NN technique on geostationary satellites? What would be

the main differences/challenges?

Reply:

This technique should not be limited to polar orbiting satellites. As the instrument SEVIRI has the two most important channels

at 11µm and 12µm it should be possible to apply the technique to SEVIRI data. More data (in terms of number of days)

compared to MODIS may be needed to produce enough matches. As the SEVIRI resolution is coarser results might be degraded

compared to MODIS. Matches of SEVIRI with CALIOP will occur at many different satellite zenith angles. This might make

it possible to use the CO2 channel on SEVIRI to improve results without losing performance skill at high satellite zenith angles.

We have commented on using the NN-CTTH technique for geostationary satellites in the paper.

Changes in manuscript:

– page 16 line 16-19

A compact listing of purely technical corrections ("technical corrections": typing errors, etc.)

2.23 Referee comment:

– p5 line 29 and thereafter: don’t write CO2 with cursive letters

– consider to write NoCO2 (in MetImageNoCO2) not in cursive letters.

Reply:

We have kept the notation with subscript but without cursive letters. All CO2 are updated to be written without cursive letters.

2.24 Referee comment:

Figure 1 (p21): consider to have the figures in the same order as the algorithms are mentioned in table 3, 4, and 5.

Reply:

This is a reasonable request. However it is also nice to have the two AVHRR based algorithms next to each other so they can

be compared. Also this order makes the two networks performing bad at high satellite zenith angles appear on the last row.

And changing the order increases the risk to mix them up in later references. If someone refers to the bad satellite zenith angle

behaviour in Figure 2 (h) in the discussion paper, and an interested reader by accident finds the final revised paper (assuming
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there will be one) and finds the result for NN-AVHRR1 in that sub figure that is not good. As there are also good reasons to

keep the current order of sub figures we argue that ther order should not be changed.

2.25 Referee comment:

– p 8, line 34 and following: avoid the abbreviation NN-CTTH, e.g. change: that the NN-CTTH all have -> that all NN

retrievals have . . .

– avoid NN-CTTH abbreviation (which one do you mean? all NN retrievals or NN-MetImage or another one?)

– p 10, line 12: avoid NN-CTTH -> specify which retrieval you referring to

Reply:

We have kept the NN-CTTH as the name for the neural network method in the paper. We have present it as the name and

avoided using it where it might be confusing.

Changes in manuscript:

– page 8 line 29 Reformulated from NN-CTTH all have. Note that the lines where moved from page 13 line 35.

– page 16 line 24 Clearified that NN-CTTH means all networks in this sentence.

– page 16 line 33 Reformulated to not use NN-CTTH abbreviation.

2.26 Referee comment and changes in manuscript:

C: Please check consistent spelling of NWC SAF (e.g. p2 line 11) and NWCSAF (e.g. p1 line 19)

R: Changed to use NWC SAF page 1 line 7 and page 17 line 23.

C: Please check consistent spelling of PPS-2018 (e.g. p1 line 19) and PPS-v2014 (e.g. p2 line 23)

R: Sentence removed page 2 line 2.

C: Please check the space between numbers and units and the typeset of the units.

R: Done

C: Try to reduce number of paragraphs in the abstract, e.g. p1 line 8 is a one sentence paragraph.

R: The one sentence paragraph was merged with the following paragraph. However the new paragraph about the statistical

measures means that there are still 5 paragraphs in the abstract.

10



C: please check capital letters, e.g. Neural network (p3 line 26), neural network (p2 line 14) or Neural Network.

R: Updated to use neural network without capital letters at page 4 line 23.

C: p3 line 22: (change . to ,) . . . of the networks, see Table 1 for selected Dates

R: Changed at page 4 line 19.

C: Move p4 line 9-14 to line 6.

R: Moved page 5 line 15-18 to line 7-10.

C: p4 line 27: introduce abbreviation GDAS (as written in line 30)

R: Abbrevation introduced page 5 line 31-32.

C: p4 line 28: add “the”: . . . and the PFAAST radiative transfer model. . .

R: Added “the“ at page 5 line 32.

C: p5 line 3 add: The “uppermost cloud” top layer. . .

R: Added at page 6 line 6.

C: p5 line 11: reformulate “much of what”

R: Reformulated page 6 line 15-16.

C: p5 line 19: introduce physical unit “B” (in the lines before)

R: Unit introduced at page 6 line 15.

C: p5 line 23: B_11 “for” neighboring pixels -> B_11 “of the” neighboring Pixels

R: Changed at page 6 line 28.

C: p5 line 25: avoid brackets

R: Reformulated without brackets at page 6 line 29-30.

C: p 15 line 7, add “and”: BT for water vapour channels at 6.7 “and” 7.3 mue m

R: Added or at page 23 line 7.

C: p15 line 9/10/11, remove “.” at the end of first entry, e.g. BT differences “”

R: Removed the “.” at page 23 line 9-11.
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C: p5 line 29 and thereafter: don’t write CO2 with cursive letters

R: Changed to use non-cursive letters.

C: p 6 line 19: hidden layer “for” the neural network -> hidden layer “of” the neural network

R: Changed at page 7 line 25.

C: p 6 line 17-32: reduce the number of paragraphs. Don’t create one sentence para- graphs.

R: Paragraph 2 and 3 of Section 3.3.3 were merged.

C: p 7 line 18: write Ciwv in cursive letters

R: Changed at page 9 line 14.

C: p 7 last line: N-VIIRS -> NN-VIIRS

R: Corrected at page 9 line 33.

C: Figure 7 (p27): Could you please add a color scale instead of describing it with words.

R: Color scale added and the description with words removed at page 40.

C: p 9, line 11 and thereafter: cloud heights -> cloud “top” heights,

R: Done

C: p 10, line 15: The NN CTTH retrievals all have better results for low, medium and high clouds . . . (Clouds don’t show

results. . .)

R: Reformulated at page 16 line 26.

2.27 Additional changes:

Three additional scentences were slightly reformulated to be clearer:

– page 7 line 18

– page 9 line 12

– page 15 line 1
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Neural network cloud top pressure and height for MODIS
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Abstract.

Cloud top height retrieval from imager instruments is important for Nowcasting
:::::::::
nowcasting and for satellite climate data

records. A neural network approach for cloud top height retrieval from the imager instrument MODIS
:::::::::::::::::
(Moderate-resolution

:::::::
Imaging

:::::::::::::::::
Spectro-radiometer) is presented. The neural networks are trained using cloud top layer pressure data from the

CALIOP
::::::::::::
(Cloud-Aerosol

:::::
Lidar

::::
with

::::::::::
Orthogonal

::::::::::
Polarisation)

:
dataset.5

Results are compared with two operational reference algorithms for cloud top height: the MODIS Collection 6 level 2

height product and the cloud top temperature and height algorithm (CTTH) in the 2014 version of the NWCSAF
:::::
NWC

::::
SAF

::::::::::::
(EUMETSAT

:::::::::
(European

:::::::::::
Organisation

:::
for

:::
the

::::::::::
Exploitation

:::
of

:::::::::::::
Meteorological

::::::::
Satellites)

::::::::
Satellite

::::::::::
Application

:::::::
Facility

::
for

::::::::::
nowcasting

:::
and

::::
very

:::::::::
shortrange

:::::::::::
forecasting)

::::
PPS

:
(Polar Platform System(PPS-v2014). All three techniques are evaluated

using both CALIOP and CPR (CloudSat)
:::::
(Cloud

::::::::
Profiling

:::::
Radar

:::
for

::::::::
CloudSat

::::::::
(CLOUD

:::::::::
SATellite)) height.10

Instruments like AVHRR and VIIRS
:::::::::
(Advanced

:::::
Very

::::
High

:::::::::
Resolution

:::::::::::
Radiometer)

::::
and

:::::
VIIRS

:::::::
(Visible

:::::::
Infrared

::::::::
Imaging

:::::::::
Radiometer

::::::
Suite) contain fewer channels useful for cloud top height retrievals than MODIS, therefore several different neural

networks are investigated to test how infrared channel selection influences retrieval performance.

Also a network with only channels available for the AVHRR1 instrument is trained and evaluated. To examine the contribu-

tion of different variables, networks with fewer variables are trained. It is shown that variables containing imager information15

for neighbouring pixels are very important.

Overall results for the neural network height retrievals are very promising.
:::
The

:::::
error

::::::::::
distributions

::
of

:::
the

::::::::
involved

:::::
cloud

:::
top

:::::
height

:::::::::
algorithms

:::
are

::::::
found

::
to

::
be

:::::::::::::
non-Gaussian.

::::::::
Different

:::::::::
descriptive

:::::::
statistic

::::::::
measures

:::
are

::::::::
presented

::::
and

::
it

::
is

::::::::::
examplified

:::
that

::::
bias

:::
and

::::
SD

::::::::
(standard

::::::::
deviation)

::::
can

::
be

::::::::::
misleading

:::
for

:::::::::::
non-Gaussian

:::::::::::
distributions.

::::
The

:::::::
median

:::
and

:::::
mode

:::
are

::::::
found

::
to

:::::
better

:::::::
describe

:::
the

:::::::
tendency

::
of

:::
the

:::::
error

::::::::::
distributions

:::
and

::::
IQR

:::::::::::
(interquartile

::::::
range)

:::
and

:::::
MAE

:::
are

:::::
found

::
to

::::
give

:::
the

::::
most

::::::
useful20

:::::::::
information

:::
of

:::
the

:::::
spread

::
of

:::
the

::::::
errors.

:

:::
For

::
all

:::::::::
descriptive

::::::::
statistics

::::::::
presented

::::::
MAE,

::::
IQR,

::::::
RMSE

::::
(root

:::::
mean

::::::
square

:::::
error),

::::
SD,

::::::
mode,

::::::
median,

::::
bias

::::
and

:::::::::
percentage

::
of

:::::::
absolute

:::::
errors

:::::
above

:::::
0.25,

:::
0.5,

::
1
:::
and

::
2 km

::
the

::::::
neural

:::::::
network

:::::::
perform

:::::
better

::::
than

:::
the

::::::::
reference

:::::::::
algorithms

::::
both

::::::::
validated

::::
with

:::::::
CALIOP

::::
and

::::
CPR

::::::::::
(CloudSat). The neural networks using the brightness temperatures at 11 µm and 12 µm show at least

33% (or 627
::
32

:
%

::
(or

::::
623 m) lower mean absolute error (MAE) compared to the two operational reference algorithms when25

validating with CALIOP height. Validation with CPR (CloudSat) height gives at least 25% (or 433 %
::
(or

::::
430 m) reduction

of MAE. For the network trained with a channel combination available for AVHRR1, the MAE is at least 542better when
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validated with CALIOP and 414when validated with CPR (CloudSat) compared to the two operational reference algorithms.

The NWCSAF PPS-2018 release will contain a neural network based cloud height algorithm.

1 Introduction

The retrieval of cloud top temperature, pressure and height from imager data from polar orbiting satellites is used both as a

vital product in global cloud climatologies (Stubenrauch et al., 2013) and for nowcasting at high latitudes where data from5

geostationary satellites are either not available or not available in sufficient quality and spatial resolution. Cloud top height

products from VIS/IR
::::::::::::::
(visible/infrared) imagers are used in the analysis and early warning of thunderstorm developmentand

:
,

for height assignment in aviation forecasts
:::
and

::
in

::::
data

::::::::::
assimilation

::
of

:::::::::::
atmospheric

::::::
motion

::::::
vectors. The cloud

:::
top height can

serve as input to mesoscale analysis and models for use in nowcasting in general, or as input to other satellite retrievals used

in nowcasting (e.g. cloud micro physical properties retrieval, or cloud type retrieval). It is important that climatologists and10

forecasters have reliable and accurate cloud
:::
top height products from recent and past satellite measurements.

:::::
There

:::
are

:::::::
different

:::::::::
traditional

::::::::::
techniques

::
to

:::::::
retrieve

:::::
cloud

:::
top

::::::
height

:::
see

:::::::::::::::::::
Hamann et al. (2014)

::
for

::
a

::::::::::
presentation

:::
of

:::
ten

::::
cloud

::::
top

:::::
height

::::::::
retrieval

:::::::::
algorithms

:::::::
applied

::
to

:::
the

:::::::
SEVIRI

:::::::::
(Spinning

:::::::::
Enhanced

::::::
Visible

:::::::::
Infra-Red

:::::::
Imager).

:
Several algo-

rithms to retrieve cloud top height from polar orbiting satellites are available and used operationally for nowcasting purposes

or in cloud climatologies. These include the CTTH (cloud top temperature and height) from the PPS (Polar Platform Sys-15

tem) package (Dybbroe et al., 2005), which is also used in the CLARA-A2 climate data record of CMSAF (EUMETSAT

::::
(CM

::::
SAF

::::::::::::
(EUMETSAT

:::::::::
(European

:::::::::::
Organisation

:::
for

:::
the

::::::::::
Exploitation

:::
of

:::::::::::::
Meteorological

::::::::
Satellites)

:
Satellite Application Fa-

cility for Climate Monitoring)
:::::
cloud,

::::::
albedo

:::
and

::::::
surface

::::::::
radiation

:::::::
dataset)

::::::
climate

::::
data

::::::
record (Karlsson et al., 2017), ACHA

(cloud height algorithm)
::::::::
Algorithm

::::::::
Working

:::::
Group

:::::::
(AWG)

:::::
Cloud

::::::
Height

:::::::
retrieval

:::::::::
Algorithm)

:
used in PATMOS-x

:::::::::
(Pathfinder

:::::::::::
Atmospheres

:
-
::::::::
Extended)

:
(Heidinger et al., 2014), CC4CL

::::::::::
(Community

:::::
Cloud

::::::::
Retrieval

:::
for

:::::::
Climate)

:
used in ESA

:::::::::
(European20

:::::
Space

:::::::
Agency)

:
Cloud_CCI

:::::
(Cloud

:::::::
Climate

:::::::
Change

::::::::
Initiative)

:
(Stengel et al., 2017), MODIS

:::::::::::::::::
(Moderate-resolution

::::::::
Imaging

::::::::::::::::
Spectro-radiometer)

:
Collection-6 algorithm (Ackerman et al., 2015) and the ISCCP

:::::::::::
(International

:::::::
Satellite

:::::
Cloud

:::::::::::
Climatology

::::::
Project)

:
algorithm (Rossow and Schiffer, 1999).

We will use both the MODIS Collection-6 (MODIS-C6) and the version 2014 CTTH from PPS (PPS-v2014) as references

to evaluate the performance of neural network based cloud
::
top

:
height retrieval. The MODIS-C6 algorithm is developed for25

the MODIS instrument. The PPS, delivered by the NWC SAF (EUMETSAT Satellite Application Facility for Nowcasting

:::::::::
nowcasting

:
and very shortrange forecasting), is adapted to handle data from instruments AVHRR , VIIRS

::::::::
(Advanced

:::::
Very

::::
High

::::::::::
Resolution

:::::::::::
Radiometer),

::::::
VIIRS

:::::::
(Visible

:::::::
Infrared

:::::::
Imaging

::::::::::
Radiometer

:::::
Suite) and MODIS.

Artificial neural networks are widely used for non-linear regression problems, see for example Gardner and Dorling (1998),

Meng et al. (2007) or Milstein and Blackwell (2016) for neural network applications in atmospheric science. In CC4CL a30

neural network is used for the cloud detection (Stengel et al., 2017). Artificial neural networks have also been used on MODIS

data to retrieve cloud optical depth (Minnis et al., 2016). The COCS algorithm
:::::
(cirrus

::::::
optical

::::::::
properties

:::::::
derived

::::
from

::::::::
CALIOP

:::
and

:::::::
SEVIRI

::::::::
algorithm

::::::
during

:::
day

::::
and

:::::
night)

::::::::
algorithm

:
uses artificial neural networks to retrieve cirrus cloud optical thickness
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and cloud top height for the SEVIRI instrument (Kox et al., 2014).
::::::::::
Considering

:::
that

:::::
neural

::::::::
networks

::
in

:::
the

:::::::::
mentioned

::::::::
examples

::::
have

::::::::::
successfully

::::::
derived

:::::
cloud

:::::::::
properties,

::::
and

:::
that

:::::
cloud

:::
top

::::::
height

::::::::
retrievals

::::
often

:::::::
include

:::::
fitting

::
of

:::::::::
brightness

:::::::::::
temperatures

::
to

::::::::::
temperature

:::::::
profiles,

:::::
neural

:::::::
network

:::
can

:::
be

:::::::
expected

::
to
:::::::
retrieve

:::::
cloud

:::
top

:::::::
pressure

:::
for

:::::::
MODIS

::::
with

:::::
some

::::
skill.

:

One type of neural network is the multilayer perceptron described in (Gardner and Dorling, 1998) which is a supervised

learning technique. If the output for a certain input, when training the multilayer perceptron, is not equal to the target output an5

error signal is propagated back in the network and the weights of the network are adjusted resulting in a reduced overall error.

This algorithm is called the back-propagation algorithm.

In this study we will compare the performance of back-propagation neural network algorithms for retrieving cloud top height

(NN-CTTH) with the CTTH algorihm from PPS version 2014 (PPS-v2014) and MODIS Collection 6 (MODIS-C6) algorithm.

Several networks will be trained to estimate the contribution of different training variables to the overall result. The networks10

will be validated using both CALIOP and CloudSat
::::::::::::
(Cloud-Aerosol

:::::
Lidar

::::
with

::::::::::
Orthogonal

:::::::::::
Polarisation)

:::
and

::::
CPR

::::::::::
(CloudSat)

::::::
(Cloud

:::::::
Profiling

:::::
Radar

:::
for

::::::::
CloudSat

::::::::
(CLOUD

:::::::::
SATellite))

:
height data.

In section 2 the different datasets used are briefly described and in section 3 the three algorithms are described. Results are

presented in section ??,
:::
and

:
discussed in section 4.1

:
4
:
and final conclusions are found in section 5.

2 Instruments and data15

For this study we used data from the MODIS instrument on the polar orbiting satellite Aqua in the A-Train, as it is co-located

with both CALIPSO and
:::::::::::::
(Cloud-Aerosol

:::::
Lidar

:::
and

:::::::
Infrared

:::::::::
Pathfinder

:::::::
Satellite

::::::::::::
Observations)

:::
and

:
CloudSat at most latitudes

and has multiple channels useful for cloud top height retrieval.

2.1 Aqua - MODIS

The MODIS (Moderate-resolution Imaging Spectro-radiometer) is a spectro-radiometer with 36 channels covering the solar20

and thermal spectra. We are using level 1 data from the MODIS instrument on the polar orbiter Aqua. For this study the

MYD021km (MODIS Science Data Support Team, 2015a) and MYD03 (MODIS Science Data Support Team, 2015b) for all

orbits from 24 dates were used (1st and 14th of every month of 2010). The data were divided into four parts which were used

for training, validation during training (used to decide when to quit training), testing under development (used to test different

combinations of variables during prototyping) and final validation.
:::
The

::::
data

:::::::
contains

::::::
many

:::::
pixels

::::
that

:::
are

::::::
almost

::::::::
identical,25

::::::
because

::
a
::::::
typical

:::::
cloud

::
is

:::::
larger

::::
than

:::
one

:::::
pixel.

:::::::::
Therefore

::::::::
randomly

:::::::
dividing

:::
the

::::
data

:::
into

::::
four

:::::::
datasets

::
is

:::
not

:::::::
possible

::
as

::::
this

:::::
would

::
in

:::::::
practice

::::
give

:::
four

::::::::
identical

:::::::
datasets,

:::::
which

::::::
would

:::::
cause

:::
the

:::::::
network

::
to

::::::::
over-train.

:
See Table 1 for distribution of data.

2.1.1 Aqua - MODIS Collection 6 cloud products

The MODIS Collection-6 climate data records produced by the National Aeronautics and Space Administration (NASA)

Earth Observation System are using data from the MODIS sensor. The MODIS Collection 6 cloud products were used as an30

independent algorithm with which to compare the performance of the NN-CTTH. The 1-km
:::
was

:::::
used

::
for

:::::::::::
comparison.

::::
The

3



::::
1km cloud top height and cloud top pressure from the MYD06_L2-product (Ackerman et al., 2015) for the dates in Table 1

were used.

2.2 CALIPSO - CALIOP

The CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarisation)
:::
The

:::::::
satellite

:::::
zenith

::::::
angles

:::
for

::::::
MODIS

:::::
when

::::::::
matched

::::
with

:::::::
CALIOP

:::::
varies

::::::::
between

::::
0.04

:::
and

:::::
19.08◦

:::
and

::::
then

:::::::
matched

::::
with

::::
CPR

::::::::::
(CloudSat)

:
it
:::::
veries

::::::::
between

::::
0.04

:::
and

:::::
19.26◦.

:
5

2.2
:::::::

CALIOP

:::
The

::::::::
CALIOP

:
lidar on the polar orbiting satellite CALIPSO is an active sensor and therefore more sensitive to particle con-

glomerates with low density than typical imagers. The horizontal pixel resolution is 0.07km x
:
km

:
x
:
0.333km km, this means

that when co-locating with MODIS one should remember that CALIOP samples only a small part of each MODIS pixel. The

CALIOP
::::::
vertical

::::::::
resolution

:::
for

::::::::
CALIOP

:
is
:::
30 m

:
.
:::
The

:::::::
viewing

:::::
angle

:::
for

:::::::
CALIOP

::
is
::
3◦.

::::
The

:::::::
CALIOP

:
1km Cloud Layer prod-10

uct (version 3) data were used (for the dates, see Table 1) as the truth to train the networks against, and for validation of the

networks.
:::
The

::::
1km

:::::::
product

::::
was

:::::::
selected

::::::
because

:::
the

:::::::::
resolution

::
is

::::::
closest

::
to

::
the

:::::::
MODIS

:::::::::
resolution.

::::
For

::::::
training

:::::::
version

:
3
::::
was

::::
used

:::
and

:::
for

:::::::::
validation

::::::
version

::
4,
:::

be
::::
able

::
to

::::::
access

:::
the

::::::::
improved

:::::
cloud

::::
type

::::::::::
information

:::
in

:::
the

::::::
feature

:::::::::::
classification

::::
flag

::
in

::::::
version

::
4.

2.3 CloudSat - CPR
:::::::::
(CloudSat)15

The CPR (Cloud Profiling Radar for CloudSat) is a radar on CloudSat which derives a vertical profile of cloud water. Its

horizontal resolution is 1.4km x
:
km

:
x 3.5km km, and its vertical resolution is 0.5 km

:::
and

:::
the

:::::::
viewing

:::::
angle

::
is

:::
0.16◦. The CPR

product 2B-GEOPROF-R04
:::::::::
(CloudSat)

::::::
product

:::::::::::::::::
2B-GEOPROF-R05 (Marchand et al., 2008) was used as an additional source

for independent validation of the networks. See
:
,
:::
see Table 1 for selected dates. The validation with CloudSat

:::
CPR

::::::::::
(CloudSat)

will have a lower percentage of low clouds compared to CALIOP because ground clutter is a problem for space bourne radar20

instruments.

2.4 Other data

Numerical weather prediction (NWP) data are needed as input for the PPS-v2014 and the Neural
:::::
neural network algorithm. In

this study
:::
the

:::::::::
operational

::::::::
91-level

:::::::::
short-range

::::::::
archived

::::::::
forecasted

:
NWP data from ECMWF (European Centre for Medium-

range Weather Forecasting) were used.
:::
The

:::::::
analysis

:::::
times

::
at
::::::
00:00

:::
and

:::::
12:00

::::
was

::::
used

::::
and

:::
the

:::::::
forecast

:::::
times

::
(6,

:::
9,

::
12

::::
and25

::
15

:
h

:
).

::::::
Under

:::
the

:::::
period

::::
IFS

:::::
cycles

::::::
Cycle

:::::
35r3,

::::
36r1,

:::::
36r3

:::
and

::::
36r4

:::::
were

::::::::::
operational.

:
Also ice maps

:::::::
(OSI-409

:::::::
version

::::
1.1)

from OSISAF (Satellite Application Facility on Ocean and Sea Ice) were used as input for the PPS cloud mask algorithm.
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3 Algorithms

3.1 PPS-v2014 cloud top temperature and height

The cloud top height algorithm in PPS-v2014, uses two different algorithms for cloud
:::
top

:
height retrieval, one for pixels

classified as opaque and another for semi-transparent clouds. The reason for having two different algorithms is that the straight

forward opaque algorithm can not be used for pixels with optically thin clouds like cirrus or broken cloud fields like cumulus.5

The signals for these pixels are a mixture of contributions from the cloud itself and underlying clouds and/or the surface.

The retrieval
::::::::
algorithm

::::
uses

:
a
:::::::::::
split-window

:::::::::
technique

::
to

:::::
decide

:::::::
whether

:::
to

:::::
apply

:::
the

::::::
opaque

::
or

::::::::::::::
semi-transparent

::::::::
retrieval.

:::
All

:::::
pixels

:::::
with

:
a
:::::::::

difference
::::::::

between
:::
the

:::
11

:
µm

:::
and

:::
12

:
µm

::::::::
brightness

:::::::::::
temperatures

:::
of

:::::
more

::::
than

:::
1.0

:::
K

:::
are

::::::
treated

:::
as

::::::::::::::
semi-transparent.

::::
This

::
is

:
a
:::::
slight

::::::::::
modification

::
of

:::
the

::::
PPS

::::::
version

::::
2014

:::::::::
algorithm

:::::
where

::::
also

::
the

::::::
clouds

::::::::
classified

::
as

::::::::::
non-opaque

::
by

:::::
cloud

::::
type

::::::
product

:::
are

::::::::::
considered

::::::::::::::
semi-transparent.10

:::
The

:::::::
retrieval

:
for opaque clouds matches the observed brightness temperatures at 11

:
µm against a temperature profile derived

from a short term forecast or (re)analysis of a NWP model, adjusted for atmospheric absorption. The first match, going along

the profile from the ground and upwards, gives the cloud top height and pressure. Temperatures colder or warmer than the

profile are fitted to, respectively, the coldest or warmest temperature of the profile below tropopause.

The algorithm uses a split-window technique to decide whether to apply the opaque or semi-transparent retrieval. All pixels15

with a difference between the 11and 12brightness temperatures of more than 1.0 K are treated as semi-transparent. This is a

slight modification of the PPS version 2014 algorithm where also the clouds classified as non-opaque by cloud type product

are considered semi-transparent.

The algorithm for semi-transparent pixels uses a histogram method, based on the work of Inoue (1985) and Derrien et al.

(1988), which fits a curve to the brightness temperature difference between the 11
:
µm and 12

:
µm bands as a function of 11 µm20

brightness temperatures for all pixels in a segment (32x32 pixels). One parameter of this fitting is the cloud top temperature.

The solution is checked for quality (low root mean square error) and sanity (inside physically meaningful interval and not

predicted too far from data). The solution is accepted if both tests are passed. The height and pressure are then retrieved from

the temperature, in the same way as for opaque clouds. For more detail about the algorithms see SMHI (2015).

PPS height uses the unit altitude above ground. For all comparisons this is transformed to height above mean sea level, using25

elevations given in the CloudSat
::::
CPR

:::::::::
(CloudSat)

:
or CALIOP datasets.

3.2 MODIS Collection 6 Aqua Cloud Top Properties product

In MODIS Collection 6 the CO2 :::
CO2-slicing method (described in Menzel et al., 2008) is used to retrieve cloud top pressure

using the 15
::
13

::::
and

::
14

:
µm channels for ice clouds (as determined from MODIS phase algorithm). For low level clouds the

11
:
µm channel and the IR-window approach (IRW) with a latitude dependent lapse rate is used over ocean (Baum et al.,30

2012). Over land the 11 µm temperature is fitted against a 11 µm temperature profile calculated from GDAS
::::::
(Global

:::::
Data

::::::::::
Assimilation

:::::::
System)

:
temperature, water vapour and ozone profiles and PFAAST

::
the

::::::::
PFAAST

:::::::::::::
(Pressure-Layer

::::
Fast

:::::::::
Algorithm

::
for

:::::::::::
Atmospheric

:::::::::::::
Transmittance) radiative transfer model are used for low clouds (Menzel et al., 2008). For more details about
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the updates in Collection 6 see Baum et al. (2012). Cloud pressure is converted to temperature and height using the National

Centers for Environmental Prediction Global Data Assimilation System (Baum et al., 2012).

3.3 Neural network cloud top temperature and height NN-CTTH

Neural networks are trained using MODIS data co-located with CALIOP data.
::::::
Nearest

:::::::::
neighbour

::::::::
matching

::::
was

::::
used

::::
with

:::
the

:::::::::
pyresample

:::::::
package

:::
in

:::
the

::::::
pyTroll

::::::
project

:::::::::::::::::::::
(Raspaud et al., in press).

:
The Aqua and CALIPSO satellites are both part of the5

A-Train and the matched FOV
::::
(field

::
of

:::::
view)

:
are close in time (only 75s apart). The

:::::::::
uppermost top layer pressure variable

:
,
:::
for

::::
both

:::::
multi-

::::
and

::::::::::
single-layer

::::::
clouds,

:
from CALIOP data was used as training truth. Temperature and height for the retrieved

cloud top pressure are extracted using NWP-data. Pressure predicted higher than surface pressure are set to surface pressure.

For pressures lower than 70 hPa neither height nor temperature values are extracted.
:::
The

::::::
amount

::
of

::::::
pixels

::::
with

:::::::
pressure

:::::
lower

:::
than

:::
70 hPa

:::::
varies

:::::::
between

::
0

:::
and

::::
0.05

:
%

::
for

:::
the

::::::::
networks.

:
10

3.3.1 Neural network variables

To reduce sun-zenith angle dependence and to have the same algorithm for all illumination conditions it was decided to use

only infra-red channels to train the neural networks. Several different types of variables were used to train the network. The

most basic ones were the NWP temperatures at pressure levels (surface, 950, 850, 700, 500 and 250
:
hPa). This together with

the 11 µm or 12 µm brightness temperature
::::
(B11::

or
::::
B12)

:
gives the network much of what is needed to predict

::::
make

:
a
::::::::
radiance15

:::::
fitting

::
to

:::::::
retrieve cloud top pressure for opaque clouds,

::::::::
although

::::
with

::::
very

::::::
coarse

:::::::
vertical

::::::::
resolution

:::
in

:::
the

:::::
NWP

::::
data. For

opaque clouds that are geometrically thin, with little or no water vapour above the cloud, the 11
:
µm and 12 µm brightness

temperatures will be the same as the cloud top temperature. If the predicted NWP temperatures are correct the neural network

could fit the 11
:
µm brightness temperature to the NWP temperatures and receive the cloud pressure (similar to what is done in

PPS-v2014 and MODIS-C6). For cases without inversions in the temperature profile, the retrieved cloud top pressure should20

be accurate. The cases with inversions are more difficult to fit correctly, since multiple solutions exist and the temperature

inversion might not be accurately captured regarding its strength and height in the NWP data. For semi-transparent clouds the

network needs more variables to make a correct retrieval.

To give the network information on opacity of the pixel, brightness temperature difference variables were included (B11 −B12,B11 −B3.7,B8.5 −B11:::::::::
B11 −B12,

::::::::::
B11 −B3.7,

:::::::::
B8.5 −B11). Texture variables with the standard deviation of brightness temperature, or brightness temperature25

difference, for 5x5
:
5
::
x
:
5
:
pixels were included. These contain information about whether pixels with large B11−B12 are more

likely to be semi-transparent or more likely to be fractional or cloud edges.

As described in section 3.1, PPS-v2014 uses B11 −B12 and B11 for
::
of

:::
the

:
neighbouring pixels to retrieve temperatures

for semitransparent clouds. In order to feed the network with some of this information the neighbouring warmest and coldest

pixels (in brightness temperature 11in a 5x5 pixel neighbourhood )
::
in

::::
B11 ::

in
:
a
::
5

:
x
:
5
:::::
pixel

::::::::::::
neighbourhood

:
were identified. Vari-30

ables using the brightness temperature at these warmest and coldest pixels were calculated, for example the 12 µm brightness

temperature for the coldest pixel minus the same for the current pixel: BC
12−B12, see Table 2 for more information about what

variables were calculated.
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The surface pressure was also included, which provides the network with a value for the maximum reasonable pressure. Also

the brightness temperature for the CO2 :::
CO2:channel at 13.3

:
µm and the water vapour channels at 6.7

:
µm and 7.3

:
µm were

included as variables. The CO2 :::
CO2:channel at 13.3

:
µm is used in the CO2 :::

CO2-slicing method of MODIS-C6 and should

improve the cloud
:::
top height retrieval for high clouds.

The instruments AVHRR, VIIRS, MERSI-2 , MetImage
:::::::
(Medium

:::::::::
Resolution

:::::::
Spectral

::::::
Imager

:::
-2)

:
,
::::::::
MetImage

:::::::::::::
(Meteorological5

::::::
Imager)

:
and MODIS all have different selections of IR channels. Most of them have the 11

:
µm and 12

:
µm channels. The first

AVHRR instrument AVHRR1 had only two IR channels at 11
:
µm and 3.7 µm and no channel at 12 µm. Networks were trained

using combinations of MODIS IR-channels corresponding to the channels available for the other instruments. See Table 3 for

specifications of the networks trained. Table 4 gives an overview of what imager channels were used for which network.

To see how much the different variable types contribute to the result, some basic networks were trained using less or no10

imager data. These are also described in Table 3. Also one network using only NWP data was included as a sanity check. For

this network we expect bad results. However good results for this network would indicate that height information retrieved was

already available in the NWP-data.

3.3.2 Training

For the training 1.5 million pixels were used, with the distribution 50%
:
% low clouds, 25% % medium level clouds and 25%15

:
% high clouds. A higher percentage of low clouds was included because the mean square error (MSE) is often much higher

for high clouds. Previous tests showed that less low clouds caused the network to focus too much on predicting the high clouds

correctly and showed degraded results for low clouds. For training validation
:::
the

::::::::
validation

::::::
dataset

::::
used

::::::
during

::::::
training

:
375000

pixels were randomly selected with the same low/medium/high distribution as for the training data.

The machine learning module Scikit-learn (Pedregosa et al., 2011), the Keras package (Chollet et al., 2015), the Theano20

(Theano Development Team, 2016) backend and the language Python were used for training the network.

3.3.3 Parameters and configurations

During training of the network the MSE was used as the loss function that is minimized during training. The data were

standardized by subtracting the mean and dividing with the standard deviation before training.

Choosing the number of hidden neurons and hidden layers for
::
of

:
the neural network is also important for the training to be25

effective. Too few hidden neurons will result in under-fitting. We used two hidden layers with 30 neurons in the first layer and

15 neurons in the second.

The initialization of weights before training the network is important for the neural network to learn faster. There are many

different weight initialization methods, for training the networks the glorot uniform weight initialization was used.

The activation function used for the hidden layers was the tangent hyperbolic (see Karlik and Olgac, 2011) and for the output30

layer a linear activation function was used.

To determine the changes in the weights an optimization method is used during the back-propagation algorithm. The op-

timization method used for the multilayer perceptron is mini-batch stochastic gradient descent which performs mini-batch
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training. A mini-batch is a sample of observations in the data. Several observations are used to update weights and biases,

which is different from the traditional stochastic gradient descent where one observation at a time is used for the updates

(Cotter et al., 2011). Having an optimal mini-batch size is important for the training of a neural network because overly large

batches can cause the network to take a long time to converge. We used a mini-batch size of 250.

When training the neural network there are different learning parameters that need to be tuned to ensure an effective trainig5

procedure. During prototyping several different combinations were tested. The learning rate is a parameter that determines the

size of change in the weights. A too large learning rate will result in large weight changes and can result in an unstable model

(Hu and Weng, 2009). If a learning rate on the other hand is too small the training time of the network will be long. We used a

learning rate of 0.01.

The momentum is a parameter which adds a part of the weight change to the current weight change, using momentum can10

help avoid the network getting trapped in local minima (Gardner and Dorling, 1998). A high value of momentum speeds up

the training of the network. We had a momentum of 0.9. The parameter learning rate decay, set to 10−6, in Keras, is used to

decrease the learning rate after each update as the training progresses.

To avoid the neural network from over-fitting (which makes the network extra sensitive to unseen data), a method called

early stopping was used. In early stopping the validation error is monitored during training to prevent the network from over-15

fitting. If the validation error is not improved for some (we used 10) epochs training is stopped; this helps to reduce risk of

over-fitting. The network for which the validation error was at its lowest is then used. The neural networks were trained for a

maximum of 2650 epochs, but the early stopping method caused the training to stop much earlier.

4 Results
:::
and

:::::::::
Discussion

:

First
:::
The

:::::::::
validation

::::
data

:::
was

::::::::
matched

::::
with

:::::::
CALIOP

:::::
layer

:::
top

:::::::
pressure

:::
and

:::::
layer

:::
top

:::::::
altitude

::
or

::::
CPR

:::::::::
(CloudSat)

::::::
height

:::::
using20

::::::
nearest

::::::::
neighbour

::::::::
matching

::
in

:::
the

:::::
same

:::
way

:::
as

:::
the

::::::
training

::::
data

::::
was

:::::::
matched.

::::
The

::::
CPR

:::::::::
(CloudSat)

::::
data

::::::
inludes

::::
less

::::::
clouds

::
as

::::
both

::::
some

::::
very

::::
low

::::::
clouds

:::
and

:::::
some

::::
very

:::
thin

::::::
clouds

:::
are

:::
not

:::::::
detected

:::
by

:::
the

:::::
radar.

::::
CPR

::::::::::
(CloudSat)

:
is
::::::::
included

::
to

:::::::::
strengthen

::
the

:::::::
results.

:::::
There

::
is

::::::
always

:
a
::::
risk

:::
that

:
a
::::::
neural

:::::::
network

::::::::
approach

:::::
learns

::::
also

::
or

::::
only

:::
the

:::::
errors

::
of

:::
the

:::::::
training

:::::
truth;

:::::::
however

::
if

:::::
results

:::
are

::::::::
improved

::::
also

:::::
when

::::::::
validated

::::
with

::
an

:::::::::::
independent

::::
truth

::
it

:
is
:::::
made

::::
sure

::::
that

:
it
::
is
:::
not

::::
only

:::
the

::::::
errors

:::
that

:::
are

::::::
learnt.

:
A
::::::

cloudy
:::::::::

threshold
::
of

::::
30%

::
is

::::
used

:::
for

:::::
CPR

:::::::::
(CloudSat)

::
to

:::::::
include

::::
only

:::::
strong

::::::::::
detections.

:::
The

:::::::
coarser

::::::
vertical

:::::::::
resolution

:::
for25

::::
CPR

:::::::::
(CloudSat)

::
of

::::
500m

:::::
means

::::
that

::::
MAE

::
is
::::::::
expected

::
to

::
be

::::::
higher

::::
than

:::
250m

:::::::
compared

::
to
:::
15m

::
for

::::::::
CALIOP.

:

:::
The

::::::
scatter

::::
plots

:::
in

:::::
Figure

::
4
:::::
show

::::
how

:::
the

:::::
cloud

:::
top

:::::::
pressure

::::::::
retrievals

::
of

:::
the

::::::
neural

::::::::
networks

:::
and

:::
the

::::::::
reference

::::::::
methods

::
are

:::::::::
distributed

:::::::::
compared

::
to

::::::::
CALIOP.

::::::
Figure

:
3
:::::
show

:::
the

::::
same

::::
type

::
of

::::::
scatter

::::
plots

:::
for

:::::
cloud

:::
top

::::::
height

::::
with

::::::::
CloudSat

::
as

:::::
truth.

:::::
These

:::::
scatter

:::::
plots

:::::
show

:::
that

::
all

::::::
neural

::::::::
networks

::::
have

::::::
similar

:::::::::
appearance

:::::
with

::::
most

::
of

:::
the

::::
data

:::::::
retrieved

:::::
close

::
to

:::
the

:::::
truth.

:::
All

:::::::
methods

::::::::::
(NN-CTTH,

::::::::::
PPS-v2014

:::
and

:::::::::::
MODIS-C6)

:::::::
retrieve

::::
some

:::::::
heights

:::
and

::::::::
pressures

::::
that

:::
are

::::
very

:::
far

::::
from

:::
the

::::
true

::::::
values30

::
of

::::
CPR

:::::::::
(CloudSat)

:::
or

::::::::
CALIOP.

:
It
::
is
:::::::::
important

::
to

::::::::
remember

::::
that

:::::
some

::
of

:::::
these

:::::::::
seemingly

:::
bad

::::::
results

:::
are

:::
due

::
to

:::
the

::::::::
different

::::
FOV

:::
for

:::
the

:::::::
MODIS

:::
and

:::
the

::::::::
CALIOP

::
or

::::
CPR

:::::::::
(CloudSat)

:::::::
sensors.

:
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:::::
Figure

::
7
::::::::
compares

::::
the

:::::::::::
NN-AVHRR

:::
and

::::::::::
PPS-v2014

:::
for

::::
one

::::::
scene.

:::
The

:::::
blue

::::::
squares

::::
for

:::::::::
PPS-v2014

:::
(c)

::::
are

:::
due

:::
to

:::
the

::::::::::
temperature

:::::::
retrieval

::
for

::::::
32x32

:::::
pixels

::
in

::::
one

:::
go.

:::
We

:::
can

:::
see

:::
that

::
a
::
lot

:::
of

::::
high

:::::
clouds

:::
are

:::
by

:::::::::::
NN-AVHRR

:::::
placed

::::::
higher

::::::
(pixels

:::
that

:::
are

::::
blue

::
in

::::
(c),

:::
are

:::::
white

::
in

::::
(a)).

:::
For

:::::::::::
NN-AVHRR

::
in

:::
(a)

:::
we

:::
can

:::
see

::::
that

:::
the

:::::
large

::::
area

::::
with

:::
low

::::::
clouds

::
in

:::
the

:::::
lower

::::
left

:::::
corner

::::
gets

::
a

::::::::
consistent

:::::
cloud

::::
top

:::::
height

::::
(the

:::::
same

::::::
orange

::::::
colour

:::::::::::
everywhere).

::::
Note

::::
that

:::
the

:::::::::::
NN-AVHRR

:::
has

::
a
::::
less

:::::
noisy

:::::::::
appearance

:::
and

::::
has

:::
less

::::::
nodata.

:
5

4.1
::::::::
Validation

:::::
with

::::::::
CALIOP

:::
top

:::::
layer

::::::::
pressure

::::
First

:::
we

:::::::
consider

:
the performance of all the trained networks were validated with CALIOP

:::::::
validated

::::
with

::::
the

:::::::::
uppermost

:::::::
CALIOP

:::
top

:::::
layer

:::::::
pressure in terms of mean absolute error (MAE). Results in Table 5 show that both PPS-v2014 and MODIS-

C6 have a MAE close to 120hPA. Even the
:::
120

:
hPa

:
.
:::::
Notice

::::
that

:::
the

:::::::
network

:::::
using

::::
only

:::
the

:::::
NWP

::::::::::
information

:::
and

:::
no

::::::
imager

:::::::
channels

::::::::::
(NN-NWP)

:::::
shows

:::::
high

:::::
MAE.

::::
This

::::
was

:::::::
included

::
as

::
a
:::::
sanity

:::::
check

:::
to

:::
see

:::
that

:::
the

::::::
neural

::::::::
networks

:::
are

:::::
using

::::::
mainly10

::
the

:::::::
satellite

::::
data,

::::
and

:::
the

::::
high

:::::
MAE

:::
for

::::::::
NN-NWP

::
is

:::::::::
supporting

::::
this.

:::
The

:
NN-OPAQUE network using only B12 and the basic

NWP-data has a 10
:
9 hPa improvement in MAE

::::::::
compared

::
to
:::

the
::::::::

reference
::::::::::

algorithms. By including the variable B11 −B12,

the MAE improves by an additional 19 hPa because B11−B12 contains information about the semi-transparency of the pixel.

Adding the NWP variable Ciwv
::::
Ciwv, which allows the network to attempt to predict the expected values of B11 −B12,

has a smaller effect of 2
:
hPa on MAE. However adding all variables containing information on neighboring pixels improves15

the result by additional 20
:
hPa. The NN-AVHRR network using 11 µm and 12 µm from MODIS provides an MAE which is

reduced by about 50hPA
::
50 hPa compared to both from MODIS-C6 and PPS-v2014. Notice also that the scores improve for all

categories (low, medium and high) when compared with both PPS-v2014 and MODIS-C6.
:::
The

::::::::
inclusion

:::
of

:::
the

:::::::::::
neighbouring

:::::
pixels

::::
gives

::::::
almost

:::
40 %

::
of

:::
the

:::::::::::
improvement.

:::::
Note

:::
that

:::
for

:::::::
medium

::::
level

::::::
clouds

::::::::::::::::
NN-BASIC-CIWV,

::::::
without

::::::::::
information

:::::
from

:::::::::::
neighbouring

:::::
pixels,

::::
has

:::::
higher

:::::
MAE

:::::::::
compared

::
to

::::::::::
PPS-v2014.20

Adding more IR channels improves the results further. Adding channel 8.5 µm (B8.5−B11, NN-VIIRS) improves MAE by

7
:
hPa and adding 7.3

:
µm (B7.3, NN-MERSI-2) improves MAE by 5 hPa. Including the other watervapor channel at 6.7

:
µm

(B6.7, NN-MetImage-NoCO2::::::::::::::::::
NN-MetImage-NoCO2) improves MAE only by 1

:
hPa. The CO2 ::::

CO2 :
channel at 13.3

:
µm

(B13.3, NN-MetImage) improves the MAE by an additional 6
:
hPa.

The NN-AVHRR1 network trained using 3.7 µm and 11
:
µm (MAE 76.1

:
hPa) is a little worse compared to NN-AVHRR25

(MAE 72.2
::::
72.4 hPa).

::::
Note

:::
that

::::
B3.7::::

has
:
a
::::
solar

::::::::::
component

:::::
which

::::::::
currently

:
is
:::
not

::::::
treated

::
in

::::
any

::::
way.

:
If
:::::
B3.7 :::

was
::::::::
corrected

:::
for

::
the

:::::
solar

::::::::::
component,

::
by

:::
the

:::::::
network

::
or

::
in

:
a
::::::::::
preparation

::::
step,

::
the

::::::
results

:::
for

::::::::
AVHRR1

:::::
might

::::::::
improve. Also NN-AVHRR1 shows

better scores for all categories (low, medium, and high) compared to PPS-v2014 and MODIS-C6. Notice that the network using

only the NWP information and no imager channels (NN-NWP) shows high MAE. This was included as a sanity check to see

that the predicted height is using mainly the satellite data, and the high MAE for NN-NWP is supporting this.30

The training with CALIOP using only MODIS from Aqua includes only near NADIR observations
::::
with

:::
all

::::::
satellite

::::::
zenith

:::::
angles

:::
for

:::::::
MODIS

:::::
below

:::
20◦. Figure 1 shows that NN-AVHRR and NN-AVHRR1 networks perform robustly also for higher

satellite zenith angles. The N-VIIRS and NN-MetImage-NoCO2 :::::::::
NN-VIIRS

:::
and

:::::::::::::::::::
NN-MetImage-NoCO2:results deviate for

satellite zenith angles larger than 60 degrees. The NN-MERSI-2 results deviate for satellite zenith angles larger than 40 degrees.
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The NN-MetImage retrieval shows deviations already above 20 degree satellite zenith angles and for satellite zenith angles

larger than 40 the retrieval has no predictive skill. Notice that the distribution for MODIS-C6 also depend on the satellite

zenith angle (with less high clouds at higher angles). For PPS-v2014 instead there are less low clouds at higher satellite zenith

angles .
::
are

::::::
found.

::::
The

:::::
neural

::::::::
networks

::::::::::::
(NN-AVHRR,

::::::::::::
NN-AVHRR1,

::::::::::
NN-VIIRS

:::
and

::::::::::::::::::::
NN-MetImage-NoCO2)

:::
can

:::::::::
reproduce

::
the

::::::::
bi-modal

:::::
cloud

:::
top

:::::::
pressure

::::::::::
distribution

::::::
similar

::
to

::::::::
CALIOP,

:
PPS-v2014 also has the least reasonable pressure distribution5

:::::::
deviates

::::
from

:::
this

:::::
shape

:
with one peak for mid-level cloudsinstead of capturing the two peaks for low and high clouds observed

in
:
.

4.2
:::::::::

Discussion
::
of

:::::::
statistics

:::::::::
measures

:::
for

::::::::::::
non-Gaussian

:::::
error

::::::::::::
distributions

:::
For

:::::::
pressure

:::
we

::::::
choose

:
a
:::::
single

::::::::
measure,

:::::
MAE,

:::
to

:::::::
describe

:::
the

:::::
error;

:::::::
however

:::::
which

::::
(and

::::
how

::::::
many)

::::::::
measures

:::
are

::::::
needed

::
to

:::::::::
adequately

:::::::
describe

:::
the

::::
error

::::::::::
distribution

::::
can

::
be

:::::::::
discussed.

:::
For

:
a
::::::::

Guassian
:::::
error

:::::::::
distibution

:::
the

:::::::
obvious

::::::
choices

:::
are

::::
bias

::::
and10

:::
SD

:::::::
(standard

:::::::::
deviation)

::
as

:::
the

::::::::
Gaussian

::::
error

::::::::::
distribution

::
is

:::::::::
completely

::::::::::
determined

::::
from

::::
bias

:::
and

:::
SD

::::
and

::
all

:::::
other

:::::::::
interesting

:::::::
measures

:::::
could

:::
be

::::::
derived

:::::
from

::::
bias

:::
and

::::
SD.

:::::::::::
Unfortunately

:::
the

:::::
error

::::::::::
distributions

::::::::::
considered

::::
here

:::
are

::::::::::::
non-Gaussian.

::::
This

::
is

::::::::
expected,

::
as

:::
we

::::
know

::::
that

::::
apart

:::::
from

:::
the

:::::
errors

::
of

:
the CALIOP data.

:::::::
algorithm

::::
and

:::
the

:::::
errors

:::
due

::
to
::::::::
different

::::
FOV

:::
we

::::::
expect

::
the

:::::
lidar

::
to

:::::
detect

::::
some

::::
thin

:::::
cloud

:::::
layers

:::
not

::::::
visible

::
to

:::
the

::::::
imager.

:::::
These

::::
thin

:::::
layers,

:::
not

:::::::
detected

:::
by

:::
the

::::::
imager,

::::::
should

:::::
result

::
in

::::::::::::
underestimated

:::::
cloud

:::
top

:::::::
heights.

::
In

::::::
Figure

::
8

:::
the

::::
error

::::::::::
distributions

:::
for

:::::::::::
MODIS-C6,

:::::::::
PPS-v2014

::::
and

:::::::::::
NN-AVHRR

:::
are

::::::
shown.15

:::
The

::::::::
Gaussian

::::
error

::::::::::
distribution

::::
with

:::
the

:::::
same

::::
bias

:::
and

:::
SD

:::
are

::::::
plotted

:::
in

::::
grey.

::
It

::
is

::::
clear

::::
that

:::
the

::::
bias

:
is
::::

not
::
at

:::
the

:::::
center

::::
(the

::::
peak)

:::
of

:::
the

::::::::::
distribution.

::::
The

::::::
median

::
is
:::
not

::
at
:::
the

::::::
center

:::::
either,

::::
but

:::::
closer

::
to

::
it.

::::
For

::::::::
validation

::::
with

::::::::
CALIOP

:::
we

::::
can

:::
see

:::
the

:::::::
expected

:::::::
negative

::::
bias

:::
for

::
all

:::::::::
algorithms

::::
and

:::
for

::
all

:::::
cases

:::
we

:::
can

:::
see

:::
that

::::::::
assuming

::
a
::::::::
Gaussian

:::::::::
distribution

:::::::::::::
underestimates

:::
the

::::::
amount

:::
of

:::::
small

::::::
errors.

PEx =
number of absolut errors > x km

number of errors
::::::::::::::::::::::::::::::::

(1)
20

Results for MAE in meters compared to CALIOP top layer height
:::
and

::::
CPR

::::::::::
(CloudSat)

:::::
height

:
are provided for the best per-

forming networks in Table 6.Notice that the MAE for high clouds is
:
8

:::
(i.e.

:::::::::::::
NN-OPAQUE,

:::::::::
NN-BASIC

::::
and

::::::::::::::::
NN-BASIC-CIWV

:::
was

:::::::::
excluded).

::::
The

::::::::
skewness

:::::
show

::::
that

:::
the

:::::::::::
distributions

:::
are

:::::::
skewed

:::
and

:::::::::::::
non-Gaussian.

:::
The

::::::
mode

::
is

::::::::
calculated

::::::
using

:::
the

::::::::
half-range

:::::::
method

::
to

::::::
robustly

:::::::
etimate

:::
the

::::
mode

:::::
from

::
the

::::::
sample

:::::::::::::::::::::::::::
(for more info see Bickel, 2002).

::::
The

:::
bias

::::::
should

::
be

:::::::::
interpreted

::::
with

::::::
caution.

::::::::
Consider

:::::::::
PPS-v2014

:::::::::
compared

::
to

:::::::
CALIOP

:::::
Table

::
8

:
if
:::
we

:::
add

:::::
1465

::
to

::
all

::::::::
retrievals

:::::::
creating

:
a
::::::::::
“corrected”

:::::::
retrieval25

::
we

::::::
would

::::
have

::
an

:::::
error

:::::::::
distribution

::::
with

:::
the

:::::
same

:::
SD

:::
and

::::
zero

:::
bias

:::
but

:::
the

::::::
center

:::::
(peak)

::
of

:::
the

::::::::::
distribution

:::::
would

:::
not

:::
be

:::::
closer

::::
zero.

::::
The

:::
PE1::::::::::

(percentage
:::
of

:::::::
absolute

:::::
errors

:::::
above

::
1
:
km

:
,
:::
see

::::::::
Equation

::
1)

:::
for

::::
this

:::::::::
“corrected”

::::::::
retrieval

:::::
would

:::::::
increase

:::::
from

::
54

:
%

::
to

:::
73 %

:
!
:::
For

:::
the

::::
user

::::
this

::
is
::::::
clearly

::::
not

::
an

::::::::::::
improvement.

::::
The

:::::::
general

::::
over

:::::::::
estimation

:::
of

:::::
cloud

:::
top

:::::::
heights

::
of

::::
this

:::::::::
“corrected”

:::::::
retrieval

::::::
would

:::::::
however

::
be

::::::::
detected

::
by

:::
the

::::::
median

::::
and

:::
the

:::::
mode

:::::
which

::::::
would

::
be

::::::
further

::::
away

:::::
from

::::
zero

:::
but

::::
now

::
on

:::
the

:::::::
positive

::::
side.

::::
This

:::::::
example

::::::::
illustrates

:::
the

::::
risk

::
of

::::::::::::::
misinterpretation

::
of

:::
the

::::
bias

:::
for

::::::::::
non-Gassian

:::::
error

:::::::::::
distributions.30

::::::
Several

::::::::
different

::::::::
measures

::
of

::::::::
variation

:::
are

:::::::::
presented

::
in

:::::
Table

::
8
::::::

MAE,
::::
IQR

::::::::::::
(Interquartile

::::::
range),

:::
SD

::::
and

:::::::
RMSE.

::::
The

:::::::
measures

:::::
have

:::::::
different

::::::::
benefits;

::::
IQR

:::
are

:::::
robust

::::::
against

:::::::
outliers

:::
and

::::::
RMSE

::::
and

:::
SD

:::::::
focuses

::
on

:::
the

:::::
worst

::::::::
retrievals

::
as
::::::

errors

::
are

::::::::
squared.

::::::::::
Considering

::::
that

::
it

::
is

:::::
likely

:::
not

:::::::::
interesting

::
if
:::::::

useless
::::::::
retrievals

::::
with

:::::
large

:::::
errors

:::
are

:::::
10km

:::
off

:::
or

:::::
15km

:::
off,

:::
in

10



::::::::::
combination

::::
with

::::
that

:::::
some

::::
large

:::::
errors

::::
are

:::::::
expected

::::
due

::
to

:::::::
different

:::::
FOV

:::
and

::::::::
different

::::::::::
sensitivities

::
of

:::
the

:::::::::::
instruments,

:::
the

::::
MAE

::::
and

::::
IQR

:::::::
provide

::::
more

::::::::::
interesting

::::::::
measures

::
of

::::::::
variation

::::::::
compared

::
to

:::
SD

::::
and

::::::
RMSE.

:::
In

:::
the

:::::::
example

::::::::
discussed

:::
in

:::
the

:::::::
previous

::::::
section

:::
the

::::::
MAE

:::
for

:::
the

::::::::::
“corrected”

:::::::
retrieval

::::::
would

::::::
change

::::
only

:::
10

:
m

:::
but

:::
the

::::::
RMSE

:::::
(Root

:::::
mean

::::::
square

::::::
error)

:::::
would

:::::::
improve

::::
with

::::
356 m

::::::::
indicating

::
a

:::::
much

:::::
better

::::::::
algorithm;

:::::
when

::
in

::::
fact

:
it
::
is
::
a

:::::::
degraded

:::::::::
algorithm.

::
If

:::
the

::::::
largest

:::::
errors

:::
are

:::::::::
considered

::::
very

::::::::
important

::::::
RMSE

::
is

:::::::
prefered

::::
over

:::
SD

:::
for

:::::::
skewed

:::::::::::
distributions,

::::::::
especially

::
if
::::
bias

::
is

::::
also

::::::::
presented;

:::
as

::::::
RMSE5

:::
and

::::
bias

::::
have

:
a
:::::::
smaller

:::
risk

::
to

:::
be

::::::::::::
misinterpreted

::
by

:::
the

::::::
reader

::
as

:
a
::::::::
Gaussian

::::
error

::::::::::
distribution.

:

:::
For

:::
low

::::
level

::::::
clouds

:::
we

::::
have

::::
even

:::::::
stronger

:::::::
reasons

::
to

:::::
expect

:::::::
skewed

::::::::::
distributions

::
as
:::::
there

::
is

::::::
always

:
a
::::
limit

::::::::
(ground)

::
to

::::
how

:::
low

::::::
clouds

:::
top

::::::
heights

::::
can

::
be

:::::::::::::
underestimated

:::
and

:::::
Table

::
9

:::::
shows

::::
that

:::
the

::::::::
skewness

::
is

::::
large

:::
for

::::
low

::::
level

::::::
clouds.

::::
The

::::
bias

:::
for

:::
low

::::
level

::::::
clouds

::
is

::::::
difficult

::
to

:::::::
interpret

:::
as

:
it
::
is

:::
the

::::::::::
combination

::
of

:::
the

::::
main

::::
part

::
of

:::
the

::::
error

::::::::::
distribution

::::::
located

:::::
close

::
to

:::
zero

::::
and

::
the

:::::
large

::::::
positve

:::::
errors

::::::
(which

:::
are

::
to

:::::
some

:::::
extent

::::::::
expected

:::
due

::
to

::::::::
different

:::::
FOV).

::
In

::::::
Figure

:
2
:::
(f)

:::
and

:::
(e)

:::
the

::::
error

:::::::::::
distributions10

::
for

:::::::::::
MODIS-C6,

:::::::::
PPS-v2014

::::
and

:::::::::::
NN-AVHRR

:::
for

:::
low

:::::
level

::::::
clouds

:::
are

::::::
shown.

:::
We

:::
can

::::
see,

::
in

::::::
Figure

::
2,

::::
that

:::
the

:::::::::::
NN-AVHRR

:::
less

:::::
often

::::::::::::
underestimates

:::
the

:::::
cloud

:::
top

::::::
height

::
for

::::
low

::::
level

::::::
clouds

:::::
which

:::::
partly

::::::::
explains

::
the

::::::
higher

::::
bias

:::
for

:::::::::::
NN-AVHRR.

::
To

:::::::::
examplify

:::
the

:::::::
problem

::::
with

::::
bias

:::
and

::::
SD

::
for

:::::::
skewed

::::::::::
distributions

::::::::
consider

:::::::::
PPS-v2014

::::
and

:::::::::::
NN-AVHRR

::::::::
validated

::::
with

::::
CPR

:::::::::
(CloudSat)

::
in

:::::
Table

::
9

:::
and

:::
for

:::
the

::::::::
argument

:::
let

::
us

::::::
falsely

::::::
assume

::
a

::::::::
Gaussian

::::
error

::::::::::
distribution.

:::::
With

:::
this

::::::::::
assumption

:::
the

:::::::::
PPS-v2014

::::
with

::
a
:::
232

:
m

:::::
better

::::
bias

:::
and

::::
only

:::
24

:
m

:::::
worse

:::
SD

::::::
clearly

::
is

:::
the

:::::
better

:::::::::
algorithm.

::::
The

::::
PE2:::

and
::::::

RMSE
::::

are
::::
very15

::::::
similar

:::::::
between

:::
the

:::
two

::::::::::
algorihtms.

:::::::
However

:::
all

::::
other

::::::::
measures

::::::
MAE,

::::
IQR,

::::::
PE0.25,

::::::
PE0.5,

::::
PE1,

::::::
median

::::
and

::::
mode

:::
all

:::::::
indicate

:::
that

:::::::::::
NN-AVHRR

::
is

:::
the

:::::
better

::::::::
algorithm

::::
and

:
it
::
is
:::::
clear

::
in

::::::
Figure

:
2
:::
(e)

::::
that

:::
the

:::::::::::
NN-AVHRR

:::
has

:::
the

::::::
highest

::::
and

:::
best

::::::::
centered

::::::::::
distribution;

:::::::
contrary

::
to

::::
what

::::
was

::::::::
indicated

::
by

:::
the

::::
bias

:::
and

:::
SD

:::::
given

::
a

::::
false

:::::::::
asumption

::
of

::::::::
Gaussian

::::
error

::::::::::
distribution.

:

:::
One

::::::::::
explanation

::
of

:::
the

::::
low

::::
bias

::
for

::::::::::
PPS-v2014

::::::::
validated

::::
with

::::
CPR

::::::::::
(CloudSat)

::
in

:::::
Table

:
9
::
is

::::
seen

::
in

::::::
Figure

::
2

::
(e)

::::::
where

:::
the

::::
error

::::::::::
distribution

::
of

:::::::::
PPS-v2014

::
is
::::::
shown

::
to

::
be

:::::::::
bi-modal;

:::
the

::::::
general

:::::
small

:::::::::::::
underestimation

:::
of

:::::
cloud

:::
top

::::::
heights

:::::::::::
compensates20

::
for

:::
the

::::::
mode

::::::
located

:::::
close

::
to

::::::
1.8km.

::::
The

:::
low

::::
bias

::::
can

::::
also

::
be

::::::::
explained

:::
by

::::
less

:::
low

:::::
level

::::::
clouds

::::::::
predicted

:::::
much

:::
too

:::::
high.

:::
The

::::::
lowest

:::::
values

:::
for

:::::
PE2,

:::
SD

:::
and

::::::
RMSE

:::::::
supports

::::
this.

::
If
:::
we

::::
look

::
at
:::
the

:::::
result

:::
for

:::
the

::::
high

::::::
clouds

::::::
(Table

:::
11)

:::
we

:::
see

:
a
:::::
large

:::::::
negative

:::::::
tendency

:::
for

::::::::::
PPS-v2014

:::::
(mode

:::
and

:::::::
median)

::::
and

:::
this

::
is

::::
also

:::
part

::
of

:::
the

::::::::::
explanation

::
of

:::
the

:::::
small

:::::
RMSE

:::
for

::::::::::
PPS-v2014

::
for

::::
low

::::
level

:::::::
clouds.

::
If

::::
high

::::::
clouds

:::
are

::::::::
generally

::::::
placed

:
1.5

:
km better for the

::
too

::::
low;

::::
this

::::::
should

:::::::
improve

::::::
results

:::
for

::::
low

::::
level

::::::
clouds

:::::::
mistaken

:::
for

:::::
high.

::::
This

:::::::
includes

:::::
cases

:::::
where

:::
the

:::::::
different

:::::
FOVs

::::::
causes

:::
the

::::::
imager

::
to

:::
see

::::::
mostly

::
a

::::
high

:::::
cloud

:::
but25

::
the

:::::
lidar

:::
and

:::::
radar

:::
see

::::
only

:::
the

::::
part

::
of

:::
the

::::
FOV

::::
with

::
a
:::
low

::::::
cloud.

::::
This

:::
has

::
a

::::
large

::::::
impact

:::
on

:::
SD

:::
and

::::::
RMSE

:::
as

:::
the

:::::
errors

:::
are

:::::::
squared.

:::::::::
Comparing

:::
the

::::::
RMSE,

:::
SD

:::
for

:
NN-AVHRR than

:::
and

::::::::::
PPS-v2014

::
for

::::
low

::::
level

::::::
clouds

::
in

:::
the

::::::::
validation

::::
with

::::
CPR

::::::::::
(CloudSat)

:::
also

:::::::::
highlights

::::
why

:::
the

::::::
RMSE

::::
and

:::
SD

:::
are

:::
less

::::::
useful

::
as

::::::::
measures

::
of

::::::::
variation

::
of

:::
the

:::::
error

::::::::::
distribution.

::::
The

::::::
RMSE

::::
and

:::
SD

::
are

:::::
very

::::::
similar

:::::::
between

:::
the

::::
two

:::::::::
algorithms

::::
and

:::
do

:::
not

::::::
reflect

:::
the

::::::::
narrower

:::
and

:::::
better

::::::::
centered

:::::
error

:::::::::
distribution

:::::
seen

:::
for30

::::::::::
NN-AVHRR

:::
for

::::
low

::::
level

::::::
clouds

::
in

:::::
Figure

::
2
:::
(e).

::::
The

::::::::::
NN-AVHRR

::::
has

:
a
:::::
larger

:::::::
amount

::
of

:::::
small

:::::
errors

:::
(see

:::::::
PE0.25,

:::::
PE0.5)

::::
and

::::
only

::
16

:
%

::
of

:::
the

:::::
errors

:::
are

:::::
larger

::::
than

:
1
:
km

::::::::
compared

::
to

:::
29 % for PPS-v2014. Compared to MODIS-C6 the NN-AVHRR is

0.8better for both medium level clouds and high clouds
:::
But

:::::::::::
NN-AVHRR

:::
has

::
1 %

:::::
more

:::::::
absolute

:::::
errors

:::::
larger

::::
than

::
2
:
km

:::
and

::
the

:::::::
absolut

::::
error

:::
for

:::
this

:::::::
percent

:
is
::::::
larger.

:::
As

:::
the

:::::
MAE

::::
does

:::
not

:::::
square

:::
the

::::::
errors,

::
it

:::::::
indicates

::::::
instead

::::
that

:::
the

:::::::::::
NN-AVHRR

:::
has

11



::::::
smaller

::::::::
variation

::
of

:::
the

::::
error

::::::::::
distribution.

::::
The

::::
IQR

::::
that

::::
does

:::
not

::::::
regard

:::
the

::::::
largest

:::::
errors

::
at

::
all

::
is
:::::
more

::::
than

:::
500

:
m

:::::
better

:::
for

::::::::::
NN-AVHRR. The

:::
The

::::
bias

::
of

::::
-117 m

::
for NN-AVHRR

::::::::
compared

::
to

:::::
-1203 m

::
for

::::::::::
MODIS-C6

::
in

:::::
Table

::
11

::
in

:::
the

::::::::
validation

::::
with

:::::
CPR

:::::::::
(CloudSat)

::
for

::
a
::::::::
Gaussian

::::
error

::::::::::
distribution

::::::
would

::
be

::
a
:::::
large

:::::::::::
improvement

::
of

:::::::::
tendency;

:::::::
however

:::::
when

::::
also

::::::::::
considering

:::
the

:::::
mode

::::
and

::
the

:::::::
median

:::
we

:::
can

::::
see

:::
that

:::
the

::::::::::::
improvement

::
of

:::
the

::::::::
tendency

::
is

::::
more

::::::::::
realistically

::::::::
between

:::
150

:::
to

:::
500

:
m

::::::::
compared

::
to

:::::
CPR5

:::::::::
(CloudSat)

:::
and

:::
not

::
as

:::::
large

::
as

::::::::
indicated

::
by

:::
the

:::::
bias.

4.3
::::::::
Validation

::::::
results

:::::
with

::::::::
CALIOP

::::
and

::::
CPR

::::::::::
(CloudSat)

::::::
height

:::
All

:::::::
measures

::
in

:::::
Table

::
8

::::
have

:::::
better

:::::
values

:::
for

::
all

::::::
neural

:::::::
networks

:::::::::
compared

::
to

:::
both

:::
the

::::::::
reference

:::::::::
algorithms

:::
and

::::
both

:::::::::
validation

:::::
truths.

::::::::::
Considering

:::
the

::::::::::::
improvement

::
in

::
all

:::
the

:::::
other

::::::::
measures

::
in

:::::
Table

:
8
::

it
::
is

::::
safe

::
to

::::::::
conclude

:::
that

::::
also

:::
the

:::::
lower

::::
bias

:::
for

:::
the

:::::
neural

::::::::
networks

:::::::
actually

::
is

::
an

::::::::::::
improvement.

:::::::
However

:::
the

:::::
mode

::::
and

::::::
median

:::::
better

:::::::
describe

:::
the

:::::::::::
improvement

:::
of

:::::::
tendency

::::
and10

::
for

:::
the

:::::
mode

:::
the

:::::
worst

::::::::::
performing

:::::::
network

::
is

:::
just

::
a

:::
few

::::::
meters

:::::
better

::::
than

:::
the

::::
best

:::::
mode

::
of

:::
the

::::::::
reference

:::::::::
algorithms.

::::
For

:::
the

:::::::::
comparison

:::
to

:::::::
CALIOP

:::
in

:::::
Table

:
8
:::
we

:::
see

::::
that

:::
the

:::::
most

::::::::
measures

:::::::
improve

::
as

:::
we

::::
add

:::::
more

:::::::
channels

::
to

:::
the

::::::
neural

::::::::
network.

::::::::
Validated

::::
with

::::
CPR

::::::::::
(CloudSat)

:::
the

::::::
results

:::
are

:::
not

:::::::::
improving

:::
for

:::
the

:::::::::::::::::::
NN-MetImage-NoCO2::::

and
::::::::::::
NN-MetImage.

:::
A

:::::::
possible

:::::::::
explanation

:::
for

::::
this

:::
can

::
be

::::
that

:::::
some

::::
high

:::
thin

::::::
clouds

::::::
layers

::
are

::::
not

:::::::
detected

::
by

:::
the

:::::
radar

:::
but

:::
the

::::::
neural

:::::::
network

:::::
places

:::::
them

:::::
higher

::::
than

:::
the

::::::::
detected

::::
CPR

::::::::::
(CloudSat)

::::
layer

::::::
below.

:::::
Thin

:::::
single

:::::
layer

::::::
clouds

:::
not

:::::::
detected

:::
by

:::
the

:::::
radar

:::
are

:::
of

:::::
course

::::
not15

:::::::
included

::
in

:::
the

:::::::
analysis.

:

::
In

:::
the

::::::::
validation

::::
with

::::::::
CALIOP

:::
the

:::::::::::
NN-AVHRR MAE is 627

:::
623

:
m lower (corresponding to 33%

::
32 % reduction of MAE)

than MODIS-C6 and 797
:::
795 m (corresponding to 38% % reduction of MAE) lower than PPS-v2014. The NN-MetImage-NoCO2

::::::::::::::::::
NN-MetImage-NoCO2:has the best result while performing well at all satellite zenith angles, with a 44%

::
43

:
% reduction in

MAE when compared to MODIS-C6 and a 48%
:
% reduction when compared to PPS-v2014.20

Co-located comparisons with CloudSat were also perfomed. In Table 7 the MAE in meters compared to height from
:::
The

::::::::::::
NN-MetImage

::::
have

:::::
even

:::::
better

::::::
scores

:::
but

:::
are

::::
not

:::::
useful

:::
for

:::::::
satellite

::::::
zenith

::::::
angles

:::::::::
exceeding

:::
20◦.

::
In

::::
the

::::::::
validation

:::::
with

CPR (CloudSat) are presented. All neural networks show at least 400better MAE compared to PPS-v2014 and MODIS-C6.

Note that when using CPR (CloudSat) as reference, the neural networks show better results for all categories (low, medium

and high) compared to both PPS-v2014 and MODIS-C6. The
:::
the NN-AVHRR shows 433

:::
430

:
m lower MAE (cooresponding25

:::::::::::
corresponding

:
to 25%

:
% reduction of MAE) compared to MODIS-C6 and 483

:::
482 m (corresponding to 27%

::
28

:
% reduction

of MAE) compared to PPS-v2014. The NN-MetImage-NoCO2 shows 550lower MAE (
:::::::::::::::::::
NN-MetImage-NoCO2 :::::

shows
:
corre-

sponding to 32%
:
% reduction of MAE ) compared to MODIS-C6 and 600lower MAE (correspoding to 34%

:
% reduction of

MAE ) compared to PPS-v2014.

Notice that30

4.4
::::::::

Validation
::::::
results

:::::::::
separated

:::
for

::::
low,

::::::::
medium

:::
and

:::::
high

::::
level

::::::
clouds

::::::
Results

:::
for

:::
low

:::::
level

:::::
clouds

::::::
(Table

::
9)

:::::
show

::::
that

::
all

:::::::::::
distributions

:::
are

::::
well

:::::::
centered

::::::
around

::::
zero

::::
and

:::
the

::::::
median

::::
and

:::::
mode

:::
are

:::::
within

::::
250

:
m

::::
from

::::
zero

:::
for

:::
all

:::::::::
algorithms

::::::
except

:::
the

:::::
mode

:::
for

::::::::::
PPS-v2014

:::
and

:::::::::::::::::::
NN-MetImageNoCO2::::::::

validated
::::
with

:::::
CPR

12



:::::::::
(CloudSat).

::::
The

:::::::
PE0.25,

:::::
PE0.5:::

and
::::

PE1::::
and

:::::
most

:::::
useful

::::::::
measures

:::
of

::::::::
variation,

::::
IQR

::::
and

::::::
MAE,

::::
show

::::::
better

::::::
values

:::
for

:::
the

:::::
neural

::::::::
networks

::::
than

::::
both

::::::::
reference

:::::::::
algorithms

::
as

:::::::::
compared

::
to

::::
both

::::::::
validation

::::::
truths.

::::
This

::::::::
indicates

:::
that

:::
the

::::::
neural

::::::::
networks

::::
have

:
a
:::::
larger

:::::::
amount

::
of

::::
good

::::::::
retrievals

::::
with

:::::
small

::::::
errors.

:::::
When

:::::::::
validation

::::
with

::::::::
CALIOP,

::::
only

::
31

:
%

::
of

:::
the

:::::::
absolute

:::::
errors

:::
for

::::::::::
NN-AVHRR

::::::
exceed

:::
0.5

:
km,

:::::::::
compared

::
to

::
58

:
% for MODIS-C6 the MAE for low clouds is high, 1206, in Table 7, and when

compared to CALIOP (Table 6) MODIS-C6
:::
and

::
47

:
%

::
for

::::::::::
PPS-v2014.

:
5

:::
For

:::
low

::::
level

::::::
clouds

:::::::::
validation

::::
with

::::
CPR

:::::::::
(CloudSat)

::::
one

:::::
needs

::
to

::::
keep

::
in

:::::
mind

:::
that

:::::
some

:::
thin

:::::
cloud

::::::
layers

:::
are

:::
not

:::::::
detected

::
by

:::
the

:::::
radar.

::::
This

::::::
means

::::
that

:::
the

::::
CPR

:::::::::
(CloudSat)

::::::
height

::::
does

::::
not

:::::
reflect

:::
the

::::
true

:::::
upper

:::::
most

::::
layer

:::
for

:::::
these

::::::
clouds.

:::::::
Correct

::::
cloud

:::
top

::::::
height

::::::::
retrievals

::
for

:::::
these

::::::
clouds

:::
will

::::
give

:::::
large

::::::
positive

:::::
errors

::
in

:::
the

::::
CPR

::::::::::
(CloudSat)

::::::::
validation

:::
for

:::
low

:::::
level

::::::
clouds.

::::
This

:::
can

::::::
explain

::::
why

:::
the

::::
PE2:::

and
::::::
RMSE

:::
for

:::
all

:::
the

:::::
neural

::::::::
networks

:::
are

:::::
better

::::
than

::::
both

::::::::
reference

:::::::::
algorithms

:::::
when

::::::::
validated

::::
with

:::::::
CALIOP

:::
but

:::::
when

::::::::
validated

::::
with

::::
CPR

:::::::::
(CloudSat)

::::::::::
PPS-v2014

::::
have

:::
the

:::
best

::::
PE2:::

and
:::::::
RMSE.

::
In

::::::
Section

:::
4.2

::
it

::
is

::::::::
discussed10

:::
why

:::
the

::::
bias

:::
and

::::
SD

::
are

::::
not

::::
very

:::::::::
informative

:::
for

:::::
these

:::::
highly

:::::::
skewed

:::::::::::
distributions.

:::::
Notice

::::
that

::::::::::
MODIS-C6

:::
has

::
a
::::
high

:::::
MAE

:::::
(1192

:
m
:
)
:::
for

::::
low

::::
level

::::::
clouds

:::::
when

::::::::
validated

::::
with

::::
CPR

::::::::::
(CloudSat).

:::::
Also

::
in

:::
the

:::::::
CALIOP

:::::::::
validation

::::::::::
MODIS-C6 has the highest MAEfor low

:
,
::::
IQR,

:::::::
RMSE,

::::::
PE0.25,

::::::
PE0.5,

::::
PE1 :::

and
::::
PE2 :::

for
:::
low

::::
level

:
clouds.

When checking the MAE per month we found that scores for
:::::::::
MODIS-C6

:::
for low clouds were worst for December (at the same

time the scores for high clouds were best in December). There turned out to be a bug in the algorithm for low marine cloud15

:::
top height (Richard Frey, MODIS Team, 2017 pers. comm.) which likely affected the results and the bug has been corrected in

Version 6.1. However overall validation scores for MODIS-C6 were not affected by the bug (Steve Ackerman, MODIS Team,

2017 pers. comm.).

In Figure 2 the height bias distributions comparing MODIS-C6, PPS-v2014 and NN-AVHRR to
::
For

:::::::
medium

:::::
level

::::::
clouds

:::
(see

:::::
Table

::::
10)

:::
the

:::::
neural

::::::::
networks

:::::
have

:::::
better

::::::::
measures

:::
for

::::::
MAE,

::::
IQR,

:::::::
RMSE,

:::
SD,

:::::
PE1,

::::
PE2 ::::::::

compared
::
to
:::::

both
::::::::
reference20

:::::::::
algorithms

:::::
when

::::::::
validated

::::
both

::::
with

:
CALIOP and CPR (CloudSat)are shown. The NN-AVHRR has the highest and best

centered distributions especially for low clouds. For medium level clouds both the NN-AVHRR and the
:
.
:::
For

:::
the

:::::::::
validation

::::
with

::::
CPR

:::::::::
(Cloudsat)

:::
the

:::::
neural

:::::::
network

::::
also

::::
have

:::
the

::::
best

::::::
PE0.25,

::::::
PE0.5,

::::::
median

:::
and

:::::
bias.

::
In

:::
the

::::::::
validation

::::
with

::::::::
CALIOP

:::
we

:::
can

:::
see

:::
that

::::
also

:
PPS-v2014 show good results.

::
has

:::::
good

:::::
values

:::
for

:::::::
PE0.25,

:::::
PE0.5,

:::::::
median

:::
and

:::
the

::::
bias

::::
even

:::::
better

::::
than

:::::
some

::
of

:::
the

:::::
neural

:::::::::
networks.

::::
This

::
is

:::
also

:::::
seen

::
in

:::::
Figure

::
2
:::
(d)

:::::
where

:::
we

::::
can

:::
see

:::
that

::::::::::
PPS-v2014

:::
has

:
a
::::

well
::::::::

centered
:::
and

::::
high

:::::
peak25

::
for

:::
the

:::::
error

::::::::::
distribution,

:::
but

::
a
:::::
larger

:::::::
amount

::
of

:::::::::::::
underestimated

:::::
cloud

:::
top

::::::
heights

:::::::::
compared

::
to

:::::::::::
NN-AVHRR.

::::
All

:::::::::
algorithms

:::::
report

::::
good

::::::
values

:::
for

:::
the

:::::
mode

:::::
within

::::
300 m

::::
from

::::
zero

:::
for

:::::::
medium

::::
level

:::::::
clouds.

For high clouds
:
,
::
in

::::::
Figure

::
2, we can see that the NN-AVHRR have

:::
has

:
less clouds predicted too low, especially compared to

PPS-v2014.
::
In

:::
the

::::::::
validation

::::
with

::::::::
CALIOP

::::::
(Table

:::
11)

:::
the

::::::
neural

:::::::
networks

:::::::
perform

::::::
better

::::
than

:::
the

:::
two

::::::::
reference

::::::::::
algorithms.

For the high clouds comparison to CloudSat,
::::::::
validation

::::
with

:::::
CPR

:::::::::
(CloudSat)

:
MODIS-C6 has the highest peak , however30

MODIS-C6 also has a large amount of clouds with bias
::::::
(Figure

:::
2),

:::
but

::::
also

:
a
::::::::
bi-modal

:::::
error

::::::::::
distribution

::::
with

::::::
another

:::::
peak

close to -6
:
km, which .

::::
This

:
explains why the overall MAE (Table 7

::
11) for high clouds is better for the NN-AVHRR.

The scatter plots in Figure 3 show how the height data of the neural networksand the reference methods are distributed

compared to CloudSat. Figure 4 show the same type of scatter plots for pressure with CALIOP as truth. These scatter plots

show that the NN-CTTH all have similar appearance with most of the data retrieved close to the truth. All methods (NN-CTTH,35
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PPS-v2014 and
:::
The

::::::
higher

::::
peak

:::
for

:
MODIS-C6 ) retrieve some heights and pressures that are very far from the true values

of CloudSat or CALIOP
::
for

:::::::::
validation

::::
with

::::
CPR

::::::::::
(CloudSat)

:
is
::::
also

::::::::
reflected

::
in

:
a
::::
good

:::::
IQR,

:::::
PE0.5,

::::
PE1::::

and
:::::
mode

:::::
inline

::::
with

::
the

::::::
neural

::::::::
networks. It is important to remember that some of these seemingly bad results are due to the different FOV for the

MODIS and the CALIOP or CloudSat sensors

:::
The

:::::::
median

:::
and

:::::
mode

:::
for

::::
high

:::::
level

:::::
clouds

:::
for

:::::
most

:::::
neural

::::::::
networks

:::
are

:::::::
positive

:::::
when

:::::::::
compared

::
to

::::
CPR

::::::::::
(CloudSat)

:::
but5

:::::::
negative

:::::
when

::::::::
valdiated

::::
with

::::::::
CALIOP.

::::
This

::::::::
supports

:::
the

::::
idea

::::
that

:::::
some

::::
high

::::
thin

::::::
clouds,

::
or
::::::

upper
::::
part

::
of

::::::
clouds,

:::
are

::::
not

:::::::
detected

::
by

:::
the

:::::
radar

:::
but

::
by

:::
the

:::::
lidar

:::
and

:::
the

:::::::
imager.

:::
The

:::::::
median

:::
for

::
the

::::::
neural

::::::::
networks

:::
for

::::
high

::::
level

::::::
clouds

:::
are

:::::::::
increasing

::
for

::::::
neural

::::::::
networks

::::
with

::::
more

:::::::::
variables.

::::
This

:::::::
suggests

:::
that

:::
the

:::::
extra

:::::::
channels

::::
help

:::
the

::::::
neural

::::::::
networks

::
to

:::::
detect

:::
the

::::
very

::::
thin

:::::
clouds

:::::::
detected

:::
by

::::::::
CALIOP.

:::
The

:::::::
medians

:::
for

:::
the

::::::::
validation

::::
with

:::::
CPR

:::::::::
(CloudSat)

:::
are

:::
also

::::::::::
increasing,

::::::::
becoming

:::::
more

:::::::
positive,

:::
and

:::
this

::::
can

::
be

::::::::
explained

:::
by

::::
some

::::
very

::::
thin

:::::
cloud

:::::
layers

:::
not

:::::::
detected

:::
by

::::
CPR

::::::::::
(CloudSat).

:
10

::
In

:::::
Table

::
11

:::
we

::::
can

::::
also

::::
note

:::
that

:::
SD

:::
for

:::
the

::::::::::
PPS-v2014

::::::::
validated

::::
with

:::::
CPR

:::::::::
(CloudSat)

::
is

::
in

::::
line

::::
with

:::
SD

:::
for

:::
the

::::::
neural

::::::::
networks.

::::
This

::
in

:::::::::::
combination

::::
with

:::
the

:::::
large

:::::::
negative

::::::
values

::
on

:::::
mode

::::
and

:::::::
median,

:::
and

::::
the

::::
high

:::::
MAE

:::
and

:::::
quite

:::::
good

::::
IQR

:::::::
indicates

::::
that

:::::::::
PPS-v2014

::::::::::::
systematically

:::::::::::::
underestimates

::
the

:::::
cloud

:::
top

::::::
height

:::
for

::::::::
high-level

:::::::
clouds.

4.5
::::::::
Validation

:::::
with

::::::::
CALIOP

:::::::::
separated

:::
for

::::::::
different

:::::::::
cloudtypes

::
In

:::::
Table

:::
12,

:::
the

:::::
MAE,

::::::
median

::::
and

:::::
PE0.5:::

are
::::::
shown

::
for

:::
the

::::::::
different

:::::
cloud

:::::
types

::::
from

:::
the

::::::::
CALIOP

::::::
feature

:::::::::::
classification

::::
flag.15

:::
We

:::
can

:::
see

:::
that

:::
the

:::::
MAE

::::
and

:::::
PE0.5 ::

for
:::
all

:::
the

:::::
neural

::::::::
networks

::
is

:::::
better

::::
than

::::
both

::::::::
reference

:::::::::
algorithms,

::::::
except

:::
that

::::::::::
PPS-v2014

:::
also

:::
has

::
a
:::
low

:::::
MAE

::::
and

:::::
PE0.5 :::

for
::::::
opaque

:::::::::
altostratus

:
.
:::::
Large

::::::::::::
improvements

::
in

:::::
MAE

:::
are

::::
seen

:::
for

:::
the

::::::::::
altocumulus

::::::::::
transparent

:::::::::
transparent

::::::
cirrus

:::
and

:::::
deep

:::::::::
convective

:::::::
(opaque)

::::::
classes.

::::
For

:::::
PE0.5 :::

the
::::::
largest

::::::::::::
improvements

::
is

::::
seen

:::
for

:::
the

::::
four

::::
low

:::::
cloud

::::::
classes

:::
and

:::
the

:::::
deep

:::::::::
convective

::::::::
(opaque)

::::
class

:::
for

::::::
which

:::
the

::::::
neural

::::::::
networks

::::
have

::
at
:::::
least

::
12

:
%

:::
less

::::::
errors

:::::
above

:::
0.5

:
km

::::::::
compared

::
to

::::
both

::::::::
reference

:::::::::
algorithms.

:
20

:::
All

::::::::
algorithms

:::::
have

:::::::
medians

:::::
closer

::
to

::::
zero

:::
than

::::
250

::
m

::
for

:::
the

::::::
classes

:::
low

:::::::
overcast

:::::::::::
(transparent)

:::
and

::::::::
transition

::::::::::::
stratocumulus.

:::
For

:::
the

:::
low

:::::::
overcast

::::::::
(opaque)

::
and

::::
low

::::::
broken

:::::::
cumulus

::
the

:::::
neural

::::::::
networks

::::
and

:::::::::
PPS-v2014

:::::
show

::::
good

::::::
values

:::
for

:::
the

:::::::
median.

:::
For

:::
the

::::::
classes

:::::::::::
altocumulus

::::::::::
transparent,

::::::::::
transparent

::::::
cirrus

:::
and

:::::
deep

:::::::::
convective

::::::::
(opaque)

::::::
clouds

:::
the

::::::
neural

:::::::
network

:::::
show

:::::::
medians

::
at

::::
least

::::
450

:
m

:::::
closer

::
to

::::
zero

:::::
than

::::
both

::::::::
reference

::::::::::
algorithms.

::::
For

:::
the

::::::
opaque

::::::::::
altostratus

::::
class

:::
the

:::::::
median

:::
of

:::
the

:::::::
reference

:::::::::
algorithms

::
is
:::::
better

::::
than

:::
the

::::::
neural

::::::::
networks.

:::::::::
PPS-v2014

::::
also

::::
have

::
a

::::
MAE

::::
and

:::::
PE0.5 :::

that
::
is

:::::
better

::::
than

:::::::::::
NN-AVHRR25

:::
and

::::::::::::
NN-AVHRR1

:::
for

:::
the

:::::::
opaque

:::::::::
altostratus

:::::
class.

:::
The

:::::
good

:::::::::::
performance

:::
of

:::::::::
PPS-v2014

:::
for

:::::::
opaque

:::::::::
altostratus

:::
are

::::
also

:::::::
reflected

::
in

::::::
Figure

:
2
:::
(d)

:::::
where

::::::::::
PPS-v2014

::::
have

:::
the

::::::
highest

:::::
peak.

:

:
It
::
is
:::::
most

:::::::
difficult

:::
for

::
all

::::::::::
algorithms

::
to

:::::::
correctly

:::::::
retrieve

:::::
cloud

:::
top

::::::
height

:::
for

:::
the

::::::
largest

:::::
class

:::::
cirrus

:::::::::::
(transparent)

:
.
::
If

:::
we

:::::::
compare

::::::::::::
NN-MetImage

:::::
with

:::::::::
PPS-v2014

:::
for

:::
the

::::::
cirrus

:::::::::::
(transparent)

::::
class

:::
we

:::
see

::::
that

:::::
MAE

::
is

::::::::
improved

::::
with

::::
2.4 km

:
,
:::
the

::::::
median

::::
with

:
3
:
km

:::
and

:::
21 %

:::
less

:::::::
absolute

::::::
errors

::
are

::::::
larger

::::
than

:::
500

:
m.30

4.6
:::::::::::

Geographical
:::::::
aspects

::
of

:::
the

::::::::::
NN-CTTH

:::::::::::
performance

To show how performance varies between surfaces and different parts of the globe, the MAE in meters compared to CALIOP

are calculated on a Fibonacci grid (constructed using the method described in González, 2009) with a grid evenly spread out
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on the globe approximately 250 km apartand .
:::
All

:::::::::::
observations

:::
are

:::::::
matched

::
to

:::
the

::::::
closest

::::
grid

::::
point

::::
and

::::::
results

:::
are plotted in

Figure 5. We can see that all algorithms have problems with clouds around the equator in areas where very thin high cirrus is

common. The MAE-difference (Figure 6) shows that the NN-AVHRR is better than MODIS-C6 in most parts of the globe, with

the greatest benefit observed closer to the poles. At a few isolated locations MODIS-C6 is better than NN-AVHRR. Figure 7

compares the NN-AVHRR and PPS-v2014 for one scene. Note that the NN-AVHRR has a less noisy appearance and has less5

nodata.

5 Discussion

The neural networks show great potential for retrieveing cloud height. The NN-CTTH is better in terms of MAE than both

PPS-v2014 and the MODIS Collection 6. The neural network algorithms are also useful for instruments with fewer channels

than MODIS, including the channels available for AVHRR1. This is important for climate data records which include AVHRR110

data to produce a long, continuous time series.

4.1
:::::

Future
:::::
work

::::
and

:::::::::
challenges

:

Neural networks can behave unexpectedly for unseen data. By using a large training dataset and early stopping the risk for

unexpected behaviour is decreased. Also the risk for unexpected results in a neural network algorithm can be a fair price to pay

given the significant improvements when compared to the current algorithms.15

Only near nadir satellite zenith angles were used for training. This might limit the performance for the neural networks at

other satellite zenith angles. The NN-MetImage network using the CO2 ::::
CO2 channel at 13.3

:
µm shows strong satellite zenith

angle dependence and is not useful for higher satellite zenith angles. A solution to train networks to perform better at higher

satellite zenith angles could be to include MODIS data from satellite Terra co-located with CALIPSO in the training data, as

they will get matches at any satellite zenith angle .
:::::::
although

::::
only

::
at

::::
high

::::::::
latitudes.

:::
As

::::::
latitude

::
is
:::
not

:::::
used

::
as

:
a
::::::::
variable,

::::
data20

::
for

::::::
higher

:::::::
satellite

:::::
zenith

::::::
angles

:::::::
included

:::
for

::::
high

:::::::
latitude

::::::
regions

:::::
could

::::
help

::::
also

::
in
:::::
other

:::::::
regions.

::::::::
However

:
it
::::::

might
::
be

::::
that

::
the

::::
high

:::::::
latitude

:::::::
matches

::::
will

:::
not

::::
help

::
the

:::::::
network

::
if
:::
the

::::::
variety

::
of

:::::::
weather

::::::::
situations

::::
and

::::
cloud

:::
top

:::::::
heights

::
at

::::
high

:::::::
latitudes

::
is

:::
too

:::::
small.

:
Radiative transfer calculations for the CO2::::

CO2-channels for different satellite-zenith angles could be another way

to improve the performance for higher satellite-zenith angles.

Several technical parameters influence the performance of the neural network, for example: learning rate, learning rate25

decay, momentum, number of layers, number of neurons, weight initialization function and early stopping criteria. For several

combinations tested, the differences were in the order of a few hPa. Networks tested using two hidden layers were found to

perform better than those using only one hidden layer.
:::
We

:::
did

::::
train

::::
one

:::::::
network

::::
with

::::
less

:::::::
neurons

:::
and

::::
one

::::
with

::::
more

::::::
layers

:::
and

:::::::
neurons

::::
with

:::
the

:::::
same

::::::::
variables

::
as

:::::::::::
NN-AVHRR.

::::
The

:::::::
network

::::
with

:::::
fewer

:::::::
neurons

::
in
::::

the
:::
two

::::::
hidden

::::::
layers

::::::
(20/15)

::::
was

:
1
::::
hPa

:::::
worse.

::::
The

:::::::
network

::::
with

:::::
more

:::::::
neurons

::
in

:::::
three

:::::
layers

:::::::::
(30/45/45)

::::
was

::::::
2.5hPa

:::::
better

::::
than

:::::::::::
NN-AVHRR

:::
but

::::
also

::::
took

::
530

::::
times

::
as
:::::

long
::::
time

::
to

::::::
retrieve

::::::::
pressure.

:::
The

::::
best

::::::::
technical

:::::::::
parameters

::::
and

:::::::
network

::::
setup

::
to
::::
use

::::
could

:::
be

::::::
further

::::::::::
investigated.

:

15



The NN-CTTH algorithm currently has no pixel specific error estimate. The MAE provides a constant error estimate (the

same for all pixels). However for some clouds the height retrieval is more difficult, e.g. thin clouds and sub-pixel clouds.

Further work to include pixel specific error estimates could be valuable.

:::::
Neural

::::::::
networks

::::
can

::::::
behave

:::::::::::
unexpectedly

:::
for

::::::
unseen

::::
data.

:::
By

:::::
using

::
a

::::
large

:::::::
training

::::::
dataset

:::
and

:::::
early

:::::::
stopping

:::
the

::::
risk

:::
for

:::::::::
unexpected

::::::::
behaviour

::
is
:::::::::
decreased.

::::
Also

:::
the

::::
risk

:::
for

:::::::::
unexpected

::::::
results

::
in

:
a
::::::
neural

:::::::
network

::::::::
algorithm

:::
can

::
be

::
a
:::
fair

::::
price

::
to
::::
pay5

::::
given

:::
the

:::::::::
significant

::::::::::::
improvements

:::::
when

:::::::::
compared

::
to

:::
the

::::::
current

::::::::::
algorithms. The training of neural networks requires refer-

ence data (truth). For optimal performance a neural network approach for upcoming new sensors (e.g. MERSI-2, MetImage)

being launched , when data from CALIPSO or CloudSat are no longer available, either another truth is needed or a method

to robustly transform network trained for one sensor to other sensors is needed. A way forward could be to include variables

with radiative transfer calculations of cloud free brightness temperatures and brightness temperature differences. Further work10

is needed to test how the networks trained for the MODIS sensor perform for AVHRR, AVHRR1, VIIRS and other sensors.

Our results show that networks can be trained using only the channels available on AVHRR, but they might need to be re-

trained with actual AVHRR data as the spectral response functions of the channels differ. The spectral response functions also

differ between different AVHRR instruments, and more investigations are needed to see how networks trained for one AVHRR

instrument will perform for other AVHRR instruments.15

:::
The

::::::
results

::::
here

::
are

:::::
valid

:::
for

::
the

:::::::
MODIS

::::::
imager

:::
on

::
the

:::::
polar

:::::::
orbiting

::::::
satellite

::::::
Aqua.

:::::::
However

:::::::
nothing

::
in

:::
the

::::::
method

:::::::
restricts

:
it
::
to

:::::
polar

:::::::
orbiting

::::::::
satellites.

::::
The

:::::::
method

::::::
should

::
be

:::::::::
applicable

:::
for

:::::::
imagers

::::
like

:::::::
SEVIRI,

::::::
which

:::
has

:::
the

::::
two

::::
most

:::::::::
important

:::::::
channels

::
at

:::
11

:
µm

:::
and

::
12

:
µm,

:::
on

:::::::::::
geostationary

:::::::::
satellites.

::::::::
However

:::
the

:::::::
network

::::::
trained

:::
on

:::::::
MODIS

::::
data

:::::
might

:::::
need

::
to

:::
be

:::::::
retrained

::::
with

:::::::
SEVIRI

::::
data

::
to

:::
get

:::
the

:::
best

:::::::::::
performance

::
as

:::
the

:::::::
spectral

:::::::
response

::::::::
functions

:::::::
between

:::::::
SEVIRI

::::
and

::::::
MODIS

::::::
differ.

20

5 Conclusions

The neural network approach shows high potential to improve cloud height retrievals. Including variables with information on

neighbouring pixel values was very important to get good results. Compared to two existing algorithms (MODIS Collection

6 and PPS-v2014)
:::
The

::::::::::
NN-CTTH

:::
(for

:::
all

::::::
trained

:::::
neural

:::::::::
networks)

::
is

:::::
better

::
in

:::::
terms

::
of

:::::
MAE

::
in

::::::
meters

::::
than

::::
both

::::::::::
PPS-v2014

:::
and

:::
the

:::::::
MODIS

:::::::::
Collection

::
6.

::::
This

::
is

::::
seen

:::
for

::::::::
validation

::::
with

::::::::
CALIOP

::::
and

::::
CPR

:::::::::
(CloudSat)

::::
and

:::
for

::::
low,

:::::::
medium,

::::
high

:::::
level25

::::::
clouds.

:::
The

::::::
neural

:::::::
networks

::::
also

:::::
show

:::
best

:::::
MAE

:::
for

:::
all

::::
cloud

:::::
types

::::::
except

:::::::::
altostratus

:::::::
(opaque)

::
for

:::::
which

::::::::::
PPS-v2014

::
is

:::::
better

:::
than

:::::
some

::
of

:
the neural networksshow an .

::::
The

::::::
neural

:::::::
networks

:::::
show

:::
an

::::::
overall improvement of mean absolute error (MAE)

of at least
::::
from 400

:
m . This is valid both for validation with CloudSat and CALIOP height products. Low

:::
and

:::
up

::
to

:::::
1km.

::::::::::
Considering

::::::
overall

:::::::::::
performance

::
in

:::::
terms

::
of

:::::
IQR,

:::::::
RMSE,

:::
SD,

:::::::
PE0.25,

::::::
PE0.5,

::::
PE1,

::::
PE2,

:::::::
median,

:::::
mode

::::
and

::::
bias

:::
the

::::::
neural

:::::::
network

:::::::
performs

::::::
better

::::
than

::::
both

:::
the

::::::::
reference

:::::::::
algorithms

::::
both

:::::
when

::::::::
validated

:::::
with

:::::::
CALIOP

::::
and

::::
CPR

::::::::::
(CloudSat).

:::
In

:::
the30

::::::::
validation

::::
with

::::::::
CALIOP

:::
the

:::::
neural

::::::::
networks

::::
have

::::::::
between

:
7
::::
and

::
20

::::::::::
percentages

:::::
more

::::::::
retrievals

::::
with

:::::::
absolute

:::::
errors

:::::::
smaller

:::
than

::::
250

:
m

::::::::
compared

::
to

:::
the

::::::::
reference

:::::::::
algorithms.

:::::::::::
Considering

:::
low, medium and high level clouds all show better results for

the NN-CTTH compared with both PPS-v2014 and MODIS-C6.
:::::
levels

::::::::
separately

::::
the

:::::
neural

::::::::
networks

:::::::
perform

:::::
better

:::
or

:::
for
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::::
some

:::::
cases

::
in

:::
line

::::
with

:::
the

::::
best

::
of

:::
the

::::
two

::::::::
reference

:::::::::
algorithms

::
in

:::::
terms

::
of

:::::
MAE,

:::::
IQR,

::::::
PE0.25,

:::::
PE0.5,

:::::
PE1,

::::::
median

:::
and

::::::
mode.

::::
This

:::::::
indicates

::::
that

::
the

::::::
neural

::::::::
networks

::::
have

::::
well

:::::::
centered,

::::::
narrow

:::::
error

::::::::::
distributions

::::
with

:::::
large

::::::
amount

::
of

::::::::
retrievals

::::
with

:::::
small

:::::
errors.

:

:::
The

::::
two

::::::::
reference

:::::::::
algorithms

::::
have

:::::
been

:::::
shown

::
to
:::::

have
:::::::
different

::::::::
strenghts

::::::::::
MODIS-C6

::::::::
validated

::::
with

::::
CPR

::::::::::
(CloudSat)

:::
for

::::
high

:::::
clouds

::::::
shows

::
a

::::
well

:::::::
centered

::::
and

::::::
narrow

::::
error

::::::::::
distribution

::
in
::::

line
::::
with

::::
(and

::::::
better

::::
than

:::::
some

:::
of)

:::
the

:::::
neural

:::::::::
networks,5

:::::::
although

:::
the

:::::
MAE

::
is

:::::
higher

:::
for

:::::::::::
MODIS-C6.

:::::::::
PPS-v2014

::::::::
validated

::::
with

::::::::
CALIOP

::
for

:::
the

:::::
cloud

::::
type

:::::::::
altostratus

::::::::
(opaque)

::::
show

:::::
scores

::
in

::::
line

::::
with

::::
(and

:::::
better

::::
than

::::
some

:::
of)

:::
the

::::::
neural

::::::::
networks.

:::
The

::::
error

:::::::::::
distributions

:::
for

:::
the

:::::
cloud

:::
top

:::::
height

::::::::
retrievals

::::
were

:::::
found

::
to

:::
be

::::::
skewed

:::
for

::
all

:::::::::
algorithms

:::::::::
considered

::
in
:::
the

::::::
paper,

::::::::
especially

:::
for

:::
low

:::::
level

::::::
clouds.

::
It

::::
was

:::::::::
examplified

::::
why

:::
the

::::
bias

::::
and

:::
SD

::::::
should

::
be

:::::::::
interpreted

:::::
with

::::::
caution

:::
and

::::
how

::::
they

::::
can

:::::
easily

::
be

:::::::::::::
misinterpreted.

::::
The

::::::
median

::::
and

:::::
mode

:::::
where

::::::
found

::
to

::
be

::::::
better

::::::::
measures

::
of

::::::::
tendency

::::
than

:::
the

::::
bias.

::::
The

::::
IQR

::::
and10

::::
MAE

:::::
were

:::::
found

::
to

:::::
better

:::::::
describe

:::
the

::::::
spread

::
of

:::
the

::::::
errors,

:::::::::
compared

::
to

:::
SD

:::
and

:::::::
RMSE,

::
as

:::
the

:::::::
absolute

::::::
values

::
of

:::
the

::::::
largest

:::::
errors

:::
are

:::
not

::
the

:::::
most

:::::::::
interesting.

:::::::::
Measuring

:::
the

:::::::
amount

::
of

:::::::
absolute

::::
error

:::::
above

:::
for

:::::::
example

::::
1km

:::::
(PE1)

::::
was

:::::
found

::
to

:::::::
provide

:::::::
valuable

::::::::::
information

::
on

:::
the

:::::::
amount

::
of

:::::::::
large/small

:::::
errors

::::
and

:::::
useful

::::::::
retrievals.

:

The
:::::
neural

:::::::
network

:::::::::
algorithms

:::
are

::::
also

::::::
useful

:::
for

::::::::::
instruments

::::
with

:::::
fewer

::::::::
channels

::::
than

::::::::
MODIS,

::::::::
including

:::
the

::::::::
channels

:::::::
available

:::
for

:::::::::
AVHRR1.

::::
This

::
is

::::::::
important

:::
for

::::::
climate

::::
data

::::::
records

::::::
which

::::::
include

:::::::::
AVHRR1

:::
data

::
to
:::::::
produce

::
a
::::
long,

::::::::::
continuous15

::::
time

:::::
series.

:::::::::
Including

:::::::
variables

::::
with

:::::::::::
information

::
on

:::::::::::
neighbouring

:::::
pixel

::::::
values

:::
was

:::::
very

::::::::
important

::
to

:::
get

:::::
good

::::::
results

:::::
about

:::
and

:::
40 %

:
of

::::
the

:::::::::::
improvement

::
of

:::::
MAE

:::
for

::::
the

:::::
cloud

:::
top

:::::::
pressure

::::::::
retrieval

:::
for

:::::::::::
NN-AVHRR

::::
was

:::
due

::
to
::::

the
:::::::
variables

:::::
with

:::::::::::
neighbouring

:::::
pixels.

::::
The

:
networks trained using only two IR-channels at 11 µm and 12 µm or 3.7

:
µm showed the most robust

performance at higher satellite zenith angles. Including more IR channels does improve results for nadir observations, but

introduces some differences between
:::::::
degrades

:::::::::::
performance

::
at

:::::
higher

:
satellite zenith angles. The NN-CTTH could run for the20

AVHRR1 instrument, in contrast to the other two algorithms neither of which could be applied for the AVHRR1 instrument.

A neural network cloud top pressure, temperature and height algorithm will be be part of the PPS-v2018 release. The PPS

software package is accessible via the NWCSAF
::::
NWC

::::
SAF

:
site nwc-saf.eumetsat.int.
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Table 1. MODIS data from 2010 used for training and validation of the neural networks.

Dataset Days used

Training 1st January March July September

14th February April May

14th August October December

Validation during training 1st May

14th March July November

Testing under development 1st November

14th January June September

Final validation 1st February April June

1st August October December
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Table 2. Description of variable types used to train
::
the

:
neural networks.

Variable type Variable names Note

Surface pressure PS Max pressure for pixel

NWP temperatures at surface, 950, 850, 700, 500, 250
:
hPa TS , T950, T850, T700, T500, T250 BT to pressure conversion

NWP column integrated water vapour Ciwv Expected BT differences

Brightness Temperature (BT) for 11
:
µm or 12

:
µm B11or

:
, B12 Opaque temperature

BT for water vapour channels at 6.7
:
µm

::
or 7.3 µm B6.7, B7.3 High or low

BT for CO2 :::
CO2 channel at 13.3

:
µm B13.3 High or low

BT differences . B11 −B12, B11 −B3.7, B8.5 −B11 Opacity or phase

BT differences to warmest/coldest neighbour . BW
12 −B12, BC

12 −B12 or Edge or thin

BW
11 −B11, BC

11 −B11 Edge or thin

BT differences for warmest/coldest neighbour . BW
11 −BW

12 , BC
11 −BC

12 or Opacity

BW
11 −BW

3.7, BC
11 −BC

3.7 Opacity

Texture: standard deviation of variable for 5x5 pixels SB11−B12 , SB11 , SB3.7 Edge or thin
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Table 3. Description of the different networks. See Table 2 for explanation of the variables. The NWP variables: PS , TS , T950, T850, T700,

T500, T250 are used in all networks.

Network name Network specific variables

NN-NWP Ciwv

NN-OPAQUE B12

NN-BASIC B12, B11 −B12,

NN-BASIC-CIWV B12, B11 −B12, Ciwv,

NN-AVHRR B12, B11 −B12, Ciwv,

BW
11 −BW

12 , BC
11 −BC

12,

BW
12 −B12, BC

12 −B12,

SB11−B12 , SB11 ,

NN-VIIRS B12, B11 −B12, Ciwv,

BW
11 −BW

12 , BC
11 −BC

12 ,

BW
12 −B12, BC

12 −B12,

SB11−B12 , SB11 ,

B8.5 −B11

NN-MERSI-2 B12, B11 −B12, Ciwv,

BW
11 −BW

12 , BC
11 −BC

12,

BW
12 −B12, BC

12 −B12,

SB11−B12 , SB11 ,

B8.5 −B11, B7.3

NN-MetImage-NoCO2 :::::::::::::::::
NN-MetImage-NoCO2 B12, B11 −B12, Ciwv,

BW
11 −BW

12 , BC
11 −BC

12,

BW
12 −B12, BC

12 −B12,

SB11−B12 , SB11 ,

B8.5 −B11, B7.3, B6.7

NN-MetImage B12, B11 −B12, Ciwv,

BW
11 −BW

12 , BC
11 −BC

12,

BW
12 −B12, BC

12 −B12,

SB11−B12 , SB11 ,

B8.5 −B11, B7.3, B6.7, B13.3

NN-AVHRR1 B11, B11 −B3.7, Ciwv,

BW
11 −BW

3.7, BC
11 −BC

3.7

BW
11 −B11, BC

11 −B11

SB3.7 , SB11
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Table 4. Description of the imager channels used for
::
the different networks

:::::::
algorithms.

:::
For

::::::::
MODIS-C6

:::::::
channels

::::
used

:::::::
indirectly,

::
to

::::::::
determine

:
if
:::::::::
CO2-slicing

:::::
should

:::
be

::::::
applied,

::
are

:::::
noted

:::
with

:::::::
brackets.

Imager channel: B11 :::
B3.7 B12 :::

B6.7 ::::
B7.3 B8.5 B7.3 :::

B11 B6.7 :::
B12 B13.3 B3.7 ::::

B13.6: ::::
B13.9: ::::

B14.2

Network name

::::::::
PPS-v2014

:
x
: :

x
:

:::::::::
MODIS-C6

::
(x)

::
(x)

:
x
: ::

(x)
:
x

:
x

:
x

:
x

NN-NWP

NN-OPAQUE x

NN-BASIC x x

NN-BASIC-CIWV x x

NN-AVHRR x x

NN-VIIRS x x x

NN-MERSI-2 x x x x

NN-MetImage-NoCO2 :::::::::::::::::
NN-MetImage-NoCO2 x x x x x

NN-MetImage x x x x x x

NN-AVHRR1 x x
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Table 5. Mean absolute error (MAE) for different algorithms compared to CALIOP top layer pressure. The final validation dataset (see

Table 1), containing 1796428
:::::::
1832432 pixels (45% % high, 39% % low and 16% % medium level clouds) is used. Pixels with valid pressure

for PPS-v2014, MODIS-C6, and CALIOP are considered. The low, medium and high classes are from CALIOP feature classification flag.

MAE [hPa]

all low medium high

PPS-v2014 122.9
::::
122.6 79.4

:::
80.2 88.6

:::
88.0 173.5

::::
172.9

MODIS-C6 124.3
::::
123.9 90.4

:::
90.7 140.0

::::
139.8 148.4

::::
147.3

NN-NWP 191.6
::::
191.7 140.8

::::
141.7 110.5

::::
110.3 266.0

::::
265.8

NN-OPAQUE 113.3
::::
113.2 81.3

:::
82.1 105.1

::::
105.0 144.5

::::
143.8

NN-BASIC 93.9 66.7
:::
67.7 92.8 118.3

::::
117.6

NN-BASIC-CIWV 92.1 66.4
:::
67.5 91.4

:::
91.3 115.0

::::
114.2

NN-AVHRR 72.2
:::
72.4 54.1

:::
55.4 67.4

:::
67.6 89.9

:::
89.2

NN-VIIRS 65.7
:::
65.9 49.1

:::
50.5 59.2

:::
59.3 82.7

:::
81.9

NN-MERSI-2
:::::::::
NN-MERSI2

:
61.2

:::
61.4 46.7

:::
48.2 52.0

:::
52.1 77.3

:::
76.6

NN-MetImage-NoCO2 :::::::::::::::::
NN-MetImage-NoCO2 60.0

:::
60.3 45.5

:::
47.1 54.3

:::
54.5 74.8

:::
74.1

NN-MetImage 53.6
:::
54.2 42.7

:::
44.5 51.3

:::
51.6 64.1

:::
63.8

NN-AVHRR1 76.1 53.6
:::
54.7 70.0

:::
69.9 98.1

:::
97.3
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Table 6. Mean absolute error (MAE) in meters for different algorithms compared to CALIOP top layer altitude. The final validation dataset

(see Table 1), containing 1793142 pixels (45% high, 39% low and 16% medium level clouds), where all algorithms had a cloud height is

used. The low, medium and high classes are from CALIOP feature classification flag. A small amount 0.2% of the pixels were excluded

because of missing height or pressure below 70hPa for any of the algorithms.

MAE [m]

all low medium high

PPS-v2014 2087 837 1124 3542

MODIS-C6 1917 944 1759 2833

NN-AVHRR 1290 567 962 2049

NN-VIIRS 1177 514 828 1891

NN-MERSI-2 1110 488 727 1797

NN-MetImage-NoCO2 1081 478 757 1732

NN-Metimage 964 451 707 1510

NN-AVHRR1 1375 560 978 2239
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Table 7. Mean absolute error (MAE) in meters for different algorithms compared to CPR (CloudSat) Height. The final validation dataset

(see Table 1), containing 1121199 pixels (53% high, 27% low and 21% medium level clouds) is used. The low, medium and high classes are

derived comparing the CloudSat height to the NWP height at 440hPa and 680hPa. A cloudy threshold of 30% is used for CloudSat.

MAE [m]

all low medium high

PPS-v2014 1761 977 1365 2315

MODIS-C6 1711 1206 1912 1888

NN-AVHRR 1278 771 1218 1559

NN-VIIRS 1223 766 1144 1486

NN-MERSI-2 1135 748 1061 1362

NN-MetImage-NoCO2 1161 768 1095 1386

NN-Metimage 1186 802 1119 1407

NN-AVHRR1 1297 858 1225 1548
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Table 8.
::::::
Statistic

:::::::
measures

:::
for

:::
the

::::
error

:::::::::
distributions

:::
for

::
all

:::::
clouds.

:::
For

:::
all

:::::::
measures

:::::
except

:::::::
skewness

::
it

:
is
:::
the

:::
case

::::
that

:::::
values

::::
closer

::
to

::::
zero

::
are

:::::
better.

:::
The

:::::::
statistics

:::
are

::::::::
calculated

::
for

:::::::
1198599

::::::
matches

:::
for

::::
CPR

::::::::
(CloudSat)

:::
and

:::::::
1803335

:::::::
matches

::
for

:::::::
CALIOP.

::
A
:::::
small

:::::
amount

:::::
0.2%

:
of
:::

the
:::::::
matches

::::
were

:::::::
excluded

::::::
because

::
of

::::::
missing

:::::
height

::
or

::::::
pressure

:::::
below

:::
70 hPa

::
for

:::
any

::
of

:::
the

::::::::
algorithms.

::::
PEX:::::::

describes
:::::::::

percentage
::
of

::::::
absolute

:::::
errors

::::
above

::
X

:
km

:
,
::
see

:::::::
Equation

::
1.

::::
MAE

: :::
IQR

:::::
RMSE

: :::
SD1

:::::
PE0.25: ::::

PE0.5: :::
PE1: :::

PE2: :::::
median

: ::::
mode

: :::
bias1

::::
skew

[
:
m] [

::
m] [

:
m] [

::
m] [

::
%] [

:
%] [

::
%] [

::
%] [

:
m] [

:
m] [

:
m]

CALIOP all clouds

::::::::
PPS-v2014

: :::
2095

: ::::
2832

:::
3188

: ::::
2832

::
82

: :
69

: ::
54

: ::
29

: :::
-639

: :::
-118

: ::::
-1465

: ::
-1.0

:

:::::::::
MODIS-C6

:::
1923

: ::::
2177

:::
3105

: ::::
2883

::
85

: :
72

: ::
51

: ::
23

: :::
-612

: :::
-262

: ::::
-1153

: ::
-1.5

:

:::::::::
NN-AVHRR

: :::
1300

: ::::
1326

:::
2234

: ::::
2197

::
73

: :
56

: ::
36

: ::
14

: :
50

: :::
106

: :::
-405

: ::
-1.8

:

::::::::
NN-VIIRS

: :::
1187

: ::::
1189

:::
2114

: ::::
2074

::
71

: :
52

: ::
33

: ::
12

: :
28

: :::
100

: :::
-410

: ::
-1.9

:

::::::::::
NN-MERSI-2

: :::
1120

: ::::
1107

:::
2039

: ::::
1996

::
69

: :
50

: ::
30

: ::
11

: :
-2
: ::

73
: :::

-420
: ::

-2.0
:

:::::::::::::::::
NN-MetImage-NoCO2 :::

1091
: ::::

1040
:::

2009
: ::::

1966
::
68

: :
48

: ::
29

: ::
11

: ::
-49

: ::
44

: :::
-416

: ::
-2.0

:

:::::::::::
NN-MetImage

:::
979

: :::
909

:::
1840

: ::::
1817

::
65

: :
46

: ::
26

: :
9
: ::

-17
: ::

15
: :::

-294
: ::

-1.9
:

::::::::::
NN-AVHRR1

: :::
1383

: ::::
1547

:::
2354

: ::::
2281

::
75

: :
58

: ::
38

: ::
16

: ::
-42

: ::
50

: :::
-584

: ::
-1.8

:

CPR (CloudSat) all clouds

::::::::
PPS-v2014

: :::
1744

: ::::
2255

:::
2432

: ::::
2160

::
87

: :
74

: ::
56

: ::
24

: :::
-833

: :::
-426

: ::::
-1118

: ::
-0.1

:

:::::::::
MODIS-C6

:::
1692

: ::::
1928

:::
2607

: ::::
2533

::
84

: :
70

: ::
48

: ::
20

: :::
-375

: :::
-259

: :::
-614

: ::
-0.1

:

:::::::::
NN-AVHRR

: :::
1262

: ::::
1473

:::
1928

: ::::
1923

::
77

: :
61

: ::
41

: ::
14

: :
88

: :::
-141

: ::
143

: ::
0.2

:

::::::::
NN-VIIRS

: :::
1207

: ::::
1368

:::
1901

: ::::
1896

::
76

: :
58

: ::
38

: ::
13

: :
69

: :::
-146

: ::
137

: ::
0.5

:

::::::::::
NN-MERSI-2

: :::
1120

: ::::
1275

:::
1793

: ::::
1788

::
75

: :
56

: ::
35

: ::
11

: :
40

: :::
-201

: ::
136

: ::
0.5

:

:::::::::::::::::
NN-MetImage-NoCO2 :::

1146
: ::::

1315
:::

1834
: ::::

1828
::
76

: :
57

: ::
35

: ::
12

:
9
: :::

-218
: ::

147
: ::

0.7
:

:::::::::::
NN-MetImage

:::
1170

: ::::
1421

:::
1865

: ::::
1843

::
76

: :
58

: ::
37

: ::
11

: :
84

: :::
-243

: ::
285

: ::
0.9

:

::::::::::
NN-AVHRR1

: :::
1281

: ::::
1523

:::
1953

: ::::
1953

::
79

: :
63

: ::
41

: ::
14

: :
30

: :::
-128

: ::
-14

: ::
0.0

:

1 Interpret bias and SD with caution as distributions are non-Gaussian. Bias is not located at the center of the distribution.
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Table 9.
::::::
Statistic

:::::::
measures

:::
for

::
the

::::
error

::::::::::
distributions

::
for

:::
low

::::
level

::::::
clouds.

:::
For

::
all

:::::::
measures

:::::
except

:::::::
skewness

:
it
::
is
:::
the

:::
case

:::
that

:::::
values

:::::
closer

::
to

:::
zero

:::
are

:::::
better.

:::
The

:::::::
statistics

::
are

::::::::
calculated

::
for

::::::
328015

:::::::
matches

::
for

::::
CPR

::::::::
(CloudSat)

:::
and

::::::
709434

:::::::
matches

::
for

:::::::
CALIOP.

::::
The

:::
low

::::
class

:::::
comes

:::
from

:::::::
CALIOP

::::::
feature

::::::::::
classification

:::
flag

::::
(class

::
0,

::
1,

:
2
:::
and

::
3)

:::
and

::
for

::::
CPR

:::::::::
(CloudSat)

:
it
::
is

::
the

:::::
pixels

:::
with

::::::
heights

:::::
lower

:
or
::::::
exactly

::
at

::
the

:::::
NWP

:::::
height

::
at
:::
680

:
hPa.

::::
PEX::::::::

describes
::::::::
percentage

::
of

::::::
absolute

:::::
errors

:::::
above

:
X
:
km

:
,
::
see

:::::::
Equation

::
1.

::::
MAE

: :::
IQR

:::::
RMSE

: :::
SD1

:::::
PE0.25: ::::

PE0.5: :::
PE1: :::

PE2: :::::
median

: ::::
mode

: :::
bias1

::::
skew

[
:
m] [

::
m] [

:
m] [

::
m] [

::
%] [

:
%] [

::
%] [

::
%] [

:
m] [

:
m] [

:
m]

Low level clouds CALIOP

::::::::
PPS-v2014

: :::
847

: ::::
1035

:::
1469

: ::::
1436

::
68

: :
47

: ::
27

: :
5
: ::

-46
: :::

-117
: ::

312
: ::

3.0
:

:::::::::
MODIS-C6

:::
952

: ::::
1230

:::
1576

: ::::
1561

::
78

: :
58

: ::
29

: :
6
: ::

-17
: :::

-150
: ::

219
: ::

2.9
:

:::::::::
NN-AVHRR

: :::
586

: :::
584

:::
1121

: ::::
1027

::
56

: :
31

: ::
14

: :
3
: ::

215
: :::

101
: ::

449
: ::

4.0
:

::::::::
NN-VIIRS

: :::
533

: :::
515

:::
1080

: ::::
1006

::
52

: :
27

: ::
11

: :
3
: ::

182
: :::

126
: ::

391
: ::

4.8
:

::::::::::
NN-MERSI-2

: :::
509

: :::
490

:::
1063

: :::
998

::
49

: :
25

: ::
10

: :
3
: ::

159
: ::

86
: ::

365
: ::

4.8
:

:::::::::::::::::
NN-MetImage-NoCO2 :::

499
: :::

504
:::

1068
: ::::

1024
::
48

: :
24

: ::
10

: :
3
: :

98
: ::

40
: ::

303
: ::

4.9
:

:::::::::::
NN-MetImage

:::
476

: :::
450

:::
1103

: ::::
1069

::
45

: :
21

: :
8
: :

3
: :

74
: ::

14
: ::

271
: ::

5.4
:

::::::::::
NN-AVHRR1

: :::
574

: :::
646

:::
1045

: :::
969

::
58

: :
33

: ::
13

: :
3
: ::

197
: ::

49
: ::

391
: ::

3.8
:

Low level clouds CPR (CloudSat)

::::::::
PPS-v2014

: :::
949

: ::::
1197

:::
1571

: ::::
1556

::
78

: :
56

: ::
29

: :
5
: :::

-173
: :::

-413
: ::

211
: ::

2.8
:

:::::::::
MODIS-C6

:::
1192

: ::::
1335

:::
2145

: ::::
2097

::
79

: :
60

: ::
33

: :
9
: :

46
: :::

-110
: ::

450
: ::

2.9
:

:::::::::
NN-AVHRR

: :::
743

: :::
685

:::
1595

: ::::
1532

::
56

: :
31

: ::
16

: :
6
: :

16
: :::

-132
: ::

443
: ::

3.8
:

::::::::
NN-VIIRS

: :::
739

: :::
637

:::
1690

: ::::
1633

::
55

: :
30

: ::
15

: :
6
: :

-6
: :::

-139
: ::

432
: ::

4.2
:

::::::::::
NN-MERSI-2

: :::
721

: :::
605

:::
1652

: ::::
1602

::
55

: :
28

: ::
14

: :
6
: ::

-31
: :::

-181
: ::

403
: ::

4.1
:

:::::::::::::::::
NN-MetImage-NoCO2 :::

742
: :::

608
:::

1670
: ::::

1637
::
60

: :
31

: ::
13

: :
6
: :::

-105
: :::

-255
: ::

328
: ::

4.2
:

:::::::::::
NN-MetImage

:::
773

: :::
578

:::
1813

: ::::
1775

::
58

: :
30

: ::
13

: :
6
: :::

-102
: :::

-217
: ::

369
: ::

4.1
:

::::::::::
NN-AVHRR1

: :::
827

: :::
852

:::
1676

: ::::
1602

::
64

: :
38

: ::
18

: :
7
: :

48
: :::

-198
: ::

491
: ::

3.6
:

1 Interpret bias and SD with caution as distributions are non-Gaussian. Bias is not located at the center of the distribution.
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Table 10.
:::::

Statistic
::::::::
measures

::
for

:::
the

::::
error

:::::::::
distributions

:::
for

::::::
medium

::::
level

::::::
clouds.

:::
For

::
all

:::::::
measures

::::::
except

:::::::
skewness

:
it
::

is
:::
the

:::
case

::::
that

:::::
values

::::
closer

::
to
::::
zero

:::
are

:::::
better.

:::
The

:::::::
statistics

:::
are

:::::::
calculted

::
for

::::::
244885

:::::::
matches

:::
for

:::
CPR

:::::::::
(CloudSat)

:::
and

::::::
295186

:::::::
matches

::
for

::::::::
CALIOP.

:::
The

::::
high

:::
class

::::::
comes

::::
from

:::::::
CALIOP

:::::
feature

::::::::::
classification

:::
flag

:::::
(class

:
4
:::
and

::
5)

:::
and

:::
for

::::
CPR

::::::::
(CloudSat)

::
it

:
is
:::
the

:::::
pixels

:::
with

::::::
heights

:::::::
between

::
the

:::::
NWP

:::::
height

::
at
:::
440

:
hPa

:::
and

:::
680

:
hPa.

::::
PEX:::::::

describes
:::::::::
percentage

::
of

::::::
absolute

:::::
errors

::::
above

::
X

:
km

:
,
::
see

:::::::
Equation

::
1.

::::
MAE

: :::
IQR

:::::
RMSE

: :::
SD1

:::::
PE0.25: ::::

PE0.5: :::
PE1: :::

PE2: :::::
median

: ::::
mode

: :::
bias1

::::
skew

[
:
m] [

::
m] [

:
m] [

::
m] [

::
%] [

:
%] [

::
%] [

::
%] [

:
m] [

:
m] [

:
m]

Medium level clouds CALIOP

::::::::
PPS-v2014

: :::
1121

: ::::
1600

:::
1651

: ::::
1614

::
78

: :
59

: ::
37

: ::
12

: ::
-68

: :::
124

: :::
-348

: ::
0.2

:

:::::::::
MODIS-C6

:::
1759

: ::::
2590

:::
2304

: ::::
2192

::
87

: :
76

: ::
60

: ::
27

: :::
-654

: :::
205

: :::
-708

: ::
0.6

:

:::::::::
NN-AVHRR

: :::
969

: ::::
1243

:::
1394

: ::::
1339

::
78

: :
59

: ::
34

: :
7
: ::

304
: :::

273
: ::

387
: ::

0.8
:

::::::::
NN-VIIRS

: :::
832

: ::::
1048

:::
1227

: ::::
1206

::
74

: :
53

: ::
28

: :
5
: ::

186
: ::

23
: ::

223
: ::

0.7
:

::::::::::
NN-MERSI-2

: :::
731

: :::
935

:::
1102

: ::::
1093

::
70

: :
47

: ::
23

: :
4
: :

83
: ::

16
: ::

144
: ::

0.9
:

:::::::::::::::::
NN-MetImage-NoCO2 :::

762
: :::

984
:::

1148
: ::::

1145
::
71

: :
49

: ::
24

: :
4
: :

28
: :

-1
: :

86
: ::

1.1
:

:::::::::::
NN-MetImage

:::
714

: :::
905

:::
1091

: ::::
1090

::
69

: :
46

: ::
22

: :
3
:

4
: ::

-63
: :

36
: ::

1.1
:

::::::::::
NN-AVHRR1

: :::
980

: ::::
1330

:::
1381

: ::::
1364

::
79

: :
61

: ::
35

: :
7
: ::

187
: :::

176
: ::

213
: ::

0.5
:

Medium level clouds CPR (CloudSat)

::::::::
PPS-v2014

: :::
1364

: ::::
1978

:::
1927

: ::::
1858

::
82

: :
66

: ::
46

: ::
18

: :::
-300

: ::
53

: :::
-512

: ::
0.5

:

:::::::::
MODIS-C6

:::
1909

: ::::
2698

:::
2532

: ::::
2475

::
88

: :
78

: ::
62

: ::
30

: :::
-597

: ::
69

: :::
-534

: ::
0.9

:

:::::::::
NN-AVHRR

: :::
1215

: ::::
1541

:::
1817

: ::::
1770

::
81

: :
64

: ::
40

: ::
12

: ::
209

: :::
-113

: ::
409

: ::
1.2

:

::::::::
NN-VIIRS

: :::
1139

: ::::
1325

:::
1788

: ::::
1760

::
77

: :
59

: ::
36

: ::
11

: ::
114

: ::
-81

: ::
310

: ::
1.5

:

::::::::::
NN-MERSI-2

: :::
1059

: ::::
1203

:::
1706

: ::::
1686

::
75

: :
55

: ::
32

: ::
10

: :
15

: :::
-150

: ::
264

: ::
1.7

:

:::::::::::::::::
NN-MetImage-NoCO2 :::

1091
: ::::

1259
:::

1752
: ::::

1740
::
76

: :
57

: ::
33

: ::
10

: ::
-44

: :::
-154

: ::
205

: ::
1.8

:

:::::::::::
NN-MetImage

:::
1113

: ::::
1217

:::
1832

: ::::
1818

::
75

: :
56

: ::
33

: ::
11

: ::
-45

: :::
-174

: ::
225

: ::
1.9

:

::::::::::
NN-AVHRR1

: :::
1221

: ::::
1591

:::
1776

: ::::
1751

::
81

: :
65

: ::
41

: ::
13

: ::
146

: ::
-25

: ::
301

: ::
1.0

:

1 Interpret bias and SD with caution as distributions are non-Gaussian. Bias is not located at the center of the distribution.
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Table 11.
::::::
Statistic

:::::::
measures

:::
for

::
the

::::
error

::::::::::
distributions

::
for

::::
high

::::
level

:::::
clouds.

:::
For

::
all

:::::::
measures

::::::
except

:::::::
skewness

:
it
::
is

::
the

::::
case

:::
that

:::::
values

:::::
closer

:
to
::::

zero
:::
are

:::::
better.

:::
The

:::::::
statistics

:::
are

::::::::
calculated

::
for

::::::
625699

:::::::
matches

::
for

::::
CPR

:::::::::
(CloudSat)

:::
and

::::::
798715

:::::::
matches

::
for

::::::::
CALIOP.

:::
The

::::
high

::::
class

:::::
comes

::::
from

:::::::
CALIOP

:::::
feature

::::::::::
classification

:::
flag

:::::
(class

:
6
:::
and

::
7)
:::
and

:::
for

::::
CPR

::::::::
(CloudSat)

::
it
::
is

::
the

:::::
pixels

::::
with

:::::
heights

::::::
higher

::
or

:::::
exactly

::
at

:::
the

::::
NWP

:::::
height

::
at

:::
440 hPa

:
.
::::
PEX :::::::

describes
::::::::
percentage

::
of

:::::::
absolute

::::
errors

:::::
above

::
X km,

:::
see

:::::::
Equation

::
1.

::::
MAE

: :::
IQR

:::::
RMSE

: :::
SD1

:::::
PE0.25: ::::

PE0.5: :::
PE1: :::

PE2: :::::
median

: ::::
mode

: :::
bias1

::::
skew

[
:
m] [

::
m] [

:
m] [

::
m] [

::
%] [

:
%] [

::
%] [

::
%] [

:
m] [

:
m] [

:
m]

High level clouds CALIOP

::::::::
PPS-v2014

: :::
3564

: ::::
3367

:::
4475

: ::::
2842

::
96

: :
92

: ::
84

: ::
57

: ::::
-2918

: ::::
-1897

: ::::
-3456

: ::
-0.9

:

:::::::::
MODIS-C6

:::
2846

: ::::
3095

:::
4196

: ::::
3342

::
92

: :
84

: ::
68

: ::
36

: ::::
-1586

: :::
-917

: ::::
-2537

: ::
-1.5

:

:::::::::
NN-AVHRR

: :::
2057

: ::::
2775

:::
3072

: ::::
2704

::
87

: :
76

: ::
57

: ::
27

: :::
-799

: :::
-130

: ::::
-1457

: ::
-1.4

:

::::::::
NN-VIIRS

: :::
1899

: ::::
2459

:::
2916

: ::::
2581

::
86

: :
74

: ::
53

: ::
23

: :::
-716

: ::
-18

: ::::
-1356

: ::
-1.6

:

::::::::::
NN-MERSI-2

: :::
1807

: ::::
2258

:::
2818

: ::::
2486

::
85

: :
72

: ::
51

: ::
21

: :::
-705

: :::
-192

: ::::
-1326

: ::
-1.7

:

:::::::::::::::::
NN-MetImage-NoCO2 :::

1739
: ::::

2134
:::

2760
: ::::

2464
::
84

: :
70

: ::
48

: ::
20

: :::
-606

: :::
-248

: ::::
-1242

: ::
-1.8

:

:::::::::::
NN-MetImage

:::
1524

: ::::
1906

:::
2476

: ::::
2298

::
83

: :
67

: ::
44

: ::
16

: :::
-360

: ::
-83

: :::
-920

: ::
-2.0

:

::::::::::
NN-AVHRR1

: :::
2250

: ::::
2913

:::
3292

: ::::
2791

::
89

: :
79

: ::
61

: ::
30

: ::::
-1099

: :::
-475

: ::::
-1746

: ::
-1.3

:

High level clouds CPR (CloudSat)

::::::::
PPS-v2014

: :::
2309

: ::::
2384

:::
2930

: ::::
2092

::
93

: :
87

: ::
74

: ::
36

: ::::
-1789

: ::::
-1428

: ::::
-2052

: ::
-0.5

:

:::::::::
MODIS-C6

:::
1869

: ::::
2142

:::
2845

: ::::
2578

::
86

: :
73

: ::
51

: ::
22

: :::
-614

: :::
-506

: ::::
-1203

: ::
-1.2

:

:::::::::
NN-AVHRR

: :::
1553

: ::::
2244

:::
2121

: ::::
2118

::
87

: :
75

: ::
54

: ::
19

: ::
143

: ::
348

: :::
-117

: ::
-0.6

:

::::::::
NN-VIIRS

: :::
1479

: ::::
2095

:::
2043

: ::::
2041

::
86

: :
73

: ::
52

: ::
17

: ::
168

: ::
332

: ::
-85

: ::
-0.7

:

::::::::::
NN-MERSI-2

: :::
1353

: ::::
1876

:::
1894

: ::::
1893

::
85

: :
71

: ::
48

: ::
14

: ::
177

: ::
326

: ::
-54

: ::
-0.9

:

:::::::::::::::::
NN-MetImage-NoCO2 :::

1379
: ::::

1843
:::

1944
: ::::

1944
::
85

: :
71

: ::
48

: ::
15

: ::
219

: ::
292

: :
29

: ::
-0.7

:

:::::::::::
NN-MetImage

:::
1399

: ::::
1871

:::
1904

: ::::
1885

::
87

: :
74

: ::
52

: ::
14

: ::
463

: ::
511

: ::
265

: ::
-0.8

:

::::::::::
NN-AVHRR1

: :::
1542

: ::::
2275

:::
2145

: ::::
2107

::
87

: :
74

: ::
53

: ::
19

: ::
-67

: ::
281

: :::
-403

: ::
-0.8

:

1 Interpret bias and SD with caution as distributions are non-Gaussian. Bias is not located at the center of the distribution.
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Table 12.
::::
Mean

::::::
absolute

:::::
error

:::::
(MAE)

::::
and

::::::
median

::
in

:::::
meters

:::
for

:::::::
different

::::::::
algorithms

::::::::
compared

::
to

:::::::
CALIOP

:::
top

::::
layer

::::::
altitude.

::::
The

::::
final

:::::::
validation

::::::
dataset

:::
(see

:::::
Table

::
1),

:::::::::
containing

:::::::
1803335

:::::
pixels

::
(5 %

:::
low

:::::::
overcast

::::::::::
(transparent),

::
12

:
%

:::
low

::::::
overcast

:::::::
opaque,

::
19

:
%

:::::::
transition

:::::::::::
stratocumulus,

:
2 %

:::
low,

::::::
broken

:::::::
cumulus,

:
7
:
%

::::::::
altocumulus

:::::::::::
(transparent),

:
8 %

::::::::
altostratus

:::::::
(opaque),

::
30

:
%

::::
cirrus

::::::::::
(transparent)

:::
and

::
14 %

::::
deep

::::::::
convective

::::::::
(opaque)),

:::::
where

::
all

::::::::
algorithms

:::
had

::
a
::::
cloud

:::
top

:::::
height

::
is

::::
used.

:::
The

:::::
cloud

::::
types

:::
are

::::
from

:::::::
CALIOP

::::::
feature

::::::::::
classification.

:::::
PE0.5

:::::::
describes

::::::::
percentage

::
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::::::
absolute

:::::
errors

:::::
above

::
0.5

:
km
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Figure 1. Retrieved pressure dependence on satellite zenih angle. CALIOP pressure distribution is shown in light blue. The percent of results

are calculated in 50 hPa bins. The final validation dataset is used (see Table 1).
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Figure 2. Bias
:::
Error

:
distribution compared to CPR (CloudSat) (left) and CALIOP (right). The percent of data is calculated in 0.1 km

bins. For CALIOP the low, medium and high clouds are determined from CALIOP feature classification flag. For
:::
CPR

:
(CloudSat

:
) the low,

medium, high clouds are determined from
:::
CPR

:
(CloudSat)

:
height compared to NWP geopotential height at 440

:
hPa and 680 hPa. The final

validation dataset (see Table 1) where all algorithms had a height reported is used. Note that the values on the y-axis are dependent of the bin

size. The peak at 11% % for NN-AVHRR in subplot (f), means that 11%
:
% of the retrieved heights are between the CALIOP height and

the CALIOP height + 0.1
:
km.
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Figure 3. Scatters plot of the height for the neural networks and for the reference methods against
::::
CPR

:
(CloudSat)

:
height. The data were

divided in bins of size 0.25 x 0.25 (kmkm) for colour coding. The number of points in each bin determines the colour of the point. The

final validation dataset (see Table 1) where all algorithms had a height reported is used. Five
:::

Two points where
:::
CPR

:
(CloudSat

:
) had a height

above 22km
::
22 km where excluded. A cloudy threshold of 30% % is used for

:::
CPR

:
(CloudSat

:
).
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Figure 4. Scatter plots of the pressure for the neural networks and for the reference methods against CALIOP cloud top pressure. The data

were divided in bins of size 10 x 10 (hPahPa) for colour coding. The number of points in each bin determines the colour of the point. The

final validation dataset (see Table 1) where all algorithms had a height reported is used.
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Figure 5. Mean absolute error in meters compared to CALIOP height. From the top a) PPS-v2014, b) MODIS-C6, and c) NN-AVHRR.

Results are calculated for bins evenly spread out 250 km apart. Bins with less than 10 cloudy pixels are excluded (plotted in dark grey). The

final validation and testing under development data (see Table 1) are included to get enough pixels.
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Figure 6. Mean absolute error difference in meters between MODIS-C6 and NN-AVHRR compared to CALIOP. Results are calculated for

bins evenly spread out 250 km apart. Bins with less than 10 cloudy pixels are excluded (plotted in dark grey). Dark green means NN-AVHRR

is 1.5 km better than MODIS-C6, dark brown means MODIS-C6 is 1.5 km better than NN-AVHRR. The final validation and testing under

development data (see Table 1) are included to get enough pixels.
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Figure 7. Comparing the cloud top height from the NN-AVHRR (left) to PPS-v2014 (right) with a RGB in the middle using channels at

3.7
:
µm, 11

:
µm, 12

:
µm. Cloud retrievals below 2are red, brown or purple. Cloud retrievals between 2 and 5are orange and yellow. Cloud

retrievals between 5 and 8are green and blue. White pixels are cloud retrievals above 8. Notice that the NN-AVHRR is smoother, contain less

nodata and that the small high ice clouds in the lower part of the figure are better captured. This is from MODIS on Aqua 14th of January

2010, 00:05UTC.
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Figure 8.
::::
Error

:::::::::
distribution

:::::::
compared

::
to

::::
CPR

::::::::
(CloudSat)

::::
(left)

:::
and

:::::::
CALIOP

:::::
(right)

::::
with

:::::
biases

:::
and

::::::
medians

:::::::
marked.

:::
The

::::::
percent

::
of

:::
data

::
is

:::::::
calculated

::
in

:::
0.1 km

::::
bins.

:::
The

::::
final

:::::::
validation

::::::
dataset

:::
(see

:::::
Table

::
1)

:::::
where

::
all

::::::::
algorithms

:::
had

:
a
:::::

height
:::::::

reported
::
is

::::
used.

::::
Note

:::
that

:::
the

:::::
values

::
on

:::
the

:::::
y-axis

::
are

::::::::
dependent

::
of
:::

the
:::
bin

::::
size.

:::
The

::::
peak

::
at
::
6 %

::
for

:::::::::
NN-AVHRR

::
in
::::::

subplot
:::

(f),
:::::
means

::::
that

:
6
:
%

:
of
:::

the
:::::::
retrieved

::::::
heights

:::
are

::::::
between

:::
the

:::::::
CALIOP

:::::
height

:::
and

::
the

:::::::
CALIOP

:::::
height

::
+

::
0.1

:
km

:
.
::
In

:::
grey

:::
the

:::::::
Gaussian

:::::::::
distribution

:::
with

:::
the

::::
same

:::
bias

::::
and

::::::
standard

::::::::
derivation

:
is
::::::
shown.
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