
1 
 

Preliminary verification for application of a support vector machine 
based cloud detection method to GOSAT-2 CAI-2  

Yu Oishi1, Haruma Ishida2, Takashi Y. Nakajima3, Ryosuke Nakamura1, Tsuneo Matsunaga4 
1National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto, Tokyo 135-0064, Japan 
2Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan 5 
3Reseach and Information Center, Tokai University, 2-28-4 Tomigaya, Shibuya, Tokyo 151-0063, Japan 
4National Institute for Environmetal Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan 
 

Correspondence to: Yu Oishi (oishi.yu@aist.go.jp) 

Abstract. The Greenhouse Gases Observing Satellite (GOSAT) was launched in 2009 to measure global atmospheric CO2 10 

and CH4 concentrations. GOSAT is equipped with two sensors: the thermal and near-infrared sensor for carbon observation 

(TANSO)-Fourier transform spectrometer (FTS) and TANSO-cloud and aerosol imager (CAI). The presence of clouds in the 

instantaneous field of view of the FTS leads to incorrect estimates of the concentrations. Thus, the FTS data suspected to 

have cloud contamination must be identified by a CAI cloud discrimination algorithm and rejected. Conversely, 

overestimating clouds reduces the amount of FTS data that can be used to estimate greenhouse gases concentrations. This is 15 

a serious problem in tropical rainforest regions, such as the Amazon, where the amount of useable FTS data is small because 

of cloud cover. Preparations are continuing for the launch of the GOSAT-2 in fiscal year 2018. To improve the accuracy of 

the estimates of greenhouse gases concentrations, we need to refine the existing CAI cloud discrimination algorithm: Cloud 

and Aerosol Unbiased Decision Intellectual Algorithm (CLAUDIA1). A new cloud discrimination algorithm using a support 

vector machine (CLAUDIA3) was developed and presented in another paper. Although the use of visual inspection of clouds 20 

as a standard for judging is not practical for screening a full satellite data set, it has the advantage of allowing for locally 

optimized thresholds, while CLAUDIA1+3 use common global thresholds. Thus, the accuracy of visual inspection is better 

than that of these algorithms in most regions, with the exception of snow and ice covered surfaces, where there is not enough 

spectral contrast to distinguish cloud. For this reason visual inspection can be used for the truth metric for the cloud 

discrimination verification exercise. In this study, we compared between CLAUDIA1-CAI and CLAUDIA3-CAI for various 25 

land cover types, and evaluated the accuracy of CLAUDIA3-CAI by comparing the both of CLAUDIA1-CAI and 

CLAUDIA3-CAI against visual inspection of the same CAI images in tropical rainforests. Comparative results between 

CLAUDIA1-CAI and CLAUDIA3-CAI for various land cover types indicated that CLAUDIA3-CAI had tendency to 

identify bright surface and optically thin clouds, however, misjudge the edges of clouds as compared with CLAUDIA1-CAI. 

The accuracy of CLAUDIA3-CAI was approximately 89.5 % in tropical rainforests, which is greater than that of 30 

CLAUDIA1-CAI (85.9 %) for the test cases presented here. 
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1 Introduction 

The Greenhouse Gases Observing Satellite (GOSAT) was launched in 2009 to measure global atmospheric CO2 and CH4 

concentrations. Preparations are continuing for the launch of its successor, GOSAT-2, in fiscal year 2018. The mission 10 

objectives of GOSAT-2 are as follows: to continue and improve the satellite measurements of major greenhouse gases 

performed by GOSAT; to monitor the effects of climate change and human activities on the carbon cycle; and to contribute 

to climate science and climate change related policies (NIES GOSAT-2 Project, 2014). These policies include Reducing 

Emissions from Deforestation and forest Degradation and the role of conservation, sustainable management of forests and 

enhancement of forest carbon stocks in developing countries (REDD+), and the Joint Crediting Mechanism (JCM), which 15 

was proposed by the Japanese government to facilitate the diffusion of leading low-carbon technologies, products, systems, 

services, and infrastructure in developing countries (Ministry of the Environment, Japan, 2015). Monthly regional CO2 

fluxes are estimated from the column-averaged dry air mole fractions of CO2 (XCO2) retrieved from spectral observations 

made by GOSAT (Maksyutov et al., 2013). The results are publicly available as the L4A CO2 product (Maksyutov et al., 

2014). The expected role of the CO2 fluxes estimated from the GOSAT data is the system for measurement, reporting and 20 

verification (MRV) of CO2 fluxes estimated from forest inventory data. Currently, the uncertainty of the L4A CO2 product is 

about 0.9 Gt-C/region/year in the Amazon (L4A CO2 product V02.03 in region ln 09-12, 2009-2012). Thus, total net CO2 

flux from deforestation for the period 2000–2010 in tropical America was estimated to be 0.56 Gt-C/year (Baccini et al., 

2012). It is required to reduce the uncertainty of the L4A CO2 product by a factor of 16 assuming that the MRV for REDD+ 

and JCM needs an accuracy of 10 %. 25 

  GOSAT is equipped with two sensors: the Thermal and Near-infrared Sensor for Carbon Observation (TANSO)-Fourier 

Transform Spectrometer (FTS) and TANSO-Cloud and Aerosol Imager (CAI) (Table 1). The presence of clouds in the 

instantaneous field of view of the FTS leads to incorrect estimates of greenhouse gas concentrations (Uchino et al., 2012). To 

solve the problem, the FTS data suspected to have cloud contamination must be identified by the Cloud and Aerosol 

Unbiased Decision Intellectual Algorithm used with CAI (CLAUDIA1-CAI) (Ishida and Nakajima, 2009) and rejected. The 30 

cloud information is publicly available as the CAI L2 cloud flag product. However, CAI does not have a thermal infrared 

band. In general, cirrus cloud is identified by using multiple thermal infrared bands, which include water vapour absorption 
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bands (Ishida et al., 2011a). Meanwhile, the FTS has a 2 μm band that contains many strong water vapour absorption bands. 

Moreover, the CAI L2 cloud flag product may not be sensitive enough to detect clouds of sub-pixel size in ocean 

observations. To cope with these difficulties, the FTS data suspected to have cloud contamination are identified by two 

additional tests: the 2 μm band test and the CAI coherent test (Yoshida et al., 2010). Conversely, overestimation of clouds 

reduces the amount of the FTS data that can be used to estimate greenhouse gas concentrations. This is a serious problem in 5 

tropical rainforest regions, such as the Amazon, where there is a small amount of suitable FTS data (approximately 3 % of 

the number of observations) because of cloud cover (Figs. 1, 2). For the reason we need to optimize thresholds between 

cloud and clear-sky because there are tradeoffs in maximizing cloud detection accuracy while minimizing false detection. To 

solve the problem, a new cloud discrimination algorithm (CLAUDIA3) using a support vector machine (SVM) (Vapnik and 

Lerner, 1963) was developed (Ishida et al., 2018). CLAUDIA3 can automatically identify the optimized thresholds using 10 

clear-sky training data, although CLAUDIA1 requires setting various thresholds by radiative transfer calculation results and 

fine tuning in some method. Verification was also performed by comparing with the MODIS cloud mask algorithm 

(Ackerman et al., 2010) and ceilometer data provided by Atmospheric Radiation Measurement (ARM) (Mather and Voyles, 

2013) in the paper (Ishida et al., 2018). Furthermore the impact of different Support Vector generation procedures on cloud 

discrimination using CLAUDIA3 has also been evaluated in a previous study (Oishi et al., 2017). 15 

 

Table 1: Specifications of CAI. 

 Band 1 Band 2 Band 3 Band 4 

Spectral coverage 

(μm) 

NUV 

0.370-0.390 

Red 

0.664-0.684 

NIR 

0.860-0.880 

SWIR 

1.56-1.65 

Swath (km) 1000 1000 1000 750 

Spatial resolution 

At nadir (m) 500 500 500 1500 
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Figure 2: Monthly changes in the number of FTS L2 XCO2 data in the Amazon. The five-point cross track scan mode 

was used until 1 August 2010, when it was replaced with the three-point cross track scan mode. Therefore the 

numbers themselves before and after 1 August 2010 cannot be compared. (single column) 

 5 

 

Figure 2: Clear-sky probability at 0.1° × 0.1° calculated with MYD35_L2. There are low clear-sky probabilities over 

most tropical rainforests because the moisture helps create clouds. (single column) 

 

The accuracy of CLAUDIA1-CAI was evaluated by comparing it with the MODIS/Aqua cloud mask data product 10 

(MYD35) (Ackerman et al., 2010) because the MODIS cloud mask algorithm uses a larger number of bands for cloud 



5 
 

discrimination than CLAUDIA1-CAI, and CLAUDIA1 was developed based on the MODIS cloud mask algorithm (Taylor 

et al., 2012; Ishida et al, 2011b). However, these comparisons cannot identify common weak points in the algorithms and 

another verification method is required. Although the use of visual inspection of clouds as a standard for judging is not 

practical for screening a full satellite data set, it has the advantage of allowing for locally optimized thresholds, while 

CLAUDIA1+3 use common global thresholds. Thus, the accuracy of visual inspection is better than that of these algorithms 5 

in most regions, with the exception of snow and ice covered surfaces, where there is not enough spectral contrast to 

distinguish cloud. For this reason visual inspection can be used for the truth metric for the verification exercise. Therefore, 

the accuracy of CLAUDIA1-CAI also has been evaluated by visual inspection in tropical rain forests (Oishi et al., 2014). In 

this study, we deal with the application of the CLAUDIA3 to GOSAT CAI data. And then, we compare between 

CLAUDIA1-CAI and CLAUDIA3-CAI for various land cover types, and evaluate the accuracy by comparing both against 10 

visual inspection of the same CAI images in tropical rainforests. 

2 Materials and Methods 

2.1 Study area and data 

The study area for directly comparing CLAUDIA1-CAI and CLAUDIA3-CAI for various land cover types is the same as the 

previous study (Oishi et al., 2017) (Fig. 3), and for evaluation of the accuracy by comparing both against visual inspection is 15 

Borneo and the Amazon (Fig. 4). 

The total forest area in the Amazon, Congo, and Southeast Asia rainforest basins is over 13 million km2, which 

corresponds to one-third of the total global forest area (FAO and ITTO, 2011). The three most forest-rich countries (Brazil, 

Democratic Republic of Congo, and Indonesia) account for 57 % of the total global forest area (FAO and ITTO, 2011). 

However, the total net emissions of carbon from tropical deforestation and land use were estimated to be 1.0 Pg-C/yr in the 20 

three rainforest basins (Baccini et al., 2012). In particular, Brazil and Indonesia have by far the highest and second highest 

deforestation rates, respectively (Fig. 5). Therefore, the study area for rainforests is Borneo and the Amazon (Fig. 4). 

GOSAT returns to a similar footprint after 44 orbits (44 CAI paths) in three days. The satellite ground path of one orbit is 

divided into 60 equidistant CAI frames. We used the GOSAT CAI L1B product, which general users could download from 

the GOSAT User Interface Gateway (GUIG, https://data.gosat.nies.go.jp), for various land cover types on the beginning of 25 

the month from 2012 to 2014 as was done in the previous study (Oishi et al., 2017) (Table 2), and for rainforests (Table 3). 

Recently the GUIG has been changed to GOSAT Data Archive Service (GDAS, https://data2.gosat.nies.go.jp/index_en.html). 

The spatial resolution of these products (pixel size at nadir) is 500 m, the image size is 2048 × 1355 pixels (approximately 

1000 × 680 km). The CLAUDIA algorithm requires a land/sea mask and surface albedo data. The CAI L1B product includes 

a land/sea mask with 500 m resolution which is generated from the Shuttle Radar Topography Mission’s 15″ land/sea mask 30 

and the USGS Global Land 1-KM AVHRR Project mask for areas with latitudes higher than ±60°. Surface albedo data at 

1/30° resolution was generated from the CAI L1B data from 10 recurrent cycles by separating the land and water regions. 
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This processing consists of three steps (Ishihara and Nobuta, 2013): (1) calculate the minimum reflectance to remove cloud-

contaminated pixels; (2) cloud shadow correction (Fukuda et al., 2013); and (3) atmospheric correction. 

 

 

Figure 3: Study areas for various land cover types. Black rectangles indicate the location of CAI frames. (single 5 

column) 

 

 

Figure 4: Study areas in Borneo and the Amazon. CAI path and frame system: XX_YY (XX indicates CAI path 

number and YY indicates CAI frame number). Red rectangles indicate the locations of CAI frames. The background 10 

image was generated from the CAI L3 global reflectance distribution product (15 June 2013 to 14 July 2013). (single 

column) 
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Figure 5: List of top 10 countries for changes in deforestation area (million ha) from 1990 to 2005. These were 

calculated with data from the Global Forest Resources Assessment 2005 (FAO, 2005). (single column) 

 

Table 2: GOSAT CAI L1B product and CAI L2 cloud flag product used for various land cover types in this study. 

Land cover was derived from the MODIS land cover type product (MCD12). Japan scenes include urban areas. 5 

Location  
(CAI Path_Frame) 

Data Period  Land Cover 

Australia (4_35) 3 April 2012–3 March 2014 Open shrublands 
Japan (5_25) 1 April 2012–1 March 2014 Mixed forests 

Borneo (7_31) 3 April 2012–3 March 2014 Evergreen broadleaf forest 
Thailand 1 (9_28) 2 April 2012–2 March 2014 Cropland/natural vegetation 
Thailand 2 (9_29) 2 April 2012–2 March 2014 Cropland/natural vegetation 
Mongolia (10_23) 3 April 2012–3 March 2014 Grasslands 
Algeria (22_26) 3 April 2012–3 March 2014 Barren or sparsely vegetated 
Canada (32_22) 1 April 2012–1 March 2014 Evergreen needleleaf forest 
Alaska (43_19) 1 April 2012–1 March 2014 Open shrublands 

 

Table 3: GOSAT CAI L1B product and CAI L2 cloud flag product used for rainforests in this study. 

Borneo Amazon 

Date 

(yy/mm/dd) 

Location 

(CAI Path_Frame) 

Date 

(yy/mm/dd) 

Location 

(CAI Path_Frame)

10/04/02 7_30 11/08/28 28_31 

10/01/02 7_31 11/08/28 28_32 

10/04/02 7_31 11/08/28 28_33 

10/07/01 7_31 11/08/29 29_31 

10/07/07 7_31 10/08/28 29_32 

10/07/13 7_31 11/02/03 29_32 

10/07/19 7_31 11/04/01 29_32 

10/07/28 7_31 11/06/03 29_32 

10/09/02 7_31 11/08/02 29_32 

10/11/01 7_31 11/08/08 29_32 

  11/08/14 29_32 

  11/08/23 29_32 
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  11/08/29 29_32 

  11/10/01 29_32 

  11/12/03 29_32 

  11/08/29 29_33 

  11/08/30 30_31 

  11/08/30 30_32 

  11/08/30 30_33 

2.2 CLAUDIA1 

CLAUDIA1-CAI calculates the clear-sky confidence levels (CCL) for every threshold test and their comprehensive 

integration (Ishida and Nakajima, 2009). Integrated-CCL of 0 means that the pixel is cloudy and 1 means that the pixel is 

cloud-free. Ambiguous pixels between cloudy and cloud-free are described by numerical values from 0 to 1. The threshold 

below which the integrated-CCL counts the pixel as cloud-free for GOSAT FTS L2 is 0.33, otherwise the pixel is regarded 5 

as cloudy (Yoshida et al., 2010). The flow of the algorithm is shown in Fig. 6. 
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Figure 6: Flow chart for CLAUDIA1-CAI. For sun-glint areas, the thresholds are further increased based on the R0.87 

μm test. CCL: confidence level; Rwavelength: reflectance; NDVI: normalized difference vegetation index. (2 column) 

 

2.3 New cloud discrimination algorithm (CLAUDIA3) 5 

CLAUDIA1 performs cloud discrimination by using thresholds set based on experience. The new cloud discrimination 

algorithm (CLAUDIA3, Ishida et al., 2018) uses SVM to decide the thresholds objectively by using multivariate analysis. 

SVM is a supervised pattern recognition method. First, it determines the following items using training samples of typical 

clear and cloudy pixels: 1) a decision function to discriminate between two classifications (clear and cloudy), 2) the 

thresholds, and 3) the support vectors, which are training samples specified by the decision function. The support vectors are 10 

decided in a high-dimensional feature space of the training samples. Next, it performs cloud discrimination by using the 

decision function, thresholds, and support vectors it determined. CLAUDIA3 applies the kernel trick (Boser et al., 1992) to 

soft-margin SVM (Cortes and Vapnik, 1995). The kernel uses a second-order polynomial (Eq. (1)) 
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where K is the kernel function, xi is the support vectors, and x is input data. The flow of CLAUDIA3-CAI is explained in Fig. 

7. For CLAUDIA3-CAI, an integrated-CCL of 0.5 corresponds to the separating hyperplane of clear support vectors and 

cloudy support vectors. In this study, we used two kinds of support vector: (1) support vectors generated by using MODIS 

data in February for cloud discrimination between November and April, and (2) support vectors generated by using MODIS 5 

data in August for cloud discrimination between May and October based on a previous study (Oishi et al., 2017). 

 

 

Figure 7: Flow chart for CLAUDIA3-CAI. CCL: clear-sky confidence level; Rwavelength: reflectance; NDVI: 

normalized difference vegetation index. (2 column) 10 
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2.4 Analysis procedure for rainforests 

The analysis procedure consists of the following steps (Fig. 8). 

1) Cut 400 × 400 pixels around the centre of CAI L1B images. 

2) Perform visual inspection of the pixels cut from the CAI L1B images. 

We performed a visual inspection of the presence or absence of clouds in every pixel. 5 

3) Perform cloud discrimination by using CLAUDIA1-CAI and CLAUDIA3-CAI. 

For CLAUDIA1-CAI, we produced output images setting the integrated-CCL threshold to 0.33. For CLAUDIA3-CAI, we 

produced output images setting the integrated-CCL threshold to 0.5. 

4) Compare output with visual inspection. 

We coloured the images by comparing the visual inspection images with the output images pixel-by-pixel. 10 

 

 

Figure 8: Analysis procedure. (a) CAI L1B image. (b) Visual inspection image of CAI L1B. (c) Output image from 

CLAUDIA1-CAI (CAI L2 cloud flag product) or CLAUDIA3-CAI. Pixels that are determined as cloudy are black. 

(d) Comparison of the visual inspection image and the output image. Pixels that are determined as cloudy in both are 15 

white. Pixels that are determined as clear in both are blue. Pixels that are determined as cloudy in the output image 
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and clear in the visual inspection image are green. Unusual pixels that are determined as clear in the output image 

and cloudy in the visual inspection image are red. (2 column) 

3 Results 

In this study, “accuracy” is defined as the ratio of the number of pixels for which the standard image and output from the 

cloud discrimination algorithm agree to the total number of pixels in the input image. “Overlook” is defined as the ratio of 5 

the number of pixels judged clear in the output and cloudy in the standard image to the number of pixels that were judged 

cloudy in the standard image. “Overestimate” is defined as the ratio of the number of pixels judged cloudy in the output and 

clear in the standard image to the number of pixels judged clear in the standard image. These definitions are written as 

follows. 

pixels ofnumber  Total

clearBoth cloudyBoth 
Accuracy


 ,        (2) 10 

cloudy despiteClear cloudyBoth 

cloudy despiteClear 
Overlook


 ,       (3) 

clear despiteCloudy clearBoth 

clear despiteCloudy 
teOverestima


 .        (4) 

3.1 Results for various land cover types 

Figure 9 shows the monthly average accuracy, overlook, and overestimate for an integrated-CCL threshold of 0.33 for 

CLAUDIA1-CAI and 0.5 for CLAUDIA3-CAI. We used the CLAUDIA1-CAI result as the standard image. 15 

In Australia and Algeria, Overlook was greater than Overestimate; the average of Overlook was 44.2 % (the lowest 

Overlook was 20.5 % in December in Australia), against the average of Overestimate was 0.4 % (the highest Overestimate 

was 3.5 % in January in Algeria). These mean that there was tendency that CLAUDIA3-CAI judged clear, despite 

CLAUDIA1-CAI judged cloudy in Australia and Algeria. 

In Japan, Borneo, Canada, and Alaska, Overestimate was greater than Overlook; the average of Overlook was 1.6 % (the 20 

highest Overlook was 3.2 % in August), against the average of Overestimate was 13.7 % (the lowest Overestimate was 7.2 % 

in May) in Japan; the average of Overlook was 1.0 % (the highest Overlook was 2.3 % in July), against the average of 

Overestimate was 39.2 % (the lowest Overestimate was 24.2 % in April) in Borneo; the average of Overlook was 2.9 % (the 

highest Overlook was 8.8 % in July), against the average of Overestimate was 51.8 % (the lowest Overestimate was 23.2 % 

in July) in Canada; the average of Overlook was 11.9 % (the highest Overlook was 27.5 % in August), against the average of 25 

Overestimate was 50.3 % (the lowest Overestimate was 20.3 % in July) in Alaska. These mean that there was tendency that 

CLAUDIA3-CAI judged cloudy, despite CLAUIDA1-CAI judged clear in Japan, Borneo, Canada, and Alaska. 
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In Thailand and Mongolia, there was seasonal variation. In Thailand, Overlook was greater than Overestimate from March 

to May, and Overestimate was greater than Overlook from June to February; the average of Overlook was 12.7% (the lowest 

Overlook was 9.2% in May), against the average of Overestimate was 6.3% (the highest Overestimate was 7.7% in April) 

from March to May; the average of Overlook was 2.2% (the highest Overlook was 7.1% in February), against the average of 

Overestimate was 25.8% (the lowest Overestimate was 10.0% in January) from June to February. In Mongolia, Overestimate 5 

was greater than Overlook from February to March, and Overlook was greater than Overestimate from April to January; the 

average of Overlook was 4.0% (the highest Overlook was 4.1% in March), against the average of Overestimate was 40.1% 

(the lowest Overestimate was 37.8% in March) from February to March; the average of Overlook was 20.4% (the lowest 

Overlook was 11.9% in July and August), against the average of Overestimate was 6.1% (the highest Overestimate was 

14.5% in December) from April to January. 10 

Figure 10 compares the output images of CLAUDIA1-CAI and CLAUDIA3-CAI for select cases in each region. 

In Australia and Algeria, CLAUDIA3-CAI could identify bright surface, however, there were a few oversights of the 

edges of clouds. 

    In Japan, CLAUDIA3-CAI misjudged vegetation areas as clouds. 

    In Borneo, CLAUDIA3-CAI could identify optically thin clouds. 15 

    In Canada and Alaska, they were snow or ice covered scenes. Since the CAI is not equipped with any thermal infrared 

bands, cloud discrimination based on the temperature at the top of clouds is not feasible. Accordingly, it is difficult to 

discriminate between ice or snow and clouds. The difference or coincidence between CLAUDIA1-CAI and CLAUIDA3-

CAI was attributed to this source of error. 

    In Thailand, CLAUDIA3-CAI could judge smokes as non-clouds, despite CLAUDIA1-CAI judged clouds, however, there 20 

were oversights of optically thin clouds and the edges of clouds on 3 April 2013. Furthermore CLAUDIA3-CAI misjudged 

clear muddy rivers and boundaries between land and water as cloudy. This was also reported about CLAUDIA1-CAI in 

previous study (Oishi et al. 2014). Conversely, CLAUDIA3-CAI could identify optically thin clouds on 2 September 2012. 

    In Mongolia, it was snow covered scene on 3 February 2013 in the same as Canada and Alaska. On the other hand 

CLAUDIA3-CAI could identify bright surface, however, there were a few oversights of the edges of clouds on 2 June 2012. 25 
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Figure 9: Monthly average accuracy, overlook, and overestimate for various land cover types. Blue line indicates 

“Accuracy”, red line indicates “Overlook, and green line indicates “Overestimate”. (2 column) 

 

 

Figure 10: CAI L1B images (R: Band 2, G: Band 3, B: Band 1) and comparative results of CLAUDIA1-CAI and 5 

CLAUDIA3-CAI for various land cover types. (2 column) 
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3.2 Results in the Amazon 

Figure 11 compares the visual inspection images and the output images for four select cases in the Amazon: low cloud cover, 

high cloud cover, small scattered clouds, and optically thin clouds. We used the visual inspection result as the standard 

image. 

CLAUDIA3-CAI produced fewer overlooked clouds but slightly more overestimated clouds than CLAUDIA1-CAI did. 5 

CLAUDIA3-CAI misjudged clear muddy rivers on 23 August 2011 in CAI Path 29, Frame 32 and the surroundings of 

clouds on 1 April 2011 in CAI Path 29, Frame 32. The maximum accuracy values of CLAUDIA3-CAI and the CLAUDIA1-

CAI occur at different integrated-CCL values with the thresholds for the Amazon. Fig. 12 shows the average accuracy, 

overlook, and overestimate of all the data in the Amazon for all 19 cases. These results indicate that the most suitable 

integrated-CCL thresholds are 0.75 for CLAUDIA1-CAI and 0.5 for CLAUDIA3-CAI in the Amazon. Since curved lines of 10 

overestimate and overlook intersect, CLAUDIA3-CAI can appropriately determine the boundary between cloud and clear-

sky. 
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Figure 11: Comparison of the visual inspection images and the output images in the Amazon. Orange circles indicate 

the maximum accuracy values. Orange dotted lines indicate the integrated-CCL thresholds. Blue line indicates 

“Accuracy”, red line indicates “Overlook, and green line indicates “Overestimate”. (2 column) 

 5 
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Figure 12: Average accuracy, overlook, and overestimate for all data for the Amazon. The most suitable integrated-

CCL thresholds are 0.75 for CLAUDIA1-CAI and 0.5 for CLAUDIA3-CAI in the Amazon. (single column) 

 

Table 4 shows the results for an integrated-CCL threshold of 0.33 for CLAUDIA1-CAI and 0.5 for CLAUDIA3-CAI, and 5 

Table 5 shows the results for an integrated-CCL threshold of the maximum accuracy values in Fig. 12 (CLAUDIA1-CAI: 

0.75, CLAUDIA3-CAI: 0.5). There was no notable change in the accuracies with the season or location. When the 

integrated-CCL threshold was 0.33 for CLAUDIA1-CAI and 0.5 for CLAUDIA3-CAI, the accuracies were 87.0 % and 

92.0 %, respectively. When the accuracy of CLAUDIA1-CAI was higher than that of CLAUDIA3-CAI, optically thick 

clouds covered a wide area of the input images. Furthermore, when the integrated-CCL threshold was 0.75 for CLAUDIA1-10 

CAI and 0.5 for CLAUDIA3-CAI, the accuracy was the highest, at 88.3 % and 92.0 %, respectively. In the both cases, the 

accuracy of CLAUDIA3-CAI was higher than that of CLAUDIA1-CAI. 

 

Table 4: Results for integrated-CCL thresholds of 0.33 for CLAUDIA1-CAI and 0.5 for CLAUDIA3-CAI in the 

Amazon. 15 

  Accuracy (%) Overlook (%) Overestimate (%) 

Date 

(yy/mm/d

d) 

Location 

(CAI 

Path_Frame) 

CLAUDIA1 

(0.33) 

CLAUDIA3 

(0.5) 

CLAUDIA1 

(0.33) 

CLAUDIA3 

(0.5) 

CLAUDIA1 

(0.33) 

CLAUDIA3 

(0.5) 

11/08/28 28_31 84.6 95.1 56.6 16.9  0.0  0.5 

11/08/28 28_32 80.6 92.9 49.7  7.5  0.1  6.9 

11/08/28 28_33 92.0 95.9 11.6 13.4  7.4  2.4 

11/08/29 29_31 87.6 93.8 27.2 9.5 0.3 3.5 

10/08/28 29_32 89.8 90.8 32.6  9.9  1.7  9.0 

11/02/03 29_32 86.6 92.9 35.5  2.4  0.5  9.9 
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11/04/01 29_32 95.0 91.6  5.8  0.1  2.1 36.6 

11/06/03 29_32 89.9 90.2 38.1  4.1  0.8 11.7 

11/08/02 29_32 77.9 90.6 71.0 27.3  0.1  1.5 

11/08/08 29_32 84.5 92.9 66.0 26.3  0.1  1.2 

11/08/14 29_32 87.8 93.2 77.4 36.0  0.1  1.4 

11/08/23 29_32 90.0 92.2 77.8 54.0  0.1  1.0 

11/08/29 29_32 79.6 91.0 52.4 19.7  0.1  2.2 

11/10/01 29_32 87.1 92.2 33.9  5.5  0.1  9.1 

11/12/03 29_32 82.8 93.4 30.7  1.7  0.1 12.9 

11/08/29 29_33 90.6 90.8 20.8 15.1 2.3 5.6 

11/08/30 30_31 85.7 85.1 24.7  9.2  3.2 21.0 

11/08/30 30_32 86.0 91.4 20.9 10.2  0.4  5.5 

11/08/30 30_33 94.9 93.0 11.1  3.6  1.5  9.1 

Average 87.0 92.0 39.1 14.3  1.1  7.9 

 

Table 5: Results for integrated-CCL thresholds of the maximum accuracy values in Fig. 11 (CLAUDIA1-CAI: 0.75, 

CLAUDIA3-CAI: 0.5) in the Amazon. 

  Accuracy (%) Overlook (%) Overestimate (%) 

Date 

(yy/mm/dd) 

Location 

(CAI Path_Frame) 

CLAUDIA1 

(0.75) 

CLAUDIA3

(0.5) 

CLAUDIA1

(0.75) 

CLAUDIA3

(0.5) 

CLAUDIA1 

(0.75) 

CLAUDIA3

(0.5) 

11/08/28 28_31 86.9 95.1 47.9 16.9  0.0  0.5 

11/08/28 28_32 84.2 92.9 40.2  7.5  0.2  6.9 

11/08/28 28_33 83.6 95.9  7.1 13.4 18.1  2.4 

11/08/29 29_31 89.6 93.8 21.8 9.5 1.2 3.5 

10/08/28 29_32 90.6 90.8 23.5  9.9  4.0  9.0 

11/02/03 29_32 88.9 92.9 27.8  2.4  1.4  9.9 

11/04/01 29_32 96.2 91.6  3.7  0.1  4.1 36.6 

11/06/03 29_32 90.9 90.2 29.3  4.1  2.4 11.7 
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11/08/02 29_32 80.1 90.6 63.6 27.3  0.3  1.5 

11/08/08 29_32 85.9 92.9 59.4 26.3  0.2  1.2 

11/08/14 29_32 88.8 93.2 70.1 36.0  0.2  1.4 

11/08/23 29_32 90.9 92.2 70.3 54.0  0.1  1.0 

11/08/29 29_32 82.2 91.0 45.5 19.7  0.2  2.2 

11/10/01 29_32 89.7 92.2 26.6  5.5  0.4  9.1 

11/12/03 29_32 86.7 93.4 23.3  1.7  0.5 12.9 

11/08/29 29_33 90.9 90.8 13.5 15.1 6.4 5.6 

11/08/30 30_31 87.1 85.1 20.4  9.2  4.9 21.0 

11/08/30 30_32 89.9 91.4 14.7 10.2  1.0  5.5 

11/08/30 30_33 95.1 93.0  7.0  3.6  3.6  9.1 

Average 88.3 92.0 32.4 14.3  2.6  7.9 

 

3.3 Results in Borneo 

Figure 13 compares the results of the visual inspection images and the output images for two select cases in Borneo: small 

scattered clouds and optically thin clouds. We used the visual inspection result as the standard image. The comparison of the 

results for Borneo is similar to that for the Amazon. Figure 14 shows the average accuracy, overlook, and overestimate of all 5 

data for all cases in Borneo. These results indicate that the most suitable integrated-CCL thresholds are 0.85 for the 

CLAUDIA1-CAI and 0.35 for CLAUDIA3-CAI in Borneo. Since curved lines of overestimate and overlook intersect as 

same as the Amazon cases, CLAUDIA3-CAI can appropriately determine the boundary between cloud and clear-sky. 
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Figure 13: Comparison of the visual inspection images and the output images in Borneo. Orange circles indicate the 

maximum accuracy values. Orange dotted lines indicate the integrated-CCL thresholds. Blue line indicates 

“Accuracy”, red line indicates “Overlook, and green line indicates “Overestimate”. (2 column) 

 5 

 

Figure 14: Average accuracy, overlook, and overestimate for all data for Borneo. The most suitable integrated-CCL 

thresholds are 0.85 for CLAUDIA1-CAI and 0.35 for CLAUDIA3-CAI in Borneo. (single column) 

 

Table 6 shows the results for an integrated-CCL threshold of 0.33 for CLAUDIA1-CAI and 0.5 for CLAUDIA3-CAI, and 10 

Table 7 shows the results for an integrated-CCL threshold of the maximum accuracy values in Fig. 14 (CLAUDIA1-CAI: 

0.85, CLAUDIA3-CAI: 0.35). There was no notable change in the accuracies with the season or location, similar to the 

results for the Amazon. For an integrated-CCL threshold of 0.33 for CLAUDIA1-CAI and 0.5 for CLAUDIA3-CAI, the 

accuracy was 84.8 % and 86.9 %, respectively. Furthermore, for an integrated-CCL threshold of 0.85 for CLAUDIA1-CAI 
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and 0.35 for CLAUDIA3-CAI, the highest accuracies of 87.5 % and 88.8 %, respectively, were obtained. In both cases, the 

accuracy of CLAUDIA3-CAI was greater than that of CLAUDIA1-CAI. 

 

Table 6: Results for integrated-CCL thresholds of 0.33 for CLAUDIA1-CAI and 0.5 for CLAUDIA3-CAI in Borneo. 

  Accuracy (%) Overlook (%) Overestimate (%) 

Date 

(yy/mm/dd) 

Location 

(CAI Path_Frame) 

CLAUDIA1 

(0.33) 

CLAUDIA3

(0.5) 

CLAUDIA1

(0.33) 

CLAUDIA3

(0.5) 

CLAUDIA1 

(0.33) 

CLAUDIA3

(0.5) 

10/04/02 7_30 89.7 91.7 28.8  1.7  0.1 12.0 

10/01/02 7_31 85.6 85.0 25.8  1.8  0.6 31.1 

10/04/02 7_31 94.8 85.4  8.3  0.6  3.5 22.8 

10/07/01 7_31 90.8 92.2 29.0  5.0  0.4  9.0 

10/07/07 7_31 76.5 85.9 54.2 22.5  0.5  7.8 

10/07/13 7_31 88.2 89.1 32.6  5.8  2.0 13.3 

10/07/19 7_31 77.1 88.4 31.1 11.0  1.0 13.5 

10/07/28 7_31 70.6 81.5 44.8  8.2  1.1 37.5 

10/09/02 7_31 89.3 87.8 37.8  6.5  1.3 14.2 

10/11/01 7_31 85.8 81.8 20.6  0.4  1.2 54.7 

Average 84.8 86.9 31.3  6.3  1.2 21.6 

 5 

Table 7: Results for integrated-CCL thresholds of the maximum accuracy values in Fig. 13 (CLAUDIA1-CAI: 0.85, 

CLAUDIA3-CAI: 0.35) in Borneo. 

  Accuracy (%) Overlook (%) Overestimate (%) 

Date 

(yy/mm/dd) 

Location 

(CAI Path_Frame) 

CLAUDIA1 

(0.85) 

CLAUDIA3

(0.35) 

CLAUDIA1

(0.85) 

CLAUDIA3

(0.35) 

CLAUDIA1 

(0.85) 

CLAUDIA3

(0.35) 

10/04/02 7_30 91.9 94.6 22.3  8.5  0.3  3.8 

10/01/02 7_31 89.2 90.7 16.8  8.0  3.6 10.9 

10/04/02 7_31 93.8 91.5  4.6  2.3  7.2 12.2 

10/07/01 7_31 92.1 93.2 21.5 10.3  1.9  5.3 
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10/07/07 7_31 79.4 83.5 46.1 33.0  1.6  4.2 

10/07/13 7_31 88.9 90.9 25.1 11.4  4.4  7.9 

10/07/19 7_31 81.7 83.4 24.1 20.1  2.7  7.1 

10/07/28 7_31 77.3 80.7 33.2 18.9  3.2 20.0 

10/09/02 7_31 90.3 90.6 29.0 12.3  3.0  8.3 

10/11/01 7_31 90.8 89.4 10.9  3.3  5.8 25.5 

Average 87.5 88.8 23.4 12.8  3.4 10.5 

 

4 Discussions and conclusions 

Comparative results between CLAUDIA1-CAI and CLAUDIA3-CAI for various land cover types indicated that 

CLAUDIA3-CAI had tendency to identify bright surface and optically thin clouds, however, misjudge the edges of clouds as 

compared with CLAUDIA1-CAI. There are tradeoffs in maximizing accuracy while minimizing overlook and overestimate. 5 

Thus, it is sufficient to change the integrated-CCL threshold according to the purpose. Furthermore, CLAUDIA3-CAI 

misjudged vegetation areas as clouds in Japan. It is necessary to add clear training data of Japanese vegetation areas for 

CLAUDIA3. 

The averaged accuracy of CLAUDIA3 used with GOSAT CAI data (CLAUDIA3-CAI) was approximately 89.5 % in 

tropical rainforests, which was greater than that of CLAUDIA1-CAI (85.9 %) for the test cases presented here. This is 10 

mainly because, in contrast to CLAUDIA1-CAI, CLAUDIA3-CAI can detect optically thin clouds and the edges of clouds, 

which prevents cloud-contaminated FTS-2 data from being processed as cloud-free FTS-2 data in the greenhouse gas 

concentration calculations. However, CLAUDIA3-CAI tends to overestimate the surroundings of clouds, which are judged 

to be cloudy despite being clear. Thus, CLAUDIA3-CAI is not expected to increase the amount of the FTS-2 data that can be 

used to estimate greenhouse gas concentrations in tropical rainforests. Conversely, CLAUDIA3-CAI may be able to detect 15 

optically thin clouds that cannot be detected by visual inspection. 

CLAUDIA3-CAI misjudged clear muddy rivers and boundaries between land and water as cloudy in the same manner as 

CLAUDIA1-CAI. This has three possible causes: (1) insufficient training data for muddy rivers to distinguish the differences 

in the spectral reflectance properties of muddy water and other water; (2) deviation of the positions in each CAI band owing 

to the band-to-band registration error; and (3) insufficient resolution of the surface albedo data. The surface albedo data was 20 

generated at 1/8° resolution by separating the land and water region. If the border pixels between land and water regions 

were mixed pixels, the albedo data of 1/8° areas that include the mixed pixels would be included. To decrease this effect, 

higher resolution surface albedo data are needed. For boundaries between land and water, the resolution of surface albedo 
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data is being investigated because it may be the main problem; the misjudged regions and grid pattern of albedo data match. 

CLAUDIA3-CAI is more sensitive to differences between land and water than CLAUDIA1-CAI because there is a large 

difference in the structure of support vectors between land and water. However, generating higher resolution surface albedo 

data from CAI L1B data for 10 recurrent cycles cannot completely remove clouds in the minimum reflectance calculation. 

To solve this, initially we need to confirm whether 500 m resolution albedo data should be used. If necessary, we will 5 

develop a new method for generating surface albedo data. For example, simple cloud discrimination could be added to 

calculate the minimum reflectance, and if it is a cloud-contaminated pixel then the pixel is replaced by a minimum 

reflectance pixel, which is calculated from the same month in several years. 

Although we used MODIS data as training images to generate support vectors in this study, the MODIS data and CAI data 

depend on observation conditions. In future work, we will use CAI data as training images to perform cloud discrimination 10 

for CAI data. Furthermore, we will verify CLAUDIA3-CAI by using global CAI data with an alternative method. For 

instance, comparison with satellite LiDAR data, such as CALIPSO, because it is impossible to perform visual inspection of 

global data and visual inspection is also not itself perfect. Addressing these points will make CLAUDIA3-CAI more reliable 

for GOSAT-2 CAI-2 cloud discrimination. 

 15 
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