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Abstract. The Greenhouse Gases Observing Satellite (GOSAT) was launched in 2009 to measure global atmospheric CO,
and CH4 concentrations. GOSAT is equipped with two sensors: the thermal and near-infrared sensor for carbon observation
(TANSO)-Fourier transform spectrometer (FTS) and TANSO-cloud and aerosol imager (CAI). The presence of clouds in the
instantaneous field of view of the FTS leads to incorrect estimates of the concentrations. Thus, the FTS data suspected to
have cloud contamination must be identified by a CAI cloud discrimination algorithm and rejected. Conversely,
overestimating clouds reduces the amount of FTS data that can be used to estimate greenhouse gases concentrations. This is
a serious problem in tropical rainforest regions, such as the Amazon, where the amount of useable FTS data is small because
of cloud cover. Preparations are continuing for the launch of the GOSAT-2 in fiscal year 2018. To improve the accuracy of
the estimates of greenhouse gases concentrations, we need to refine the existing CAI cloud discrimination algorithm: Cloud
and Aerosol Unbiased Decision Intellectual Algorithm (CLAUDIAL1). A new cloud discrimination algorithm using a support
vector machine (CLAUDIA3) was developed and presented in another paper. Although the use of visual inspection of clouds
as a standard for judging is not practical for screening a full satellite data set, it has the advantage of allowing for locally
optimized thresholds, while CLAUDIA1+3 use common global thresholds. Thus, the accuracy of visual inspection is better
than that of these algorithms in most regions, with the exception of snow and ice covered surfaces, where there is not enough
spectral contrast to distinguish cloud. For this reason visual inspection can be used for the truth metric for the cloud
discrimination verification exercise. In this study, we compared between CLAUDIA1-CAI and CLAUDIA3-CALI for various
land cover types, and evaluated the accuracy of CLAUDIA3-CAI by comparing the both of CLAUDIA1-CAI and
CLAUDIA3-CALI against visual inspection of the same CAI images in tropical rainforests. Comparative results between
CLAUDIAI1-CAI and CLAUDIA3-CAI for various land cover types indicated that CLAUDIA3-CAI had tendency to
identify bright surface and optically thin clouds, however, misjudge the edges of clouds as compared with CLAUDIA1-CAL
The accuracy of CLAUDIA3-CAI was approximately 89.5 % in tropical rainforests, which is greater than that of
CLAUDIAI1-CALI (85.9 %) for the test cases presented here.
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1 Introduction

The Greenhouse Gases Observing Satellite (GOSAT) was launched in 2009 to measure global atmospheric CO, and CH,
concentrations. Preparations are continuing for the launch of its successor, GOSAT-2, in fiscal year 2018. The mission
objectives of GOSAT-2 are as follows: to continue and improve the satellite measurements of major greenhouse gases
performed by GOSAT; to monitor the effects of climate change and human activities on the carbon cycle; and to contribute
to climate science and climate change related policies (NIES GOSAT-2 Project, 2014). These policies include Reducing
Emissions from Deforestation and forest Degradation and the role of conservation, sustainable management of forests and
enhancement of forest carbon stocks in developing countries (REDD+), and the Joint Crediting Mechanism (JCM), which
was proposed by the Japanese government to facilitate the diffusion of leading low-carbon technologies, products, systems,
services, and infrastructure in developing countries (Ministry of the Environment, Japan, 2015). Monthly regional CO,
fluxes are estimated from the column-averaged dry air mole fractions of CO, (XCO,) retrieved from spectral observations
made by GOSAT (Maksyutov et al., 2013). The results are publicly available as the L4A CO, product (Maksyutov et al.,
2014). The expected role of the CO, fluxes estimated from the GOSAT data is the system for measurement, reporting and
verification (MRV) of CO, fluxes estimated from forest inventory data. Currently, the uncertainty of the L4A CO, product is
about 0.9 Gt-C/region/year in the Amazon (L4A CO, product V02.03 in region In 09-12, 2009-2012). Thus, total net CO,
flux from deforestation for the period 2000-2010 in tropical America was estimated to be 0.56 Gt-C/year (Baccini et al.,
2012). It is required to reduce the uncertainty of the L4A CO, product by a factor of 16 assuming that the MRV for REDD+
and JCM needs an accuracy of 10 %.

GOSAT is equipped with two sensors: the Thermal and Near-infrared Sensor for Carbon Observation (TANSO)-Fourier
Transform Spectrometer (FTS) and TANSO-Cloud and Aerosol Imager (CAI) (Table 1). The presence of clouds in the
instantaneous field of view of the FTS leads to incorrect estimates of greenhouse gas concentrations (Uchino et al., 2012). To
solve the problem, the FTS data suspected to have cloud contamination must be identified by the Cloud and Aerosol
Unbiased Decision Intellectual Algorithm used with CAI (CLAUDIA1-CAI) (Ishida and Nakajima, 2009) and rejected. The
cloud information is publicly available as the CAI L2 cloud flag product. However, CAI does not have a thermal infrared

band. In general, cirrus cloud is identified by using multiple thermal infrared bands, which include water vapour absorption



10

15

bands (Ishida et al., 2011a). Meanwhile, the FTS has a 2 um band that contains many strong water vapour absorption bands.
Moreover, the CAI L2 cloud flag product may not be sensitive enough to detect clouds of sub-pixel size in ocean
observations. To cope with these difficulties, the FTS data suspected to have cloud contamination are identified by two
additional tests: the 2 um band test and the CAI coherent test (Yoshida et al., 2010). Conversely, overestimation of clouds
reduces the amount of the FTS data that can be used to estimate greenhouse gas concentrations. This is a serious problem in
tropical rainforest regions, such as the Amazon, where there is a small amount of suitable FTS data (approximately 3 % of
the number of observations) because of cloud cover (Figs. 1, 2). For the reason we need to optimize thresholds between
cloud and clear-sky because there are tradeoffs in maximizing cloud detection accuracy while minimizing false detection. To
solve the problem, a new cloud discrimination algorithm (CLAUDIA3) using a support vector machine (SVM) (Vapnik and
Lerner, 1963) was developed (Ishida et al., 2018). CLAUDIA3 can automatically identify the optimized thresholds using
clear-sky training data, although CLAUDIAI requires setting various thresholds by radiative transfer calculation results and
fine tuning in some method. Verification was also performed by comparing with the MODIS cloud mask algorithm
(Ackerman et al., 2010) and ceilometer data provided by Atmospheric Radiation Measurement (ARM) (Mather and Voyles,
2013) in the paper (Ishida et al., 2018). Furthermore the impact of different Support Vector generation procedures on cloud
discrimination using CLAUDIA3 has also been evaluated in a previous study (Oishi et al., 2017).

Table 1: Specifications of CAI.

Band 1 Band 2 Band 3 Band 4
Spectral coverage NUV Red NIR SWIR
(um) 0.370-0.390 0.664-0.684 0.860-0.880 1.56-1.65
Swath (km) 1000 1000 1000 750
Spatial resolution
At nadir (m) 500 500 500 1500
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Figure 2: Monthly changes in the number of FTS L2 XCO, data in the Amazon. The five-point cross track scan mode
was used until 1 August 2010, when it was replaced with the three-point cross track scan mode. Therefore the

numbers themselves before and after 1 August 2010 cannot be compared. (single column)
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Figure 2: Clear-sky probability at 0.1° x 0.1° calculated with MYD35_L2. There are low clear-sky probabilities over

most tropical rainforests because the moisture helps create clouds. (single column)

10 The accuracy of CLAUDIA1-CAI was evaluated by comparing it with the MODIS/Aqua cloud mask data product
(MYD35) (Ackerman et al., 2010) because the MODIS cloud mask algorithm uses a larger number of bands for cloud
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discrimination than CLAUDIA1-CAI, and CLAUDIA1 was developed based on the MODIS cloud mask algorithm (Taylor
et al., 2012; Ishida et al, 2011b). However, these comparisons cannot identify common weak points in the algorithms and
another verification method is required. Although the use of visual inspection of clouds as a standard for judging is not
practical for screening a full satellite data set, it has the advantage of allowing for locally optimized thresholds, while
CLAUDIA1+3 use common global thresholds. Thus, the accuracy of visual inspection is better than that of these algorithms
in most regions, with the exception of snow and ice covered surfaces, where there is not enough spectral contrast to
distinguish cloud. For this reason visual inspection can be used for the truth metric for the verification exercise. Therefore,
the accuracy of CLAUDIA1-CALI also has been evaluated by visual inspection in tropical rain forests (Oishi et al., 2014). In
this study, we deal with the application of the CLAUDIA3 to GOSAT CAI data. And then, we compare between
CLAUDIA1-CAI and CLAUDIA3-CALI for various land cover types, and evaluate the accuracy by comparing both against

visual inspection of the same CAI images in tropical rainforests.

2 Materials and Methods
2.1 Study area and data

The study area for directly comparing CLAUDIA1-CAI and CLAUDIA3-CALI for various land cover types is the same as the
previous study (Oishi et al., 2017) (Fig. 3), and for evaluation of the accuracy by comparing both against visual inspection is
Borneo and the Amazon (Fig. 4).

The total forest area in the Amazon, Congo, and Southeast Asia rainforest basins is over 13 million km?, which
corresponds to one-third of the total global forest area (FAO and ITTO, 2011). The three most forest-rich countries (Brazil,
Democratic Republic of Congo, and Indonesia) account for 57 % of the total global forest area (FAO and ITTO, 2011).
However, the total net emissions of carbon from tropical deforestation and land use were estimated to be 1.0 Pg-C/yr in the
three rainforest basins (Baccini et al., 2012). In particular, Brazil and Indonesia have by far the highest and second highest
deforestation rates, respectively (Fig. 5). Therefore, the study area for rainforests is Borneo and the Amazon (Fig. 4).

GOSAT returns to a similar footprint after 44 orbits (44 CAI paths) in three days. The satellite ground path of one orbit is
divided into 60 equidistant CAI frames. We used the GOSAT CAI L1B product, which general users could download from
the GOSAT User Interface Gateway (GUIG, https://data.gosat.nies.go.jp), for various land cover types on the beginning of
the month from 2012 to 2014 as was done in the previous study (Oishi et al., 2017) (Table 2), and for rainforests (Table 3).
Recently the GUIG has been changed to GOSAT Data Archive Service (GDAS, https://data2.gosat.nies.go.jp/index_en.html).
The spatial resolution of these products (pixel size at nadir) is 500 m, the image size is 2048 x 1355 pixels (approximately
1000 x 680 km). The CLAUDIA algorithm requires a land/sea mask and surface albedo data. The CAI L1B product includes
a land/sea mask with 500 m resolution which is generated from the Shuttle Radar Topography Mission’s 15” land/sea mask
and the USGS Global Land 1-KM AVHRR Project mask for areas with latitudes higher than £60°. Surface albedo data at

1/30° resolution was generated from the CAI L1B data from 10 recurrent cycles by separating the land and water regions.
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This processing consists of three steps (Ishihara and Nobuta, 2013): (1) calculate the minimum reflectance to remove cloud-

contaminated pixels; (2) cloud shadow correction (Fukuda et al., 2013); and (3) atmospheric correction.

5 Figure 3: Study areas for various land cover types. Black rectangles indicate the location of CAI frames. (single

column)
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(28-30_31-33) (7_30-31)

Figure 4: Study areas in Borneo and the Amazon. CAI path and frame system: XX_YY (XX indicates CAI path
10 number and YY indicates CAI frame number). Red rectangles indicate the locations of CAI frames. The background
image was generated from the CAI L3 global reflectance distribution product (15 June 2013 to 14 July 2013). (single

column)
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Figure S: List of top 10 countries for changes in deforestation area (million ha) from 1990 to 2005. These were

calculated with data from the Global Forest Resources Assessment 2005 (FAQO, 2005). (single column)

Table 2: GOSAT CAI L1B product and CAI L2 cloud flag product used for various land cover types in this study.

Land cover was derived from the MODIS land cover type product (MCD12). Japan scenes include urban areas.

Location .
(CAI Path_Frame) Data Period Land Cover
Australia (4_35) 3 April 2012-3 March 2014 Open shrublands

Japan (5_25)
Borneo (7_31)
Thailand 1 (9_28)
Thailand 2 (9_29)
Mongolia (10 _23)
Algeria (22_26)
Canada (32_22)
Alaska (43 19)

1 April 2012—-1 March 2014
3 April 2012-3 March 2014
2 April 2012-2 March 2014
2 April 2012-2 March 2014
3 April 2012-3 March 2014
3 April 2012-3 March 2014
1 April 2012-1 March 2014
1 April 2012—1 March 2014

Mixed forests
Evergreen broadleaf forest
Cropland/natural vegetation
Cropland/natural vegetation
Grasslands
Barren or sparsely vegetated
Evergreen needleleaf forest
Open shrublands

Table 3: GOSAT CAI L1B product and CAI L2 cloud flag product used for rainforests in this study.

Borneo Amazon
Date Location Date Location
(yy/mm/dd) (CAI Path Frame) (yy/mm/dd) (CAI Path Frame)
10/04/02 730 11/08/28 28_31
10/01/02 7 31 11/08/28 28 32
10/04/02 731 11/08/28 2833
10/07/01 7 31 11/08/29 29 31
10/07/07 7 31 10/08/28 29 32
10/07/13 731 11/02/03 29 32
10/07/19 7 31 11/04/01 29 32
10/07/28 7 31 11/06/03 29 32
10/09/02 7 31 11/08/02 29 32
10/11/01 7 31 11/08/08 29 32
11/08/14 29 32
11/08/23 29 32




11/08/29 29 32

11/10/01 29 32
11/12/03 29 32
11/08/29 29 33
11/08/30 30 31
11/08/30 30 32
11/08/30 30 33

2.2 CLAUDIA1

CLAUDIAI1-CAI calculates the clear-sky confidence levels (CCL) for every threshold test and their comprehensive
integration (Ishida and Nakajima, 2009). Integrated-CCL of 0 means that the pixel is cloudy and 1 means that the pixel is
cloud-free. Ambiguous pixels between cloudy and cloud-free are described by numerical values from 0 to 1. The threshold
below which the integrated-CCL counts the pixel as cloud-free for GOSAT FTS L2 is 0.33, otherwise the pixel is regarded
as cloudy (Yoshida et al., 2010). The flow of the algorithm is shown in Fig. 6.
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5 2.3 New cloud discrimination algorithm (CLAUDIA3)

CLAUDIALI performs cloud discrimination by using thresholds set based on experience. The new cloud discrimination
algorithm (CLAUDIAS3, Ishida et al., 2018) uses SVM to decide the thresholds objectively by using multivariate analysis.
SVM is a supervised pattern recognition method. First, it determines the following items using training samples of typical
clear and cloudy pixels: 1) a decision function to discriminate between two classifications (clear and cloudy), 2) the

10 thresholds, and 3) the support vectors, which are training samples specified by the decision function. The support vectors are
decided in a high-dimensional feature space of the training samples. Next, it performs cloud discrimination by using the
decision function, thresholds, and support vectors it determined. CLAUDIA3 applies the kernel trick (Boser et al., 1992) to
soft-margin SVM (Cortes and Vapnik, 1995). The kernel uses a second-order polynomial (Eq. (1))
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where K is the kernel function, X; is the support vectors, and X is input data. The flow of CLAUDIA3-CAI is explained in Fig.
7. For CLAUDIA3-CAI, an integrated-CCL of 0.5 corresponds to the separating hyperplane of clear support vectors and
cloudy support vectors. In this study, we used two kinds of support vector: (1) support vectors generated by using MODIS
5 data in February for cloud discrimination between November and April, and (2) support vectors generated by using MODIS

data in August for cloud discrimination between May and October based on a previous study (Oishi et al., 2017).

CAILIB data

GOSAT data
Land/sea mask
4
Surface Albedo processing needs | Vicarious calibration |
CAI L1B data of 10 recurrent cycles I

Calculation of
minimum reflectance

—l Radiance to reflectance conversion I

i

night and day

Surface Albedo }

| Latitude| = 66.6° i

Land/Sea mask 1s sea
land and sea

Discrimination between

(Polar region)
}

Discrimination between

Training images

i

Supervised learning using SVM
in a high dimensional feature space
of the training samples

¥ Land/Sea mask is land

Cloud-discrimination using SVM

Support vectors
- PPC

'

Decision function
Thresholds

in a high dimensional feature space of the training samples

-- Seaareas ------ ar== Land areas =1

e [ r=* Polar regions -

i i i

i Ro s um test ! Ro g7y test i Ros7 um test

! Rosrym i Rosium 1 T tes

i 087} test : 0.57 test : NDVTI test
Used features] ftos7um ! Rosrym 1

| NDVI test i NDVI test |

i i Rv.s‘pun i E

: \ Rissym |

1 1 1

4

Integrated-CCL of
each pixel

)

Figure 7: Flow chart for CLAUDIA3-CAIL. CCL: clear-sky confidence level; Rwavelength: reflectance; NDVI:

10 normalized difference vegetation index. (2 column)

10




10

15

2.4 Analysis procedure for rainforests

The analysis procedure consists of the following steps (Fig. 8).

1) Cut 400 x 400 pixels around the centre of CAI L1B images.

2) Perform visual inspection of the pixels cut from the CAI L1B images.

We performed a visual inspection of the presence or absence of clouds in every pixel.

3) Perform cloud discrimination by using CLAUDIA1-CAI and CLAUDIA3-CAL

For CLAUDIA1-CAI, we produced output images setting the integrated-CCL threshold to 0.33. For CLAUDIA3-CAI, we
produced output images setting the integrated-CCL threshold to 0.5.

4) Compare output with visual inspection.

We coloured the images by comparing the visual inspection images with the output images pixel-by-pixel.

(] Both detenninedlu s l.:l!dy espile clear
B Both determined clear [ Determined as clear despite cloudy
(d)
Figure 8: Analysis procedure. (a) CAI L1B image. (b) Visual inspection image of CAI L1B. (¢) Output image from
CLAUDIA1-CAI (CAI L2 cloud flag product) or CLAUDIA3-CALI. Pixels that are determined as cloudy are black.
(d) Comparison of the visual inspection image and the output image. Pixels that are determined as cloudy in both are

white. Pixels that are determined as clear in both are blue. Pixels that are determined as cloudy in the output image

11
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and clear in the visual inspection image are green. Unusual pixels that are determined as clear in the output image

and cloudy in the visual inspection image are red. (2 column)

3 Results

In this study, “accuracy” is defined as the ratio of the number of pixels for which the standard image and output from the
cloud discrimination algorithm agree to the total number of pixels in the input image. “Overlook” is defined as the ratio of
the number of pixels judged clear in the output and cloudy in the standard image to the number of pixels that were judged
cloudy in the standard image. “Overestimate” is defined as the ratio of the number of pixels judged cloudy in the output and

clear in the standard image to the number of pixels judged clear in the standard image. These definitions are written as

follows.
Both cloudy + Both clear
Accuracy = _ ; )
Total number of pixels
Overlook — Clear despite cloufly ’ 3
Both cloudy + Clear despite cloudy
Overestimate — Cloudy despite clear @

Both clear + Cloudy despite clear

3.1 Results for various land cover types

Figure 9 shows the monthly average accuracy, overlook, and overestimate for an integrated-CCL threshold of 0.33 for
CLAUDIAI1-CAI and 0.5 for CLAUDIA3-CAI. We used the CLAUDIA1-CAI result as the standard image.

In Australia and Algeria, Overlook was greater than Overestimate; the average of Overlook was 44.2 % (the lowest
Overlook was 20.5 % in December in Australia), against the average of Overestimate was 0.4 % (the highest Overestimate
was 3.5 % in January in Algeria). These mean that there was tendency that CLAUDIA3-CAI judged clear, despite
CLAUDIA1-CAI judged cloudy in Australia and Algeria.

In Japan, Borneo, Canada, and Alaska, Overestimate was greater than Overlook; the average of Overlook was 1.6 % (the
highest Overlook was 3.2 % in August), against the average of Overestimate was 13.7 % (the lowest Overestimate was 7.2 %
in May) in Japan; the average of Overlook was 1.0 % (the highest Overlook was 2.3 % in July), against the average of
Overestimate was 39.2 % (the lowest Overestimate was 24.2 % in April) in Borneo; the average of Overlook was 2.9 % (the
highest Overlook was 8.8 % in July), against the average of Overestimate was 51.8 % (the lowest Overestimate was 23.2 %
in July) in Canada; the average of Overlook was 11.9 % (the highest Overlook was 27.5 % in August), against the average of
Overestimate was 50.3 % (the lowest Overestimate was 20.3 % in July) in Alaska. These mean that there was tendency that

CLAUDIA3-CAI judged cloudy, despite CLAUIDA1-CAI judged clear in Japan, Borneo, Canada, and Alaska.

12
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In Thailand and Mongolia, there was seasonal variation. In Thailand, Overlook was greater than Overestimate from March
to May, and Overestimate was greater than Overlook from June to February; the average of Overlook was 12.7% (the lowest
Overlook was 9.2% in May), against the average of Overestimate was 6.3% (the highest Overestimate was 7.7% in April)
from March to May; the average of Overlook was 2.2% (the highest Overlook was 7.1% in February), against the average of
Overestimate was 25.8% (the lowest Overestimate was 10.0% in January) from June to February. In Mongolia, Overestimate
was greater than Overlook from February to March, and Overlook was greater than Overestimate from April to January; the
average of Overlook was 4.0% (the highest Overlook was 4.1% in March), against the average of Overestimate was 40.1%
(the lowest Overestimate was 37.8% in March) from February to March; the average of Overlook was 20.4% (the lowest
Overlook was 11.9% in July and August), against the average of Overestimate was 6.1% (the highest Overestimate was
14.5% in December) from April to January.

Figure 10 compares the output images of CLAUDIA1-CAI and CLAUDIA3-CALI for select cases in each region.

In Australia and Algeria, CLAUDIA3-CAI could identify bright surface, however, there were a few oversights of the
edges of clouds.

In Japan, CLAUDIA3-CAI misjudged vegetation areas as clouds.

In Borneo, CLAUDIA3-CALI could identify optically thin clouds.

In Canada and Alaska, they were snow or ice covered scenes. Since the CAI is not equipped with any thermal infrared
bands, cloud discrimination based on the temperature at the top of clouds is not feasible. Accordingly, it is difficult to
discriminate between ice or snow and clouds. The difference or coincidence between CLAUDIA1-CAI and CLAUIDA3-
CAI was attributed to this source of error.

In Thailand, CLAUDIA3-CAI could judge smokes as non-clouds, despite CLAUDIA1-CAI judged clouds, however, there
were oversights of optically thin clouds and the edges of clouds on 3 April 2013. Furthermore CLAUDIA3-CAI misjudged
clear muddy rivers and boundaries between land and water as cloudy. This was also reported about CLAUDIA1-CAI in
previous study (Oishi et al. 2014). Conversely, CLAUDIA3-CAI could identify optically thin clouds on 2 September 2012.

In Mongolia, it was snow covered scene on 3 February 2013 in the same as Canada and Alaska. On the other hand

CLAUDIA3-CALI could identify bright surface, however, there were a few oversights of the edges of clouds on 2 June 2012.

13
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Figure 9: Monthly average accuracy, overlook, and overestimate for various land cover types. Blue line indicates

“Accuracy”, red line indicates “Overlook, and green line indicates “Overestimate”. (2 column)

CAILI1B image Comparative result

CAI L1B image Comparative result

_ Swath range of CAI Band 4§
1 August 2012 in Algeria
Y

h

. -.'-M__-‘niv.' ot il
= m"aﬂ‘ff %

i i O A sy 1 a1 AN
3 February 2013 in Mongolia 2 June 2012 in Mongolia
[ Both determined cloudy I Overestimate (CLAUDIA3-CAI judged cloudy. despite CLAUDIA1-CAI judged clear)
B Both determined clear [l Overlook (CLAUDIA3-CAI judged clear, despite CLAUDIA1-CAI judged cloudy)

o

Figure 10: CAI L1B images (R: Band 2, G: Band 3, B: Band 1) and comparative results of CLAUDIA1-CAI and
CLAUDIA3-CALI for various land cover types. (2 column)

15



10

3.2 Results in the Amazon

Figure 11 compares the visual inspection images and the output images for four select cases in the Amazon: low cloud cover,
high cloud cover, small scattered clouds, and optically thin clouds. We used the visual inspection result as the standard
image.

CLAUDIA3-CALI produced fewer overlooked clouds but slightly more overestimated clouds than CLAUDIA1-CAI did.
CLAUDIA3-CAI misjudged clear muddy rivers on 23 August 2011 in CAI Path 29, Frame 32 and the surroundings of
clouds on 1 April 2011 in CAI Path 29, Frame 32. The maximum accuracy values of CLAUDIA3-CAI and the CLAUDIA1-
CAI occur at different integrated-CCL values with the thresholds for the Amazon. Fig. 12 shows the average accuracy,
overlook, and overestimate of all the data in the Amazon for all 19 cases. These results indicate that the most suitable
integrated-CCL thresholds are 0.75 for CLAUDIA1-CAI and 0.5 for CLAUDIA3-CAI in the Amazon. Since curved lines of
overestimate and overlook intersect, CLAUDIA3-CAI can appropriately determine the boundary between cloud and clear-

sky.
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Figure 11: Comparison of the visual inspection images and the output images in the Amazon. Orange circles indicate
the maximum accuracy values. Orange dotted lines indicate the integrated-CCL thresholds. Blue line indicates

“Accuracy”, red line indicates “Overlook, and green line indicates “Overestimate”. (2 column)
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Figure 12: Average accuracy, overlook, and overestimate for all data for the Amazon. The most suitable integrated-

CCL thresholds are 0.75 for CLAUDIA1-CAI and 0.5 for CLAUDIA3-CAI in the Amazon. (single column)

Table 4 shows the results for an integrated-CCL threshold of 0.33 for CLAUDIA1-CAI and 0.5 for CLAUDIA3-CAI, and
Table 5 shows the results for an integrated-CCL threshold of the maximum accuracy values in Fig. 12 (CLAUDIA1-CALI:
0.75, CLAUDIA3-CAI: 0.5). There was no notable change in the accuracies with the season or location. When the
integrated-CCL threshold was 0.33 for CLAUDIA1-CAI and 0.5 for CLAUDIA3-CAI, the accuracies were 87.0 % and
92.0 %, respectively. When the accuracy of CLAUDIA1-CAI was higher than that of CLAUDIA3-CAI, optically thick
clouds covered a wide area of the input images. Furthermore, when the integrated-CCL threshold was 0.75 for CLAUDIA1-
CAI and 0.5 for CLAUDIA3-CAI, the accuracy was the highest, at 88.3 % and 92.0 %, respectively. In the both cases, the
accuracy of CLAUDIA3-CAI was higher than that of CLAUDIA1-CALI

Table 4: Results for integrated-CCL thresholds of 0.33 for CLAUDIA1-CAI and 0.5 for CLAUDIA3-CAI in the

Amazon.
Accuracy (%) Overlook (%) Overestimate (%)
Date Location CLAUDIALI CLAUDIA3 CLAUDIALI CLAUDIA3 CLAUDIAL1 CLAUDIA3
(yymm/d  (CAI (0.33) 0.5) (0.33) 0.5) (0.33) (0.5)
d) Path Frame)
11/08/28 28 31 84.6 95.1 56.6 16.9 0.0 0.5
11/08/28 28_32 80.6 92.9 49.7 7.5 0.1 6.9
11/08/28 2833 92.0 95.9 11.6 13.4 7.4 24
11/08/29 29 31 87.6 93.8 27.2 9.5 0.3 3.5
10/08/28 29 32 89.8 90.8 32.6 9.9 1.7 9.0
11/02/03 29 32 86.6 92.9 355 24 0.5 9.9
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11/04/01 29 32 95.0 91.6 5.8 0.1 2.1 36.6

11/06/03 29 32 89.9 90.2 38.1 4.1 0.8 11.7
11/08/02 29 32 77.9 90.6 71.0 273 0.1 1.5
11/08/08 29 32 84.5 929 66.0 26.3 0.1 1.2
11/08/14 29 32 87.8 93.2 77.4 36.0 0.1 1.4
11/08/23 29 32 90.0 922 77.8 54.0 0.1 1.0
11/08/29 29 32 79.6 91.0 524 19.7 0.1 2.2
11/10/01 29 32 87.1 922 33.9 5.5 0.1 9.1
11/12/03 29 32 82.8 934 30.7 1.7 0.1 12.9
11/08/29 29 33 90.6 90.8 20.8 15.1 23 5.6
11/08/30 30 31 85.7 85.1 24.7 9.2 32 21.0
11/08/30 30 32 86.0 914 20.9 10.2 0.4 55
11/08/30 30_33 94.9 93.0 11.1 3.6 1.5 9.1

Average 87.0 92.0 39.1 14.3 1.1 7.9

Table 5: Results for integrated-CCL thresholds of the maximum accuracy values in Fig. 11 (CLAUDIA1-CAI: 0.75,
CLAUDIA3-CALI: 0.5) in the Amazon.

Accuracy (%) Overlook (%) Overestimate (%)
Date Location CLAUDIA1 CLAUDIA3 CLAUDIA1 CLAUDIA3 CLAUDIA1 CLAUDIA3
(yy/mm/dd) (CAI Path_Frame) (0.75) 0.5) (0.75) (0.5) (0.75) (0.5)
11/08/28 28_31 86.9 95.1 47.9 16.9 0.0 0.5
11/08/28 28 32 84.2 92.9 40.2 7.5 0.2 6.9
11/08/28 28 33 83.6 95.9 7.1 13.4 18.1 2.4
11/08/29 29 31 89.6 93.8 21.8 9.5 1.2 3.5
10/08/28 29 32 90.6 90.8 235 9.9 4.0 9.0
11/02/03 29 32 88.9 92.9 27.8 24 1.4 9.9
11/04/01 29 32 96.2 91.6 3.7 0.1 4.1 36.6
11/06/03 29 32 90.9 90.2 29.3 4.1 2.4 11.7
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11/08/02 29 32 80.1 90.6 63.6 27.3 0.3 1.5

11/08/08 29 32 85.9 92.9 59.4 26.3 0.2 1.2
11/08/14 29 32 88.8 93.2 70.1 36.0 0.2 1.4
11/08/23 29 32 90.9 92.2 70.3 54.0 0.1 1.0
11/08/29 29 32 82.2 91.0 45.5 19.7 0.2 2.2
11/10/01 29 32 89.7 92.2 26.6 55 0.4 9.1
11/12/03 29 32 86.7 93.4 233 1.7 0.5 12.9
11/08/29 29 33 90.9 90.8 13.5 15.1 6.4 5.6
11/08/30 30 31 87.1 85.1 20.4 9.2 4.9 21.0
11/08/30 30 32 89.9 91.4 14.7 10.2 1.0 5.5
11/08/30 30 33 95.1 93.0 7.0 3.6 3.6 9.1

Average 88.3 92.0 324 143 2.6 7.9

3.3 Results in Borneo

Figure 13 compares the results of the visual inspection images and the output images for two select cases in Borneo: small
scattered clouds and optically thin clouds. We used the visual inspection result as the standard image. The comparison of the
results for Borneo is similar to that for the Amazon. Figure 14 shows the average accuracy, overlook, and overestimate of all
data for all cases in Borneo. These results indicate that the most suitable integrated-CCL thresholds are 0.85 for the
CLAUDIAI-CAI and 0.35 for CLAUDIA3-CAI in Borneo. Since curved lines of overestimate and overlook intersect as
same as the Amazon cases, CLAUDIA3-CAI can appropriately determine the boundary between cloud and clear-sky.
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Figure 13: Comparison of the visual inspection images and the output images in Borneo. Orange circles indicate the
maximum accuracy values. Orange dotted lines indicate the integrated-CCL thresholds. Blue line indicates

“Accuracy”, red line indicates “Overlook, and green line indicates “Overestimate”. (2 column)
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Figure 14: Average accuracy, overlook, and overestimate for all data for Borneo. The most suitable integrated-CCL

thresholds are 0.85 for CLAUDIA1-CAI and 0.35 for CLAUDIA3-CAI in Borneo. (single column)

Table 6 shows the results for an integrated-CCL threshold of 0.33 for CLAUDIA1-CAI and 0.5 for CLAUDIA3-CALI, and
Table 7 shows the results for an integrated-CCL threshold of the maximum accuracy values in Fig. 14 (CLAUDIA1-CAI:
0.85, CLAUDIA3-CALI: 0.35). There was no notable change in the accuracies with the season or location, similar to the
results for the Amazon. For an integrated-CCL threshold of 0.33 for CLAUDIA1-CAI and 0.5 for CLAUDIA3-CAI, the
accuracy was 84.8 % and 86.9 %, respectively. Furthermore, for an integrated-CCL threshold of 0.85 for CLAUDIA1-CAI
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and 0.35 for CLAUDIA3-CALI, the highest accuracies of 87.5 % and 88.8 %, respectively, were obtained. In both cases, the
accuracy of CLAUDIA3-CAI was greater than that of CLAUDIA1-CAL

Table 6: Results for integrated-CCL thresholds of 0.33 for CLAUDIA1-CAI and 0.5 for CLAUDIA3-CAI in Borneo.

Accuracy (%) Overlook (%) Overestimate (%)

Date Location CLAUDIA1 CLAUDIA3 CLAUDIA1 CLAUDIA3 CLAUDIA1 CLAUDIA3
(yy/mm/dd) (CAI Path_Frame) (0.33) 0.5) (0.33) (0.5) (0.33) 0.5)
10/04/02 7_30 89.7 91.7 28.8 1.7 0.1 12.0
10/01/02 7 31 85.6 85.0 25.8 1.8 0.6 31.1
10/04/02 731 94.8 85.4 8.3 0.6 3.5 22.8
10/07/01 731 90.8 92.2 29.0 5.0 0.4 9.0
10/07/07 7 31 76.5 85.9 54.2 22.5 0.5 7.8
10/07/13 731 88.2 89.1 32.6 5.8 2.0 13.3
10/07/19 731 77.1 88.4 31.1 11.0 1.0 13.5
10/07/28 7 31 70.6 81.5 44.8 8.2 1.1 37.5
10/09/02 7 31 89.3 87.8 37.8 6.5 1.3 14.2
10/11/01 731 85.8 81.8 20.6 0.4 1.2 54.7
Average 84.8 86.9 31.3 6.3 1.2 21.6

Table 7: Results for integrated-CCL thresholds of the maximum accuracy values in Fig. 13 (CLAUDIA1-CAI: 0.85,
CLAUDIA3-CALI: 0.35) in Borneo.

Accuracy (%) Overlook (%) Overestimate (%)
Date Location CLAUDIA1 CLAUDIA3 CLAUDIA1 CLAUDIA3 CLAUDIA1 CLAUDIA3
(yy/mm/dd) (CAI Path_Frame) (0.85) (0.35) (0.85) (0.35) (0.85) (0.35)
10/04/02 730 91.9 94.6 22.3 8.5 0.3 3.8
10/01/02 7 31 89.2 90.7 16.8 8.0 3.6 10.9
10/04/02 731 93.8 91.5 4.6 2.3 7.2 12.2
10/07/01 731 92.1 93.2 21.5 10.3 1.9 53
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10/07/07 7 31 79.4 83.5 46.1 33.0 1.6 4.2

10/07/13 731 88.9 90.9 25.1 11.4 44 7.9
10/07/19 731 81.7 83.4 24.1 20.1 2.7 7.1
10/07/28 731 713 80.7 332 18.9 32 20.0
10/09/02 731 90.3 90.6 29.0 123 3.0 8.3
10/11/01 731 90.8 89.4 10.9 3.3 5.8 25.5

Average 87.5 88.8 234 12.8 34 10.5

4 Discussions and conclusions

Comparative results between CLAUDIA1-CAI and CLAUDIA3-CAI for various land cover types indicated that
CLAUDIA3-CALI had tendency to identify bright surface and optically thin clouds, however, misjudge the edges of clouds as
compared with CLAUDIA1-CALI There are tradeoffs in maximizing accuracy while minimizing overlook and overestimate.
Thus, it is sufficient to change the integrated-CCL threshold according to the purpose. Furthermore, CLAUDIA3-CAI
misjudged vegetation areas as clouds in Japan. It is necessary to add clear training data of Japanese vegetation areas for
CLAUDIA3.

The averaged accuracy of CLAUDIA3 used with GOSAT CAI data (CLAUDIA3-CAI) was approximately 89.5 % in
tropical rainforests, which was greater than that of CLAUDIA1-CAI (85.9 %) for the test cases presented here. This is
mainly because, in contrast to CLAUDIA1-CAI, CLAUDIA3-CALI can detect optically thin clouds and the edges of clouds,
which prevents cloud-contaminated FTS-2 data from being processed as cloud-free FTS-2 data in the greenhouse gas
concentration calculations. However, CLAUDIA3-CAI tends to overestimate the surroundings of clouds, which are judged
to be cloudy despite being clear. Thus, CLAUDIA3-CAI is not expected to increase the amount of the FTS-2 data that can be
used to estimate greenhouse gas concentrations in tropical rainforests. Conversely, CLAUDIA3-CAI may be able to detect
optically thin clouds that cannot be detected by visual inspection.

CLAUDIA3-CAI misjudged clear muddy rivers and boundaries between land and water as cloudy in the same manner as
CLAUDIA1-CAL This has three possible causes: (1) insufficient training data for muddy rivers to distinguish the differences
in the spectral reflectance properties of muddy water and other water; (2) deviation of the positions in each CAI band owing
to the band-to-band registration error; and (3) insufficient resolution of the surface albedo data. The surface albedo data was
generated at 1/8° resolution by separating the land and water region. If the border pixels between land and water regions
were mixed pixels, the albedo data of 1/8° areas that include the mixed pixels would be included. To decrease this effect,

higher resolution surface albedo data are needed. For boundaries between land and water, the resolution of surface albedo
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data is being investigated because it may be the main problem; the misjudged regions and grid pattern of albedo data match.
CLAUDIA3-CAI is more sensitive to differences between land and water than CLAUDIA1-CAI because there is a large
difference in the structure of support vectors between land and water. However, generating higher resolution surface albedo
data from CAI L1B data for 10 recurrent cycles cannot completely remove clouds in the minimum reflectance calculation.
To solve this, initially we need to confirm whether 500 m resolution albedo data should be used. If necessary, we will
develop a new method for generating surface albedo data. For example, simple cloud discrimination could be added to
calculate the minimum reflectance, and if it is a cloud-contaminated pixel then the pixel is replaced by a minimum
reflectance pixel, which is calculated from the same month in several years.

Although we used MODIS data as training images to generate support vectors in this study, the MODIS data and CAI data
depend on observation conditions. In future work, we will use CAI data as training images to perform cloud discrimination
for CAI data. Furthermore, we will verify CLAUDIA3-CAI by using global CAI data with an alternative method. For
instance, comparison with satellite LIDAR data, such as CALIPSO, because it is impossible to perform visual inspection of
global data and visual inspection is also not itself perfect. Addressing these points will make CLAUDIA3-CAI more reliable
for GOSAT-2 CAI-2 cloud discrimination.
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