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Abstract.

Cloud top height retrieval from imager instruments is important for nowcasting and for satellite climate data records. A neural

network approach for cloud top height retrieval from the imager instrument MODIS (Moderate-resolution Imaging Spectro-

radiometer) is presented. The neural networks are trained using cloud top layer pressure data from the CALIOP (Cloud-Aerosol

Lidar with Orthogonal Polarisation) dataset.5

Results are compared with two operational reference algorithms for cloud top height: the MODIS Collection 6 level 2 height

product and the cloud top temperature and height algorithm in the 2014 version of the NWC SAF (EUMETSAT (European

Organisation for the Exploitation of Meteorological Satellites) Satellite Application Facility for nowcasting and very shortrange

forecasting) PPS (Polar Platform System). All three techniques are evaluated using both CALIOP and CPR (CloudSat) (Cloud

Profiling Radar for CloudSat (CLOUD SATellite)) height.10

Instruments like AVHRR (Advanced Very High Resolution Radiometer) and VIIRS (Visible Infrared Imaging Radiometer

Suite) contain fewer channels useful for cloud top height retrievals than MODIS, therefore several different neural networks

are investigated to test how infrared channel selection influences retrieval performance. Also a network with only channels

available for the AVHRR1 instrument is trained and evaluated. To examine the contribution of different variables, networks

with fewer variables are trained. It is shown that variables containing imager information for neighbouring pixels are very15

important.

The error distributions of the involved cloud top height algorithms are found to be non-Gaussian. Different descriptive

statistic measures are presented and it is examplified that bias and SD (standard deviation) can be misleading for non-Gaussian

distributions. The median and mode are found to better describe the tendency of the error distributions and IQR (interquartile

range) and MAE are found to give the most useful information of the spread of the errors.20

For all descriptive statistics presented MAE, IQR, RMSE (root mean square error), SD, mode, median, bias and percentage

of absolute errors above 0.25, 0.5, 1 and 2 km the neural network perform better than the reference algorithms both validated

with CALIOP and CPR (CloudSat). The neural networks using the brightness temperatures at 11 µm and 12 µm show at least

32 % (or 623 m) lower mean absolute error (MAE) compared to the two operational reference algorithms when validating with

CALIOP height. Validation with CPR (CloudSat) height gives at least 25 % (or 430 m) reduction of MAE.25
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1 Introduction

The retrieval of cloud top temperature, pressure and height from imager data from polar orbiting satellites is used both as a

vital product in global cloud climatologies (Stubenrauch et al., 2013) and for nowcasting at high latitudes where data from

geostationary satellites are either not available or not available in sufficient quality and spatial resolution. Cloud top height

products from VIS/IR (visible/infrared) imagers are used in the analysis and early warning of thunderstorm development,5

for height assignment in aviation forecasts and in data assimilation of atmospheric motion vectors. The cloud top height can

serve as input to mesoscale analysis and models for use in nowcasting in general, or as input to other satellite retrievals used

in nowcasting (e.g. cloud micro physical properties retrieval, or cloud type retrieval). It is important that climatologists and

forecasters have reliable and accurate cloud top height products from recent and past satellite measurements.

There are different traditional techniques to retrieve cloud top height see Hamann et al. (2014) for a presentation of ten10

cloud top height retrieval algorithms applied to the SEVIRI (Spinning Enhanced Visible Infra-Red Imager). Several algorithms

to retrieve cloud top height from polar orbiting satellites are available and used operationally for nowcasting purposes or

in cloud climatologies. These include the CTTH (cloud top temperature and height) from the PPS (Polar Platform System)

package (Dybbroe et al., 2005), which is also used in the CLARA-A2 (CM SAF (EUMETSAT (European Organisation for

the Exploitation of Meteorological Satellites) Satellite Application Facility for Climate Monitoring) cloud, albedo and surface15

radiation dataset) climate data record (Karlsson et al., 2017), ACHA (Algorithm Working Group (AWG) Cloud Height retrieval

Algorithm) used in PATMOS-x (Pathfinder Atmospheres - Extended) (Heidinger et al., 2014), CC4CL (Community Cloud

Retrieval for Climate) used in ESA (European Space Agency) Cloud_CCI (Cloud Climate Change Initiative) (Stengel et al.,

2017), MODIS (Moderate-resolution Imaging Spectro-radiometer) Collection-6 algorithm (Ackerman et al., 2015) and the

ISCCP (International Satellite Cloud Climatology Project) algorithm (Rossow and Schiffer, 1999).20

We will use both the MODIS Collection-6 (MODIS-C6) and the version 2014 CTTH from PPS (PPS-v2014) as references

to evaluate the performance of neural network based cloud top height retrieval. The MODIS-C6 algorithm is developed for the

MODIS instrument. The PPS, delivered by the NWC SAF (EUMETSAT Satellite Application Facility for nowcasting and very

shortrange forecasting), is adapted to handle data from instruments AVHRR (Advanced Very High Resolution Radiometer),

VIIRS (Visible Infrared Imaging Radiometer Suite) and MODIS.25

Artificial neural networks are widely used for non-linear regression problems, see for example Gardner and Dorling (1998),

Meng et al. (2007) or Milstein and Blackwell (2016) for neural network applications in atmospheric science. In CC4CL a neural

network is used for the cloud detection (Stengel et al., 2017). Artificial neural networks have also been used on MODIS data

to retrieve cloud optical depth (Minnis et al., 2016). The COCS (cirrus optical properties derived from CALIOP and SEVIRI

algorithm during day and night) algorithm uses artificial neural networks to retrieve cirrus cloud optical thickness and cloud30

top height for the SEVIRI instrument (Kox et al., 2014). Considering that neural networks in the mentioned examples have

successfully derived cloud properties, and that cloud top height retrievals often include fitting of brightness temperatures to

temperature profiles, neural network can be expected to retrieve cloud top pressure for MODIS with some skill.
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One type of neural network is the multilayer perceptron described in (Gardner and Dorling, 1998) which is a supervised

learning technique. If the output for a certain input, when training the multilayer perceptron, is not equal to the target output an

error signal is propagated back in the network and the weights of the network are adjusted resulting in a reduced overall error.

This algorithm is called the back-propagation algorithm.

In this study we will compare the performance of back-propagation neural network algorithms for retrieving cloud top5

height (NN-CTTH) with the CTTH algorihm from PPS version 2014 (PPS-v2014) and MODIS Collection 6 (MODIS-C6)

algorithm. Several networks will be trained to estimate the contribution of different training variables to the overall result.

The networks will be validated using both CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarisation) and CPR (CloudSat)

(Cloud Profiling Radar for CloudSat (CLOUD SATellite)) height data.

In section 2 the different datasets used are briefly described and in section 3 the three algorithms are described. Results are10

presented and discussed in section 4 and final conclusions are found in section 5.

2 Instruments and data

For this study we used data from the MODIS instrument on the polar orbiting satellite Aqua in the A-Train, as it is co-located

with both CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) and CloudSat at most latitudes and

has multiple channels useful for cloud top height retrieval.15

2.1 Aqua - MODIS

The MODIS is a spectro-radiometer with 36 channels covering the solar and thermal spectra. We are using level 1 data from

the MODIS instrument on the polar orbiter Aqua. For this study the MYD021km (MODIS Science Data Support Team, 2015a)

and MYD03 (MODIS Science Data Support Team, 2015b) for all orbits from 24 dates were used (1st and 14th of every month

of 2010). The data were divided into four parts which were used for training, validation during training (used to decide when20

to quit training), testing under development (used to test different combinations of variables during prototyping) and final

validation. The data contains many pixels that are almost identical, because a typical cloud is larger than one pixel. Therefore

randomly dividing the data into four datasets is not possible as this would in practice give four identical datasets, which would

cause the network to over-train. See Table 1 for distribution of data.

The MODIS Collection-6 climate data records produced by the National Aeronautics and Space Administration (NASA)25

Earth Observation System was used for comparison. The 1km cloud top height and cloud top pressure from the MYD06_L2-

product (Ackerman et al., 2015) for the dates in Table 1 were used.

The satellite zenith angles for MODIS when matched with CALIOP varies between 0.04 and 19.08◦and then matched with

CPR (CloudSat) it veries between 0.04 and 19.26◦.

3



2.2 CALIOP

The CALIOP lidar on the polar orbiting satellite CALIPSO is an active sensor and therefore more sensitive to particle con-

glomerates with low density than typical imagers. The horizontal pixel resolution is 0.07 km x 0.333 km, this means that when

co-locating with MODIS one should remember that CALIOP samples only a small part of each MODIS pixel. The vertical

resolution for CALIOP is 30 m. The viewing angle for CALIOP is 3◦. The CALIOP 1km Cloud Layer product data were used5

(for the dates, see Table 1) as the truth to train the networks against, and for validation of the networks. The 1km product was

selected because the resolution is closest to the MODIS resolution. For training version 3 was used and for validation version

4, be able to access the improved cloud type information in the feature classification flag in version 4.

2.3 CPR (CloudSat)

The CPR (CloudSat) is a radar which derives a vertical profile of cloud water. Its horizontal resolution is 1.4 km x 3.5 km, and10

its vertical resolution is 0.5 km and the viewing angle is 0.16◦. The CPR (CloudSat) product 2B-GEOPROF-R05 (Marchand

et al., 2008) was used as an additional source for independent validation of the networks, see Table 1 for selected dates. The

validation with CPR (CloudSat) will have a lower percentage of low clouds compared to CALIOP because ground clutter is a

problem for space bourne radar instruments.

2.4 Other data15

Numerical weather prediction (NWP) data are needed as input for the PPS-v2014 and the neural network algorithm. In this

study the operational 91-level short-range archived forecasted NWP data from ECMWF (European Centre for Medium-range

Weather Forecasting) were used. The analysis times at 00:00 and 12:00 was used and the forecast times (6, 9, 12 and 15 h).

Under the period IFS cycles Cycle 35r3, 36r1, 36r3 and 36r4 were operational. Also ice maps (OSI-409 version 1.1) from

OSISAF (Satellite Application Facility on Ocean and Sea Ice) were used as input for the PPS cloud mask algorithm.20

3 Algorithms

3.1 PPS-v2014 cloud top temperature and height

The cloud top height algorithm in PPS-v2014, uses two different algorithms for cloud top height retrieval, one for pixels

classified as opaque and another for semi-transparent clouds. The reason for having two different algorithms is that the straight

forward opaque algorithm can not be used for pixels with optically thin clouds like cirrus or broken cloud fields like cumulus.25

The signals for these pixels are a mixture of contributions from the cloud itself and underlying clouds and/or the surface.

The algorithm uses a split-window technique to decide whether to apply the opaque or semi-transparent retrieval. All pixels

with a difference between the 11 µm and 12 µm brightness temperatures of more than 1.0 K are treated as semi-transparent.

This is a slight modification of the PPS version 2014 algorithm where also the clouds classified as non-opaque by cloud type

product are considered semi-transparent.30
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The retrieval for opaque clouds matches the observed brightness temperatures at 11 µm against a temperature profile derived

from a short term forecast or (re)analysis of a NWP model, adjusted for atmospheric absorption. The first match, going along

the profile from the ground and upwards, gives the cloud top height and pressure. Temperatures colder or warmer than the

profile are fitted to, respectively, the coldest or warmest temperature of the profile below tropopause.

The algorithm for semi-transparent pixels uses a histogram method, based on the work of Inoue (1985) and Derrien et al.5

(1988), which fits a curve to the brightness temperature difference between the 11 µm and 12 µm bands as a function of 11 µm

brightness temperatures for all pixels in a segment (32x32 pixels). One parameter of this fitting is the cloud top temperature.

The solution is checked for quality (low root mean square error) and sanity (inside physically meaningful interval and not

predicted too far from data). The solution is accepted if both tests are passed. The height and pressure are then retrieved from

the temperature, in the same way as for opaque clouds. For more detail about the algorithms see SMHI (2015).10

PPS height uses the unit altitude above ground. For all comparisons this is transformed to height above mean sea level, using

elevations given in the CPR (CloudSat) or CALIOP datasets.

3.2 MODIS Collection 6 Aqua Cloud Top Properties product

In MODIS Collection 6 the CO2-slicing method (described in Menzel et al., 2008) is used to retrieve cloud top pressure using

the 13 and 14 µm channels for ice clouds (as determined from MODIS phase algorithm). For low level clouds the 11 µm15

channel and the IR-window approach (IRW) with a latitude dependent lapse rate is used over ocean (Baum et al., 2012). Over

land the 11 µm temperature is fitted against a 11 µm temperature profile calculated from GDAS (Global Data Assimilation

System) temperature, water vapour and ozone profiles and the PFAAST (Pressure-Layer Fast Algorithm for Atmospheric

Transmittance) radiative transfer model are used for low clouds (Menzel et al., 2008). For more details about the updates in

Collection 6 see Baum et al. (2012). Cloud pressure is converted to temperature and height using the National Centers for20

Environmental Prediction Global Data Assimilation System (Baum et al., 2012).

3.3 Neural network cloud top temperature and height NN-CTTH

Neural networks are trained using MODIS data co-located with CALIOP data. Nearest neighbour matching was used with the

pyresample package in the pyTroll project (Raspaud et al., in press). The Aqua and CALIPSO satellites are both part of the

A-Train and the matched FOV (field of view) are close in time (only 75s apart). The uppermost top layer pressure variable, for25

both multi- and single-layer clouds, from CALIOP data was used as training truth. Temperature and height for the retrieved

cloud top pressure are extracted using NWP-data. Pressure predicted higher than surface pressure are set to surface pressure.

For pressures lower than 70 hPa neither height nor temperature values are extracted. The amount of pixels with pressure lower

than 70 hPa varies between 0 and 0.05 % for the networks.
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3.3.1 Neural network variables

To reduce sun-zenith angle dependence and to have the same algorithm for all illumination conditions it was decided to use

only infra-red channels to train the neural networks. Several different types of variables were used to train the network. The

most basic ones were the NWP temperatures at pressure levels (surface, 950, 850, 700, 500 and 250 hPa). This together with

the 11 µm or 12 µm brightness temperature (B11 or B12) gives the network what is needed to make a radiance fitting to retrieve5

cloud top pressure for opaque clouds, although with very coarse vertical resolution in the NWP data. For opaque clouds that

are geometrically thin, with little or no water vapour above the cloud, the 11 µm and 12 µm brightness temperatures will be

the same as the cloud top temperature. If the predicted NWP temperatures are correct the neural network could fit the 11 µm

brightness temperature to the NWP temperatures and receive the cloud pressure (similar to what is done in PPS-v2014 and

MODIS-C6). For cases without inversions in the temperature profile, the retrieved cloud top pressure should be accurate. The10

cases with inversions are more difficult to fit correctly, since multiple solutions exist and the temperature inversion might not

be accurately captured regarding its strength and height in the NWP data. For semi-transparent clouds the network needs more

variables to make a correct retrieval.

To give the network information on opacity of the pixel, brightness temperature difference variables were included (B11 −
B12, B11−B3.7, B8.5−B11). Texture variables with the standard deviation of brightness temperature, or brightness temperature15

difference, for 5 x 5 pixels were included. These contain information about whether pixels with large B11−B12 are more likely

to be semi-transparent or more likely to be fractional or cloud edges.

As described in section 3.1, PPS-v2014 uses B11 −B12 and B11 of the neighbouring pixels to retrieve temperatures for

semitransparent clouds. In order to feed the network with some of this information the neighbouring warmest and coldest

pixels in B11 in a 5 x 5 pixel neighbourhood were identified. Variables using the brightness temperature at these warmest and20

coldest pixels were calculated, for example the 12 µm brightness temperature for the coldest pixel minus the same for the

current pixel: BC
12 −B12, see Table 2 for more information about what variables were calculated.

The surface pressure was also included, which provides the network with a value for the maximum reasonable pressure.

Also the brightness temperature for the CO2 channel at 13.3 µm and the water vapour channels at 6.7 µm and 7.3 µm were

included as variables. The CO2 channel at 13.3 µm is used in the CO2-slicing method of MODIS-C6 and should improve the25

cloud top height retrieval for high clouds.

The instruments AVHRR, VIIRS, MERSI-2 (Medium Resolution Spectral Imager -2) , MetImage (Meteorological Imager)

and MODIS all have different selections of IR channels. Most of them have the 11 µm and 12 µm channels. The first AVHRR

instrument AVHRR1 had only two IR channels at 11 µm and 3.7 µm and no channel at 12 µm. Networks were trained us-

ing combinations of MODIS IR-channels corresponding to the channels available for the other instruments. See Table 3 for30

specifications of the networks trained. Table 4 gives an overview of what imager channels were used for which network.

To see how much the different variable types contribute to the result, some basic networks were trained using less or no

imager data. These are also described in Table 3. Also one network using only NWP data was included as a sanity check. For
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this network we expect bad results. However good results for this network would indicate that height information retrieved was

already available in the NWP-data.

3.3.2 Training

For the training 1.5 million pixels were used, with the distribution 50 % low clouds, 25 % medium level clouds and 25 %

high clouds. A higher percentage of low clouds was included because the mean square error (MSE) is often much higher for5

high clouds. Previous tests showed that less low clouds caused the network to focus too much on predicting the high clouds

correctly and showed degraded results for low clouds. For the validation dataset used during training 375000 pixels were

randomly selected with the same low/medium/high distribution as for the training data.

The machine learning module Scikit-learn (Pedregosa et al., 2011), the Keras package (Chollet et al., 2015), the Theano

(Theano Development Team, 2016) backend and the language Python were used for training the network.10

3.3.3 Parameters and configurations

During training of the network the MSE was used as the loss function that is minimized during training. The data were

standardized by subtracting the mean and dividing with the standard deviation before training.

Choosing the number of hidden neurons and hidden layers of the neural network is also important for the training to be

effective. Too few hidden neurons will result in under-fitting. We used two hidden layers with 30 neurons in the first layer and15

15 neurons in the second.

The initialization of weights before training the network is important for the neural network to learn faster. There are

many different weight initialization methods, for training the networks the glorot uniform weight initialization was used.

The activation function used for the hidden layers was the tangent hyperbolic (see Karlik and Olgac, 2011) and for the output

layer a linear activation function was used.20

To determine the changes in the weights an optimization method is used during the back-propagation algorithm. The op-

timization method used for the multilayer perceptron is mini-batch stochastic gradient descent which performs mini-batch

training. A mini-batch is a sample of observations in the data. Several observations are used to update weights and biases,

which is different from the traditional stochastic gradient descent where one observation at a time is used for the updates

(Cotter et al., 2011). Having an optimal mini-batch size is important for the training of a neural network because overly large25

batches can cause the network to take a long time to converge. We used a mini-batch size of 250.

When training the neural network there are different learning parameters that need to be tuned to ensure an effective trainig

procedure. During prototyping several different combinations were tested. The learning rate is a parameter that determines the

size of change in the weights. A too large learning rate will result in large weight changes and can result in an unstable model

(Hu and Weng, 2009). If a learning rate on the other hand is too small the training time of the network will be long. We used a30

learning rate of 0.01.

The momentum is a parameter which adds a part of the weight change to the current weight change, using momentum can

help avoid the network getting trapped in local minima (Gardner and Dorling, 1998). A high value of momentum speeds up
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the training of the network. We had a momentum of 0.9. The parameter learning rate decay, set to 10−6, in Keras, is used to

decrease the learning rate after each update as the training progresses.

To avoid the neural network from over-fitting (which makes the network extra sensitive to unseen data), a method called

early stopping was used. In early stopping the validation error is monitored during training to prevent the network from over-

fitting. If the validation error is not improved for some (we used 10) epochs training is stopped; this helps to reduce risk of5

over-fitting. The network for which the validation error was at its lowest is then used. The neural networks were trained for a

maximum of 2650 epochs, but the early stopping method caused the training to stop much earlier.

4 Results and Discussion

The validation data was matched with CALIOP layer top pressure and layer top altitude or CPR (CloudSat) height using nearest

neighbour matching in the same way as the training data was matched. The CPR (CloudSat) data inludes less clouds as both10

some very low clouds and some very thin clouds are not detected by the radar. CPR (CloudSat) is included to strengthen the

results. There is always a risk that a neural network approach learns also or only the errors of the training truth; however if

results are improved also when validated with an independent truth it is made sure that it is not only the errors that are learnt.

A cloudy threshold of 30% is used for CPR (CloudSat) to include only strong detections. The coarser vertical resolution for

CPR (CloudSat) of 500m means that MAE is expected to be higher than 250m compared to 15m for CALIOP.15

The scatter plots in Figure 4 show how the cloud top pressure retrievals of the neural networks and the reference methods

are distributed compared to CALIOP. Figure 3 show the same type of scatter plots for cloud top height with CloudSat as truth.

These scatter plots show that all neural networks have similar appearance with most of the data retrieved close to the truth. All

methods (NN-CTTH, PPS-v2014 and MODIS-C6) retrieve some heights and pressures that are very far from the true values

of CPR (CloudSat) or CALIOP. It is important to remember that some of these seemingly bad results are due to the different20

FOV for the MODIS and the CALIOP or CPR (CloudSat) sensors.

Figure 7 compares the NN-AVHRR and PPS-v2014 for one scene. The blue squares for PPS-v2014 (c) are due to the

temperature retrieval for 32x32 pixels in one go. We can see that a lot of high clouds are by NN-AVHRR placed higher (pixels

that are blue in (c), are white in (a)). For NN-AVHRR in (a) we can see that the large area with low clouds in the lower left

corner gets a consistent cloud top height (the same orange colour everywhere). Note that the NN-AVHRR has a less noisy25

appearance and has less nodata.

4.1 Validation with CALIOP top layer pressure

First we consider the performance of all the trained networks validated with the uppermost CALIOP top layer pressure in

terms of mean absolute error (MAE). Results in Table 5 show that both PPS-v2014 and MODIS-C6 have a MAE close to

120 hPa. Notice that the network using only the NWP information and no imager channels (NN-NWP) shows high MAE.30

This was included as a sanity check to see that the neural networks are using mainly the satellite data, and the high MAE for

NN-NWP is supporting this. The NN-OPAQUE network using only B12 and the basic NWP-data has a 9 hPa improvement in
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MAE compared to the reference algorithms. By including the variable B11−B12, the MAE improves by an additional 19 hPa

because B11 −B12 contains information about the semi-transparency of the pixel. Adding the NWP variable Ciwv, which

allows the network to attempt to predict the expected values of B11 −B12, has a smaller effect of 2 hPa on MAE. However

adding all variables containing information on neighboring pixels improves the result by additional 20 hPa. The NN-AVHRR

network using 11 µm and 12 µm from MODIS provides an MAE which is reduced by about 50 hPa compared to both from5

MODIS-C6 and PPS-v2014. Notice also that the scores improve for all categories (low, medium and high) when compared

with both PPS-v2014 and MODIS-C6. The inclusion of the neighbouring pixels gives almost 40 % of the improvement. Note

that for medium level clouds NN-BASIC-CIWV, without information from neighbouring pixels, has higher MAE compared to

PPS-v2014.

Adding more IR channels improves the results further. Adding channel 8.5 µm (B8.5−B11, NN-VIIRS) improves MAE by10

7 hPa and adding 7.3 µm (B7.3, NN-MERSI-2) improves MAE by 5 hPa. Including the other watervapor channel at 6.7 µm

(B6.7, NN-MetImage-NoCO2) improves MAE only by 1 hPa. The CO2 channel at 13.3 µm (B13.3, NN-MetImage) improves

the MAE by an additional 6 hPa. The NN-AVHRR1 network trained using 3.7 µm and 11 µm (MAE 76.1 hPa) is a little worse

compared to NN-AVHRR (MAE 72.4 hPa). Note that B3.7 has a solar component which currently is not treated in any way. If

B3.7 was corrected for the solar component, by the network or in a preparation step, the results for AVHRR1 might improve.15

Also NN-AVHRR1 shows better scores for all categories (low, medium, and high) compared to PPS-v2014 and MODIS-C6.

The training with CALIOP using only MODIS from Aqua includes only near NADIR observations with all satellite zenith

angles for MODIS below 20◦. Figure 1 shows that NN-AVHRR and NN-AVHRR1 networks perform robustly also for higher

satellite zenith angles. The NN-VIIRS and NN-MetImage-NoCO2 results deviate for satellite zenith angles larger than 60

degrees. The NN-MERSI-2 results deviate for satellite zenith angles larger than 40 degrees. The NN-MetImage retrieval shows20

deviations already above 20 degree satellite zenith angles and for satellite zenith angles larger than 40 the retrieval has no

predictive skill. Notice that the distribution for MODIS-C6 also depend on the satellite zenith angle (with less high clouds at

higher angles). For PPS-v2014 instead less low clouds at higher satellite zenith angles are found. The neural networks (NN-

AVHRR, NN-AVHRR1, NN-VIIRS and NN-MetImage-NoCO2) can reproduce the bi-modal cloud top pressure distribution

similar to CALIOP, PPS-v2014 deviates from this shape with one peak for mid-level clouds.25

4.2 Discussion of statistics measures for non-Gaussian error distributions

For pressure we choose a single measure, MAE, to describe the error; however which (and how many) measures are needed to

adequately describe the error distribution can be discussed. For a Guassian error distibution the obvious choices are bias and

SD (standard deviation) as the Gaussian error distribution is completely determined from bias and SD and all other interesting

measures could be derived from bias and SD. Unfortunately the error distributions considered here are non-Gaussian. This is30

expected, as we know that apart from the errors of the algorithm and the errors due to different FOV we expect the lidar to detect

some thin cloud layers not visible to the imager. These thin layers, not detected by the imager, should result in underestimated

cloud top heights. In Figure 8 the error distributions for MODIS-C6, PPS-v2014 and NN-AVHRR are shown. The Gaussian

error distribution with the same bias and SD are plotted in grey. It is clear that the bias is not at the center (the peak) of the
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distribution. The median is not at the center either, but closer to it. For validation with CALIOP we can see the expected

negative bias for all algorithms and for all cases we can see that assuming a Gaussian distribution underestimates the amount

of small errors.

PEx =
number of absolut errors > x km

number of errors
(1)

Results compared to CALIOP top layer height and CPR (CloudSat) height are provided for the best performing networks in5

Table 6 (i.e. NN-OPAQUE, NN-BASIC and NN-BASIC-CIWV was excluded). The skewness show that the distributions are

skewed and non-Gaussian. The mode is calculated using the half-range method to robustly etimate the mode from the sample

(for more info see Bickel, 2002). The bias should be interpreted with caution. Consider PPS-v2014 compared to CALIOP

Table 6 if we add 1465 to all retrievals creating a “corrected” retrieval we would have an error distribution with the same SD

and zero bias but the center (peak) of the distribution would not be closer zero. The PE1 (percentage of absolute errors above10

1 km, see Equation 1) for this “corrected” retrieval would increase from 54 % to 73 %! For the user this is clearly not an

improvement. The general over estimation of cloud top heights of this “corrected” retrieval would however be detected by the

median and the mode which would be further away from zero but now on the positive side. This example illustrates the risk of

misinterpretation of the bias for non-Gassian error distributions.

Several different measures of variation are presented in Table 6 MAE, IQR (Interquartile range), SD and RMSE. The mea-15

sures have different benefits; IQR are robust against outliers and RMSE and SD focuses on the worst retrievals as errors are

squared. Considering that it is likely not interesting if useless retrievals with large errors are 10km off or 15km off, in combi-

nation with that some large errors are expected due to different FOV and different sensitivities of the instruments, the MAE

and IQR provide more interesting measures of variation compared to SD and RMSE. In the example discussed in the previous

section the MAE for the “corrected” retrieval would change only 10 m but the RMSE (Root mean square error) would improve20

with 356 m indicating a much better algorithm; when in fact it is a degraded algorithm. If the largest errors are considered very

important RMSE is prefered over SD for skewed distributions, especially if bias is also presented; as RMSE and bias have a

smaller risk to be misinterpreted by the reader as a Gaussian error distribution.

For low level clouds we have even stronger reasons to expect skewed distributions as there is always a limit (ground) to how

low clouds top heights can be underestimated and Table 7 shows that the skewness is large for low level clouds. The bias for25

low level clouds is difficult to interpret as it is the combination of the main part of the error distribution located close to zero and

the large positve errors (which are to some extent expected due to different FOV). In Figure 2 (f) and (e) the error distributions

for MODIS-C6, PPS-v2014 and NN-AVHRR for low level clouds are shown. We can see, in Figure 2, that the NN-AVHRR

less often underestimates the cloud top height for low level clouds which partly explains the higher bias for NN-AVHRR.

To examplify the problem with bias and SD for skewed distributions consider PPS-v2014 and NN-AVHRR validated with30

CPR (CloudSat) in Table 7 and for the argument let us falsely assume a Gaussian error distribution. With this assumption the

PPS-v2014 with a 232 m better bias and only 24 m worse SD clearly is the better algorithm. The PE2 and RMSE are very

similar between the two algorihtms. However all other measures MAE, IQR, PE0.25, PE0.5, PE1, median and mode all indicate

10



that NN-AVHRR is the better algorithm and it is clear in Figure 2 (e) that the NN-AVHRR has the highest and best centered

distribution; contrary to what was indicated by the bias and SD given a false asumption of Gaussian error distribution.

One explanation of the low bias for PPS-v2014 validated with CPR (CloudSat) in Table 7 is seen in Figure 2 (e) where the

error distribution of PPS-v2014 is shown to be bi-modal; the general small underestimation of cloud top heights compensates

for the mode located close to 1.8km. The low bias can also be explained by less low level clouds predicted much too high. The5

lowest values for PE2, SD and RMSE supports this. If we look at the result for the high clouds (Table 9) we see a large negative

tendency for PPS-v2014 (mode and median) and this is also part of the explanation of the small RMSE for PPS-v2014 for low

level clouds. If high clouds are generally placed 1.5 km too low; this should improve results for low level clouds mistaken for

high. This includes cases where the different FOVs causes the imager to see mostly a high cloud but the lidar and radar see

only the part of the FOV with a low cloud. This has a large impact on SD and RMSE as the errors are squared.10

Comparing the RMSE, SD for NN-AVHRR and PPS-v2014 for low level clouds in the validation with CPR (CloudSat) also

highlights why the RMSE and SD are less useful as measures of variation of the error distribution. The RMSE and SD are very

similar between the two algorithms and do not reflect the narrower and better centered error distribution seen for NN-AVHRR

for low level clouds in Figure 2 (e). The NN-AVHRR has a larger amount of small errors (see PE0.25, PE0.5) and only 16 %

of the errors are larger than 1 km compared to 29 % for PPS-v2014. But NN-AVHRR has 1 % more absolute errors larger15

than 2 km and the absolut error for this percent is larger. As the MAE does not square the errors, it indicates instead that the

NN-AVHRR has smaller variation of the error distribution. The IQR that does not regard the largest errors at all is more than

500 m better for NN-AVHRR.

The bias of -117 m for NN-AVHRR compared to -1203 m for MODIS-C6 in Table 9 in the validation with CPR (CloudSat)

for a Gaussian error distribution would be a large improvement of tendency; however when also considering the mode and20

the median we can see that the improvement of the tendency is more realistically between 150 to 500 m compared to CPR

(CloudSat) and not as large as indicated by the bias.

4.3 Validation results with CALIOP and CPR (CloudSat) height

All measures in Table 6 have better values for all neural networks compared to both the reference algorithms and both validation

truths. Considering the improvement in all the other measures in Table 6 it is safe to conclude that also the lower bias for the25

neural networks actually is an improvement. However the mode and median better describe the improvement of tendency and

for the mode the worst performing network is just a few meters better than the best mode of the reference algorithms. For the

comparison to CALIOP in Table 6 we see that the most measures improve as we add more channels to the neural network.

Validated with CPR (CloudSat) the results are not improving for the NN-MetImage-NoCO2 and NN-MetImage. A possible

explanation for this can be that some high thin clouds layers are not detected by the radar but the neural network places them30

higher than the detected CPR (CloudSat) layer below. Thin single layer clouds not detected by the radar are of course not

included in the analysis.

In the validation with CALIOP the NN-AVHRR MAE is 623 m lower (corresponding to 32 % reduction of MAE) than

MODIS-C6 and 795 m (corresponding to 38 % reduction of MAE) lower than PPS-v2014. The NN-MetImage-NoCO2 has the
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best result while performing well at all satellite zenith angles, with a 43 % reduction in MAE when compared to MODIS-C6

and a 48 % reduction when compared to PPS-v2014. The NN-MetImage have even better scores but are not useful for satellite

zenith angles exceeding 20◦. In the validation with CPR (CloudSat) the NN-AVHRR shows 430 m lower MAE (corresponding

to 25 % reduction of MAE) compared to MODIS-C6 and 482 m (corresponding to 28 % reduction of MAE) compared to PPS-

v2014. The NN-MetImage-NoCO2 shows corresponding to 32 % reduction of MAE compared to MODIS-C6 and correspoding5

to 34 % reduction of MAE compared to PPS-v2014.

4.4 Validation results separated for low, medium and high level clouds

Results for low level clouds (Table 7) show that all distributions are well centered around zero and the median and mode are

within 250 m from zero for all algorithms except the mode for PPS-v2014 and NN-MetImageNoCO2 validated with CPR

(CloudSat). The PE0.25, PE0.5 and PE1 and most useful measures of variation, IQR and MAE, show better values for the10

neural networks than both reference algorithms as compared to both validation truths. This indicates that the neural networks

have a larger amount of good retrievals with small errors. When validation with CALIOP, only 31 % of the absolute errors for

NN-AVHRR exceed 0.5 km, compared to 58 % for MODIS-C6 and 47 % for PPS-v2014.

For low level clouds validation with CPR (CloudSat) one needs to keep in mind that some thin cloud layers are not detected

by the radar. This means that the CPR (CloudSat) height does not reflect the true upper most layer for these clouds. Correct15

cloud top height retrievals for these clouds will give large positive errors in the CPR (CloudSat) validation for low level clouds.

This can explain why the PE2 and RMSE for all the neural networks are better than both reference algorithms when validated

with CALIOP but when validated with CPR (CloudSat) PPS-v2014 have the best PE2 and RMSE. In Section 4.2 it is discussed

why the bias and SD are not very informative for these highly skewed distributions.

Notice that MODIS-C6 has a high MAE (1192 m) for low level clouds when validated with CPR (CloudSat). Also in the20

CALIOP validation MODIS-C6 has the highest MAE, IQR, RMSE, PE0.25, PE0.5, PE1 and PE2 for low level clouds. When

checking the MAE per month we found that scores for MODIS-C6 for low clouds were worst for December (at the same time

the scores for high clouds were best in December). There turned out to be a bug in the algorithm for low marine cloud top

height (Richard Frey, MODIS Team, 2017 pers. comm.) which likely affected the results and the bug has been corrected in

Version 6.1. However overall validation scores for MODIS-C6 were not affected by the bug (Steve Ackerman, MODIS Team,25

2017 pers. comm.).

For medium level clouds (see Table 8) the neural networks have better measures for MAE, IQR, RMSE, SD, PE1, PE2

compared to both reference algorithms when validated both with CALIOP and CPR (CloudSat). For the validation with CPR

(Cloudsat) the neural network also have the best PE0.25, PE0.5, median and bias. In the validation with CALIOP we can see

that also PPS-v2014 has good values for PE0.25, PE0.5, median and the bias even better than some of the neural networks. This30

is also seen in Figure 2 (d) where we can see that PPS-v2014 has a well centered and high peak for the error distribution, but a

larger amount of underestimated cloud top heights compared to NN-AVHRR. All algorithms report good values for the mode

within 300 m from zero for medium level clouds.
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For high clouds, in Figure 2, we can see that the NN-AVHRR has less clouds predicted too low, especially compared to

PPS-v2014. In the validation with CALIOP (Table 9) the neural networks perform better than the two reference algorithms.

For the high clouds validation with CPR (CloudSat) MODIS-C6 has the highest peak (Figure 2), but also a bi-modal error

distribution with another peak close to -6 km. This explains why the overall MAE (Table 9) for high clouds is better for the

NN-AVHRR. The higher peak for MODIS-C6 for validation with CPR (CloudSat) is also reflected in a good IQR, PE0.5, PE15

and mode inline with the neural networks.

The median and mode for high level clouds for most neural networks are positive when compared to CPR (CloudSat) but

negative when valdiated with CALIOP. This supports the idea that some high thin clouds, or upper part of clouds, are not

detected by the radar but by the lidar and the imager. The median for the neural networks for high level clouds are increasing

for neural networks with more variables. This suggests that the extra channels help the neural networks to detect the very thin10

clouds detected by CALIOP. The medians for the validation with CPR (CloudSat) are also increasing, becoming more positive,

and this can be explained by some very thin cloud layers not detected by CPR (CloudSat).

In Table 9 we can also note that SD for the PPS-v2014 validated with CPR (CloudSat) is in line with SD for the neural

networks. This in combination with the large negative values on mode and median, and the high MAE and quite good IQR

indicates that PPS-v2014 systematically underestimates the cloud top height for high-level clouds.15

4.5 Validation with CALIOP separated for different cloudtypes

In Table 10, the MAE, median and PE0.5 are shown for the different cloud types from the CALIOP feature classification flag.

We can see that the MAE and PE0.5 for all the neural networks is better than both reference algorithms, except that PPS-v2014

also has a low MAE and PE0.5 for opaque altostratus. Large improvements in MAE are seen for the altocumulus transparent

transparent cirrus and deep convective (opaque) classes. For PE0.5 the largest improvements is seen for the four low cloud20

classes and the deep convective (opaque) class for which the neural networks have at least 12 % less errors above 0.5 km

compared to both reference algorithms.

All algorithms have medians closer to zero than 250 m for the classes low overcast (transparent) and transition stratocu-

mulus. For the low overcast (opaque) and low broken cumulus the neural networks and PPS-v2014 show good values for the

median. For the classes altocumulus transparent, transparent cirrus and deep convective (opaque) clouds the neural network25

show medians at least 450 m closer to zero than both reference algorithms. For the opaque altostratus class the median of

the reference algorithms is better than the neural networks. PPS-v2014 also have a MAE and PE0.5 that is better than NN-

AVHRR and NN-AVHRR1 for the opaque altostratus class. The good performance of PPS-v2014 for opaque altostratus are

also reflected in Figure 2 (d) where PPS-v2014 have the highest peak.

It is most difficult for all algorithms to correctly retrieve cloud top height for the largest class cirrus (transparent). If we30

compare NN-MetImage with PPS-v2014 for the cirrus (transparent) class we see that MAE is improved with 2.4 km, the

median with 3 km and 21 % less absolute errors are larger than 500 m.
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4.6 Geographical aspects of the NN-CTTH performance

To show how performance varies between surfaces and different parts of the globe, the MAE in meters compared to CALIOP

are calculated on a Fibonacci grid (constructed using the method described in González, 2009) with a grid evenly spread out

on the globe approximately 250 km apart. All observations are matched to the closest grid point and results are plotted in

Figure 5. We can see that all algorithms have problems with clouds around the equator in areas where very thin high cirrus5

is common. The MAE-difference (Figure 6) shows that the NN-AVHRR is better than MODIS-C6 in most parts of the globe,

with the greatest benefit observed closer to the poles. At a few isolated locations MODIS-C6 is better than NN-AVHRR.

4.7 Future work and challenges

Only near nadir satellite zenith angles were used for training. This might limit the performance for the neural networks at

other satellite zenith angles. The NN-MetImage network using the CO2 channel at 13.3 µm shows strong satellite zenith angle10

dependence and is not useful for higher satellite zenith angles. A solution to train networks to perform better at higher satellite

zenith angles could be to include MODIS data from satellite Terra co-located with CALIPSO in the training data, as they will

get matches at any satellite zenith angle although only at high latitudes. As latitude is not used as a variable, data for higher

satellite zenith angles included for high latitude regions could help also in other regions. However it might be that the high

latitude matches will not help the network if the variety of weather situations and cloud top heights at high latitudes is too small.15

Radiative transfer calculations for the CO2-channels for different satellite-zenith angles could be another way to improve the

performance for higher satellite-zenith angles.

Several technical parameters influence the performance of the neural network, for example: learning rate, learning rate

decay, momentum, number of layers, number of neurons, weight initialization function and early stopping criteria. For several

combinations tested, the differences were in the order of a few hPa. Networks tested using two hidden layers were found to20

perform better than those using only one hidden layer. We did train one network with less neurons and one with more layers

and neurons with the same variables as NN-AVHRR. The network with fewer neurons in the two hidden layers (20/15) was

1 hPa worse. The network with more neurons in three layers (30/45/45) was 2.5hPa better than NN-AVHRR but also took 5

times as long time to retrieve pressure. The best technical parameters and network setup to use could be further investigated.

The NN-CTTH algorithm currently has no pixel specific error estimate. The MAE provides a constant error estimate (the25

same for all pixels). However for some clouds the height retrieval is more difficult, e.g. thin clouds and sub-pixel clouds.

Further work to include pixel specific error estimates could be valuable.

Neural networks can behave unexpectedly for unseen data. By using a large training dataset and early stopping the risk for

unexpected behaviour is decreased. Also the risk for unexpected results in a neural network algorithm can be a fair price to pay

given the significant improvements when compared to the current algorithms. The training of neural networks requires refer-30

ence data (truth). For optimal performance a neural network approach for upcoming new sensors (e.g. MERSI-2, MetImage)

being launched when data from CALIPSO or CloudSat are no longer available, either another truth is needed or a method to

robustly transform network trained for one sensor to other sensors is needed. A way forward could be to include variables with
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radiative transfer calculations of cloud free brightness temperatures and brightness temperature differences. Further work is

needed to test how the networks trained for the MODIS sensor perform for AVHRR, AVHRR1, VIIRS and other sensors. Our

results show that networks can be trained using only the channels available on AVHRR, but they might need to be retrained

with actual AVHRR data as the spectral response functions of the channels differ. The spectral response functions also dif-

fer between different AVHRR instruments, and more investigations are needed to see how networks trained for one AVHRR5

instrument will perform for other AVHRR instruments.

The results here are valid for the MODIS imager on the polar orbiting satellite Aqua. However nothing in the method restricts

it to polar orbiting satellites. The method should be applicable for imagers like SEVIRI, which has the two most important

channels at 11 µm and 12 µm, on geostationary satellites. However the network trained on MODIS data might need to be

retrained with SEVIRI data to get the best performance as the spectral response functions between SEVIRI and MODIS differ.10

5 Conclusions

The neural network approach shows high potential to improve cloud height retrievals. The NN-CTTH (for all trained neural

networks) is better in terms of MAE in meters than both PPS-v2014 and the MODIS Collection 6. This is seen for validation

with CALIOP and CPR (CloudSat) and for low, medium, high level clouds. The neural networks also show best MAE for all

cloud types except altostratus (opaque) for which PPS-v2014 is better than some of the neural networks. The neural networks15

show an overall improvement of mean absolute error (MAE) from 400 m and up to 1km. Considering overall performance

in terms of IQR, RMSE, SD, PE0.25, PE0.5, PE1, PE2, median, mode and bias the neural network performs better than both

the reference algorithms both when validated with CALIOP and CPR (CloudSat). In the validation with CALIOP the neural

networks have between 7 and 20 percentages more retrievals with absolute errors smaller than 250 m compared to the reference

algorithms. Considering low, medium and high levels separately the neural networks perform better or for some cases in line20

with the best of the two reference algorithms in terms of MAE, IQR, PE0.25, PE0.5, PE1, median and mode. This indicates that

the neural networks have well centered, narrow error distributions with large amount of retrievals with small errors.

The two reference algorithms have been shown to have different strenghts MODIS-C6 validated with CPR (CloudSat) for

high clouds shows a well centered and narrow error distribution in line with (and better than some of) the neural networks,

although the MAE is higher for MODIS-C6. PPS-v2014 validated with CALIOP for the cloud type altostratus (opaque) show25

scores in line with (and better than some of) the neural networks.

The error distributions for the cloud top height retrievals were found to be skewed for all algorithms considered in the paper,

especially for low level clouds. It was examplified why the bias and SD should be interpreted with caution and how they can

easily be misinterpreted. The median and mode where found to be better measures of tendency than the bias. The IQR and

MAE were found to better describe the spread of the errors, compared to SD and RMSE, as the absolute values of the largest30

errors are not the most interesting. Measuring the amount of absolute error above for example 1km (PE1) was found to provide

valuable information on the amount of large/small errors and useful retrievals.
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The neural network algorithms are also useful for instruments with fewer channels than MODIS, including the channels

available for AVHRR1. This is important for climate data records which include AVHRR1 data to produce a long, continuous

time series. Including variables with information on neighbouring pixel values was very important to get good results about

and 40 % of the improvement of MAE for the cloud top pressure retrieval for NN-AVHRR was due to the variables with

neighbouring pixels. The networks trained using only two IR-channels at 11 µm and 12 µm or 3.7 µm showed the most robust5

performance at higher satellite zenith angles. Including more IR channels does improve results for nadir observations, but

degrades performance at higher satellite zenith angles.

A neural network cloud top pressure, temperature and height algorithm will be be part of the PPS-v2018 release. The PPS

software package is accessible via the NWC SAF site nwc-saf.eumetsat.int.
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Table 1. MODIS data from 2010 used for training and validation of the neural networks.

Dataset Days used

Training 1st January March July September

14th February April May

14th August October December

Validation during training 1st May

14th March July November

Testing under development 1st November

14th January June September

Final validation 1st February April June

1st August October December
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Table 2. Description of variable types used to train the neural networks.

Variable type Variable names Note

Surface pressure PS Max pressure for pixel

NWP temperatures at surface, 950, 850, 700, 500, 250 hPa TS , T950, T850, T700, T500, T250 BT to pressure conversion

NWP column integrated water vapour Ciwv Expected BT differences

Brightness Temperature (BT) for 11 µm or 12 µm B11, B12 Opaque temperature

BT for water vapour channels at 6.7 µm or 7.3 µm B6.7, B7.3 High or low

BT for CO2 channel at 13.3 µm B13.3 High or low

BT differences B11 −B12, B11 −B3.7, B8.5 −B11 Opacity or phase

BT differences to warmest/coldest neighbour BW
12 −B12, BC

12 −B12 or Edge or thin

BW
11 −B11, BC

11 −B11 Edge or thin

BT differences for warmest/coldest neighbour BW
11 −BW

12 , BC
11 −BC

12 or Opacity

BW
11 −BW

3.7, BC
11 −BC

3.7 Opacity

Texture: standard deviation of variable for 5x5 pixels SB11−B12 , SB11 , SB3.7 Edge or thin

21



Table 3. Description of the different networks. See Table 2 for explanation of the variables. The NWP variables: PS , TS , T950, T850, T700,

T500, T250 are used in all networks.

Network name Network specific variables

NN-NWP Ciwv

NN-OPAQUE B12

NN-BASIC B12, B11 −B12,

NN-BASIC-CIWV B12, B11 −B12, Ciwv,

NN-AVHRR B12, B11 −B12, Ciwv,

BW
11 −BW

12 , BC
11 −BC

12,

BW
12 −B12, BC

12 −B12,

SB11−B12 , SB11 ,

NN-VIIRS B12, B11 −B12, Ciwv,

BW
11 −BW

12 , BC
11 −BC

12 ,

BW
12 −B12, BC

12 −B12,

SB11−B12 , SB11 ,

B8.5 −B11

NN-MERSI-2 B12, B11 −B12, Ciwv,

BW
11 −BW

12 , BC
11 −BC

12,

BW
12 −B12, BC

12 −B12,

SB11−B12 , SB11 ,

B8.5 −B11, B7.3

NN-MetImage-NoCO2 B12, B11 −B12, Ciwv,

BW
11 −BW

12 , BC
11 −BC

12,

BW
12 −B12, BC

12 −B12,

SB11−B12 , SB11 ,

B8.5 −B11, B7.3, B6.7

NN-MetImage B12, B11 −B12, Ciwv,

BW
11 −BW

12 , BC
11 −BC

12,

BW
12 −B12, BC

12 −B12,

SB11−B12 , SB11 ,

B8.5 −B11, B7.3, B6.7, B13.3

NN-AVHRR1 B11, B11 −B3.7, Ciwv,

BW
11 −BW

3.7, BC
11 −BC

3.7

BW
11 −B11, BC

11 −B11

SB3.7 , SB11
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Table 4. Description of the imager channels used for the different algorithms. For MODIS-C6 channels used indirectly, to determine if

CO2-slicing should be applied, are noted with brackets.

Imager channel: B3.7 B6.7 B7.3 B8.5 B11 B12 B13.3 B13.6 B13.9 B14.2

Network name

PPS-v2014 x x

MODIS-C6 (x) (x) x (x) x x x x

NN-NWP

NN-OPAQUE x

NN-BASIC x x

NN-BASIC-CIWV x x

NN-AVHRR x x

NN-VIIRS x x x

NN-MERSI-2 x x x x

NN-MetImage-NoCO2 x x x x x

NN-MetImage x x x x x x

NN-AVHRR1 x x
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Table 5. Mean absolute error (MAE) for different algorithms compared to CALIOP top layer pressure. The final validation dataset (see

Table 1), containing 1832432 pixels (45 % high, 39 % low and 16 % medium level clouds) is used. Pixels with valid pressure for PPS-v2014,

MODIS-C6, and CALIOP are considered. The low, medium and high classes are from CALIOP feature classification flag.

MAE [hPa]

all low medium high

PPS-v2014 122.6 80.2 88.0 172.9

MODIS-C6 123.9 90.7 139.8 147.3

NN-NWP 191.7 141.7 110.3 265.8

NN-OPAQUE 113.2 82.1 105.0 143.8

NN-BASIC 93.9 67.7 92.8 117.6

NN-BASIC-CIWV 92.1 67.5 91.3 114.2

NN-AVHRR 72.4 55.4 67.6 89.2

NN-VIIRS 65.9 50.5 59.3 81.9

NN-MERSI2 61.4 48.2 52.1 76.6

NN-MetImage-NoCO2 60.3 47.1 54.5 74.1

NN-MetImage 54.2 44.5 51.6 63.8

NN-AVHRR1 76.1 54.7 69.9 97.3

24



Table 6. Statistic measures for the error distributions for all clouds. For all measures except skewness it is the case that values closer to zero

are better. The statistics are calculated for 1198599 matches for CPR (CloudSat) and 1803335 matches for CALIOP. A small amount 0.2%

of the matches were excluded because of missing height or pressure below 70 hPa for any of the algorithms. PEX describes percentage of

absolute errors above X km, see Equation 1.

MAE IQR RMSE SD1 PE0.25 PE0.5 PE1 PE2 median mode bias1 skew

[m] [m] [m] [m] [%] [%] [%] [%] [m] [m] [m]

CALIOP all clouds

PPS-v2014 2095 2832 3188 2832 82 69 54 29 -639 -118 -1465 -1.0

MODIS-C6 1923 2177 3105 2883 85 72 51 23 -612 -262 -1153 -1.5

NN-AVHRR 1300 1326 2234 2197 73 56 36 14 50 106 -405 -1.8

NN-VIIRS 1187 1189 2114 2074 71 52 33 12 28 100 -410 -1.9

NN-MERSI-2 1120 1107 2039 1996 69 50 30 11 -2 73 -420 -2.0

NN-MetImage-NoCO2 1091 1040 2009 1966 68 48 29 11 -49 44 -416 -2.0

NN-MetImage 979 909 1840 1817 65 46 26 9 -17 15 -294 -1.9

NN-AVHRR1 1383 1547 2354 2281 75 58 38 16 -42 50 -584 -1.8

CPR (CloudSat) all clouds

PPS-v2014 1744 2255 2432 2160 87 74 56 24 -833 -426 -1118 -0.1

MODIS-C6 1692 1928 2607 2533 84 70 48 20 -375 -259 -614 -0.1

NN-AVHRR 1262 1473 1928 1923 77 61 41 14 88 -141 143 0.2

NN-VIIRS 1207 1368 1901 1896 76 58 38 13 69 -146 137 0.5

NN-MERSI-2 1120 1275 1793 1788 75 56 35 11 40 -201 136 0.5

NN-MetImage-NoCO2 1146 1315 1834 1828 76 57 35 12 9 -218 147 0.7

NN-MetImage 1170 1421 1865 1843 76 58 37 11 84 -243 285 0.9

NN-AVHRR1 1281 1523 1953 1953 79 63 41 14 30 -128 -14 0.0

1 Interpret bias and SD with caution as distributions are non-Gaussian. Bias is not located at the center of the distribution.
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Table 7. Statistic measures for the error distributions for low level clouds. For all measures except skewness it is the case that values closer to

zero are better. The statistics are calculated for 328015 matches for CPR (CloudSat) and 709434 matches for CALIOP. The low class comes

from CALIOP feature classification flag (class 0, 1, 2 and 3) and for CPR (CloudSat) it is the pixels with heights lower or exactly at the NWP

height at 680 hPa. PEX describes percentage of absolute errors above X km, see Equation 1.

MAE IQR RMSE SD1 PE0.25 PE0.5 PE1 PE2 median mode bias1 skew

[m] [m] [m] [m] [%] [%] [%] [%] [m] [m] [m]

Low level clouds CALIOP

PPS-v2014 847 1035 1469 1436 68 47 27 5 -46 -117 312 3.0

MODIS-C6 952 1230 1576 1561 78 58 29 6 -17 -150 219 2.9

NN-AVHRR 586 584 1121 1027 56 31 14 3 215 101 449 4.0

NN-VIIRS 533 515 1080 1006 52 27 11 3 182 126 391 4.8

NN-MERSI-2 509 490 1063 998 49 25 10 3 159 86 365 4.8

NN-MetImage-NoCO2 499 504 1068 1024 48 24 10 3 98 40 303 4.9

NN-MetImage 476 450 1103 1069 45 21 8 3 74 14 271 5.4

NN-AVHRR1 574 646 1045 969 58 33 13 3 197 49 391 3.8

Low level clouds CPR (CloudSat)

PPS-v2014 949 1197 1571 1556 78 56 29 5 -173 -413 211 2.8

MODIS-C6 1192 1335 2145 2097 79 60 33 9 46 -110 450 2.9

NN-AVHRR 743 685 1595 1532 56 31 16 6 16 -132 443 3.8

NN-VIIRS 739 637 1690 1633 55 30 15 6 -6 -139 432 4.2

NN-MERSI-2 721 605 1652 1602 55 28 14 6 -31 -181 403 4.1

NN-MetImage-NoCO2 742 608 1670 1637 60 31 13 6 -105 -255 328 4.2

NN-MetImage 773 578 1813 1775 58 30 13 6 -102 -217 369 4.1

NN-AVHRR1 827 852 1676 1602 64 38 18 7 48 -198 491 3.6

1 Interpret bias and SD with caution as distributions are non-Gaussian. Bias is not located at the center of the distribution.
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Table 8. Statistic measures for the error distributions for medium level clouds. For all measures except skewness it is the case that values

closer to zero are better. The statistics are calculted for 244885 matches for CPR (CloudSat) and 295186 matches for CALIOP. The high

class comes from CALIOP feature classification flag (class 4 and 5) and for CPR (CloudSat) it is the pixels with heights between the NWP

height at 440 hPa and 680 hPa. PEX describes percentage of absolute errors above X km, see Equation 1.

MAE IQR RMSE SD1 PE0.25 PE0.5 PE1 PE2 median mode bias1 skew

[m] [m] [m] [m] [%] [%] [%] [%] [m] [m] [m]

Medium level clouds CALIOP

PPS-v2014 1121 1600 1651 1614 78 59 37 12 -68 124 -348 0.2

MODIS-C6 1759 2590 2304 2192 87 76 60 27 -654 205 -708 0.6

NN-AVHRR 969 1243 1394 1339 78 59 34 7 304 273 387 0.8

NN-VIIRS 832 1048 1227 1206 74 53 28 5 186 23 223 0.7

NN-MERSI-2 731 935 1102 1093 70 47 23 4 83 16 144 0.9

NN-MetImage-NoCO2 762 984 1148 1145 71 49 24 4 28 -1 86 1.1

NN-MetImage 714 905 1091 1090 69 46 22 3 4 -63 36 1.1

NN-AVHRR1 980 1330 1381 1364 79 61 35 7 187 176 213 0.5

Medium level clouds CPR (CloudSat)

PPS-v2014 1364 1978 1927 1858 82 66 46 18 -300 53 -512 0.5

MODIS-C6 1909 2698 2532 2475 88 78 62 30 -597 69 -534 0.9

NN-AVHRR 1215 1541 1817 1770 81 64 40 12 209 -113 409 1.2

NN-VIIRS 1139 1325 1788 1760 77 59 36 11 114 -81 310 1.5

NN-MERSI-2 1059 1203 1706 1686 75 55 32 10 15 -150 264 1.7

NN-MetImage-NoCO2 1091 1259 1752 1740 76 57 33 10 -44 -154 205 1.8

NN-MetImage 1113 1217 1832 1818 75 56 33 11 -45 -174 225 1.9

NN-AVHRR1 1221 1591 1776 1751 81 65 41 13 146 -25 301 1.0

1 Interpret bias and SD with caution as distributions are non-Gaussian. Bias is not located at the center of the distribution.
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Table 9. Statistic measures for the error distributions for high level clouds. For all measures except skewness it is the case that values closer

to zero are better. The statistics are calculated for 625699 matches for CPR (CloudSat) and 798715 matches for CALIOP. The high class

comes from CALIOP feature classification flag (class 6 and 7) and for CPR (CloudSat) it is the pixels with heights higher or exactly at the

NWP height at 440 hPa. PEX describes percentage of absolute errors above X km, see Equation 1.

MAE IQR RMSE SD1 PE0.25 PE0.5 PE1 PE2 median mode bias1 skew

[m] [m] [m] [m] [%] [%] [%] [%] [m] [m] [m]

High level clouds CALIOP

PPS-v2014 3564 3367 4475 2842 96 92 84 57 -2918 -1897 -3456 -0.9

MODIS-C6 2846 3095 4196 3342 92 84 68 36 -1586 -917 -2537 -1.5

NN-AVHRR 2057 2775 3072 2704 87 76 57 27 -799 -130 -1457 -1.4

NN-VIIRS 1899 2459 2916 2581 86 74 53 23 -716 -18 -1356 -1.6

NN-MERSI-2 1807 2258 2818 2486 85 72 51 21 -705 -192 -1326 -1.7

NN-MetImage-NoCO2 1739 2134 2760 2464 84 70 48 20 -606 -248 -1242 -1.8

NN-MetImage 1524 1906 2476 2298 83 67 44 16 -360 -83 -920 -2.0

NN-AVHRR1 2250 2913 3292 2791 89 79 61 30 -1099 -475 -1746 -1.3

High level clouds CPR (CloudSat)

PPS-v2014 2309 2384 2930 2092 93 87 74 36 -1789 -1428 -2052 -0.5

MODIS-C6 1869 2142 2845 2578 86 73 51 22 -614 -506 -1203 -1.2

NN-AVHRR 1553 2244 2121 2118 87 75 54 19 143 348 -117 -0.6

NN-VIIRS 1479 2095 2043 2041 86 73 52 17 168 332 -85 -0.7

NN-MERSI-2 1353 1876 1894 1893 85 71 48 14 177 326 -54 -0.9

NN-MetImage-NoCO2 1379 1843 1944 1944 85 71 48 15 219 292 29 -0.7

NN-MetImage 1399 1871 1904 1885 87 74 52 14 463 511 265 -0.8

NN-AVHRR1 1542 2275 2145 2107 87 74 53 19 -67 281 -403 -0.8

1 Interpret bias and SD with caution as distributions are non-Gaussian. Bias is not located at the center of the distribution.
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Table 10. Mean absolute error (MAE) and median in meters for different algorithms compared to CALIOP top layer altitude. The final

validation dataset (see Table 1), containing 1803335 pixels (5 % low overcast (transparent), 12 % low overcast opaque, 19 % transition

stratocumulus, 2 % low, broken cumulus, 7 % altocumulus (transparent), 8 % altostratus (opaque), 30 % cirrus (transparent) and 14 % deep

convective (opaque)), where all algorithms had a cloud top height is used. The cloud types are from CALIOP feature classification. PE0.5

describes percentage of absolute errors above 0.5 km.
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MAE [m]

PPS-v2014 709 637 886 1695 1609 699 4343 1901

MODIS-C6 903 1028 901 1058 2343 1254 3567 1308

NN-AVHRR 519 442 627 1027 1134 825 2608 883

NN-VIIRS 454 407 571 938 1011 678 2398 833

NN-MERSI-2 408 381 550 946 900 584 2283 791

NN-MetImage-NoCO2 395 372 541 929 929 617 2210 734

NN-MetImage 365 364 509 912 885 565 1905 711

NN-AVHRR1 516 448 617 911 1156 827 2847 977

median [m]

PPS-v2014 -183 50 -90 220 -633 63 -3835 -1716

MODIS-C6 -91 331 -138 -477 -1953 85 -2243 -912

NN-AVHRR 223 160 241 380 109 410 -1605 71

NN-VIIRS 185 143 201 315 7 279 -1360 46

NN-MERSI-2 160 116 177 313 -34 145 -1268 -35

NN-MetImage-NoCO2 110 70 102 226 -138 119 -1133 -19

NN-MetImage 53 46 86 214 -163 87 -787 125

NN-AVHRR1 188 140 232 313 -180 380 -1895 -82

PE0.5 [%]

PPS-v2014 46 38 49 67 76 44 95 87

MODIS-C6 58 59 56 63 89 64 87 76

NN-AVHRR 33 23 34 47 67 53 83 60

NN-VIIRS 27 19 30 43 63 44 81 58

NN-MERSI-2 24 17 28 42 58 37 79 57

NN-MetImage-NoCO2 22 16 27 40 59 40 78 53

NN-MetImage 20 15 23 37 58 36 74 52

NN-AVHRR1 34 24 37 45 68 54 86 64
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Figure 1. Retrieved pressure dependence on satellite zenih angle. CALIOP pressure distribution is shown in light blue. The percent of results

are calculated in 50 hPa bins. The final validation dataset is used (see Table 1).

30



−8 −4 0 4 8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

P
er

ce
nt

of
d

at
a

(a) High clouds

−8 −4 0 4 8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
(b) High clouds

PPS-v2014

MODIS-C6

NN-AVHRR

−6 −4 −2 0 2 4 6
0

1

2

3

4

5

6

P
er

ce
nt

of
d

at
a

(c) Medium clouds

−6 −4 −2 0 2 4 6
0

1

2

3

4

5

6 (d) Medium clouds

−4 −3 −2 −1 0 1 2 3 4
Retrieved height - CPR (CloudSat) (km)

0

2

4

6

8

10

12

P
er

ce
nt

of
d

at
a

(e) Low clouds

−4 −3 −2 −1 0 1 2 3 4
Retrieved height - CALIOP (km)

0

2

4

6

8

10

12
(f) Low clouds

Figure 2. Error distribution compared to CPR (CloudSat) (left) and CALIOP (right). The percent of data is calculated in 0.1 km bins. For

CALIOP the low, medium and high clouds are determined from CALIOP feature classification flag. For CPR (CloudSat) the low, medium,

high clouds are determined from CPR (CloudSat) height compared to NWP geopotential height at 440 hPa and 680 hPa. The final validation

dataset (see Table 1) where all algorithms had a height reported is used. Note that the values on the y-axis are dependent of the bin size. The

peak at 11 % for NN-AVHRR in subplot (f), means that 11 % of the retrieved heights are between the CALIOP height and the CALIOP

height + 0.1 km.
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Figure 3. Scatters plot of the height for the neural networks and for the reference methods against CPR (CloudSat) height. The data were

divided in bins of size 0.25 x 0.25 (km) for colour coding. The number of points in each bin determines the colour of the point. The final

validation dataset (see Table 1) where all algorithms had a height reported is used. Two points where CPR (CloudSat) had a height above

22 km where excluded. A cloudy threshold of 30 % is used for CPR (CloudSat).
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Figure 4. Scatter plots of the pressure for the neural networks and for the reference methods against CALIOP cloud top pressure. The data

were divided in bins of size 10 x 10 (hPa) for colour coding. The number of points in each bin determines the colour of the point. The final

validation dataset (see Table 1) where all algorithms had a height reported is used.
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Figure 5. Mean absolute error in meters compared to CALIOP height. From the top a) PPS-v2014, b) MODIS-C6, and c) NN-AVHRR.

Results are calculated for bins evenly spread out 250 km apart. Bins with less than 10 cloudy pixels are excluded (plotted in dark grey). The

final validation and testing under development data (see Table 1) are included to get enough pixels.
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Figure 6. Mean absolute error difference in meters between MODIS-C6 and NN-AVHRR compared to CALIOP. Results are calculated for

bins evenly spread out 250 km apart. Bins with less than 10 cloudy pixels are excluded (plotted in dark grey). Dark green means NN-AVHRR

is 1.5 km better than MODIS-C6, dark brown means MODIS-C6 is 1.5 km better than NN-AVHRR. The final validation and testing under

development data (see Table 1) are included to get enough pixels.
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Figure 7. Comparing the cloud top height from the NN-AVHRR (left) to PPS-v2014 (right) with a RGB in the middle using channels at

3.7 µm, 11 µm, 12 µm. Notice that the NN-AVHRR is smoother, contain less nodata and that the small high ice clouds in the lower part of

the figure are better captured. This is from MODIS on Aqua 14th of January 2010, 00:05UTC.
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Figure 8. Error distribution compared to CPR (CloudSat) (left) and CALIOP (right) with biases and medians marked. The percent of data is

calculated in 0.1 km bins. The final validation dataset (see Table 1) where all algorithms had a height reported is used. Note that the values

on the y-axis are dependent of the bin size. The peak at 6 % for NN-AVHRR in subplot (f), means that 6 % of the retrieved heights are

between the CALIOP height and the CALIOP height + 0.1 km. In grey the Gaussian distribution with the same bias and standard derivation

is shown.
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