
We would like to thank both reviewers for their 2nd review of the manuscript and believe it is 
again stronger for their suggestions. We have addressed each point below and revised the 
manuscript accordingly. 
 
Reviewer 1 
 
General Comments: 
The revision has produced a much stronger and more integrated manuscript which describes a 
particular machine-learning approach used to separate single particle mass spectra by identity. 
The authors have provided more detailed information about the conceptual framework for 
their classification scheme, have done a rudimentary comparison to an alternative method, and 
have done a thorough job of exploring, presenting, and explaining the results from training and 
“blind” tests using their proposed method.  
 
Although it is mentioned briefly in the manuscript, the authors haven’t seriously engaged with 
assessing the utility of this method for analysis of ambient particle spectra, where presumably it 
would need to be functional to be useful. Are there situations wherein this method could be 
used to essentially “pick out” the particles that match one of the training sets, while not trying 
to differentiate “other” particles not included? If so, how different would the particle spectra 
need to be to achieve this? 
 
The reviewer correctly suggests a future application of this approach. A paragraph has therefore 
been added in “Conclusion and Future work” describing an approaching for dealing with 
ambient datasets that contain aerosol absent from the dataset (21:18 – 22:8).  
 

“For future studies tackling ambient atmospheric data that may contain aerosol 
types absent from the training set, a form of subspace selection may be used to improve 
results. The region of parameter space where training data is available can be 
characterized with a joint probability density function. One such approach is kernel 
density estimation - a machine learning method that approximates a multidimensional 
probability density function in a non-parametric manner based on data density. To 
obtain accurate probability estimates, the method should be fit with a smaller set of 
important but uncorrelated peaks. The task of classification is then preceded by a 
filtering step. Spectra residing in the subspace containing the training data should first 
be identified based on the probability density function. Then, only these particles that 
are most certain to lie in the training subspace are classified using the classification 
model as described in this paper. An alternative is to combine the method with clustering 
by classifying particles in each automatically identified cluster.” 

 
 
Specific Comments: 
The authors state, p. 3, lines 11 – 12, that “interpretability is more limited with methods such as 
cluster analysis and neural networks” without justification. Such statements should include 
explanations and/or citations, or be removed if they represent opinions. 



 
We have clarified this point to only draw the comparison with neural networks and elaborated.  
3: 12 -15 now reads: 

“Neural networks rely on a series of variable transformations rectified by nonlinear 
activation functions, making details of a given classification notoriously difficult to 
follow. The interpretably and explainability of these models remains an active area of 
research.” 

 
On p. 5, line 12, the authors describe that “algorithms are known to struggle with chemically-
similar aerosols…” but again provide no definition of “struggle” nor a discussion of how similar 
is too similar… 
 
The wording has been modified to clarify that chemically-similar particles are often combined 
together (5:15). The sentence regarding the need to manually combine clusters has also been 
moved up to better contextualize the difficulties encountered in previous studies (5:16-18). It is 
noted that an example involving fertile soils was also stated later in the paragraph. 
 
…Furthermore, the discussion on this page, lines 19 – 23, should mention that (as with all of the 
algorithms discussed in this paper), there are user defined settings that are included in each 
method, and the choice of those settings influences the outcome significantly. Generalizations 
about performance are therefore challenging, when little information about settings is 
provided. An alternative approach that the authors could explore is referencing specific articles 
in which specific methods/algorithms are used, and commenting on the successes and 
challenges that are illustrated by the specific results that the authors obtained. 
 
As suggested, the dependence on user-defined settings has been mentioned on 6:18-19.  

“Additionally, it is noted that comparisons between all machine learning models are 
sensitive to user-defined parameters and algorithm implementation.” 

 A further response to your mention of user-defined setting is provided in the comment below 
about Figure 4.  
 
On p. 6, lines 4 - 5, the authors mention “measurement uncertainty” without defining the 
variable in which that uncertainty is found. Is it the identification, the peak areas, or something 
else?  
 
We agree these uncertainties should be clarified, so several uncertainties have been explicitly 
listed in this portion of the paper.  
The following has been added on 6: 8-12: 

 “Uncertainties associated with mass spectrometry include the determination of mass 
peak areas, internal mixing of aerosols during the experiment, and transmission 
efficiency. Additionally, the classification method itself introduces and quantifies 
uncertainty in aerosol identification as a result of imperfect classes separation and 
parameter uncertainty. 

 



In section 2.3, the authors discuss binary decision trees without mentioning random forests, 
although the term has been introduced. It would be helpful to contextualize the binary trees 
within the discussion of the random forests at the beginning of this discussion, which could be 
accompanied by a short comment that the random forest approach will be described more 
thoroughly below. 
 
We agree context is needed earlier, and have added this on 9: 17 – 19: 
            “A random forest is an ensemble of perturbed decision trees, whereby a final 
classification is made by averaging the predictions across all trees (described below in 2.4).” 
 
In the methods section, parameters such as the number of nodes per tree (p. 11, line 10), 
number of trees (p. 10, line 11) and number of variables per split (p. 11, line 11) are stated, but 
the methodology for choosing these numbers is not explained in sufficient detail (or at all, in 
the case of the number of nodes). The parameter used to select the best settings is described as 
the “values that produce the lowest test error” – is this error just rate of incorrect 
identification? 
 
While not explicitly stated previously, the method of hyperparamter optimization described is 
grid search, or parameter sweep, whereby numerous combinations of the parameters are 
exhaustively enumerated. The error rate mentioned is the test error, or out-of-bag error (not 
training error). Each of your points has been clarified in more detail on 12:1-5: 

“Using grid search, the optimal model was determined by enumerating combinations of 
these parameters on a coarse grid and selecting the values that produce the lowest test 
error, or out-of-bag error. Given several lists of parameters, where each list corresponds 
to a different model hyperparameter, models are trained one-by-one until each 
combination of parameters has been tested. For this study, the grid representing 
variables per split was spaced by 1 and the grid for number of trees was spaced by 5. The 
number of nodes in each tree depends on other hyperparmeters and cannot be explicitly 
set.”  

 
 
On p. 11, line 18, the noun asymptote is used as a verb. The sentence should be rewritten. 
 
We have substituted “converges” for “asymptotes” on 12:10.  
 
On pp. 20 - 21, the authors illustrate the advantages of their method by mentioning that an 
unexpected contaminant was detected based on the results. The implication is that this is 
possible using their method but not others, however a distance metric-based algorithm would 
likely also be able to identify this contaminant, as it contained additional peaks. The authors 
should clarify how this example specifically illustrates the strength of their method (if it does). 
 
The reviewer is correct that the contaminant would have been identified with other techniques 
but here was identified as a direct result of feature ranking. The implication has been clarified 
on 21: 10-17 



“In this particular study, the contaminant was identified and removed in the 
dimensionality reduction step while reasoning through the subset of ranked features. As 
illustrated by Figure 2, cobalt is suspiciously identified as the second most important 
variable for classification, but it is a known component of dry powder dispersion 
equipment used on some samples. The contaminate peak would be present in a cluster 
analysis, but it would not be obvious to pick out and remove as standard clustering is not 
typically suited for variable rankings. “ 

 
Figure 4 illustrates a comparison of results using the random forest and a distance classifier. 
However, no information is provided about the (user-defined) parameters used to define 
different clusters in the distance metric example, making this comparison tricky. If the 
parameters were changed slightly, these results would likely vary… 
 
We do not believe the results vary using this method; In the context of aerosol classification, 
clustering is first used to find the cluster centers of an unlabeled dataset. “Classification” is then 
done by manually labeling each cluster before assigning unknown aerosols to the nearest cluster 
center using some distance metric. While user-defined parameters strongly influence the 
behavior of the clustering algorithm, the assignment of unknown aerosols after convergence 
does not depend on parameters.  The distance-based classifier is uniquely defined by the 
distance metric (Euclidean in this case, although cosine similarity is also used in the literature) 
and the input data. In our case, the centers are the mean of each aerosol type, representing a 
simple baseline classifier to compare results against. To draw an analogy with clustering, the 
assumption in that some clustering algorithm has already converged to the center of each 
aerosol category.   
 
…Also, the labels of a) and b) should be removed from the figure caption; top and bottom row 
are sufficient. The figure would be more useful if the algorithm type were included in the labels 
for the specific matrices, so that one needn’t rely on the text in the figure caption to identify 
what the matrices represent. Maybe replace “Aerosol Confusion Matrix (Positive)” with 
“Random Forest (Positive)” or “Euclidian Distance (Positive)” for clarity. 
 
Figure 4 has been modified as suggested. 
 
Figure 5 is still confusing, in that it shows the ~1/3 of particles (soot) that are introduced into 
the AIDA chamber but which the PALMS instrument cannot detect. The figure caption suggests 
that the instrument transmission efficiency is discussed in the text, but that discussion (p. 18, 
lines 18 – 21) is very brief and is mostly directed towards explaining the significant under-
counting of the larger particles. This discussion should be expanded, and ideally, the data 
presented in the figure should be shown corrected for the inlet transmission. As it stands now, 
the use of the pie charts only illustrates that the match between the concentration (it is not 
specified whether the input aerosol in the chamber is given in number concentration or mass 
concentration, although presumably the PALMS results are provided in number concentration) 
is poor.  



Figure 5 has been revised based on both reviewers’ comments and now shows a full particle pie 
chart and one within the PALMS instrument detection range. All results are given as a relative 
concentration in terms of number, and not mass, the relevant quantity for single particle 
instruments (such as PALMS), and this is now explicitly stated in the caption. The impact of inlet 
transmission is referenced in the figure caption to Cziczo et al., 2006 which discusses this and 
provides limits.  
 
The specificity with which the different particle types can be identified is sufficiently different in 
positive and negative ion spectra to warrant more discussion than is given. Overall, the data 
presented in this figure cannot serve to make the readers of this paper confident that the 
picture of the aerosol composition obtained by these experiments would do an excellent job of 
representing the reality of what is present. 
 
The reviewer is correct and the blind results section (pg. 19-21) has been extended to discuss 
uncertainties and potential biases in more detail. 
 
 
 
 
  



Reviewer 2 
 
The authors present a new analytical tool to tackle the difficult task of analyzing datasets 
generated by single-particle-laser-ablation-mass-spectrometry (spms). They utilize the random 
forest as a machine learning approach. The authors state why they apply this method and what 
they expect. It is clearly presented how a random forest is generated and subsequently used. 
The produced results are scientifically promising. And grant a novel view onto these kind of 
datasets. 
After building the random forest and analyzing its properties, the authors apply the forest to a 
blind dataset. The results are shown and they differ quite significantly from the assumed true 
constitution. (Fig 5). 
 
The critical discussion of these results and of the general problems of supervised machine 
learning remains quite limited. The most important neglected point being dataset bias. E.g. the 
random forest might find hidden correlations within the training dataset that have nothing to 
do with the chemistry of the particles but with instrumental parameters, and which most 
probably are not apparent during the blind test. 
One example would be that the signal intensities could depend on ambient temperature, 
ambient pressure, or laser power. Especially result showing close to 100% true classifications, 
should be a examined more critically than done by the authors.] 
 
We repeat the overview statements for clarity. We agree with the dataset bias point and note 
that it is repeated below; In response to that point the issue of dataset bias is discussed in full 
detail at the end of the blind dataset section 20: 16 – 21: 2.  
 
Following a list of individual remarks: 
p.5_16 chemically similar and easily separable this is an oxymoron chemically similar implies a 
strong overlap of chemical features 
 
We meant to convey that broad categories are easier to separate in feature space. The 
correction has been made on 5:21. 
 
p.8_20-23 why is this normalization done this removes information about the ionization 
efficiencies, how can you differentiate between ionization efficiency and relative abundance 
 
The reviewer is correct that ionization efficiency is one factor in generation of ions but the topic 
of aerosol ablation and ionization in single particle mass spectrometers is more complex. Other 
factors include, but are not limited to, mixing state, matrix effects, hydration state, aerosol 
position in the desorption and ionization laser, etc. Each factor, as well as their interplay, is the 
topic of multiple papers. Normalization is commonly used to compare spectra to each other 
since these factors may vary for each particle (i.e., from spectra to spectra).  
We discussed this comment and have decided the succinct response is to clarify this with “Mass 
peaks represent fractional ion abundance, measured as a total signal (ion current) normalized to 
allow for spectra to spectra comparison [Cziczo et al., 2006].” 



 
p.9_18 Are there really up to 3000 tests before reaching a node? This would mean each m/z 
value is tested roughly 6 times. And the tree would have to be at least 6000 nodes. 
 
The maximum depth of a tree (number of nodes before reaching a leaf) ultimately emerges from 
other model parameters that were optimized. It is noted that most trees, and most paths to a 
given leaf, will have significantly fewer than 3000 tests (10 – 3000). Because there are strongly 
overlapping aerosol types such as the fertile soils, it is not unreasonable for a tree to 
occasionally require ~3000 test . For example, if the aerosol types are not perfectly separable 
along a given dimension, the algorithm will continue to create nodes (which encoding a line that 
separates the two types) that slowly converge to a solution that best separates either category. 
 
p.10_19 Should be left out in ~40% of the trees. Here would be a good point to mention dataset 
bias. Because although a spectrum is not in the training-set there could still be hidden 
correlation to the others. 
 
The issue of dataset bias, including this point, is discussed in detail at the end of the blind 
dataset section 20: 16 – 21: 2.  
 
p.11_4 might be better to follow if "To generate variability in the model only a random set of 
splits is tested at each node and only the best split in terms of entropy is chosen" 
 
We agree this reads more smoothly. The sentence on 11: 13 -15 has been updated.  
 
p.12_15 markers 
 
This has been corrected. 
 
p.13_11 helps to put 
 
This has been corrected. 
 
p.16_18-19 I don’t understand Point b). If it is distinct why is it not separated. 
 
We are conveying that aerosols with similar properties can appear mathematically distinct 
when clustering with a distance metric. Aerosols within a broader category can still occupy 
distinct regions of parameter space, a consequence that leads to the need to manually combine 
clusters in previous studies as mentioned on 5: 16-18. In Figure 1, for example, bacteria (yellow) 
forms two distinct clusters. With a distance metric, spectra in the smaller bacteria cluster will 
likely be clustered with the collocated hazelnut particles rather than the primary bacteria 
cluster center in the vicinity of (.01, .001). The issue is compounded when larger, more 
chemically diverse categories are defined.  
 
 



p.16_20 Here is an example of dataset bias and it is shown to hold some information but the 
backside is not discussed. 
 
Please note that this is also commented on in the overview remarks. We agree and expand the 
issue of dataset bias which is discussed in detail at the end of the blind dataset section 20: 15 – 
21: 2.  
 
p.18_2-9 If Misclassification is as shown 1-4% it cannot explain the (not SOA) fractions of 3-9% 
for fertile soil, ATD and cellulose. There must be an additional source of error. 
 
Experimental uncertainties such as internal mixing and transmission efficiency, as well as model 
uncertainties (including overfitting) explain additional differences between the test error and 
generalization error.  Details regarding these uncertainties have been extended at various points 
on pages 19-21 (please see the full track changes version), and a discussion of dataset bias has 
been added on 20: 15 – 21: 2. 
 
p.18_13 The authors state that 90% of the mixture can be characterized with most certainty. 
Comparing this to Fig 5. this statement seems quite exaggerated. 
 
Since the criterion for “most certain” was relative and loosely defined, we have updated the 
statement and removed the mention of (~90%) on 19: 5 – 7. 

“Since there is significant model agreement on the percentages of SOA and coated 
feldspars, this part of the blind mixture population can be characterized with more 
certainty.” 

 
p.18_16 It seems unrealistic that there was so much effort put into this campaign and without 
characterizing the used aerosols in more detail. 
 
We have expanded the paragraph to provide our full report from the AIDA facility in the revised 
paragraph (extending to the comment below) : “The aerosols reported in the blind mixture were 
soot, mineral dust, and SOA. The soot aerosols used in the blind study were smaller than in the 
training data experiments and were below the cutoff diameter for PALMS; they were therefore 
not detected and therefore could not be identified by the algorithms. This bias is transmission 
efficiency should be noted, whereby aerosols are detected at a rate that depends on their size 
and aerodynamic properties [Cziczo et al., 2006]. The result is that particles with diameters 
below ~200 nm or greater than ~1000 nm are detected with increasing inefficiency which lead 
to relative undercounting of small soot or large mineral dust [Cziczo et al., 2006]. The specific 
mineral component was not identified and may have been either a pure mineral or soil dust. 
Both algorithms robustly labeled SOA with large agreement, consistent with the 100% accuracy 
observed in the test set. “ 
 
 
p.18_18 Why was the PALMS instrument able to see soot particles in the training set with 100% 
accuracy if it cannot be seen? Why not use the size distributions of the individual components 



and the transmission efficiency of the PALMS to at least get the expectable aerosol 
constitution?  
 
The soot in the blind experiments was smaller than in the training data set and we regret this 
was not explicitly stated earlier. We clarify now as “The soot aerosols used in the blind study 
were smaller than in the training data experiments and were below the cutoff diameter for 
PALMS; they were therefore not detected and therefore could not be identified by the 
algorithms.” 
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Abstract 1	
 
Compositional analysis of atmospheric and laboratory aerosols is often conducted via 2	

single-particle mass spectrometry (SPMS), an in situ and real-time analytical technique 3	

that produces mass spectra on a single particle basis. In this study, machine learning 4	

classifiers are created using a dataset of SPMS spectra to automatically differentiate 5	

particles on the basis of chemistry and size. Machine learning algorithms build a 6	

predictive model from a training set for which the aerosol type associated with each mass 7	

spectrum is known a priori. Our primary focus surrounds the growing of random forests 8	

using feature selection to reduce dimensionality, and the evaluation of trained models 9	

with confusion matrices.  In addition to classifying ~20 unique, but chemically-similar, 10	

aerosol types, models were also created to differentiate aerosol within four broader 11	

categories: fertile soils, mineral/metallic particles, biological, and all other aerosols. 12	

Differentiation was accomplished using ~40 positive and negative spectral features. For 13	

the broad categorization, machine learning resulted in a classification accuracy of ~93%.  14	

Classification of aerosols by specific type resulted in a classification accuracy of ~87%. 15	

The ‘trained’ model was then applied to a ‘blind’ mixture of aerosols which was known 16	

to be a subset of the training set. Model agreement was found on the presence of 17	

secondary organic aerosol, coated and uncoated mineral dust and fertile soil.  18	

 19	

1. Introduction 20	



	

	

3	

 Following the introduction of random forests in the 1990s, recent developments in 1	

deep learning and neural networks have triggered a renewed interest in machine learning. 2	

This has led to the development of numerous easy-to-use, freely-available, open-source 3	

packages in popular programming languages like Python, and these tools are becoming 4	

increasing used in academia and industry. While random forests have been used for 5	

complex classification and regression analysis in various fields, studies that employ 6	

random forests in aerosol mass spectrometry remain sparse. Utilizing these tools, the 7	

primary purpose of our study is to introduce a framework for growing random forests, 8	

reducing dimensionality, ranking chemical features, and evaluating performance using 9	

confusion matrices. Such properties are desirable for SPMS studies, where input 10	

variables can become redundant and interpretability is more limited with more advanced 11	

methods such as neural networks. Neural networks rely on a series of variable 12	

transformations rectified by nonlinear activation functions, making details of a given 13	

classification notoriously difficult to follow. The interpretably and explainability of these 14	

models remains an active area of research. Overall, analysis techniques such as those 15	

falling out of recent artificial intelligence research can prove useful for helping to tease 16	

out the subtle yet significant impact that aerosol chemistry has on the climate system.  17	

 Atmospheric aerosols impact clouds and the Earth’s radiative budget. A lack of 18	

understanding of aerosol composition therefore contributes to uncertainty in 19	

determination of both anthropogenic and natural climate forcing [Boucher et al., 2013; 20	

Lohmann and Feichter, 2005]. Aerosols directly affect atmospheric radiation by 21	

scattering and absorption of radiation from both solar and terrestrial sources. The 22	

radiative forcing from particulates in the atmosphere depends on optical properties that 23	

Deleted: cluster analysis and 24	

Deleted: A25	



	

	

4	

vary significantly among different aerosol types [Lesins et al., 2002].  Aerosols also 1	

indirectly affect climate via their role in the development and maintenance of clouds 2	

[Vogelmann et al., 2012; Lubin et al., 2006]. Ultimately, the formation, appearance, and 3	

lifetime of clouds are sensitive to aerosol properties like shape, chemistry, and 4	

morphology [Lohmann and Feichter, 2008]. Characterization of aerosol properties plays a 5	

vital role in understanding weather and climate. 6	

The chemical composition and size of aerosols has been analyzed on a single 7	

particle basis in situ and in real-time using single particle mass spectrometry (SPMS; 8	

Murphy [2007]). First developed ~2 decades ago, SPMS permits the analysis of aerosol 9	

particles in the ~150 – 3000 nm size range, while differentiating internal and external 10	

aerosol mixtures and characterizing both semi-volatile (e.g. organics and sulfates) and 11	

refractory (e.g. crystalline salts, elemental carbon and mineral dusts) particle components.  12	

Particles are typically desorbed and ionized with a UV laser and resultant ions are 13	

detected using time-of-flight mass spectrometry [Murphy, 2007]. A complete mass 14	

spectrum of chemical components is normally produced from each analyzed aerosol 15	

particle [Coe et al., 2006]. Despite almost universal detection of components found in 16	

atmospheric aerosols, SPMS is not normally considered quantitative without specific 17	

laboratory calibration [Cziczo et al., 2001]. 18	

Chemical composition of an individual atmospheric aerosol particle is a complex 19	

interplay between its primary composition at the source (i.e. dust, biogenic organic, 20	

anthropogenic organic, soot, etc.) and its atmospheric processing up to the time of 21	

detection. Atmospheric processing can include a combination of coating with secondary 22	

material, coagulation and cloud processing. Even different primary aerosol types can 23	



	

	

5	

have similar mass spectral markers. For example, fly ash, mineral dust and bioaerosol can 1	

all contain strong phosphate signal [Zawadowicz et al., 2017]. Secondary material is 2	

often difficult to differentiate from primary material, but even minor compositional 3	

changes can be atmospherically important. As one example, mineral dusts are known to 4	

be effective at nucleating ice clouds; however, despite minor addition of mass, 5	

atmospherically processed mineral dust is less suitable for ice formation [Cziczo et al., 6	

2013]. As a second example, ice nucleation in mixed-phase clouds has been suggested to 7	

be predominantly influenced by feldspar, a single component among the diverse 8	

mineralogy of atmospheric dust [Atkinson et al., 2013]. Using current SPMS data 9	

analysis approaches, it is difficult to detect these minor yet important compositional 10	

differences and new robust and generalizable analysis techniques are critical. 11	

We show that supervised training with random forests can differentiate aerosols in 12	

SPMS data more accurately than simpler approaches. Various clustering methods have 13	

been used to group aerosol types [Murphy et al., 2003; Gross et al., 2008] but these 14	

algorithms are known to combine chemically-similar aerosols as they do not incorporate 15	

known particle labels in the training process. Another limitation encountered is the need 16	

to manually reduce the number of final clusters due to grouping of mathematically-17	

similar yet chemically-distinct aerosols [Murphy et al 2003]. Such ‘unsupervised’ 18	

clustering algorithms automatically group unlabeled data points in feature space, in this 19	

case mass spectral signals. For the purposes of setting broad aerosol categories, which are 20	

chemically distinct and easily separable in feature space, clustering is the simpler tool and 21	

the data easier to interpret. For identifying new or potentially unexpected atmospheric 22	

aerosols, such properties are desirable; however, the advantages of clustering greatly 23	
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6	

diminish when considering similar particle types that overlap in feature space. Fertile 1	

soils, for instance, are often grouped into a single category despite different sources and 2	

atmospheric histories.  3	

Clustering algorithms should be considered as a tool to use alongside supervised 4	

classification. The latter may be used to further explore unique aerosol types or verify 5	

manually labeled clusters with higher precision. Furthermore, the ensemble approach 6	

presented here also produces interpretable variable rankings and probabilistic predictions 7	

that assist in characterizing measurement uncertainty. Uncertainties associated with mass 8	

spectrometry include the determination of mass peak areas, internal mixing of aerosols 9	

during the experiment, and transmission efficiency. Additionally, the classification 10	

method itself introduces and quantifies uncertainty in aerosol identification as a result of 11	

imperfect classes separation and parameter uncertainty. The choice of supervised or 12	

unsupervised machine learning will depend on the researcher’s use-case, and each 13	

method has unique advantages and disadvantages. We note a limitation of the random 14	

forest approach - and for supervised learning in general - is the inability to classify 15	

aerosol types outside of the training set. The ability of a random forest to characterize 16	

ambient atmospheric datasets, therefore, will strongly depend on which aerosols are 17	

contained within the training set. Additionally, it is noted that comparisons between all 18	

machine learning models are sensitive to user-defined parameters and algorithm 19	

implementation. 20	

In this study, we demonstrate the capabilities of random forests to automatically 21	

differentiate particles on the basis of chemistry and size. The resulting model can capture 22	

minor compositional differences between aerosol mass spectra. By testing predictions 23	
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7	

using an independent, or ‘blind’, dataset, we illustrate the feasibility of combining on-line 1	

analysis techniques such as SPMS with machine learning to infer the behavior and origin 2	

of aerosols in the laboratory and atmosphere.   3	

2. Methodologies  4	
 

2.1 PALMS 5	

The Particle Analysis by Laser Mass Spectrometry (PALMS) instrument was 6	

employed for these studies. PALMS has been described in detail previously [Cziczo et al. 7	

2006]. Briefly, the instrument samples aerosol particles in the size range from ~200 to 8	

~3000 nm using an aerodynamic lens inlet into a differentially-pumped vacuum region. 9	

Particle aerodynamic size is acquired by measuring particle transit time between two 532 10	

nm continuous wave neodymium-doped yttrium aluminum garnet (Nd:YAG) laser beams. 11	

A pulsed UV 193 nm excimer laser is used to desorb and ionize the particles and the 12	

resulting ions are extracted using a unipolar time-of-flight mass spectrometer. The 13	

resulting mass spectra correspond to single particles. The UV ionization extracts both 14	

refractory and semi-volatile components and allows analysis of all chemical components 15	

present in atmospheric aerosol particles [Cziczo et al. 2013].  16	

 17	

2.2 Dataset 18	

A set of ‘training data’ was acquired by sampling atmospherically-relevant 19	

aerosols. The majority of the dataset was acquired at the Karlsruhe Institute of 20	

Technology (KIT) Aerosol Interactions and Dynamics in the Atmosphere (AIDA) facility 21	

during the Fifth Ice Nucleation workshop — Part 1 (FIN01). The remainder were 22	

acquired at our Aerosol and Cloud Laboratory at MIT. The FIN01 workshop was an 23	
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intercomparison effort of ~10 SPMS instruments, including PALMS. The training data 1	

correspond to spectra of known particle types that were aerosolized into KIT’s main 2	

AIDA and a connected auxiliary chamber for sampling by PALMS and the other SPMSs 3	

(Table 1). Hereafter we group both chambers with the name ‘AIDA’.  The number of 4	

training spectra acquired varied by particle type, ranging from ~250 for secondary 5	

organic aerosol (SOA) to ~1500 for potassium-rich feldspar (“K-feldspar”). In total, 6	

~50,000 spectra are considered with each spectrum containing 512 possible mass peaks 7	

and an aerodynamic size. (Table 2). Additionally, the FIN01 workshop included a blind 8	

sampling period, where AIDA was filled with an unknown number of aerosol types 9	

known to be from the training set (i.e., for which spectra had already been acquired) but 10	

(a priori) of unknown size, specific types and at unknown concentrations. 11	

Figure 1 illustrates a simple differentiation of particles using only two mass peaks 12	

in one (negative) polarity. Mass peaks represent fractional ion abundance, measured as a 13	

total signal (ion current) normalized to allow for spectra to spectra comparison [Cziczo et 14	

al., 2006]. In this example, the normalized areas of negative mass peaks 24 (C2-) and 16 15	

(O-) are plotted. Distinct aerosol types are differentiated by color with clusters forming in 16	

this two-dimensional space. Note that spectra of the same aerosol type form distinct 17	

clusters (e.g. Arizona Test Dust, ATD), as do similar aerosol classes (e.g., soil dusts). Co-18	

plotted in Figure 1 are data from the blind experiment. Distinct clusters of spectra from 19	

the blind experiment are noticeable and correlate with known clusters.  Described in the 20	

next section, machine learning algorithms draw “decision boundaries” that best separate 21	

different groups of data points based on set of rules. Machine learning is not bound by the 22	
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simplistic two-dimensional space shown in Figure 1 and instead uses all 512 mass peaks 1	

and aerodynamic size. 2	

2.3 Aerosol Classification  3	

A trained classification model maps a continuous input vector ‘X’ to a discreet 4	

output value using a set of parameters ‘learned’ from the data. Figure 2 illustrates the 5	

mapping of a mass spectrum to vector space. In contrast to traditional, hard-coded 6	

classification methods, machine learning determines parameters that partition the data set. 7	

To form X, mass spectra are converted to dimensional vectors normalized to the total ion 8	

current (i.e., the total of all mass peaks sum to 1 in each spectrum). The elements of the 9	

vectorized mass spectrum, termed ‘features’, hold information about the ionization 10	

efficiency and relative abundance of chemical species in each aerosol and serve as the 11	

variables for the machine learning model.  12	

Machine learning is conducted in two phases: training and testing. During training, 13	

a model is constructed and iteratively updated based on data (i.e., mass spectra) from the 14	

training set. For this work, the set of known aerosol types sampled by PALMS was 15	

converted to dimensional vectors. These data form the basis set for defining each aerosol 16	

type. A random forest was used to generate predictions of aerosol type. A single decision 17	

tree is a statistical decision model that performs classification based on a series of 18	

comparisons relating a variable Xi (in this case a normalized mass peak in X) to a learned 19	

threshold value [Breiman, 2001]. A random forest is an ensemble of perturbed decision 20	

trees, whereby a final classification is made by averaging the predictions across all trees 21	

(described below in 2.4). Represented as an algorithmic tree, a binary decision tree 22	

consists of a hierarchy of nodes where each node connects via branches to two other 23	
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nodes deeper in the tree. At each node, one of the two branches is taken based on whether 1	

a normalized peak Xi is greater or less than a threshold value. Each branch leads to 2	

another node where a different test is performed. After a series of tests, one at each node, 3	

a class is assigned to a given sample; these are the so-called ‘leaves’. Figure 2 illustrates 4	

the classification model for a single decision tree.  5	

Each test in the tree narrows the set of reachable output leaves and thus the 6	

sample space of possible aerosol labels. After h tests in this study, where h ranges from 7	

10 to 3000, the set of reachable leaves and possible labels is 1 and the decision tree 8	

outputs a prediction. Because PALMS is unipolar – either a positive or negative mass 9	

spectrum is produced – simultaneous generation of positive and negative spectra on a 10	

particle-by-particle basis is not possible.  Two separate classification models, one for 11	

each polarity, were generated to classify aerosols. These are hereafter referred to as the 12	

‘positive’ and ‘negative classification algorithms’. 13	

2.4 Random Forests  14	

A random forest is an ensemble of decision tree classifiers where each classifer 15	

independently labels an unknown spectrum vector X. To make a final prediction of 16	

aerosol type, trees within an ensemble ‘vote’ on a classification label. Each vote has 17	

equal weight and the spectrum is assigned to the majority choice. Each tree within an 18	

ensemble is independently grown on a subset of the training data so that a commonly 19	

voted label implies a higher certainty. Adding members to an ensemble increases the 20	

robustness of a classification model by providing alternative hypotheses and is therefore 21	

preferable to single classifiers.  22	
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Before an ensemble method is implemented for classification, trees are 1	

independently grown during training.  A total of k trees, with k = 110, were grown using a 2	

bootstrap sample from the training set. In bootstrap sampling, each tree sees an 3	

independent sample set of equal size drawn from the full training set by sampling spectra 4	

with replacement. On average, each tree is built with ~63% of the original data, leaving a 5	

portion of the training set unsampled. The unsampled data for each tree, known as ‘out-6	

of-bag’ observations, are recorded and later provide a means to assess classification error 7	

for the forest. To determine model error, predictions are made for each point in the 8	

dataset using only the subset of trees that did not use the point for training. Each training 9	

point is left out at least once. This is analogous to making predictions with a separately 10	

trained forest that did not observe the point and prevents testing with the same data used 11	

for training.  12	

Given a bootstrap sample, a tree is grown by sequentially creating tests that 13	

maximize the separation between classes in parameter space.  A test is created by 14	

defining a comparison that minimizes the information entropy of a possible split, thus 15	

minimizing the randomness of prediction labels [Breiman, 1996]. To generate variability 16	

in the model only a random set of splits is tested at each node and only the best split in 17	

terms of entropy is chosen [Breiman, 2001]. After iteratively defining thresholds for each 18	

new node, the tree grows in size until a series of tests ending at some node Sq uniquely 19	

characterizes an aerosol as a particle type. A leaf is then appended to node Sq with the 20	

corresponding label. In classification mode, an aerosol spectrum that passes the same tree 21	

will undergo the same series of tests and will end in the same leaf, thus being labeled in 22	

the same way. For the purposes of this study, each tree had ~3,300 nodes.  23	
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The number of variables per split is chosen to be 11 and the number of trees is 1	

110. Using grid search, the optimal model was determined by enumerating combinations 2	

of these parameters on a coarse grid and selecting the values that produce the lowest test 3	

error, or out-of-bag error. Given several lists of parameters, where each list corresponds 4	

to a different model hyperparameter, models are trained one-by-one until each 5	

combination of parameters has been tested. For this study, the grid representing variables 6	

per split was spaced by 1 and the grid for number of trees was spaced by 5. The number 7	

of nodes in each tree depends on other hyperparmeters and cannot be explicitly set. 8	

Model behavior is primarily sensitive to the number of variables per split, and shows 9	

weak dependence on the number of trees and number of input variables beyond small 10	

values. As the number of variable splits increases, error decreases exponentially to a local 11	

minimum before again rising due to over fitting. Alternatively, as the number of trees is 12	

increased the error converges to some nonzero value, a known characteristic of random 13	

forests where test error converges to the generalization error. The models were trained 14	

with the Python 2.7 Scikit-learn module on a MacBook Pro with 16 GB 1600 MHz 15	

DDR3 memory and a 2.5 GHz Intel Core i7 processor. A typical random forest model 16	

took about 5-10 seconds to train, and we found a linear relationship between runtime and 17	

both the number of trees and variables per split.  18	

Overall, the generalizability and robust performance of random forests is owed 19	

significantly to the series of random statistical procedures used to construct such models. 20	

An ensemble classifier reduces variability by averaging predictions over a series of 21	

independently trained models, and bagging introduces additional randomness by 22	

producing “perturbed” versions of the original data via random sampling of input data. 23	
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The randomness used in constructing forests, both in bagging the training set and 1	

choosing variable splits, work to decorrelate the output of each tree even as the inputs 2	

become correlated [Breiman, 2001]. As the number of trees increases, the law of large 3	

numbers guarantees a convergence of the out-of-bag error to the generalization error.  4	

2.5 Dimensionality Reduction and Chemical Feature Selection 5	

Dimensionality reduction is the process of representing data with fewer variables 6	

than initially present in the dataset, in this case less than the original 512 mass peaks and 7	

aerodynamic size. In addition to facilitating data visualization, reducing computation time 8	

and limiting overfitting [Mjolsnes, 2001], dimensionality reduction, in the context of 9	

aerosol mass spectra, also indicates the most important chemical markers for 10	

differentiation. Feature ranking was algorithmically determined by comparing the 11	

performance of trees before and after removing information about peak Xi. The method is 12	

that the values of variable Xi is permuted for tree k in the out-of-bag set so that the 13	

variable is irrelevant to the final label. The change in misclassification before and after 14	

the permutation is calculated and then repeated for all trees so that a variable ranking is 15	

obtained [Breimann, 2001]. Table 2 ranks mass peaks (features) by polarity in importance 16	

using this method. The columns at left list feature rankings (i.e., most to least important 17	

for correct classification) for the entire set of aerosol types. The columns at right list 18	

rankings when aerosol types are grouped into the broad, chemically similar, categories. A 19	

final ranking was determined by sequentially adding variables and observing 20	

classification performance response. All variables preceding two e-foldings in 21	

classification error were maintained in the final model. Both the specific aerosol type and 22	

broad aerosol category models were retrained using this subset of the initial variables, 23	
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listed in Table 2. 1	

2.5 Comparison to Euclidean Distance Classifier  2	

To access relative model performance, we contrast the results with a simple 3	

classifier that compares unseen aerosols to a set of class mean vectors. Using the 4	

Euclidean distance metric, the unknown aerosol is assigned to the nearest class. This 5	

simple baseline classifier helps to put results in the context of machine learning 6	

techniques that rely on distance-based metrics such as k-means and hierarchical 7	

clustering. K-means clustering attempts to divide the data points into k distinct clusters, 8	

representing spectra as vectors. Using Euclidean distance, the standard algorithm assigns 9	

points to centroids, or clusters, which are essentially mean vectors representing the 10	

average of all points in the cluster. Assuming perfect convergence of k-means clustering, 11	

where k is the number of aerosol classes, each cluster represents the mean of aerosol in 12	

that class. The random forest results below demonstrate many areas of improvement over 13	

the simple classifier. 14	

 15	

3. Results 16	

 
3.1 Confusion Matrices and Probabilistic Model Performance  17	
 

A confusion matrix captures misclassification tendencies by pair-wise matching 18	

the model prediction with the true aerosol type or broad category [Powers, 2007], and can 19	

be understood as a contingency table matching model predictions to true labels. 20	

Confusion matrices represent model predictions as columns i and true aerosol type of 21	
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category as rows j, where class names are mapped to integers i , j ∈ {1,2, … , y}. In this 1	

study, matrices have been normalized along each column to show the fraction of aerosols 2	

labeled as j that actually belong to i (Figures 3 and 4). For aerosol classification, these 3	

matrices can also be interpreted as similarity measures between particle types. Since the 4	

basis of classification is separation of physical quantities, misclassifications result from 5	

similarity in mass peaks and their ion abundance between aerosol types. This is most 6	

easily visualized as overlapping clusters in the simple two dimensional space in Figure 1. 7	

Model performance for each aerosol is summarized in the diagonal elements of 8	

the	confusion	matrix , which represent the fraction of aerosol in column j labeled 9	

correctly. The classification accuracy (a) is given by averaging diagonal elements of P. A 10	

perfect classification model produces the identity matrix, as all data points are classified 11	

correctly 100% of the time. For example, in the positive confusion matrix, SOA and Agar 12	

growth medium are correctly labeled in the test set 100% of the time. Barring element 13	

truncation, all columns of P add to 1.   14	

Figures 3 and 4 display confusion matrices as heat maps for the full set of particle 15	

labels and broad grouped particle categories, respectively. Broad categories are 16	

delineated by bold horizontal and vertical lines in Figure 3 as fertile soil (Argentinian, 17	

Chinese, Ethiopian, Moroccan and two German soils), pure mineral dust and metallic 18	

particles (ATD, illite NX, fly ash, Na-feldspar, K-feldspar), biological (Agar growth 19	

medium, P. syringae bacteria, cellulose, Snomax, and hazelnut pollen), and other (K-20	

feldspar with sulfuric acid (SA) and SOA coatings, soot, and SOA) particles. Some 21	

model confusion exists between fertile soils and coated/uncoated feldspars which can be 22	

explained since soils are mineral dust mixed with organic and other materials. 23	
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Positive mass spectra appear to hold more information with respect to 1	

differentiating aerosols than negative. Label-wise classification accuracy for the negative 2	

algorithm ranges from 3-5% lower. A large part of this performance discrepancy is due to 3	

greater ability of positive spectra to differentiate coated particles within the ‘other’ 4	

category. 5	

In addition to quantifying misclassification tendencies between classes, the 6	

confusion matrix can be redefined to show confusion for aerosols within broad categories 7	

themselves. The precision score [Powers, 2007] captures the classification behavior for 8	

some subset of aerosol L by averaging fractions of correctly classified aerosols for labels 9	

within that category:  10	

Precision Score(L) =  1
|3| ∑ P(|7|

89: 𝑖	 ∈ 𝐿, 𝑗 ∈ 𝐿)                  (3) 11	
 12	

When applied to 𝑃A, the precision score captures classification performance on a 13	

population with only aerosol labels contained in L. The algorithm is expected to correctly 14	

label an aerosol in such a population with a probability equal to the precision score. The 15	

precision score is valuable when using the classification model as a particle screener, 16	

producing probability distributions over a subset of aerosol labels of interest. The 17	

confusion characteristics are shown in Table 3 for each category in terms of the precision 18	

score and the mean and standard deviation of misclassification within each category. 19	

Although both models perform similarly for biological spectra, discrepancies of 2-5% 20	

appear in the remaining categories. For regimes consisting of only mineral/metallic or 21	

other particles, the positive algorithm shows intraclass performance advantages in terms 22	

of the precision score, but most notably in terms of fewer mislabeling of mineral/metallic 23	

particles.  The largest precision discrepancy is observed for fertile soils, where the 24	
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positive ion algorithm has a 5% advantage in precision with approximately half the false 1	

labeling rate.  2	

Across all categories, the random forest shows improvements over the Euclidean 3	

classifier in terms of both accuracy and precision. Figure 4 directly compares confusion 4	

matrices for the two methods, revealing overall accuracy improvements of at least 20%. 5	

The largest improvements are in the fertile soil and other category, where accuracy rises 6	

between 20% and 39% with the random forest. Computing the full confusion matrix for 7	

the Euclidean technique (as in figure 3) reveals similar results, with far more frequent 8	

mislabeling between fertile soils as well as coated/uncoated particles than our approach. 9	

These results reinforce the fact that chemically-similar aerosols which overlap in feature 10	

space will often be grouped together when using a single, distance-based classifier. The 11	

improvement from random forests is likely a result of a) the ensemble approach, which is 12	

known to produce better generalizability than single classifiers and b) the tendency of 13	

aerosols with similar chemical properties and atmospheric effect to appear 14	

mathematically distinct with a distance metric.      15	

 Beyond classification, the obtained variable rankings alone provide interesting 16	

insights into the dataset. It is noteworthy that while most of the features are logical 17	

differentiators of the aerosol types investigated in FIN01 there were also surprises. One 18	

example is 59+ (cobalt), determined to be one of the most important features for 19	

differentiation. Further investigation determined this material was associated with 20	

tungsten carbide contaminant from dry powder dispersion equipment used on some 21	

samples. The contamination affected feldspar samples used during the second half of the 22	

AIDA measurements in particular. This serves to illustrate the lack of a priori judgment 23	
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by the algorithm and an unintended benefit of machine learning process (i.e., 1	

contamination identification).   2	

 3	

3.2 Characterization of Blind Data  4	

As part of the FIN01 workshop, an a priori unknown number of aerosol types 5	

from Table 1 were aerosolized into the ADIA chamber at unknown size and relative 6	

concentration. PALMS, one member of the blind intercomparison effort, collected  7	

~25,000 spectra. After data analysis, the aerosol types and relative abundances were 8	

provided to each group (Figure 5, top center).  9	

The presence or absence of particle types in the blind set was initially diagnosed by 10	

choosing particles predicted at or above the 1% level. We note here that this step was 11	

based on the knowledge that (1) a distinct set of particles would be placed in the chamber 12	

and (2) particles present at or below the 1% level were most likely contamination. We 13	

further note that this step is unique to a blind study and would not be applicable to the 14	

atmosphere.  15	

Figure 5 illustrates the fractional percentages for each aerosol category. Because 16	

SOA was nearly always labeled correctly (Figure 3), the remaining aerosols are 17	

considered separately using the full set of candidate aerosol labels. Both positive and 18	

negative models arrived at similar results, with inconsistencies primarily associated with 19	

the presence of trace fertile soils and mineral dust / fly ash particles. The positive 20	

algorithm identifies ~2-4% of the AIDA population as each Argentinean soil, German 21	

soil, ATD, and cellulose whereas the frequency of these aerosols was too low to consider 22	

in the negative. Alternatively, the negative model estimates Na-Feldspar at ~14% of the 23	
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total population, a label not identified by the positive algorithm. This discrepancy can 1	

partially be explained by the 1% selection criterion for aerosols present in the population. 2	

Fertile soils, ATD, and cellulose frequently accumulate error along rows in the full 3	

positive confusion matrix, indicating frequent confusion with other categories (Figure 3). 4	

Furthermore, with the observed misclassification rates ranging ~1-4%, it is expected that 5	

these aerosol labels are false positives. The negative model offers an alternative 6	

hypothesis, suggesting these miscellaneous aerosols are Na-feldspar. Since there is 7	

significant model agreement on the percentages of SOA and coated feldspars, this part of 8	

the blind mixture population can be characterized with more certainty. For the disputed 9	

aerosol labels, more credence is lent to the negative classification algorithm on the basis 10	

of improved precision for fertile soils.  11	

The aerosols reported in the blind mixture were soot, mineral dust, and SOA. The 12	

soot aerosols used in the blind study were smaller than in the training data experiments 13	

and were below the cutoff diameter for PALMS; they were therefore not detected and 14	

therefore could not be identified by the algorithms. This bias is transmission efficiency 15	

should be noted, whereby aerosols are detected at a rate that depends on their size and 16	

aerodynamic properties [Cziczo et al., 2006]. The result is that particles with diameters 17	

below ~200 nm or greater than ~1000 nm are detected with increasing inefficiency which 18	

lead to relative undercounting of small soot or large mineral dust [Cziczo et al., 2006]. 19	

The specific mineral component was not identified and may have been either a pure 20	

mineral or soil dust. Both algorithms robustly labeled SOA with large agreement, 21	

consistent with the 100% accuracy observed in the test set.  22	
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SOA coated mineral dust was identified as a particle type. This material was not 1	

directly input to AIDA but the report is most likely correct, due to coagulation within the 2	

AIDA chamber during the course of the blind experiment. Since percentages were 3	

reported before particles enter the chamber, it is not possible to directly verify the 4	

fraction of SOA-coated aerosols or the extent to which coagulation occurs, as the process 5	

is time dependent. This may also explain some indications of fertile soils, which are 6	

known to be mixtures of mineral and organic components. The training data set did not 7	

contain coagulated SOA and mineral dust but did include SOA-coated K-Feldspar, which 8	

explains the identification.  9	

While both models identified a variety of fertile soils, and not a single type, these 10	

results are largely consistent with the presence of coagulated organics and minerals and 11	

the known uncertainties highlighted by the confusion matrices discussed previously. 12	

Given the presence of any single mineral dust, some confusion with fertile soils, SA 13	

coated Feldspar, and Na-Feldspar is expected (Figure 3). Moreover, as discussed 14	

previously [Gallavardin et al., 2008], AIDA backgrounds are not completely particle-free. 15	

During the FIN01 study, contamination particles from previous test aerosol were 16	

frequently observed as background and they could also be the origin of some low-17	

concentration particles matching fertile soil chemistry. Overall, discrepancies between 18	

the reported aerosol fractions and model predictions can be accounted for with model and 19	

experiential uncertainties.  20	

An additional consideration is experimental bias in the training data, which could 21	

result in test errors that underestimate true generalization errors in real aerosol 22	

populations. For SPMS, spurious relationships between spectra may arise due to 23	
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instrumental parameters that are assumed to be constant between the training, test, and 1	

blind data. This consideration plagues all SPMS analysis requiring a training set, where 2	

correlations may arise as a result of signals that depend on ambient properties like 3	

temperature, humidity, and pressure or instrument parameters such as laser power.  4	

Although several well-established steps were taken to minimize overfitting - including 5	

dimensionality reduction and out-of-bag testing - dataset bias may still exist if these 6	

quantities vary significantly between aerosol types in the training or blind data. 7	

 8	

 9	

 

4. Conclusions and Future Work  10	

This study lays out a framework for training and implementing random forests on 11	

SPMS data, with a focus on dimensionality reduction and the evaluation of model 12	

performance with confusion matrices. A key benefit to the proposed method is chemical 13	

feature selection, which allows researchers to identify potentially important chemical 14	

markers between arbitrary groups of aerosols or identify sources of contamination. In this 15	

particular study, the contaminant was identified and removed in the dimensionality 16	

reduction step while reasoning through the subset of ranked features. As illustrated by 17	

Figure 2, cobalt is suspiciously identified as the second most important variable for 18	

classification, but it is a known component of the dry powder dispersion equipment used 19	

on some samples. The contaminate peak would be present in a cluster analysis, but it 20	

would not be obvious to pick out and	remove	as	standard	clustering	 is	not	 typically	21	

suited	for	variable	rankings.   22	
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For future studies tackling ambient atmospheric data that may contain aerosol 1	

types absent from the training set, a form of subspace selection may be used to improve 2	

results. The region of parameter space where training data is available can be 3	

characterized with a joint probability density function. One such approach is kernel 4	

density estimation - a machine learning method that approximates a multidimensional 5	

probability density function in a non-parametric manner based on data density. To obtain 6	

accurate probability estimates, the method should be fit with a smaller set of important 7	

but uncorrelated peaks. The task of classification is then preceded by a filtering step. 8	

Spectra residing in the subspace containing the training data should first be identified 9	

based on the probability density function. Then, only these particles that are most certain 10	

to lie in the training subspace are classified using the classification model as described in 11	

this paper. An alternative is to combine the method with clustering by classifying 12	

particles in each automatically identified cluster. 13	

Overall, the random forest approach allows for differentiation of aerosols within a 14	

SPMS dataset, augmenting existing tools and reducing the need for a qualitative 15	

comparison between mass spectra. Across a representative sample of possible aerosol 16	

types, the behavior of each algorithm predictably allows users to infer the presence or 17	

absence of specific aerosols and quantify aerosol abundance. Machine learning is 18	

automated and the output of the model must then be informed by human knowledge of 19	

aerosol chemistry. Machine learning should therefore be considered as an additional tool 20	

to interpret mass spectra to better distinguish aerosols with unique properties in terms of 21	

atmospheric chemistry, biogenic cycles, and population health.   22	

The random forest classification framework described here may be generalized to 23	
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any instrument, or set of instruments, capable of collecting physical and chemical 1	

information that distinguishes particles. Although the method described here is applied to 2	

a stand-alone SPMS and tested with a set of ‘blind’ data, ancillary laboratory or field data 3	

can be integrated to expand the data set. The success of these algorithms is data-4	

dependent, where better performance is expected for instruments that provide more, and 5	

more quantitative, analysis of the aerosol properties. Although the algorithms 6	

implemented in this study were primarily used to categorize SOA, mineral dust, fertile 7	

soil and biological aerosols, these models can adopt an arbitrary large set of aerosol data.  8	
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Table Captions   1	

 2	

  3	
Aerosol	type	 FIN	

Label		
Description	and/or	supplier	 Generation	method	 Sample	

provided	
by	

Reference	

Argentinian	 SDAr01	 Soil	dust	collected	in	La	Pampa	
province,	Argentina	

Dry-dispersed	 KIT	 (Steinke	et	al.,	
2016)	

Chinese		 SDMo01	 Soil	collected	from	Xilingele	steppe,	
China/Inner	Mongolia	

Dry-dispersed	 KIT	 (Steinke	et	al.,	
2016)	

Ethiopian	 VSE01	 Soil	collected	in	Lake	Shala	National	
Park,	Ethiopia	(collection	
coordinates:	7.5	N,	38.7	E)	

Dry-dispersed	 KIT	 N/A	

German	 SDGe01	 Arable	soil	collected	near	
Karlsruhe,	Germany	

Dry-dispersed	 KIT	 (Steinke	et	al.,	
2016)	

Moroccan	 DDM01	 Soil	collected	in	a	rock	desert	in	
Morocco	(collection	coordinates:	
33.2	N,	2.0	W)	

Dry-dispersed	 KIT	 N/A	

Paulinenaue	 N/A	 Arable	soil	collected	in	Northern	
Germany	(Brandenburg)	

Dry-dispersed	 KIT	 N/A		

ATD	 N/A	 Arizona	Test	Dust,	Powder	
Technology,	Inc.	(Arden	Hills,	MN)	

Dry-dispersed	 MIT	 N/A	

Illite	 IS03	 Illite	NX	(Arginotec,	Germany)	 Dry-dispersed	 KIT	 (Hiranuma	et	al.,	
2015a)	

Fly	ash	 N/A	 Four	samples	of	fly	ash	from	U.S.	
power	plants:	J.	Robert	Welsh	
Power	Plant	(Mount	Pleasant,	TX),	
Joppa	Power	Station	(Joppa,	IL),	
Clifty	Creek	Power	Plant	(Madison,	
IN)	and	Miami	Fort	Generating	
Station	(Miami	Fort,	OH)	(Fly	Ash	
Direct,	Cincinnati,	OH)	

Dry-dispersed	 MIT	 (Garimella,	2016;	
Zawadowicz	et	al.,	
2016)	

Na-Feldspar	 FS05	 Sodium	and	calcium-rich	feldspar,	
samples	provided	by	Institute	of	
Applied	Geosciences,	Technical	
University	of	Darmstadt	(Germany)	
and	University	of	Leeds	(UK)	

Dry-dispersed	 KIT	 (Peckhaus	et	al.,	
2016)	

K-Feldspar	 FS01	 Potassium-rich	feldspar,	samples	
provided	by	Institute	of	Applied	
Geosciences,	Technical	University	
of	Darmstadt	(Germany)	and	
University	of	Leeds	(UK)	

Dry-dispersed	 KIT	 (Peckhaus	et	al.,	
2016)	
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Table 1. Description of aerosol types used in training data set. Rows are grouped and 1	

colored by broad aerosol categories in the following order: Fertile Soil, Mineral/Metallic, 2	

Biological, and Other.  3	

 4	

5	

Agar	 N/A	 Agar	growth	medium	for	bacteria,	
Pseudomonas	Agar	Base	(CM0559,	
Oxoid	Microbiology	Products,	
Hampshire,	UK)	

Wet-generated	 KIT	 N/A	

Bacteria	 	
	
PS32B74	+		
PFCGina01	

	

Two	different	cultures	of	
Pseudomonas	syringae.	

Cultures	grown	on	
the	agar	growth	
medium	(as	above),	
suspended	in	
nanopure	water	and	
wet-generated	

KIT	 (Zawadowicz	et	al.,	
2016)	

Cellulose	 MCC01,	
FC01	

Microcrystalline	and	fibrous	
cellulose	(Sigma	Aldrich,	St.	Louis,	
MO)	

Wet-generated	 KIT	 (Hiranuma	et	al.,	
2015b)	

Hazelnut	 PWW-
hazelnut	

Natural	hazelnut	pollen	(GREER,	
Lenoir,	NC)	wash	water	

Wet-generated	 KIT	 (Zawadowicz	et	al.,	
2016)	

Snomax	 Snomax	 Snomax,	(Snomax	International,	
Denver,	CO)	irradiated,	desiccated	
and	ground	Pseudomonas	syringae	

Wet-generated	 KIT	 (Zawadowicz	et	al.,	
2016)	

PSL	 N/A	 Polystyrene	latex	spheres	
(Polysciences,	Inc.	Warrington,	PA),	
various	sizes	

Wet-generated	 MIT	 N/A	

Soot	 CAST	
minOC	
or	
maxOC	

CAST	soot	 miniCAST	flame	soot	
generator	
(manufactured	by	
Jing	Ltd	Zollikofen,	
Switzerland)	

KIT	 (Henning	et	al.,	
2012)	

SOA	 SOA	 Secondary	organic	aerosol	 Ozonolysis	of	α-
pinene	

KIT	 (Saathoff	et	al.,	
2003)	

K-Feldspar	
cSA	

FS01cSA	
or	
FS04cSA	

Potassium-rich	feldspar	(as	above)	
coated	with	sulfuric	acid	(SA).	

Small	amounts	of	
sulfuric	acid	were	
incrementally	added	
to	the	chamber	
filled	with	K-feldspar	
to	achieve	thin	
coatings,	as	judged	
from	PALMS	spectra	

KIT	 (Saathoff	et	al.,	
2003)	

K-Feldspar	
cSOA	

FS04cSO
A	

Potassium-rich	feldspar	(as	above)	
coated	with	secondary	organic	
aerosol	(SOA,	as	above).	

Small	amounts	of	
SOA	were	
incrementally	added	
to	the	chamber	
filled	with	K-feldspar	
to	achieve	thin	
coatings,	as	judged	
from	PALMS	spectra	

KIT	 (Saathoff	et	al.,	
2003)	
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 1	

Table 2. Features rankings for differentiation of particles between labels and between 2	

broad categories in positive and negative ion modes. See text for additional details. 3	

4	
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 1	

Table 3. Model performance by category and ion mode on a population consisting 2	

entirely of aerosols within that category. Left: Average classification accuracy where 1.0 3	

= 100% precision (Powers, 2007). Right: mean and standard deviations of 4	

misclassification. 5	

6	
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Figure   1	

 2	

Figure 1: Aerosol training data plotted as feature area 16 (O-) verses area 24 (C2-). Axes 3	

represent peak areas normalized to total signal obtained from PALMS (i.e., 1 = 100% of 4	

signal). This illustrates simple 2-dimensional clustering of aerosols from the training data 5	

set by type. Co-plotted are ~500 randomly drawn spectra from the AIDA blind 6	

experiment, which were known to be a subset of the training data aerosols.  7	

 8	

9	
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 1	

Figure 2. Schematic of decision tree classification for a single aerosol spectrum. From 2	

left to right, a mass spectrum is normalized with respect to total ion current, forming the 3	

elements of normalized feature vector X. A trained decision tree then applies a series of 4	

tests to a discreet number of peaks in order to arrive at a categorical aerosol prediction 5	

(the leaves). 6	

  7	
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 1	

Figure 3. Column-normalized confusion matrices showing fraction of aerosols labeled as 2	

j that belong to i, where i and j are row and column indices, respectively. Confusion 3	

matrices are determined from training data of known origin and are used to compute 4	

probability distributions. Aerosol types (Table 1.) are grouped into four broad categories 5	

delineated by the bold horizontal and vertical bars. From top to bottom or left to right: 6	

fertile soils, mineral/metallic, biological, and other. Classification accuracy, the average 7	

probability of a correct aerosol prediction across all labels, is computed by averaging 8	

diagonal matrix elements. For all aerosol types, the accuracy is 87% in positive ion mode 9	

and  87% in negative ion mode. 10	

  11	
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 1	

 2	

Figure 4. Column-normalized confusion matrices for the broad categorization of aerosols 3	

following the convention in Figure 3. Top row: For all aerosol categories, the random 4	

forest has an accuracy of 93% in positive ion mode and 91% in negative ion mode. 5	

Bottom row: The Euclidean distance classifier has an accuracy of 70% in positive ion 6	

mode and  69% in negative ion mode 7	

 8	

  9	
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Figure 5. Model predictions of ~5000 aerosols sampled from the AIDA FIN01 blind 1	

mixture which was known to be a subset of the training data. All percentages represent 2	

relative number concentrations. Middle left: aerosol types input to the chamber for the 3	

blind mixture. Middle right: aerosol types input to the chamber for the blind mixture and 4	

above the detection limit for PALMS. Model predictions are shown for negative and 5	

positive ion mode on the left and right, respectively. Bottom: broad categories. Top: 6	

breakout by aerosol type of the non-SOA categories above the 1% level. Notes (1) the 7	

soot in the blind mixture was known to be below the instrument detection limit and 8	

therefore is not expected to be found in the data [Cziczo et al., 2006], (2) coagulation of 9	

SOA and mineral dust, which occurred after aerosol input to the chamber, was often 10	

categorized as mixed mineral and organic particles or fertile soils (i.e., mixtures of 11	

mineral and organic components) considered in the training data set, (3) the aerosols 12	

types reported by AIDA do not account for PALMS transmission efficiency (see text for 13	

details).   14	
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