
Reply to reviewer #1

We are grateful for the helpful comments on the submitted version of the manuscript. Our point-by-point replies

are shown in italic font.

We have edited and rewritten much of the paper to improve the use of English and also to improve the clarity

of the scientific content.

Reviewer 1:

Review of amt2017463, Dorrestijn et al.

GENERAL

The entire abstract will need to be rewritten in view of the results contained in the DOIs listed at the end of

this review. It reflects omissions and mistaken assumptions listed in the detailed commentary that follows. The

scaling of variance has to recognise that the variance of atmospheric variables obtained by observations acquired

by adequate measurement techniques does not converge. That is one of several relevant results obtained by the

finding that atmospheric variables have non-Gaussian probability distributions, with fat-tailed power laws best

represented by Lévy statistics. The zoo of scaling behaviours displayed in this manuscript arises from this basic

fact and its consequences. These facts have to be at least recognised as being in existence rather than simply

ignored as in the present manuscript.

We thank the reviewer for this important perspective. After careful consideration of the material referenced in

the DOIs, the authors fully agree with this assessment and furthermore have had an opportunity to identify

appropriate modifications to the manuscript that we hope satisfactorily address the reviewer comments.

First, we acknowledge that the relevance of non-Gaussian distributions of temperature and specific humidity

has indeed been addressed insu�ciently in the submitted manuscript. We have added text and references to the

manuscript and have added a statement reflecting this fact in the abstract. Second, we also acknowledge that

the same holds true for the e↵ects of 3D anisotropy and vertical scaling that can alias into horizontal variance

scaling exponents on isobaric surfaces. The scale breaks may indeed be partly a result of the e↵ects of vertical scal-

ing. Therefore, we have rewritten the abstract and the entire manuscript and now reference the suggested DOI’s.

Here is the new version of the abstract:

Satellite observations are used to obtain vertical profiles of variance scaling of temperature (T) and specific

humidity (q) in the atmosphere. A higher spatial resolution retrieval at 13.5 km complements previous Atmo-

spheric Infrared Sounder (AIRS) investigations with 45 km resolution retrievals and enables the derivation of

power law scaling exponents to length scales as small as 55 km. We introduce a variable-sized circular-area

Monte Carlo methodology to compute exponents instantaneously within the swath of AIRS that yields addi-

tional insight into scaling behavior. While this method is approximate and some biases are likely to exist within

non-Gaussian portions of the satellite observational swaths of T and q, this method enables the estimation of

scale-dependent behavior within instantaneous swaths for individual tropical and extratropical systems of inter-

est. Scaling exponents are shown to fluctuate between � = -1 and -3 at scales �500 km, while at scales 500 km

they are typically near � ⇡ -2, with q slightly lower than T at the smallest scales observed. In the extratropics,

the large-scale � is near -3. Within the tropics, however, the large-scale � for T is closer to -1 as small-scale

moist convective processes dominate. In the tropics, q exhibits large-scale � between -2 and -3. The values of

� are generally consistent with previous works of either time-averaged spatial variance estimates, or aircraft
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observations that require averaging over numerous flight observational segments. The instantaneous variance

scaling methodology is relevant for cloud parameterization development and the assessment of time variability

of scaling exponents.

The following modifications to the manuscript refer to the references in the list of DOIs:

Starting on Page 11, line 19: “The large variety of exponents is likely due to some extent from the turbu-

lent structure of T and q fields with long-tailed non-Gaussian distributions (Tuck, 2010). These behaviors

may inhibit the precise estimation of variance scaling exponents from observations. Further research is neces-

sary to determine the impacts of the non-Gaussian distribution shapes of T and q on derived exponents, and

their scale- dependence of non-Gaussianity. This e↵ect may contribute to spreading out the PDFs of exponents.”

Starting on Page 10, line 25: “Lovejoy et al. (2009) and Pinel et al. (2012) showed that scale-breaks de-

tected by in situ aircraft observations may be the result of 3D anisotropy in atmospheric properties. In Pinel et

al. (2012), scale breaks are observed in the 100 - 500 km range with horizontal exponents that transition from

-5/3 to -2.4. In the vertical direction, an exponent of -2.4 is derived and suggests that gently sloping isobaric

aircraft trajectories are the source of the transition to -2.4. Since the T and q exponents reside on isobaric

surfaces (e.g. 500 hPa) in this work, one may expect that the vertical exponents may alias into the large-scale

horizontal exponents. However, we do not find a clear indication of �L = �2.4, although a focused e↵ort on

obtaining vertical scaling exponents with satellite soundings warrants further investigation. Unfortunately, the

relative coarse vertical resolution of ⇠ 2 km from AIRS retrievals is not ideal for obtaining reliable estimates of

vertical scaling exponents; dropsondes and radiosondes remain the standard and are much better suited to this

observational challenge.”

DETAILED COMMENTARY

Page 1, Lines 16-18: Energy is deposited in the atmosphere by the absorption of photons by molecules, that is

to say it has no alternative but to propagate upscale. This is argued at length in some of the references supplied

as DOIs.

We now refer to Tuck (2010) in which upscale energy propagation is discussed. We have added the following on

Page 1, line 21: “a review paper on upscale energy propagation is found in Tuck (2010).”

Lines 18 et seq: See the last, 8th, DOI for a refutation of these arguments. They are profoundly mistaken.

We mention upscale energy transfer in 2D and quasi-geostrophic turbulence starting on page 1 line 18. In

the 8th DOI (Schertzer et al. 2012) “Quasi-geostrophic turbulence and generalized scale invariance, a theo-

retical reply” give an alternative theory of energy transfer using fractal dimension turbulence. We add to the

manuscript starting on page 1 and line 20: “Schertzer et al. (2012) give an alternative theory of energy transfer

using fractal dimension turbulence.”

Page 2, Lines 3-14: Inspection of the DOIs supplied will show a view di↵ering substantially from that in these

references. The Lindborg papers especially rest on bad assumptions. The Lovejoy & Schertzer book also has a

lot on scaling in models, an advance on lines 15-28.
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Although the reviewer suggests that the Lindborg paper may rest on bad assumptions, we mention the Lindborg

paper because it reproduces the Nastrom and Gage figure to bolster its well-known results from aircraft data.

Section 3: KT09 in my opinion deploys flawed analytical methods. If the authors insist on using it, it must be

justified in the light of the conclusions reached in the DOIs below. That includes the results on how easy it is

to find false scale breaks, especially if less than three decades of good quality observations are present. They

cannot be simply ignored.

First, we refer to the two additional revised blocks of text and references added above starting on Page 11 and

line 19, and Page 10 and line 25.

Second, given the limitations stated above, the “poor man’s spectral analysis” does have some advantages in

particular for data sets as described in this manuscript that do not span three decades of scales. We address

them in the short paragraph starting on Page 11 and line 11. “A major advantage of the “poor man’s spectral

analysis” method (Lorenz, 1979) is that relatively small datasets are su�cient to estimate variance scaling ex-

ponents. Reliable spectral power diagrams of observational data arise only after averaging over relatively large

datasets. For instance, Nastrom and Gage (1985) obtained their spectral power diagrams by averaging over ob-

servations collected during 6,000 commercial aircraft flights. The calculation of spatial variances is still possible

in the event of missing or poor quality data, in which case conventional spectral analysis cannot be employed

(Vogelzang et al., 2015)”

Third, the reviewer is right in that we need clearer justification for using this methodology. In the abstract

we have now made clearer that we need instantaneous estimates of the scale-dependent variance: “. . . this

method enables the estimation of scale-dependent behavior within instantaneous swaths for individual tropical

and extratropical systems of interest.”

Furthermore, we have enhanced the discussion at the end of the paper on why the authors think this approach

is meritorious, despite its limitations and need for further investigation. At this time, we are not aware of any

other approaches that can be used to exploit satellite soundings of T and q to quantify individual storm evolution

and structure of scaling exponents, which are inherently tied to their predictability. We have significantly added

to and revised the last paragraph starting on Page 12 and line 5:

“This novel instantaneous variance scaling methodology may enable detailed examination of the variance scaling

of the time evolution of storm systems, such as extratropical cyclones at di↵erent stages in their lifecycle as

previously demonstrated with numerical simulations by Waite and Snyder (2013), or with deep convection along

the Mei-Yu front by Peng et al. (2014). The changes in the kinetic energy spectra in Waite and Snyder (2013)

and Peng et al. (2014) occur on time scales of hours to several days. We postulate that scaling exponents

derived from instantaneous snapshots obtained from satellite swath data will be useful observational constraints

for time-dependent spectra generated from numerical modeling experiments. To conclude, it is well known that

the time scale of predictability is closely linked to the spatial scale of the phenomenon of interest (Lorenz, 1969).

In the case of moist baroclinic waves, steeper (shallower) spectral slopes at small scales for individual baroclinic

waves are inherently more (less) predictable as the slope portrays the relative importance of convection within

any given disturbance (Zhang et al., 2007). As a result, the instantaneous scaling exponents are expected to

potentially o↵er a new type of observational constraint with relevance to the predictability of individual tropical

or extratropical disturbances.”

Sections 4 and 5: At the very least these will have to be rewritten to accommodate the existence of alternative
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views and results conatined in the DOIs and books listed below. For example, models contain assumptions

about variances and covariances being random that are at odds with observed reality; that is one of many

problems.

We hope that the revisions and responses described above generally address these concerns. We have rewritten

much of the paper to improve clarity of content and have added and revised many paragraphs taking into account

the suggested DOIs (which were very helpful). The reviewer comment above regarding models (we assume

numerical) is well taken. There are numerous issues of interest in numerical models, but those aspects are well

beyond the scope of this article. We hope to advance this methodology on evaluating numerical model output in

the near future, however.
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Reply to reviewer #2

We are grateful for the helpful comments on the submitted version of the manuscript. Our point-by- point replies

are shown in italic font.

We have edited and rewritten much of the paper to improve the use of English and also to improve the clarity

of the scientific content.

Reviewer 2:

Review of amt2017463, Dorrestijn et al.

Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2017-463-RC2, 2018 Author(s) 2018. This work is distributed

under the Creative Commons Attribution 4.0 License. Interactive comment on Instantaneous variance scaling

of AIRS profiles using a circular area Monte Carlo approach by Jesse Dorrestijn et al. Anonymous Referee #2

Received and published: 6 February 2018

Overall / general comments

The paper presents a circular area Monte Carlo approach to assess scale invariance properties and scale breaks

from AIRS measurements. Overall the paper is very well written but the statistics and correlations showed

here are not always convincing. This is a promising technique but it needs to be apply to more data and to

acknowledge the poor correlations observed in section 4.5 (and more data will help with correlations). Also,

why sometime the authors use /alpha and sometime �? Is generally more known, especially when its concerns

the well-known -5/3 value. There is no such reference for /alpha. I suggest using through the whole manuscript

for consistency reasons.

We agree that the datasets used for the correlation analysis are small. As this manuscript is meant to be a

methodology rather than a full exploration of the potential of AIRS data, the computational expense of calculat-

ing the exponents is large, and the single infrared field of view retrieval of Irion et al. (2018) has not yet been

operationalized, we are unable to go much further with more robust statistics in this initial study. In response to

the reviewer comment, we have removed the three panels with the smallest correlation coe�cients from Fig. 10.

We argue that the six panels with the largest correlation coe�cients are su�ciently large that, in our opinion,

add value to the paper. We acknowledge that the usage of ↵ and � values could be somewhat confusing at times.

Despite this, we choose to include them both in the new manuscript because many of the referenced studies use

both types of exponents. The left and right axes on Figures 5–8 are intended to help guide the reader between

these two exponents. The variance scaling exponents that we calculate are actually ↵ values, also used by KT09,

therefore we choose to show them. Omitting the � values would devalue the paper, since these are better known.

We have added the following to the manuscript starting on Page 8 and line 33: “. . .the sample size from

the limited set of granules is unable to yield a robust histogram. Our intent is to instead demonstrate the new

scaling approach. A much larger and statistically robust dataset is outside the scope of this work.”

Minor comments: Abstract Line 2: 13.5km is not really what I call high spatial resolution. May be higher is

better for the comparison with 45 km.

We agree and use the word “higher”.

1



Introduction: Line 18: Please add also the reference: Kolmogorov, A. N.: Dissipation of Energy in the Lo-

cally Isotropic Turbulence, Proceedings of the USSR Academy of Sciences (Russian), translated into English by

Kolmogorov, Andrey Nikolaevich (8 July 1991), 23, 16 18, 1941.

Thanks. We now include this reference.

2.2 Line 9: Why Retrieval System have their first letter in capital?

This was a mistake. It should indeed be lowercase.

Figure 3: Please increase text/label font size It would be interesting to highlight (using arrow, line, marker, etc)

the position of the scale break for each case. It would be more easy for the reader to see if there is a common

o↵-set between the AIRS-xxx in the 4 locations.

We agree and changed the sizes. Scale breaks are introduced later in the paper and we think it would be too

much information for the reader to digest if we put them into these figures before they are explained.

Figure 4c: The large decreasing of standard deviation as a function of the length scale in the case AIRS-

OE need to be more developed. This slope catches the eye directly when looking at the figure. This is probably

due to small scale processes that are resolved with the higher resolutions but it should be mentioned.

We agree this needs some additional description, and we added a comment to the manuscript starting on Page

7 and line 10: “In Fig. 4c, the discrepancies between the four retrievals are more significant at larger l, where

AIRS-OE shows a decreasing standard deviation as a function of increasing l. However, the AIRS-OE with a

peak around 8� may be a result of finer-scale fluctuations that are only captured by AIRS-OE.”

4.5 Line 13: To me well-correlated is above 0.80, we can argue that the fig 10a is close to this value but then the

correlation decrease. It becomes dangerous to me to talk about correlation below 0.7. This is especially true for

water vapor where the values are too low. I can be simpler to remove WV from this plot and keep temperature

only.

Per the earlier comments above, we removed the three panels with the lowest correlations from figure 10. We

believe that the six panels shown in the figure adds additional value to the paper.”

Interactive comment on Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2017-463, 2018.
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Instantaneous variance scaling of AIRS thermodynamic profiles
using a circular area Monte Carlo approach
Jesse Dorrestijn, Brian H. Kahn, João Teixeira, and Fredrick W. Irion
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA

Correspondence: Brian H. Kahn (brian.h.kahn@jpl.nasa.gov)

Abstract. Satellite observations are used to study obtain vertical profiles of the variance scaling of temperature (T) and water

vapor specific humidity (q) in the atmosphere. A higher spatial resolution retrieval at of 13.5 km at nadir, instead of 45 km

as in complements previous Atmospheric Infrared Sounder (AIRS) studies investigations with 45 km resolution retrievals and

enables the derivation of the variance-scaling power law scaling exponents down to length scales of as small as 55 km. With

the We introduce a variable-size circular-area Monte Carlo approach methodology to computethe exponents can be computed5

instantaneously along the track of Aqua, within the swath of AIRS which gives more that yields additional insight into the

scaling behavior. of the atmospheric variables in individual Level 2 satellite granules While this method is approximate and

some biases are likely to exist within non-Gaussian portions of the satellite observational swaths of T and q, this method enables

the estimation of scale-dependent behavior within instantaneous swaths for individual tropical and extratropical systems of

interest. Scaling exponents are shown to fluctuate heavily between � =�1 and � = -3 at the larger scales � 500 km, while at10

the smaller scales  500 km they are often typicallycloser to near � =�2, and they decrease a bit for moisture with q slightly

lower than T at the smallest scales that are considered observed. Outside the tropics In the extratropics, the temperature large-

scale variance-scaling exponent� is often close to near �3 due to large temperature slopes that are present along the track of

Aqua likely as a result of geostrophic turbulence. Around Within the tropics, however , this exponent the large-scale � for T is

often closer to �1 ,because the tropical atmosphere is dominated by smaller-scale processes such as moist convection as small-15

scale moist convective processes dominate., leading to an observable reverse scale break. In contrast, water vapor is shown

to have large-scale exponents often close to �3 around the tropics, because there, large-scale water vapor slopes are common

along the Aqua track. In the tropics, q exhibits large-scale � between -2 and -3. The values of � are generally consistent

with previous works of either time-averaged spatial variance estimates, or aircraft observations that require averaging over

numerous flight observational segments.Furthermore, the scale-break length scale turns out to be highly variable and shows20

a large spread. The presented variance-scaling results are of importance The instantaneous variance scaling methodology is

relevant for cloud parameterization purposes development and the assessment of time variability of scaling exponents.

Copyright statement. ©2018 California Institute of Technology. Government sponsorship acknowledged.
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1 Introduction

The atmosphere distributes its kinetic and thermal energy over its entire range of scales. In the atmosphere, energy that is

present at larger scales tends to cascade towards the smaller scales where kinetic energy is turned into heat by dissipation at the

Kolmogorov length scale (Hunt and Vassilicos, 1991); Kolmogorov, 1991). A complicating factor is that Earth’s atmosphere as

a whole is near two-dimensional, while at the smaller scales it is three-dimensional. In two-dimensional turbulence, or quasi-5

geostrophic turbulence, enstrophy is conserved (Kraichnan, 1967;Leith, 1968) such that energy that is injected at the smaller

scales can also be transferred towards theto larger scales (Lindborg, 1999; Charney, 1971; Fjørtoft, 1953). Schertzer et al.

(2012) give an alternative theory of energy transfer using fractal dimension turbulence. A review on upscale energy propagation

is found in Tuck (2010). Furthermore, nNumerous processes affect the atmosphere at different length scales (e.g. the large-scale

planetary circulation, synoptic-scale systems, clouds, organized and isolated deep convection, shallow convection, turbulence,10

and molecular diffusion). Therefore As a result, the rate at which the variance of atmospheric variables properties changes as

a function of length scale, the variance scaling, is not uniform over the entire range of scales of Earth’s atmosphere.

Observations have been frequently used to demonstrate that atmospheric variables satisfy specific scaling laws. Julian et al.

(1970) showed that at the larger scales (> 1,500 km) the kinetic energy spectra tend to be close to follow a k

�3 law. At

smaller scales (< 500 - 700 km) the slope of the spectra is are shallower and prefers follow more closely a k

�5/3 law. , which15

tTransitions in between these regimes has have been clearly demonstrated with aircraft observations of wind and temperature

by Nastrom and Gage (1985). Their variance power spectra diagram The Nastrom and Gage (1985) variance power spectra

diagram (their Fig. 3 of Nastrom and Gage (1985)) has is often been cited and reproduced (e.g. Lindborg (1999); Tung and

Orlando (2003); Palmer (2012)). The precise variance scaling exponents of these atmospheric variables is are, however, more

complicated and subtle. For instance, exponents that transition from �5/3 to �2.4 between 100 km and 500 km have been20

found were observed in aircraft wind measurements by Pinel et al. (2012).

Kahn and Teixeira (2009) (KT09 hereafter) have used satellite observations of temperature (T) and water vapor specific

humidity (q) to derive sensitivities of scaling exponents to several multiple factors such as the location on Earth (land, ocean,

latitude), the season, and the presence existence of clouds or clear sky. and surface conditions (land or ocean). The underlying

causes of these sensitivities variations and even more complicated complex phenomena such as scale breaks and reverse scale25

breaks (demonstrated to exist by KT09), are not yet fully understood. One of the reasons is may be the paucity of extensive

observational data sets that corresponding correspond to well-defined atmospheric conditions for a large range of scales over

several orders of length scales. Furthermore, cClear sensitivities patterns of scaling exponents in an area only appear only after

averaging over a sufficient time periods on the order of a season (KT09).

A myriad of studies investigations using of atmospheric variability generated by with numerical models have been per-30

formed. , e.g. Jonker et al. (1999) used a large-eddy simulation (LES) model to show that passive scalars in a turbulent field

can possess exhibit different power spectra than the thermodynamic variables themselves. Cusack et al. (1999) studied used

the horizontal variance of moisture with global weather model analysis data and constructed a cloud parameterization from it.
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Hamilton et al. (2008) showed the a transition from a steep k

�3 law to a shallower k�5/3 law in the kinetic energy spectrum

of a general circulation model (GCM).

Just aAs with observations, numerical simulations have their restrictions own limitations considering the range of scales that

they cover are represented.: d Due to computational restrictions, LES models can not yet are not able to accurately simulate

synoptic systems. , while on the other hand GCMs and cloud resolving models (CRMs) are not able to accurately do not5

resolve smaller-scale processes (e.g. turbulence, shallow convection) that affect the variance scaling exponents at all scales.

Parameterizations of these unresolved processes are often based on assumptions about variance scaling exponents derived from

larger scales (Bogenschutz and Krueger, 2013; Tompkins, 2002; Teixeira and Hogan, 2002; Larson et al., 2002), and therefore,

can not be used to derive infer independent estimates of variance scaling exponents at or close to near the subgrid-scales. In

short, there is remains a need for numerical and observational studies investigations that deliver report statistics of the scaling10

exponents at an increased over a larger range of length scales, in particular near the GCM subgrid-scale (Kahn et al., 2011). In

Lovejoy and Schertzer (2013) one can find more about scaling in models.

In a To follow-up on to the work methodology described by KT09, this paper work presents a new variance scaling method

which that is applied to vertically resolved, satellite data derived atmospheric temperature T and water vapor mass mixing

ratio q with a higher horizontal resolution (three times higher in both horizontal directions) than previously reported . The new15

variance scaling method enables the calculation of instantaneous variance scaling exponents along the track swath of Earth

observing satellites. For a given particular horizontal two-dimensional atmospheric field (e.g. temperature, water vapor T or q

) at a certain particular pressure level or altitude in the atmosphere, standard deviations are calculated over spatial areas for a

range of length scales from which variance scaling exponents are derived. Areas are chosen to be of circular shape and can be

are placed along the track of a satellite. Variance scaling exponents spectra are estimated derived by varying the diameter of the20

circular areas. Then exponents are derived by fitting power law exponents to the data. To get obtain adequate robust estimates,

a Monte Carlo method is employed, which uses that randomly placeds smaller circles inside within a large the largest diameter

circle.

The paper is organized as follows: Section 2 describes the atmospheric temperature and specific humidity datasets, which

is followed by a section that introduces the introduction of the new variance-scaling method (Section 3). The variance scaling25

results are presented in Section 4. Finally Lastly, Section 5 discusses the implications and conclusions of the main findings,

draws conclusions and presents and suggests future work research that is possible enabled with this newly developed novel

approach.

2 Datasets

The Temperature T and water vapor mass mixing ratio q profiles are derived from high-spectral-resolution observations made30

by the Atmospheric Infrared Sounder (AIRS) (Aumann et al., 2003; Chahine et al., 2006) onboard the Aqua spacecraft (Parkin-

son, 2003). The Aqua spacecraft satellite is part one of the Earth Observing System (EOS) satellites and shares its near-polar

(98� inclination) orbit with the other satellites that form the afternoon satellite constellation A-Train constellation (Stephens
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et al., 2008). It Aqua orbits the Earth at a ⇠ 705 km altitude in a sun-synchronous near-polar orbit, which means that it orbits

from pole to pole with an equatorial crossing the equator at fixed times, i.e. around of 1:30 p.m. (1:30 a.m.) local time on

for ascending (northwestwards) tracks and 1:30 a.m. on (descending) (southwestwards) tracks orbital segments . With a swath

width of 1650 km, the AIRS which enables the instruments is able to provide a near-global daily coverage each day.

2.1 Three types of AIRS-AMSU-HSB standard retrievals5

The AIRS instrument is a cross-track scanning spectrometer with 2,378 infrared (IR) channels that cover a spectral range

from 3.7 to 15.4 µm. There are 90 AIRS-IR ground footprints per swath of ⇠ 1,650 km (depicted in Fig. 1 of Aumann et al.

(2003)) and results in a horizontal resolution of 13.5 km at nadir view . Additionally, the instrument has four visible and near

infrared channels with ranges between 0.40 and 0.94 µm with a horizontal resolution of 2.28 km at nadir. The self-calibrating

instrument enables the estimation of vertical profiles of several atmospheric variables (e.g., temperature, humidity) and minor10

gases (e.g., ozone, carbon dioxide) from the surface up to an altitude of 40 km with a quality approaching conventional

radiosonde soundings and a vertical resolution of one kilometer (Chahine et al., 2006).

AIRS is accompanied by two synchronized and aligned microwave instruments . : t The Advanced Microwave Sounding

Unit (AMSU) is a two-unit microwave radiometer with 15 channels that are sensitive to observe frequencies between 23 and

89 GHz, around the including the 60 GHz oxygen band, with and a horizontal resolution of 45 km at nadir view. and tThe15

Humidity Sounder for Brazil (HSB) , is a four channel radiometer sensitive to that observes frequencies between 150 and 190

GHz, concentrated centering around on the 183 GHz water vapor line, with and has a horizontal resolution of 13.5 km at nadir

(Lambrigtsen and Calheiros, 2003).

The microwave instruments are used together with to detect clouds and appropriately correct the IR spectra by applying a

process called cloud clearing (Susskind et al., 2003). During the process, the horizontal resolution is reduced coarsened from20

13.5 km to 45 km because all of the variability in the to obtain cloud-cleared spectra, each AMSU footprint is combined with

that contains nine co-aligned AIRS footprints is assumed to arise from cloud variations. The cloud-cleared spectra are then

used to derive retrieve temperature T and humidity q profiles for three different instrument combinations: in the AIRS-AMSU

and AIRS-AMSU-HSB, AIRS-AMSU, and AIRS-IR (also calledtermed AIRS-only) the last of which does not use microwave

channels but is still obtained atis a control product that does not use microwave instruments, but has the same horizontal spatial25

resolution as the AIRS-AMSU and AIRS-AMSU-HSB data products (Chahine et al., 2006).

The three-instrument AIRS suite enables the estimation of three-dimensional (3D) atmospheric fields profiles along the

orbit of Aqua, since 30 Aug. 2002 to until present (except until 5 Februari 2003 for HSB). Swath measurements are collected

organized in files that contain every six minutes of data (Level 2) and are termed a ‘granules’. Every Each day there are 240

granules available are produced, each consisting of 30 times 45 fields or vertical profiles of T and q. depending on the variable30

under consideration. Fig. 1a displays an AIRS-AMSU-HSB Version 6 (v6) temperature field at 500 hPa in the very first granule

that is available at NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC). Further Details about

the AIRSv6 datasets can be are found in Susskind et al. (2014).
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2.2 AIRS infrared-only Optimal Estimation (AIRS-OE)

Other alternative Mmethods are being developed undergoing development to deal with that treat clouds during the retrieval

process in a more sophisticated approach without reducing the horizontal resolution of the temperature T and humidity q fields

that are retrieved with an infrared sounder described in Chahine et al. (2006) . The Optimal Estimation OE retrieval system

for AIRS (AIRS-OE) , introduced is described by Irion et al. (2018) , is such a method and its temperature and humidity5

derived fields are is used here in addition to the three coarser-resolution AIRS data products described in the previously

subsection. In their method, which The methodology is based on retrieval methods the works of Bowman et al. (2006) and

Rodgers (2000). Cloud detection and cloud property estimation have been performed using is enhanced with coincident high

spatial resolution imaging data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument , a 36-channel

cross-track scanning radiometer measuring visible and infrared radiation in a spectral range from 0.415 to 14.235 µm with a10

horizontal resolution of 250-1,000 m 0.25-1.0 km at nadir and a swath width of 2,330 km and also resides onboard on EOS

Aqua spacecraft with AIRS (King et al., 2003; Parkinson, 2003; Platnick et al., 2003).

3 Methodology

Instead of calculating power spectra and measuring slopes within the diagrams, in Our method approach is to calculate standard

deviations as a function of length scale, then are used to calculate scaling exponents are calculated that corresponding to a15

particular range of in length scales (as in KT09). In this paper, tThe scaling exponents obtained using standard deviations are

referred to as “variance scaling” exponents.

If a power-law relation exists between the standard deviation and the length scale, then given two length scales l1 < l2 with

standard deviations �1 and �2, the scaling exponent ↵ is:

↵=
ln(�2)� ln(�1)

ln(l2)� ln(l1)
.20

When plotting the standard deviation as a function of length scale, while using logarithmically scaled horizontal and vertical

axes, the scaling exponent ↵ determines the slope of the line from (l1,�1) and (l2,�2). This line is straight if a power-law

relation exists and is half as steep as for variances, which can equivalently be used instead of standard deviations to calculate

the variance scaling exponents (Vogelzang et al., 2015).

Analogously to Following KT09, in this paper ↵L is defined as the “large-scale” scaling exponent for length scales between25

6� and 12�, and ↵S is defined as the “smal-scale” exponent for length scales between 1.5� and 4�. In addition, we added a

third exponent ↵T that is defined as the scaling exponent for “tiny” length scales between 0.5� and 1.5�. The length scales

are is expressed in degrees over great circles. and are assumed to not change with latitude or longitude. To connect relate the

computed ↵ values to the more commonly used power spectral line slopes exponents �, ↵ values are converted interchanged

with in � values by using the following equation (KT09, Davis et al. 1996 and Yu et al.(2017)):30

� =�(2↵+1). (1)
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The well-known � =�5/3 and � =�3 correspond to ↵= 1/3 and ↵= 1, respectively. The next subsection Below gives we

describe a description of the estimation of standard deviations along within the AIRS swath following the ground track of

Aqua.

3.1 Circular approach geometry

Standard deviations are computed over within circular areas with of diameter l. The largest maximum length scale is determined5

by the fixed swath width of AIRS, L= 15.4�. In that limiting case, a circle with radius 7.7� is positioned with its center at on

Aqua’s track (at nadir) after which the standard deviation of the valid temperature T and water vapor q values that are inside it

are calculated within the circle . A depiction of a water vapor field at the 500 hPa q using AIRS-OE-retrievals that are inside

a circle with 15.4� diameter circle is presented found in Fig. 2a. The smallest length scale is the other limiting case and is

determined by the horizontal resolution of the observations. Here, we require that the minimum number of valid retrievals10

that are required necessary to get calculate a (contributing) standard deviation from a circle with a given diameter is five, as

assumed in KT09. Taking this requirement into consideration, for AIRS-OE retrievals the smallest length scale, and hence

the smallest diameter of the circles is chosen to be l = 0.5�. For the three coarser-resolution AIRSv6 data products (AIRS-IR,

AIRS-AMSU, AIRS-AMSU-HSB) the smallest length scale is chosen to be l = 1.5�.

3.2 Monte Carlo method calculations15

To obtain the standard deviations corresponding to length scales smaller than L= 15.4� (i.e. 0.5�  l < 15.4�), smaller circles

are randomly placed inside the largest circle with diameter 15.4�. So, the radius of the circle is reduced to obtain standard

deviations corresponding to smaller length scales l. Given that a smaller circle with diameter l < 15.4�, it is randomly placed

at a random location inside within the largest circle, we further require that the smallest circle and such that it is entirely inside

it within the larger circle. Then, and the standard deviation of the temperature T or and q water vapor values that are located in20

within the smaller circle are computed.

In order to get To obtain a better more robust estimate, a Monte-Carlo estimation procedure is employed. The random place-

ment is repeated 10,000 times for each of the smaller circle diameters. which means that 10,000 circles are placed randomly

inside the largest circle, and their The average standard deviation over all 10,0000 values is used as an the estimate of the

standard deviation corresponding to the length scale l. A subtle note on random placement: this The random placement should25

be done such that the 10,000 smaller circles cover the largest circle as uniformly as possible . This procedure is repeated for all

length scales 0.5�  l < 15.4� for AIRS-OE for ( and down to 1.5� when using for AIRSv6 products. Two out of these 10,000

smaller (l = 6�) circles at l = 6�that are entirely contained in the 15.4�-diameter circle are displayed in Fig. 2b.

3.3 Along-track instantaneous variance scaling along the trackestimates

A special feature of the The intent of this method is that to move the 15.4� diameter circle can move along with the orbit of the30

Aqua satellite . To be precise, its center can move along with the track of the orbits nadir to estimate standard deviations and
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hence therefore the variance scaling exponents at each successive scan line along the satellite ground of a horizontal circular

area around the track. This works fine as long as circles are entirely contained in a single granule. If the 15.4�-diameter circle is

close to the edge and partly covers two granules, the two requires stitching together successive granules. can be glued together.

By repeating this procedure of glueing granules, Therefore, a novelty of this approach is that the variance scaling can be derived

instantaneously (i.e. without time averaging) along the track of the Aqua satellite and for as many granules as desired. (i.e. no5

time averaging as in KT09) .

By varying the diameter of the circular areas, while covering the selected area in a uniform way, standard deviations can be

estimated in the area under consideration. The diameter of the circles can vary with arbitrary small increments; and is chosen

to vary with increments of we select 0.5�, which gives a should yield sufficient resolution to resolve scale-dependent breaks

and other behavior introduced in Section 4. in the variance-scaling plots that are introduced in Section 4. After the calculations10

of the standard deviations as a function of length scale, the three exponents (i.e. the slopes) are estimated by a least squares fit

(Weisstein, 2017).

For ↵L, the formula of Weisstein(2017) is:

↵L =
n

Pn
i=1(lnxi lnyi)�

Pn
i=1(lnxi)

Pn
i=1(lnyi)

n

Pn
i=1(lnxi)2 � (

Pn
i=1 lnxi)2

, (2)

where xi = li and yi = �i, with 6�  li  12� and n= 13. For ↵S and ↵T , the formula is used with 1.5�  li  4� and 0.5� 15

li  1.5� and n= 6 and n= 3.

Furthermore, We note that �L, �S and �T are the analogs of ↵L, ↵S and ↵T and will sometimes be interchangeably used

instead of the with ↵ values, because the as � values , such as � =�3 and � =�5/3, are more commonly used in the literature.

3.4 Scale break detection

To examine quantify the length scale lb at which the variance scaling exponents change, for example (e.g., from a � =�3 to a20

� =�5/3) slope, the standard deviation as a function of length scale l is approximated by two power laws, which is equivalent

to fitting two straight lines optimally in a double-log scaled figure. When using the higher spatial resolution AIRS-OE data

product retrieval, which covers a larger range of scales, the double scale break is examined by fitting three straight lines in the

variance scaling plots. To do this optimally, we iterate over all possible (double) scale break positions l 2 {1�,1.5�, . . . ,15�}
are calculated to find the two (three) straight fitted lines that minimize the error with the data the sum of the squares of the25

vertical offsets from the data to the lines. Since such a minimum always exists, albeit very subtle at times, we find an optimal

single scale break l in each variance scaling diagram for AIRS-AMSU-HSB, AIRS-AMSU, and AIRS-IR, and two scale break

values of l for AIRS-OE. In future work, thresholds could be used to make a distinction between variance scaling diagrams

with and without scale breaks. .

4 Results30

4.1 Variance scaling diagrams
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To demonstrate the methodology, we The aim is to construct variance scaling diagrams that are similar analogous to Fig. 3

of Nastrom and Gage (1985). In this work, Fig. 3 displays shows the standard deviations of the temperatures at 500 hPa T at

four selected locations on the track of Aqua track . calculated with circular areas within four 15.4�-diameter circles having

their centers on the track. The four locations are chosen because their diagrams give an overview of they encompass typical

behavior of the scaling. but We note that the precise scaling patterns behavior can change drastically changes at these locations5

depending on the atmospheric circumstances day . The four available AIRS retrievals data products are included shown in

order to get gain insight regarding the uncertainty of the scaling that arises from sampling, retrieval algorithm, and observation

frequency an impression of the uncertainty of these scaling diagrams due to sampling differences.

The standard deviation usually typically increases as a function of length scale l, only in Fig. 3c do we find that the standard

deviation decreases at the larger length scales l for when AIRS-OE is used. In Fig. 3a, this increase is not constant: at the larger10

scales l, it is close to � =�3 while and at the smaller scales l, � increases up to � =�5/3 for AIRS-OE. In this panel Fig. 3a,

the slope changes between the length scales l = 9� and l = 11�, which and is an clear example of a well-behaved scale break.

Observe that in Fig. 3c that the slope at the smaller scales l is steeper than at the larger scales l, and which is an example of

a reverse scale break which has beenpreviously reported before by in KT09 for specific humidity. In Fig. 3d, there is no clear

scale break at all except for some small wiggles in the spectra.15

The differences of in the standard deviations between among the three coarser-resolution AIRS data products are generally

small and differences that arise can partly be are partly attributed to blocking sampling differences from clouds. AIRS-OE

tends to give generally yields higher standard deviations, most notably in Fig. 3b, which is to be expected because of its the

higher spatial resolution. Further Other contributions to discrepancies among the retrievals can partly may be attributed to

spatial sampling differences that arise from differences in the spatial distributions of unsuccessful retrievals. Given that the20

variance of T and q is highly location dependent, the additional sampling provided by the microwave frequencies also will lead

to differences in the four retrievals in Fig. 3. gaps in the temperature or water vapor fields due to unsuccessful retrievals (e.g. of

low quality) mostly in AIRS-OE. Observe that the relative differences between the slopes of the four lines different retrievals

appear to be , which are of main interest, are smaller than the relative magnitude differences in the actual values themselves .

The corresponding moisture plots q spectra at 500 hPa are given shown in Fig. 4. The scaling diagram of q in Fig. 4a is25

similar to the temperature diagram scaling in T in Fig. 3a ; however, but the slopes are even appear to be closer to � =�5/3 at

the smaller l in Fig. 4a. In Fig. 4b, the a reverse scale break is clearly visible around near l = 9�. In Fig. 4c, the discrepancies

between the four data products retrievals are more significant at the larger scales l , where AIRS-OE displays shows a decreasing

standard deviation as a function of length scale increasing l. However, the AIRS-OE with a peak around 8� may be a result

of finer-scale fluctuations that are only captured by AIRS-OE. At the smaller scales, the slopes are similar and reside between30

� =�3 and � =�5/3. In Fig. 4d, all the slopes are close to � =�3 at the larger l scales, then slowly increase are close to

� =�1 (i.e. ↵= 0) around l = 7�, then again increase and decrease again at smaller length scales, in sharp contrast to T in

Fig. 3d.
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4.2 Along-track Variance scaling along the track

Instead of plotting the entire variance scaling diagram as has been done in the previous subsection, here the We now focus on

the scaling exponents ↵L, ↵S and ↵T , along 84 min of the Aqua track The center of the 15.4�-diameter circle is positioned at

Aqua’s nadir at the first swath of starting at the second granule that is available in the database AIRS archive. We estimating

estimate scaling exponents of the temperature and water vapor at 500 hPa T and q. Note that this The 84 min dataset is a very5

small subset of the entire multi-year (⇠ 15 year) AIRS dataset and corresponds to just under one complete orbit. The centers of

consecutive 15.4� diameter circles are chosen to be 8 seconds apart from each other, corresponding to the time it takes to make

one 30 AIRS-AMSU soundings along the width of the swath. swath (i.e. 6 min divided by 45 swaths). As consecutive 15.4�

circular areas have high Due to overlap, there are strong large correlations between the in exponents calculated on consecutive

circular areas along the track. along neighboring scan lines.10

Fig. 5a displays The three scaling exponents derived from AIRS-OE temperature retrievals are shown in Fig. 5a. Observe that

the exponent ↵L fluctuates between ↵= 0 and ↵= 1 (left reversed vertical axis) which that corresponds to � values between

� = -1 and � = -3 (right vertical axis). The exponent ↵S has smaller fluctuations fluctuates around ↵= 1/3 corresponding

to (� =�5/3). The exponent ↵T exhibits even has a slightly smaller fluctuations range than ↵S and stays usually resides

between ↵ = 1/2 and ↵ = 1/3, and correspondsing to � between �2 and �5/3.15

The standard deviation estimates from which these scaling exponents are calculated are shown in Fig. 5b. The lowest line is

the standard deviation corresponding to l = 0.5�, the line above it is the standard deviation correspondsing to l = 1.0�, and so

forth. It is clear that The standard deviations are usually, but not always,increasing as a function of length scale.

Notable is that the Local maximaum values of the standard deviation of at 15.4� tend to co-align with the local maximaum

values of ↵L (corresponding to the local minimaum values near of � =�3). A large standard deviation at the larger synoptic20

scales is indicatesive of meridional that there is a large-scale slope in temperature gradients along the satellite track, which

correlates strongly well with ↵L as will be (shown later). The location on Earth can be derived from The latitude and lon-

gitude at nadir are depicted in Fig. 5c. which displays the longitude and latitude of Aqua’s nadir, which is the center of the

15.4�-diameter circle.

A large Increased separation of between the three values of ↵ in Fig. 5a, indicates a large difference in slopes and hence25

suggest the existence of scale breaks at those latitudes. For example at time 75 min 40�S, the large-scale exponent is close

to ↵= 1 (� =�3), while ↵S = 0.6 and ↵T = 0.5. are smaller, such that � increases at smaller length scales. Close Nearer to

the equator around 33 min, the roles estimates are reversed: the large-scale exponent is close to zero ↵L = 0, the tiny scale

exponent close to ↵T = 1/2 and nearly unchanged, and ↵S is in the small-scale exponent in between these the two other

values of ↵, indicating the existence of a double reverse scale break (steeper exponents at smaller scales). Just before 60 min30

Around 58 min near Antartica, the three values of ↵ are almost nearly equal such that that there are with no clear apparent

scale breaks. Its variance-scaling plot Analogous variance scaling diagrams will would be similar to that shown in Fig. 3d for

which the three values are almost equal as well (around 46 min).
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The corresponding moisture qscaling exponents are shown in Fig. 6a. The moisture ↵L is in the same has a similar range

as the temperature T large-scale exponent. The moisture small-scale exponent ↵S for q has slightly is slightly larger values

than for the temperature T equivalent. However, Tthe tiny-scale exponent ↵T for q is significantly higher larger for moisture

than for temperature T . Fig. 6b shows depicts the standard deviations of the water vapor mass mixing ratio q . It is clearly

visible that Iin the tropics (the location on Earth can again be derived from Fig. 5c), the standard deviation of the water vapor5

is much larger than outside in the extratropics (e.g., compare e.g. granules 231 and with granule 235. Local Mmaximum values

of standard deviation are again to some extent generally co-aligned with the local maximum values of ↵L.

4.3 Variance scaling at several pressure levels 850, 500, and 300 hPa

KT09 showed Previous studies have demonstrated that the magnitude of scaling exponents are (among other factors) sensitive

to depends on the altitude in the atmosphere, the surface type, and the presence of clouds cover . Therefore, we show variance10

scaling exponents are calculated along the same track orbit segment at three pressure levels (300 hPa, 500 hPa and 850 hPa)

and displayed in Fig. 7 for temperature T and in Fig. 8 for moisture q. The results are typically noisier at the lower pressure

levels (e.g., compare Fig. 7c to Fig. 7a,b) because there, the number of successful retrievals, and is consistent with a reduction

in the yield , is lower (percentage of successful retrievals).

The three coarser-resolution AIRS products give comparable results are similar when the yield is high. tTherefore of these15

three products we show only AIRS-AMSU derived exponents are shown in Fig. 7 and Fig. 8. In Fig. 7, it can be seen that tThe

large-scale exponent ↵L (blue dash-dotted line) for temperature T fluctuates roughly between ↵ = 0 and ↵ = 1, apart from a

part at the lower except for a portion of the 850 hPa pressure level (Fig. 7c) around the South Pole (granule 235) where the

yield happens to be is exceptionally low. The small-scale exponent ↵S (red solid line) fluctuates within a smaller range from

↵= 0.25 up to ↵= 0.75 apart from the interval except for a portion of 850 hPa around 24 min in which it almost reaches20

↵S = 1 at the lowest level 850 hPa.

The A reverse scale break around in the tropics (granule 231) is clearly visible at 500 hPa and to a lesser extent at the other

levels 850 and 300 hPa, which is in agreement consistent with the results of KT09. The scaling exponent ↵T (cyan dashed line)

that is derived from the AIRS-OE product fluctuates between ↵= 0.2 and to ↵= 0.6 most of the for all time segments at all

the three pressure levels. Sensitivities to the Variations with surface type and cloud fraction (not shown in the figures) are less25

obvious in Figs. 7 and 8 and become clearer only after averaging over long time series, which has been performed by (e.g.,

KT09).

Observe that in Fig. 8 tThe moisture scaling exponents values of ↵ for q fluctuate faster exhibit more rapid along-track

fluctuations than the temperature scaling exponents compared to T at all the three pressure levels. The large-scale exponents

↵L for q fluctuates again between ↵ = 0 and ↵ = 1 in Fig. 8 . The small-scale exponent ↵S for q is in the same range as was30

the case for temperature similar to T, but the tiny-scale exponent ↵T for q is more often typically larger than ↵ = 0.5 (below

�=<�2) and has a larger dynamic range for moisture q than for temperature T (compare Fig. 7 and Fig. 8). In granule 233

at 300 hPa, ↵T even becomes much larger than exceeds ↵ = 1 , which means that the slope in the variance-scaling figure is

steeper than ( �=<�3).
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4.4 Variance-scaling Distributions of variance scaling exponents statistics

Statistics Histograms of the scaling exponents of the temperature and water vapor at ↵L and ↵S for 500 hPa T and q obtained

from five days of Aqua orbits are shown in Fig. 9. The probability density functions (PDFs) of the exponents are derived from

five days of observations. To increase the computational speed, of the calculations only 100 circles are used in the Monte Carlo

estimation method described earlier, which leading leads to a slightly slight increase in the number of too large extreme values5

of the exponents ↵L and ↵S . It can be seen that the large-scale exponents The histograms of ↵Lhave a larger rangesthan the

small-scale exponents ↵S , both for temperature T and water vapor q . Furthermore, the small-scale exponents The ↵Shave

exhibit a more symmetric distributions and the PDFs attain their maximum number of values is close to near ↵= 0.5.

The asymmetry of the large-scale exponent distribution ↵L for temperature T is caused by the different values of the exponent

in the extratropics and outside the tropics. In the tropics this exponent ↵L tends to be is closer to 0, and outside while in the10

extratropics it is often closer to 1. The small-scale exponent values of ↵S does not have such a strong latitude dependency and

therefore thus does not display such a skewed the distribution is more symmetric. The large-scale exponent ↵L for water vapor

q is skewed in the other opposite direction compared to than the temperature large-scale exponent ↵L for T , because ↵L tends

to be is closer to 1 in the tropics and outside often closer to 0 in the extratropics.

These kind types of statisticsal distributions are very valuable to improve for the development and evaluation of cloud15

parameterizations that make use of based on PDF schemes.This is E especially true the distribution of for ↵T (not shown); ,

which is not shown, because the AIRS-OE data product retrieval methodology is still in preparation developments and the 16

granules form too small a dataset to make reliable statistics sample size from the limited set of granules is unable to yield a

robust histogram. The statistics that are shown, are intended to be an example of what is possible with Our intent is to instead

demonstrate the new scaling approach combined with AIRS datasets. Producing reliable statistics with the AIRS dataset, for20

example derived from 15 years of observations and using the method with 10,000 circles instead of 100, lies out of the scope

of this paper that mainly introduces the new circular variance scaling approach. A much larger and statistically robust dataset

is outside the scope of this work. Furthermore, the computational expense is excessive using the Monte Carlo methodology

with 10,000 circles rather than 100, and new ways of improving the speed of the calculations remains necessary.

4.5 Correlation analysis of scaling exponents to other quantities25

To relate the variance-scaling exponents �L and �S to geophysical quantities,a correlation analysis is performed using AIRS-

AMSU retrieval and the results are shown summarized in Fig. 10. The A total number of 686 values (corresponding to the

same number of L2 retrieval swaths) cover a slightly larger part of the track longer extent of the orbital segment than the 84

min segment portion that was used in subsections 4.2 and 4.3. The strongest largest correlation coefficient (r) is found between

the large-scale exponent �L and the absolute value of the mean temperature change (the slope) mean T gradient in the along-30

track direction of the track of Aqua at nadir view (Fig. 10a). The temperature T change that is we considered is the difference

between the average temperature at 500 hPa T measured over consecutive 15.4� diameter circles (which centers are 8 seconds
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apart from each other). If there is a large temperature slope the T gradient is large,then the exponent tends to be �L is closer to

�3. If there is no slope the T gradient is small or near zero, the exponent �L is closer to �1.

The large-scale exponent �L is also well-correlatesed strongly with the standard deviation of T in the 15.4� diameter cir-

cle (Fig. 10b), which this confirms the co-alignment of peaks observed in Fig. 5a and b. For moisture q, �L is moderately

correlations are found between ↵L and correlated with the standard deviation in the 15.4� diameter circle (Fig. 10d) and the5

absolute value of the moisture slope along the track along-track q gradient (Fig. 10e). The exponents �L and �S are positively

correlated for both temperature T (Fig. 10c) and water vapor q (Fig. 10f) , but the correlations are notably larger for T . The

surface type (land or versus ocean) is not strongly correlated with the temperature or moisture large-scale scaling exponents

�L or �Sat the lower pressure level 850 hPa (not shown). Finally Lastly, the cloud fraction does not show strong correlations

has a rather weak correlation with the scaling exponents �L and �S at 500 hPa; again, a larger sample size may yield different10

results.

4.6 Scale break detection results

Fig. 11 presents shows an example of the methodology to detect scale breaks detection results. From these two plots it is

already This example makes it clear that the length scale of scale breaks length scale varies significantly substantially along

the Aqua tracks . The length scale of the scale break lb in the top panel is two times larger than in the bottom differ by a factor15

of two panel (9� and 4.5�, respectively). The scale-break length scale lb fluctuates heavily between 2� and 15� by an order of

magnitude between 1.5� and 15�along the Aqua track of Aqua at the three pressure levels 850, 500 and 300 hPa for all AIRS

data retrieval products, and both for temperature T and water vapor q (not shown in figure).

To get more insight in the distribution of the scale-break length scale, probability density functions ( We show PDFs are

shown in Fig. 12 to gain additional insight in the distributions of lb. To produce these PDFs the range of AIRS-OE is set to20

1.5�  l  15.4� such that it has the same range as the three other AIRS data products. The resolution of AIRS-OE is fixed

to 1.5�  l  15.4� such that similar scale breaks will be detected as the three standard AIRS data retrievals. . The maximum

frequency of occurence in the PDFs is attained between 7� (i.e. ⇠ 770 km) and 10.5� for temperature T and between 5� and 8�

for water vapor q at 850 hPa (Fig. 12e,f), between 8� and 11� for temperature T at 500 hPa (Fig. 12c) and around 9� for water

vapor q at 500 hPa (Fig. 12d), between 5.5� and 9� for temperature T at 300 hPa (Fig. 12a) and around 9� for water vapor q at25

300 hPa (Fig. 12b),. These results,which is to some extent, are in agreement with 500-700 km and 450-750 km lb scale break

length scales reported by Gage and Nastrom (1985) and Tung and Orlando (2003), respectively. The PDFs of temperature T

(Fig. 12a,c) have a less well-defined maximum maxima compared to than water vapor q (Fig. 12b,d,f), apart from temperature

except for T at 850 hPa (Fig. 12e), in which a clear peak is visible apparent at around 7� (Fig. 12e) for three AIRS standard

retrieval products.In the next section we provide a A tentative physical and algorithmic explanation for the large spread of the30

scale-break length scale. lb is provided in Section 5.

Finally Lastly, An example of a double scale break detection is applied to the AIRS-OE dataset for its full range, i.e.

0.5�  l  15.4� for T and q in Fig. 13. Temperature and water vapor examples are shown in Fig. 13. This example once

again shows demonstrates the variety of variance scaling that is potentially observable can be observed in the atmosphere.
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Observe that The slope in the spectrum gets is steeper at the smaller scales (below less than 1.5�). This behavior is can be of

importance for cloud parameterizations that are based on PDF schemes. Less variance is present exists at the smaller scales

than is expected what one obtains from a simple extrapolation of the exponents at the larger scales to the smaller scales; this

has been recognized as well by KT09 and was previously shown with in situ aircraft observations in Kahn et al. (2011) in a

limited region of the subtropical southeasterns Pacific Ocean.5

5 Discussion and conclusions

We show that individual granules of satellite Level 2 data can quantify the variability of the atmosphere. The scale-dependent

variability of temperature (T) and specific humidity (q) is derived from Level 2 satellite swath data. In particular, tThe variance

scaling exponents of temperature T and water vapor mass mixing ratio q have been derived using uses data stemming from

the Atmospheric Infrared Sounder (AIRS; Chahine et al. (2006)) instrument suite onboard the Aqua satellite. While Tthese10

exponents are frequently close to the canonical � =�5/3 and � =�3 values, however, deviations from these values are very

common more the rule than the exception. The large-scale exponents �L , corresponding that correspond to the length scales

between 6� and 12� fluctuate between -3 and -1, respectively.

The precise value of the large-scale exponent �L depends strongly on the standard deviation of temperature T and water

vapor q content on larger areas within larger spatial areas. The synoptic-scale temperature T and moisture q slope gradient15

along the track in the along-track direction also affects impacts the magnitude of �L . the large-scale exponent. When the

large-scale fluctuations or gradient are strong large, then the large-scale exponent is close to � ⇡�3., which is the preferred

value in case there is a large slope in the temperature (water vapor) field along the track. When the large scale temperature T

fluctuations are small reduced such as in the tropics, and the atmosphere is dominated by small scale fluctuations, �L =�1.,

then smaller-scale fluctuations easily decrease this value to -1. This happens often iIn the tropics,(e.g. Fig.7b, granule 231),20

where small-scale Tfluctuations dominate because of the preponderance of that are likely the result of deep convection., can

be stronger than the large-scale fluctuations. In contrast, large-scale q fluctuations are more dominant in proximity to and

within the tropics, which results in �L ⇡�3. for moisture, such large-scale slopes can be expected close to and in the tropics,

because there moisture differences are large: we have indeed seen in Fig. 6 that � =�3 is not so common off the tropics for

the large-scale water vapor exponent �L.25

The small-scale variance scaling exponents �S , that corresponding to length scales from between 1.5� to 4� are more often

close to � =�2, and less often close to � =�3. By using recently developed retrievals from single-footprint AIRS data (Irion

et al., 2018), we show that at the smaller scales from 0.5� to 1.5�, the exponents �T are closer to �2 for temperature T and

slightly lower (between closer to -2 and -3) for moisture q. The PDFs of the small-scale exponents ↵S (Fig. 9) show exhibit a

maximum around ↵= 0.5 -2 for both temperature T and water vapor q . which this is perhaps somewhat a surprise surprising30

if one expects these exponents to have a preferred value of close to ↵= 1/3, i.e. � =�5/3 , since previous studies have

suggested values closer to �5/3. Variance scaling exponents that are close to � =�2, i.e. ↵= 0.5, indicate that the variance
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of the temperature is proportional to the length scale l. The preferred slope of � =�2 can, however, not be clearly explained

by the authors.

Deviations from typical values of � (-5/3 and -3) have been reported in the literature previously (e.g. KT09). Lovejoy et al.

(2008) show that exponents derived from drop sondes over the northern Pacific Ocean reside in between -5/3 and -3 and have

strong height dependence. It was shown that the vertical exponents are not equal to the horizontal exponents, and suggests 3D5

anisotropy. Lovejoy et al. (2009) and Pinel et al. (2012) showed that scale breaks detected by in situ aircraft observations may

be the result of 3D anisotropy in atmospheric properties. In Pinel et al. (2012), scale breaks are observed in the 100 - 500 km

range with horizontal exponents that transition from -5/3 to -2.4. In the vertical direction, an exponent of -2.4 is derived and

suggests that gently sloping isobaric aircraft trajectories are the source of the transition to -2.4. Since the T and q exponents

reside on isobaric surfaces (e.g. 500 hPa) in this work, one may expect that the vertical exponents may alias into the large-scale10

horizontal exponent. However, we do not find a clear indication of �L =�2.4, although a focused effort on obtaining vertical

scaling exponents with satellite soundings warrants further investigation. Unfortunately, the relative coarse vertical resolution

of ⇠ 2 km from AIRS retrievals is not ideal for obtaining reliable estimates of vertical scaling exponents; dropsondes and

radiosondes remain the standard and are much better suited to this observational challenge.

A special feature of the method is the usage of The methodology described uses circles to calculate the standard deviations.15

It is an interesting question what the shape of an area should be if one aims to estimate the variance scaling in the atmosphere

at a certain pressure level. The optimal shape of an area used to calculate variance remains an open question.Rectangles have

been previously used before, (e.g. by KT09), and have been are generallyaccepted by the community to be a correct shape

to compute variance scaling exponents, because horizontal sections of GCM columns , for which variance-scaling exponents

can be useful in cloud parameterizations, are often (nearly) rectangular. The orientation of a rectangle or square should not20

be of major importance when calculating variance scaling exponents. Therefore, One could argue that one could use a slight

incremental rotation of the rectangle about a central axis could be used to trace out the area of a circle. Within each rectangle,

the variance can be calculated, and the same for each slight rotation of the rectangle about the center axis, until it is rotated

360�. to calculate the variance scaling exponents and take the average of the values of the rotated and non-rotated rectangles.

Then, the rectangle can be turned slightly again and again, while calculating scaling exponents. If one continues turning the25

rectangle, and makes the turning angles infinitesimally small, the resulting shape is a circle. This procedure of incremental

rotating rotation can be could be performed with any arbitrary shape. with the circle as a In all cases, the circle is the final

result, and therefore one may conclude that the circle is the “optimal shape” to calculate variance scaling exponents. A circle

is It is optimal in case the event that rotational symmetry is desired if , for example, because the underlying field is isotropic.

This is in line consistent with Pressel and Collins (2012) who found that water vapor variance scaling of q is approximately30

isotropic.

A major advantage of using the a “poor man’s spectral analysis” method (Lorenz, 1979) is that relatively small datasets

are sufficient to estimate variance scaling exponents. Reliable spectral power diagrams of observational data arise only after

averaging over relatively large datasets. For example instance, Nastrom and Gage (1985) obtained their spectral power diagrams

by averaging over observations collected during 6,000 commercial aircraft flights. Furthermore, The calculation of spatial35
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variances can be calculated is still possible in the case event of missing or poor quality data, in which case conventional

spectral analysis cannot be employed Vogelzang et al. (2015).

In this study, The variance scaling exponents have been are computed nearly instantaneously without using multiple satellite

overpasses (no time averaging) in this work. The exponents are derived from satellite observations that are made during at most

a few minutes within a 15.4� diameter circle over a few minute time window, so the scaling method is thus ,strictly speaking,the5

method is “approximately” not entirely instantaneous. However, compared to the months of measurements used by KT09 and

Pressel et al. (2012) to compute exponents, our method uses relatively small datasets, which justifies the term instantaneous.

A result of using these small datasets the instantaneous approach is that the a much wider variety of scaling exponents is

large revealed. The large variety of exponents is likely due to some extent from the turbulent structure of T and q fields with

long-tailed non-Gaussian distributions (Tuck, 2010). These behaviors may inhibit the precise estimation of variance scaling10

exponents from observations. Further research is necessary to determine the impacts of the non-Gaussian distribution shapes

of T and q on derived exponents, and their scale-dependence of non-Gaussianity. This effect likely contributes to spreading out

the PDFs of exponents.

The scale-break-detection results have shown that there is a preference for the scale break length scalesbetween around

7� (at 850 hPa) and 9� (at 500 hPa and 300 hPa). This is slightly larger than the 500-700 km and 450-750 km scale-brake15

length scales reported by Gage and Nastrom (1985) and Tung and Orlando (2003), respectively, and smaller than the 1,000

km reported by Bacmeister et al. (1996). Furthermore, as mentioned above, Pinel et al. (2012) report scale-break length scales

lb between 100 km and 500 km. In our results, tThe spread around this value these values is large in our results and this

preference a preferred length scale is only visible in the distribution of the scale-break length scale, i.e. where the probability

density function attains its maximum. inferred from the maxima in the PDFs.An explanation for the large spread in the PDFs20

is that convective systems of different sizes exists of all different sizes, thereby increasing the initially present slope of � =�3

to higher values at different length scales. A larger convective system will give a larger value of the scale-break length scale.

In case no large-scale slope is present, the The existence of a reverse scale-break length scale depends also heavily on the size

of the on the scale of convective systems: the larger the size scale , the larger the scale-break length scale lb . Furthermore,

since we measure scale-break length scales along the track as lb is obtained in the along-track dimension, for instance when25

the satellite observation transitions moves from a regime where there is a scale-break at a small scale (say with lb = 2�) to

a regime where there is a scale-break at a large scale (say with lb = 15�), then all the intermediate scale-break length scales

between 2� and 15� will be attained during the overpass from the first to the second regime are also retrieved in between the

two regimes as the circular area advances along the swath.This explains the continuity of the scale-break length scale PDFs.

Due to the overlapping nature of the circular areas, this additionally smooths out the peaks in the PDFs, but further work is30

necessary to quantify the magnitude of this effect compared to the spreading due to non-Gaussianity.

The variance-scaling exponent �T for moisture q has been was shown to attain smaller values, i.e. closer to � =�3 than the

exponent �S . which This means that less variance is present at the length scales between 0.5� and 1.5� than if extrapolated

from exponents derived from at length scales between 1.5� and 4�. , which has also been reported in Kahn et al. (2011). This

can be of significance for parameterizations of clouds in GCMs that use assumptions about the variability of moisture content35

15



at length scales below the grid scale, for example when a PDF method is used in the cloud parameterizationsScale breaks at

subgrid scales in GCMs are of significance for cloud parameterizations in GCMs that extrapolate variability (Tompkins, 2002;

Teixeira and Hogan, 2002; Teixeira and Reynolds, 2008).

Future work that is possible with the new variance scaling method presented here includes detailed examination of the

variance scaling of cyclones at different stages of their life cycles, as has been performed with numerical simulations by Waite5

et al. (2013). This is possible because the method enables instantaneous derivation of the variance scaling diagrams. After

locating the cyclones in satellite data and tracking them for a few days, the variance scaling diagrams can be computed for

each stage of their development. This novel instantaneous variance scaling methodology may enable detailed examination of

the variance scaling of the time evolution of storm systems, such as extratropical cyclones at different stages in their lifecycle

as previously demonstrated with numerical simulations by Waite and Snyder (2013), or with deep convection along the Mei-Yu10

front by Peng et al. (2014). The changes in the kinetic energy spectra in Waite and Snyder (2013) and Peng et al. (2014) occur on

time scales of hours to several days. We postulate that scaling exponents derived from instantaneous snapshots obtained from

satellite swath data will be useful observational constraints for time-dependent spectra generated from numerical modeling

experiments. To conclude, it is well known that the time scale of predictability is closely linked to the spatial scale of the

phenomenon of interest (Lorenz, 1969). In the case of moist baroclinic waves, steeper (shallower) spectral slopes at small15

scales for individual baroclinic waves are inherently more (less) predictable as the slope portrays the relative importance of

convection within any given disturbance (Zhang et al., 2007). As a result, the instantaneous scaling exponents are expected to

potentially offer a new type of observational constraint with relevance to the predictability of individual tropical or extratropical

disturbances.
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Figure 1. (a) Example of an AIRS-AMSU-HSBv6 temperature field at 500 hPa in a granule above the North Pacific Ocean - derived from

soundings made during an ascending part of Aqua’s orbit (b) the temperature field using AIRS-OE retrievals and (c,d) the corresponding

moisture fields (the water vapor mass mixing ratio). Gray shading indicates that there was no acceptable retrieval.
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Figure 2. (a) Illustration of a water vapor mass mixing ratio field at 500 hPa using AIRS-OE retrievals that are inside a 15.4�-diameter circle

and (b) inside two 6�-diameter circles. A dark gray shaded pixel inside a circle indicates that there was no acceptable water vapor content

estimate. The granule, which is in an ascending part of Aqua’s track above the South Pacific Ocean, has a relatively large yield (83%),

however, it is clearly visible that atmospheric clouds are inhibiting retrievals around (156�W-13�S).
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Figure 3. The standard deviation of the temperature at 500 hPa as a function of length scale l using AIRS-IR (magenta open circles), AIRS-

AMSU (blue open circles), AIRS-AMSU-HSB (green open circles) and AIRS-OE (red open circles) on double logarithmic axes with the

� =�5/3 slope (black solid line) and the � =�3 slope (black dotted line) in a circular area with a diameter of 15.4� located (a) in the

North Pacific Ocean (b) in Russia (c) in Ethiopia and (d) in the South Atlantic Ocean.
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Figure 4. Same as Fig. 3 using the water vapor mass mixing ratio.
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Figure 6. Same as Fig. 5 using the water vapor mass mixing ratio.
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Figure 8. Same as Fig. 7 using the water vapor mass mixing ratio.
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exponents ↵L (6.0� - 12�) and ↵S (1.5� - 4.0�) derived from five days of observations.
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Figure 10. Scatterplots, linear fits and correlations between physical quantities and the slope �L derived using AIRS-AMSU temperatures at

500 hPa (T500) or water vapor at 500 hPa (WV500) along a 96 min segment of the Aqua track. Panels are ordered from strong (a) to weak

(f) correlations.
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Figure 11. Two variance-scaling plots for AIRS-AMSU-HSB derived temperature at 500 hPa with detected scale breaks: (top panel) North

Pacific Ocean (40.3N,141.5W) (bottom panel) North Pacific Ocean (44.6N,142.9W). In the top panel the slope changes at 9� and in the

bottom panel at 4.5�.
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Figure 12. Probability density functions of the scale-break length scale using (left) temperature and (right) water vapor fields at three pressure

levels.
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Figure 13. In these double-scale-break examples it can be seen that the slope can change at scales below 1.5�. The standard deviations are

calculated with AIRS-OE derived (top) temperature and (bottom) water vapor mass mixing ratio at 500 hPa.

31


