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Abstract.

Cloud top height retrieval from imager instruments is important for Nowcasting and for satellite climate data records. A

neural network approach for cloud top height retrieval from the imager instrument MODIS is presented. The neural networks

are trained using cloud top layer pressure data from the CALIOP dataset.

Results are compared with two operational reference algorithms for cloud top height: the MODIS Collection 6 level 2 height5

product and the cloud top temperature and height algorithm (CTTH) in the 2014 version of the NWCSAF Polar Platform

System (PPS-v2014). All three techniques are evaluated using both CALIOP and CPR (CloudSat) height.

Instruments like AVHRR and VIIRS contain fewer channels useful for cloud top height retrievals than MODIS, therefore

several different neural networks are investigated to test how infrared channel selection influences retrieval performance.

Also a network with only channels available for the AVHRR1 instrument is trained and evaluated. To examine the contribu-10

tion of different variables, networks with fewer variables are trained. It is shown that variables containing imager information

for neighbouring pixels are very important.

Overall results for the neural network height retrievals are very promising. The neural networks using the brightness tem-

peratures at 11µm and 12µm show at least 33% (or 627m) lower mean absolute error (MAE) compared to the two operational

reference algorithms when validating with CALIOP height. Validation with CPR (CloudSat) height gives at least 25% (or15

433m) reduction of MAE. For the network trained with a channel combination available for AVHRR1, the MAE is at least

542m better when validated with CALIOP and 414m when validated with CPR (CloudSat) compared to the two operational

reference algorithms. The NWCSAF PPS-2018 release will contain a neural network based cloud height algorithm.

1 Introduction

The retrieval of cloud top temperature, pressure and height from imager data from polar orbiting satellites is used both as a vital20

product in global cloud climatologies (Stubenrauch et al., 2013) and for nowcasting at high latitudes where data from geosta-

tionary satellites are either not available or not available in sufficient quality and spatial resolution. Cloud top height products

from VIS/IR imagers are used in the analysis and early warning of thunderstorm development and for height assignment in

aviation forecasts. The cloud height can serve as input to mesoscale analysis and models for use in nowcasting in general, or as

input to other satellite retrievals used in nowcasting (e.g. cloud micro physical properties retrieval, or cloud type retrieval). It25
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is important that climatologists and forecasters have reliable and accurate cloud height products from recent and past satellite

measurements.

Several algorithms to retrieve cloud top height from polar orbiting satellites are available and used operationally for now-

casting purposes or in cloud climatologies. These include the CTTH (cloud top temperature and height) from the PPS (Polar

Platform System) package (Dybbroe et al., 2005), which is also used in the CLARA-A2 climate data record of CMSAF (EU-5

METSAT Satellite Application Facility for Climate Monitoring) (Karlsson et al., 2017), ACHA (cloud height algorithm) used

in PATMOS-x (Heidinger et al., 2014), CC4CL used in ESA Cloud_CCI (Stengel et al., 2017), MODIS Collection-6 algorithm

(Ackerman et al., 2015) and the ISCCP algorithm (Rossow and Schiffer, 1999).

We will use both the MODIS Collection-6 (MODIS-C6) and the version 2014 CTTH from PPS (PPS-v2014) as references

to evaluate the performance of neural network based cloud height retrieval. The MODIS-C6 algorithm is developed for the10

MODIS instrument. The PPS, delivered by the NWC SAF (EUMETSAT Satellite Application Facility for Nowcasting and

very shortrange forecasting), is adapted to handle data from instruments AVHRR, VIIRS and MODIS.

Artificial neural networks are widely used for non-linear regression problems, see for example Gardner and Dorling (1998),

Meng et al. (2007) or Milstein and Blackwell (2016) for neural network applications in atmospheric science. In CC4CL a

neural network is used for the cloud detection (Stengel et al., 2017). Artificial neural networks have also been used on MODIS15

data to retrieve cloud optical depth (Minnis et al., 2016). The COCS algorithm uses artificial neural networks to retrieve cirrus

cloud optical thickness and cloud top height for the SEVIRI instrument (Kox et al., 2014).

One type of neural network is the multilayer perceptron described in (Gardner and Dorling, 1998) which is a supervised

learning technique. If the output for a certain input, when training the multilayer perceptron, is not equal to the target output an

error signal is propagated back in the network and the weights of the network are adjusted resulting in a reduced overall error.20

This algorithm is called the back-propagation algorithm.

In this study we will compare the performance of back-propagation neural network algorithms for retrieving cloud top height

(NN-CTTH) with the CTTH algorihm from PPS version 2014 (PPS-v2014) and MODIS Collection 6 (MODIS-C6) algorithm.

Several networks will be trained to estimate the contribution of different training variables to the overall result. The networks

will be validated using both CALIOP and CloudSat height data.25

In section 2 the different datasets used are briefly described and in section 3 the three algorithms are described. Results are

presented in section 4, discussed in section 5 and final conclusions are found in section 6.

2 Instruments and data

For this study we used data from the MODIS instrument on the polar orbiting satellite Aqua in the A-Train, as it is co-located

with both CALIPSO and CloudSat at most latitudes and has multiple channels useful for cloud top height retrieval.30
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2.1 Aqua - MODIS

The MODIS (Moderate-resolution Imaging Spectro-radiometer) is a spectro-radiometer with 36 channels covering the solar

and thermal spectra. We are using level 1 data from the MODIS instrument on the polar orbiter Aqua. For this study the

MYD021km (MODIS Science Data Support Team, 2015a) and MYD03 (MODIS Science Data Support Team, 2015b) for all

orbits from 24 dates were used (1st and 14th of every month of 2010). The data were divided into four parts which were used5

for training, validation during training (used to decide when to quit training), testing under development (used to test different

combinations of variables during prototyping) and final validation. See Table 1 for distribution of data.

2.1.1 Aqua - MODIS Collection 6 cloud products

The MODIS Collection-6 climate data records produced by the National Aeronautics and Space Administration (NASA)

Earth Observation System are using data from the MODIS sensor. The MODIS Collection 6 cloud products were used as an10

independent algorithm with which to compare the performance of the NN-CTTH. The 1-km cloud top height and cloud top

pressure from the MYD06_L2-product (Ackerman et al., 2015) for the dates in Table 1 were used.

2.2 CALIPSO - CALIOP

The CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarisation) lidar on the polar orbiting satellite CALIPSO is an active

sensor and therefore more sensitive to particle conglomerates with low density than typical imagers. The horizontal pixel15

resolution is 0.07km x 0.333km, this means that when co-locating with MODIS one should remember that CALIOP samples

only a small part of each MODIS pixel. The CALIOP 1km Cloud Layer product (version 3) data were used (for the dates, see

Table 1) as the truth to train the networks against, and for validation of the networks.

2.3 CloudSat - CPR

The CPR (Cloud Profiling Radar for CloudSat) is a radar on CloudSat which derives a vertical profile of cloud water. Its20

horizontal resolution is 1.4km x 3.5km, and its vertical resolution is 0.5km. The CPR product 2B-GEOPROF-R04 (Marchand

et al., 2008) was used as an additional source for independent validation of the networks. See Table 1 for selected dates. The

validation with CloudSat will have a lower percentage of low clouds compared to CALIOP because ground clutter is a problem

for space bourne radar instruments.

2.4 Other data25

Numerical weather prediction (NWP) data are needed as input for the PPS-v2014 and the Neural network algorithm. In this

study NWP data from ECMWF (European Centre for Medium-range Weather Forecasting) were used. Also ice maps from

OSISAF (Satellite Application Facility on Ocean and Sea Ice) were used as input for the PPS cloud mask algorithm.
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3 Algorithms

3.1 PPS-v2014 cloud top temperature and height

The cloud top height algorithm in PPS-v2014, uses two different algorithms for cloud height retrieval, one for pixels classified

as opaque and another for semi-transparent clouds. The reason for having two different algorithms is that the straight forward

opaque algorithm can not be used for pixels with optically thin clouds like cirrus or broken cloud fields like cumulus. The5

signals for these pixels are a mixture of contributions from the cloud itself and underlying clouds and/or the surface.

The retrieval for opaque clouds matches the observed brightness temperatures at 11µm against a temperature profile derived

from a short term forecast or (re)analysis of a NWP model, adjusted for atmospheric absorption. The first match, going along

the profile from the ground and upwards, gives the cloud top height and pressure. Temperatures colder or warmer than the

profile are fitted to, respectively, the coldest or warmest temperature of the profile below tropopause.10

The algorithm uses a split-window technique to decide whether to apply the opaque or semi-transparent retrieval. All pixels

with a difference between the 11µm and 12µm brightness temperatures of more than 1.0 K are treated as semi-transparent.

This is a slight modification of the PPS version 2014 algorithm where also the clouds classified as non-opaque by cloud type

product are considered semi-transparent.

The algorithm for semi-transparent pixels uses a histogram method, based on the work of Inoue (1985) and Derrien et al.15

(1988), which fits a curve to the brightness temperature difference between the 11µm and 12µm bands as a function of 11µm

brightness temperatures for all pixels in a segment (32x32 pixels). One parameter of this fitting is the cloud top temperature.

The solution is checked for quality (low root mean square error) and sanity (inside physically meaningful interval and not

predicted too far from data). The solution is accepted if both tests are passed. The height and pressure are then retrieved from

the temperature, in the same way as for opaque clouds. For more detail about the algorithms see SMHI (2015).20

PPS height uses the unit altitude above ground. For all comparisons this is transformed to height above mean sea level, using

elevations given in the CloudSat or CALIOP datasets.

3.2 MODIS Collection 6 Aqua Cloud Top Properties product

In MODIS Collection 6 the CO2-slicing method (described in Menzel et al., 2008) is used to retrieve cloud top pressure using

the 15µm channels for ice clouds (as determined from MODIS phase algorithm). For low level clouds the 11µm channel and25

the IR-window approach (IRW) with a latitude dependent lapse rate is used over ocean (Baum et al., 2012). Over land the

11µm temperature is fitted against a 11µm temperature profile calculated from GDAS temperature, water vapour and ozone

profiles and PFAAST radiative transfer model are used for low clouds (Menzel et al., 2008). For more details about the updates

in Collection 6 see Baum et al. (2012). Cloud pressure is converted to temperature and height using the National Centers for

Environmental Prediction Global Data Assimilation System (Baum et al., 2012).30
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3.3 Neural network cloud top temperature and height NN-CTTH

Neural networks are trained using MODIS data co-located with CALIOP data. The Aqua and CALIPSO satellites are both

part of the A-Train and the matched FOV are close in time (only 75s apart). The top layer pressure variable from CALIOP

data was used as training truth. Temperature and height for the retrieved cloud top pressure are extracted using NWP-data.

Pressure predicted higher than surface pressure are set to surface pressure. For pressures lower than 70hPa neither height nor5

temperature values are extracted.

3.3.1 Neural network variables

To reduce sun-zenith angle dependence and to have the same algorithm for all illumination conditions it was decided to use

only infra-red channels to train the neural networks. Several different types of variables were used to train the network. The

most basic ones were the NWP temperatures at pressure levels (surface, 950, 850, 700, 500 and 250hPa). This together with10

the 11µm or 12µm brightness temperature gives the network much of what is needed to predict cloud top pressure for opaque

clouds. For opaque clouds that are geometrically thin, with little or no water vapour above the cloud, the 11µm and 12µm

brightness temperatures will be the same as the cloud top temperature. If the predicted NWP temperatures are correct the

neural network could fit the 11µm brightness temperature to the NWP temperatures and receive the cloud pressure (similar to

what is done in PPS-v2014 and MODIS-C6). For cases without inversions in the temperature profile, the retrieved cloud top15

pressure should be accurate. The cases with inversions are more difficult to fit correctly, since multiple solutions exist and the

temperature inversion might not be accurately captured regarding its strength and height in the NWP data. For semi-transparent

clouds the network needs more variables to make a correct retrieval.

To give the network information on opacity of the pixel, brightness temperature difference variables were included (B11−
B12,B11−B3.7,B8.5−B11). Texture variables with the standard deviation of brightness temperature, or brightness temperature20

difference, for 5x5 pixels were included. These contain information about whether pixels with large B11−B12 are more likely

to be semi-transparent or more likely to be fractional or cloud edges.

As described in section 3.1, PPS-v2014 uses B11−B12 and B11 for neighbouring pixels to retrieve temperatures for semi-

transparent clouds. In order to feed the network with some of this information the neighbouring warmest and coldest pixels

(in brightness temperature 11µm in a 5x5 pixel neighbourhood) were identified. Variables using the brightness temperature at25

these warmest and coldest pixels were calculated, for example the 12µm brightness temperature for the coldest pixel minus the

same for the current pixel: BC
12−B12, see Table 2 for more information about what variables were calculated.

The surface pressure was also included, which provides the network with a value for the maximum reasonable pressure. Also

the brightness temperature for the CO2 channel at 13.3µm and the water vapour channels at 6.7µm and 7.3µm were included

as variables. The CO2 channel at 13.3µm is used in the CO2-slicing method of MODIS-C6 and should improve the cloud30

height retrieval for high clouds.

The instruments AVHRR, VIIRS, MERSI-2, MetImage and MODIS all have different selections of IR channels. Most of

them have the 11µm and 12µm channels. The first AVHRR instrument AVHRR1 had only two IR channels at 11µm and 3.7µm
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and no channel at 12µm. Networks were trained using combinations of MODIS IR-channels corresponding to the channels

available for the other instruments. See Table 3 for specifications of the networks trained. Table 4 gives an overview of what

imager channels were used for which network.

To see how much the different variable types contribute to the result, some basic networks were trained using less or no

imager data. These are also described in Table 3. Also one network using only NWP data was included as a sanity check. For5

this network we expect bad results. However good results for this network would indicate that height information retrieved was

already available in the NWP-data.

3.3.2 Training

For the training 1.5 million pixels were used, with the distribution 50% low clouds, 25% medium level clouds and 25%

high clouds. A higher percentage of low clouds was included because the mean square error (MSE) is often much higher for10

high clouds. Previous tests showed that less low clouds caused the network to focus too much on predicting the high clouds

correctly and showed degraded results for low clouds. For training validation 375000 pixels were randomly selected with the

same low/medium/high distribution as for the training data.

The machine learning module Scikit-learn (Pedregosa et al., 2011), the Keras package (Chollet et al., 2015), the Theano

(Theano Development Team, 2016) backend and the language Python were used for training the network.15

3.3.3 Parameters and configurations

During training of the network the MSE was used as the loss function that is minimized during training. The data were

standardized by subtracting the mean and dividing with the standard deviation before training.

Choosing the number of hidden neurons and hidden layers for the neural network is also important for the training to be

effective. Too few hidden neurons will result in under-fitting. We used two hidden layers with 30 neurons in the first layer and20

15 neurons in the second.

The initialization of weights before training the network is important for the neural network to learn faster. There are many

different weight initialization methods, for training the networks the glorot uniform weight initialization was used.

The activation function used for the hidden layers was the tangent hyperbolic (see Karlik and Olgac, 2011) and for the output

layer a linear activation function was used.25

To determine the changes in the weights an optimization method is used during the back-propagation algorithm. The op-

timization method used for the multilayer perceptron is mini-batch stochastic gradient descent which performs mini-batch

training. A mini-batch is a sample of observations in the data. Several observations are used to update weights and biases,

which is different from the traditional stochastic gradient descent where one observation at a time is used for the updates

(Cotter et al., 2011). Having an optimal mini-batch size is important for the training of a neural network because overly large30

batches can cause the network to take a long time to converge. We used a mini-batch size of 250.

When training the neural network there are different learning parameters that need to be tuned to ensure an effective trainig

procedure. During prototyping several different combinations were tested. The learning rate is a parameter that determines the
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size of change in the weights. A too large learning rate will result in large weight changes and can result in an unstable model

(Hu and Weng, 2009). If a learning rate on the other hand is too small the training time of the network will be long. We used a

learning rate of 0.01.

The momentum is a parameter which adds a part of the weight change to the current weight change, using momentum can

help avoid the network getting trapped in local minima (Gardner and Dorling, 1998). A high value of momentum speeds up5

the training of the network. We had a momentum of 0.9. The parameter learning rate decay, set to 10−6, in Keras, is used to

decrease the learning rate after each update as the training progresses.

To avoid the neural network from over-fitting (which makes the network extra sensitive to unseen data), a method called

early stopping was used. In early stopping the validation error is monitored during training to prevent the network from over-

fitting. If the validation error is not improved for some (we used 10) epochs training is stopped; this helps to reduce risk of10

over-fitting. The network for which the validation error was at its lowest is then used. The neural networks were trained for a

maximum of 2650 epochs, but the early stopping method caused the training to stop much earlier.

4 Results

First the performance of all the trained networks were validated with CALIOP in terms of mean absolute error (MAE). Results

in Table 5 show that both PPS-v2014 and MODIS-C6 have a MAE close to 120hPA. Even the NN-OPAQUE network using15

only B12 and the basic NWP-data has a 10hPa improvement in MAE. By including the variable B11−B12, the MAE improves

by an additional 19hPa because B11−B12 contains information about the semi-transparency of the pixel. Adding the NWP

variable Ciwv, which allows the network to attempt to predict the expected values of B11−B12, has a smaller effect of 2hPa

on MAE. However adding all variables containing information on neighboring pixels improves the result by additional 20hPa.

The NN-AVHRR network using 11µm and 12µm from MODIS provides an MAE which is reduced by about 50hPA compared20

to both from MODIS-C6 and PPS-v2014. Notice also that the scores improve for all categories (low, medium and high) when

compared with both PPS-v2014 and MODIS-C6.

Adding more IR channels improves the results further. Adding channel 8.5µm (B8.5−B11, NN-VIIRS) improves MAE

by 7hPa and adding 7.3µm (B7.3, NN-MERSI-2) improves MAE by 5hPa. Including the other watervapor channel at 6.7µm

(B6.7, NN-MetImage-NoCO2) improves MAE only by 1hPa. The CO2 channel at 13.3µm (B13.3, NN-MetImage) improves25

the MAE by an additional 6hPa.

The NN-AVHRR1 network trained using 3.7µm and 11µm (MAE 76.1hPa) is a little worse compared to NN-AVHRR

(MAE 72.2hPa). Also NN-AVHRR1 shows better scores for all categories (low, medium, and high) compared to PPS-v2014

and MODIS-C6. Notice that the network using only the NWP information and no imager channels (NN-NWP) shows high

MAE. This was included as a sanity check to see that the predicted height is using mainly the satellite data, and the high MAE30

for NN-NWP is supporting this.

The training with CALIOP using only MODIS from Aqua includes only near NADIR observations. Figure 1 shows that

NN-AVHRR and NN-AVHRR1 networks perform robustly also for higher satellite zenith angles. The N-VIIRS and NN-
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MetImage-NoCO2 results deviate for satellite zenith angles larger than 60 degrees. The NN-MERSI-2 results deviate for

satellite zenith angles larger than 40 degrees. The NN-MetImage retrieval shows deviations already above 20 degree satellite

zenith angles and for satellite zenith angles larger than 40 the retrieval has no predictive skill. Notice that the distribution for

MODIS-C6 also depend on the satellite zenith angle (with less high clouds at higher angles). For PPS-v2014 instead there are

less low clouds at higher satellite zenith angles. PPS-v2014 also has the least reasonable pressure distribution with one peak5

for mid-level clouds instead of capturing the two peaks for low and high clouds observed in the CALIOP data.

Results for MAE in meters compared to CALIOP top layer height are provided for the best performing networks in Table 6.

Notice that the MAE for high clouds is 1.5km better for the NN-AVHRR than for PPS-v2014. Compared to MODIS-C6 the NN-

AVHRR is 0.8km better for both medium level clouds and high clouds. The NN-AVHRR MAE is 627m lower (corresponding

to 33% reduction of MAE) than MODIS-C6 and 797m (corresponding to 38% reduction of MAE) lower than PPS-v2014. The10

NN-MetImage-NoCO2 has the best result while performing well at all satellite zenith angles, with a 44% reduction in MAE

when compared to MODIS-C6 and a 48% reduction when compared to PPS-v2014.

Co-located comparisons with CloudSat were also perfomed. In Table 7 the MAE in meters compared to height from CPR

(CloudSat) are presented. All neural networks show at least 400m better MAE compared to PPS-v2014 and MODIS-C6. Note

that when using CPR (CloudSat) as reference, the neural networks show better results for all categories (low, medium and high)15

compared to both PPS-v2014 and MODIS-C6. The NN-AVHRR shows 433m lower MAE (cooresponding to 25% reduction

of MAE) compared to MODIS-C6 and 483m (corresponding to 27% reduction of MAE) compared to PPS-v2014. The NN-

MetImage-NoCO2 shows 550m lower MAE (corresponding to 32% reduction of MAE) compared to MODIS-C6 and 600m

lower MAE (correspoding to 34% reduction of MAE) compared to PPS-v2014.

Notice that for MODIS-C6 the MAE for low clouds is high, 1206m, in Table 7, and when compared to CALIOP (Table 6)20

MODIS-C6 has the highest MAE for low clouds. When checking the MAE per month we found that scores for low clouds

were worst for December (at the same time the scores for high clouds were best in December). There turned out to be a bug in

the algorithm for low marine cloud height (Richard Frey, MODIS Team, 2017 pers. comm.) which likely affected the results

and the bug has been corrected in Version 6.1. However overall validation scores for MODIS-C6 were not affected by the bug

(Steve Ackerman, MODIS Team, 2017 pers. comm.).25

In Figure 2 the height bias distributions comparing MODIS-C6, PPS-v2014 and NN-AVHRR to CALIOP and CPR (Cloud-

Sat) are shown. The NN-AVHRR has the highest and best centered distributions especially for low clouds. For medium level

clouds both the NN-AVHRR and the PPS-v2014 show good results. For high clouds we can see that the NN-AVHRR have less

clouds predicted too low, especially compared to PPS-v2014. For the high clouds comparison to CloudSat, MODIS-C6 has the

highest peak, however MODIS-C6 also has a large amount of clouds with bias close to -6km, which explains why the overall30

MAE (Table 7) for high clouds is better for the NN-AVHRR.

The scatter plots in Figure 3 show how the height data of the neural networks and the reference methods are distributed

compared to CloudSat. Figure 4 show the same type of scatter plots for pressure with CALIOP as truth. These scatter plots

show that the NN-CTTH all have similar appearance with most of the data retrieved close to the truth. All methods (NN-CTTH,

PPS-v2014 and MODIS-C6) retrieve some heights and pressures that are very far from the true values of CloudSat or CALIOP.35
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It is important to remember that some of these seemingly bad results are due to the different FOV for the MODIS and the

CALIOP or CloudSat sensors.

To show how performance varies between surfaces and different parts of the globe, the MAE in meters compared to CALIOP

are calculated on a Fibonacci grid (constructed using the method described in González, 2009) with a grid evenly spread out

on the globe approximately 250km apart and plotted in Figure 5. We can see that all algorithms have problems with clouds5

around the equator in areas where very thin high cirrus is common. The MAE-difference (Figure 6) shows that the NN-AVHRR

is better than MODIS-C6 in most parts of the globe, with the greatest benefit observed closer to the poles. At a few isolated

locations MODIS-C6 is better than NN-AVHRR. Figure 7 compares the NN-AVHRR and PPS-v2014 for one scene. Note that

the NN-AVHRR has a less noisy appearance and has less nodata.

5 Discussion10

The neural networks show great potential for retrieveing cloud height. The NN-CTTH is better in terms of MAE than both

PPS-v2014 and the MODIS Collection 6. The neural network algorithms are also useful for instruments with fewer channels

than MODIS, including the channels available for AVHRR1. This is important for climate data records which include AVHRR1

data to produce a long, continuous time series.

Neural networks can behave unexpectedly for unseen data. By using a large training dataset and early stopping the risk for15

unexpected behaviour is decreased. Also the risk for unexpected results in a neural network algorithm can be a fair price to pay

given the significant improvements when compared to the current algorithms.

Only near nadir satellite zenith angles were used for training. This might limit the performance for the neural networks at

other satellite zenith angles. The NN-MetImage network using the CO2 channel at 13.3µm shows strong satellite zenith angle

dependence and is not useful for higher satellite zenith angles. A solution to train networks to perform better at higher satellite20

zenith angles could be to include MODIS data from satellite Terra co-located with CALIPSO in the training data, as they

will get matches at any satellite zenith angle. Radiative transfer calculations for the CO2-channels for different satellite-zenith

angles could be another way to improve the performance for higher satellite-zenith angles.

Several technical parameters influence the performance of the neural network, for example: learning rate, learning rate

decay, momentum, number of layers, number of neurons, weight initialization function and early stopping criteria. For several25

combinations tested, the differences were in the order of a few hPa. Networks tested using two hidden layers were found to

perform better than those using only one hidden layer.

The NN-CTTH algorithm currently has no pixel specific error estimate. The MAE provides a constant error estimate (the

same for all pixels). However for some clouds the height retrieval is more difficult, e.g. thin clouds and sub-pixel clouds.

Further work to include pixel specific error estimates could be valuable.30

The training of neural networks requires reference data (truth). For optimal performance a neural network approach for

upcoming new sensors (e.g. MERSI-2, MetImage) being launched, when data from CALIPSO or CloudSat are no longer

available, either another truth is needed or a method to robustly transform network trained for one sensor to other sensors is

9
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needed. A way forward could be to include variables with radiative transfer calculations of cloud free brightness temperatures

and brightness temperature differences. Further work is needed to test how the networks trained for the MODIS sensor perform

for AVHRR, AVHRR1, VIIRS and other sensors. Our results show that networks can be trained using only the channels

available on AVHRR, but they might need to be retrained with actual AVHRR data as the spectral response functions of the

channels differ. The spectral response functions also differ between different AVHRR instruments, and more investigations are5

needed to see how networks trained for one AVHRR instrument will perform for other AVHRR instruments.

6 Conclusions

The neural network approach shows high potential to improve cloud height retrievals. Including variables with information on

neighbouring pixel values was very important to get good results. Compared to two existing algorithms (MODIS Collection 6

and PPS-v2014) the neural networks show an improvement of mean absolute error (MAE) of at least 400m. This is valid both10

for validation with CloudSat and CALIOP height products. Low, medium and high level clouds all show better results for the

NN-CTTH compared with both PPS-v2014 and MODIS-C6.

The networks trained using only two IR-channels at 11µm and 12µm or 3.7µm showed the most robust performance at

higher satellite zenith angles. Including more IR channels does improve results for nadir observations, but introduces some

differences between satellite zenith angles. The NN-CTTH could run for the AVHRR1 instrument, in contrast to the other two15

algorithms neither of which could be applied for the AVHRR1 instrument.

A neural network cloud top pressure, temperature and height algorithm will be be part of the PPS-v2018 release. The PPS

software package is accessible via the NWCSAF site nwc-saf.eumetsat.int.
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Table 1. MODIS data from 2010 used for training and validation of the neural networks.

Dataset Days used

Training 1st January March July September

14th February April May

14th August October December

Validation during training 1st May

14th March July November

Testing under development 1st November

14th January June September

Final validation 1st February April June

1st August October December
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Table 2. Description of variable types used to train neural networks.

Variable type Variable names Note

Surface pressure PS Max pressure for pixel

NWP temperatures at surface, 950, 850, 700, 500, 250hPa TS , T950, T850, T700, T500, T250 BT to pressure conversion

NWP column integrated water vapour Ciwv Expected BT differences

Brightness Temperature (BT) for 11µm or 12µm B11 or B12 Opaque temperature

BT for water vapour channels at 6.7µm 7.3µm B6.7, B7.3 High or low

BT for CO2 channel at 13.3µm B13.3 High or low

BT differences. B11−B12, B11−B3.7, B8.5−B11 Opacity or phase

BT differences to warmest/coldest neighbour. BW
12 −B12, BC

12−B12 or Edge or thin

BW
11 −B11, BC

11−B11 Edge or thin

BT differences for warmest/coldest neighbour. BW
11 −BW

12 , BC
11−BC

12 or Opacity

BW
11 −BW

3.7, BC
11−BC

3.7 Opacity

Texture: standard deviation of variable for 5x5 pixels SB11−B12 , SB11 , SB3.7 Edge or thin
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Table 3. Description of the different networks. See Table 2 for explanation of the variables. The NWP variables: PS , TS , T950, T850, T700,

T500, T250 are used in all networks.

Network name Network specific variables

NN-NWP Ciwv

NN-OPAQUE B12

NN-BASIC B12, B11−B12,

NN-BASIC-CIWV B12, B11−B12, Ciwv,

NN-AVHRR B12, B11−B12, Ciwv,

BW
11 −BW

12 , BC
11−BC

12,

BW
12 −B12, BC

12−B12,

SB11−B12 , SB11 ,

NN-VIIRS B12, B11−B12, Ciwv,

BW
11 −BW

12 , BC
11−BC

12 ,

BW
12 −B12, BC

12−B12,

SB11−B12 , SB11 ,

B8.5−B11

NN-MERSI-2 B12, B11−B12, Ciwv,

BW
11 −BW

12 , BC
11−BC

12,

BW
12 −B12, BC

12−B12,

SB11−B12 , SB11 ,

B8.5−B11, B7.3

NN-MetImage-NoCO2 B12, B11−B12, Ciwv,

BW
11 −BW

12 , BC
11−BC

12,

BW
12 −B12, BC

12−B12,

SB11−B12 , SB11 ,

B8.5−B11, B7.3, B6.7

NN-MetImage B12, B11−B12, Ciwv,

BW
11 −BW

12 , BC
11−BC

12,

BW
12 −B12, BC

12−B12,

SB11−B12 , SB11 ,

B8.5−B11, B7.3, B6.7, B13.3

NN-AVHRR1 B11, B11−B3.7, Ciwv,

BW
11 −BW

3.7, BC
11−BC

3.7

BW
11 −B11, BC

11−B11

SB3.7 , SB11
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Table 4. Description of the imager channels used for different networks.

Imager channel: B11 B12 B8.5 B7.3 B6.7 B13.3 B3.7

Network name

NN-NWP

NN-OPAQUE x

NN-BASIC x x

NN-BASIC-CIWV x x

NN-AVHRR x x

NN-VIIRS x x x

NN-MERSI-2 x x x x

NN-MetImage-NoCO2 x x x x x

NN-MetImage x x x x x x

NN-AVHRR1 x x
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Table 5. Mean absolute error (MAE) for different algorithms compared to CALIOP top layer pressure. The final validation dataset (see

Table 1), containing 1796428 pixels (45% high, 39% low and 16% medium level clouds) is used. Pixels with valid pressure for PPS-v2014,

MODIS-C6, and CALIOP are considered. The low, medium and high classes are from CALIOP feature classification flag.

MAE [hPa]

all low medium high

PPS-v2014 122.9 79.4 88.6 173.5

MODIS-C6 124.3 90.4 140.0 148.4

NN-NWP 191.6 140.8 110.5 266.0

NN-OPAQUE 113.3 81.3 105.1 144.5

NN-BASIC 93.9 66.7 92.8 118.3

NN-BASIC-CIWV 92.1 66.4 91.4 115.0

NN-AVHRR 72.2 54.1 67.4 89.9

NN-VIIRS 65.7 49.1 59.2 82.7

NN-MERSI-2 61.2 46.7 52.0 77.3

NN-MetImage-NoCO2 60.0 45.5 54.3 74.8

NN-MetImage 53.6 42.7 51.3 64.1

NN-AVHRR1 76.1 53.6 70.0 98.1
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Table 6. Mean absolute error (MAE) in meters for different algorithms compared to CALIOP top layer altitude. The final validation dataset

(see Table 1), containing 1793142 pixels (45% high, 39% low and 16% medium level clouds), where all algorithms had a cloud height is

used. The low, medium and high classes are from CALIOP feature classification flag. A small amount 0.2% of the pixels were excluded

because of missing height or pressure below 70hPa for any of the algorithms.

MAE [m]

all low medium high

PPS-v2014 2087 837 1124 3542

MODIS-C6 1917 944 1759 2833

NN-AVHRR 1290 567 962 2049

NN-VIIRS 1177 514 828 1891

NN-MERSI-2 1110 488 727 1797

NN-MetImage-NoCO2 1081 478 757 1732

NN-Metimage 964 451 707 1510

NN-AVHRR1 1375 560 978 2239

19

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-443
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 30 January 2018
c© Author(s) 2018. CC BY 4.0 License.



Table 7. Mean absolute error (MAE) in meters for different algorithms compared to CPR (CloudSat) Height. The final validation dataset

(see Table 1), containing 1121199 pixels (53% high, 27% low and 21% medium level clouds) is used. The low, medium and high classes are

derived comparing the CloudSat height to the NWP height at 440hPa and 680hPa. A cloudy threshold of 30% is used for CloudSat.

MAE [m]

all low medium high

PPS-v2014 1761 977 1365 2315

MODIS-C6 1711 1206 1912 1888

NN-AVHRR 1278 771 1218 1559

NN-VIIRS 1223 766 1144 1486

NN-MERSI-2 1135 748 1061 1362

NN-MetImage-NoCO2 1161 768 1095 1386

NN-Metimage 1186 802 1119 1407

NN-AVHRR1 1297 858 1225 1548
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Figure 1. Retrieved pressure dependence on satellite zenih angle. CALIOP pressure distribution is shown in light blue. The percent of results

are calculated in 50hPa bins. The final validation dataset is used (see Table 1).
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Figure 2. Bias distribution compared to CPR (CloudSat) (left) and CALIOP (right). The percent of data is calculated in 0.1km bins. For

CALIOP the low, medium and high clouds are determined from CALIOP feature classification flag. For CloudSat the low, medium, high

clouds are determined from CloudSat height compared to NWP geopotential height at 440hPa and 680hPa. The final validation dataset (see

Table 1) where all algorithms had a height reported is used. Note that the values on the y-axis are dependent of the bin size. The peak at 11%

for NN-AVHRR in subplot (f), means that 11% of the retrieved heights are between the CALIOP height and the CALIOP height + 0.1km.
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Figure 3. Scatters plot of the height for the neural networks and for the reference methods against CloudSat height. The data were divided

in bins of size 0.25 x 0.25 (km) for colour coding. The number of points in each bin determines the colour of the point. The final validation

dataset (see Table 1) where all algorithms had a height reported is used. Five points where CloudSat had a height above 22km where excluded.

A cloudy threshold of 30% is used for CloudSat.
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Figure 4. Scatter plots of the pressure for the neural networks and for the reference methods against CALIOP cloud top pressure. The data

were divided in bins of size 10 x 10 (hPa) for colour coding. The number of points in each bin determines the colour of the point. The final

validation dataset (see Table 1) where all algorithms had a height reported is used.
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Figure 5. Mean absolute error in meters compared to CALIOP height. From the top a) PPS-v2014, b) MODIS-C6, and c) NN-AVHRR.

Results are calculated for bins evenly spread out 250km apart. Bins with less than 10 cloudy pixels are excluded (plotted in dark grey). The

final validation and testing under development data (see Table 1) are included to get enough pixels.
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Figure 6. Mean absolute error difference in meters between MODIS-C6 and NN-AVHRR compared to CALIOP. Results are calculated for

bins evenly spread out 250km apart. Bins with less than 10 cloudy pixels are excluded (plotted in dark grey). Dark green means NN-AVHRR

is 1.5km better than MODIS-C6, dark brown means MODIS-C6 is 1.5km better than NN-AVHRR. The final validation and testing under

development data (see Table 1) are included to get enough pixels.
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Figure 7. Comparing the cloud top height from the NN-AVHRR (left) to PPS-v2014 (right) with a RGB in the middle using channels at

3.7µm, 11µm, 12µm. Cloud retrievals below 2km are red, brown or purple. Cloud retrievals between 2 and 5km are orange and yellow. Cloud

retrievals between 5 and 8km are green and blue. White pixels are cloud retrievals above 8km. Notice that the NN-AVHRR is smoother,

contain less nodata and that the small high ice clouds in the lower part of the figure are better captured. This is from MODIS on Aqua 14th

of January 2010, 00:05UTC.
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