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Abstract 1	
 
Compositional analysis of atmospheric and laboratory aerosols is often conducted via 2	

single-particle mass spectrometry (SPMS), an in situ and real-time analytical technique 3	

that produces mass spectra on a single particle basis. In this study, machine learning 4	

classifiers are created using a dataset of SPMS spectra to automatically differentiate 5	

particles on the basis of chemistry and size. Machine learning algorithms build a predictive 6	

model from a training set for which the aerosol type associated with each mass spectrum 7	

is known a priori. Our primary focus surrounds the growing of random forests using feature 8	

selection to reduce dimensionality, and the evaluation of trained models with confusion 9	

matrices.  In addition to classifying ~20 unique, but chemically-similar, aerosol types, 10	

models were also created to differentiate aerosol within four broader categories: fertile soils, 11	

mineral/metallic particles, biological, and all other aerosols. Differentiation was 12	

accomplished using ~40 positive and negative spectral features. For the broad 13	

categorization, machine learning resulted in a classification accuracy of ~93%.  14	

Classification of aerosols by specific type resulted in a classification accuracy of ~87%. 15	

The ‘trained’ model was then applied to a ‘blind’ mixture of aerosols which was known to 16	

be a subset of the training set. Model agreement was found on the presence of secondary 17	

organic aerosol, coated and uncoated mineral dust and fertile soil.  18	

 19	

1. Introduction 20	
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 Following the introduction of random forests in the 1990s, recent developments in 1	

deep learning and neural networks have triggered a renewed interest in machine learning. 2	

This has led to the development of numerous easy-to-use, freely-available, open-source 3	

packages in popular programming languages like Python, and these tools are becoming 4	

increasing used in academia and industry. While random forests have been used for 5	

complex classification and regression analysis in various fields, studies that employ 6	

random forests in aerosol mass spectrometry remain sparse. Utilizing these tools, the 7	

primary purpose of our study is to introduce a framework for growing random forests, 8	

reducing dimensionality, ranking chemical features, and evaluating performance using 9	

confusion matrices. Such properties are desirable for SPMS studies, where input variables 10	

can become redundant and interpretability is more limited with more advanced methods 11	

such as neural networks. Neural networks rely on a series of variable transformations 12	

rectified by nonlinear activation functions, making details of a given classification 13	

notoriously difficult to follow. The interpretably and explainability of these models 14	

remains an active area of research. Overall, analysis techniques such as those falling out of 15	

recent artificial intelligence research can prove useful for helping to tease out the subtle yet 16	

significant impact that aerosol chemistry has on the climate system.  17	

 Atmospheric aerosols impact clouds and the Earth’s radiative budget. A lack of 18	

understanding of aerosol composition therefore contributes to uncertainty in determination 19	

of both anthropogenic and natural climate forcing [Boucher et al., 2013; Lohmann and 20	

Feichter, 2005]. Aerosols directly affect atmospheric radiation by scattering and absorption 21	

of radiation from both solar and terrestrial sources. The radiative forcing from particulates 22	

in the atmosphere depends on optical properties that vary significantly among different 23	
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aerosol types [Lesins et al., 2002].  Aerosols also indirectly affect climate via their role in 1	

the development and maintenance of clouds [Vogelmann et al., 2012; Lubin et al., 2006]. 2	

Ultimately, the formation, appearance, and lifetime of clouds are sensitive to aerosol 3	

properties like shape, chemistry, and morphology [Lohmann and Feichter, 2008]. 4	

Characterization of aerosol properties plays a vital role in understanding weather and 5	

climate. 6	

The chemical composition and size of aerosols has been analyzed on a single 7	

particle basis in situ and in real-time using single particle mass spectrometry (SPMS; 8	

Murphy [2007]). First developed ~2 decades ago, SPMS permits the analysis of aerosol 9	

particles in the ~150 – 3000 nm size range, while differentiating internal and external 10	

aerosol mixtures and characterizing both semi-volatile (e.g. organics and sulfates) and 11	

refractory (e.g. crystalline salts, elemental carbon and mineral dusts) particle components.  12	

Particles are typically desorbed and ionized with a UV laser and resultant ions are detected 13	

using time-of-flight mass spectrometry [Murphy, 2007]. A complete mass spectrum of 14	

chemical components is normally produced from each analyzed aerosol particle [Coe et al., 15	

2006]. Despite almost universal detection of components found in atmospheric aerosols, 16	

SPMS is not normally considered quantitative without specific laboratory calibration 17	

[Cziczo et al., 2001]. 18	

Chemical composition of an individual atmospheric aerosol particle is a complex 19	

interplay between its primary composition at the source (i.e. dust, biogenic organic, 20	

anthropogenic organic, soot, etc.) and its atmospheric processing up to the time of detection. 21	

Atmospheric processing can include a combination of coating with secondary material, 22	

coagulation and cloud processing. Even different primary aerosol types can have similar 23	
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mass spectral markers. For example, fly ash, mineral dust and bioaerosol can all contain 1	

strong phosphate signal [Zawadowicz et al., 2017]. Secondary material is often difficult to 2	

differentiate from primary material, but even minor compositional changes can be 3	

atmospherically important. As one example, mineral dusts are known to be effective at 4	

nucleating ice clouds; however, despite minor addition of mass, atmospherically processed 5	

mineral dust is less suitable for ice formation [Cziczo et al., 2013]. As a second example, 6	

ice nucleation in mixed-phase clouds has been suggested to be predominantly influenced 7	

by feldspar, a single component among the diverse mineralogy of atmospheric dust 8	

[Atkinson et al., 2013]. Using current SPMS data analysis approaches, it is difficult to 9	

detect these minor yet important compositional differences and new robust and 10	

generalizable analysis techniques are critical. 11	

We show that supervised training with random forests can differentiate aerosols in 12	

SPMS data more accurately than simpler approaches. Various clustering methods have 13	

been used to group aerosol types [Murphy et al., 2003; Gross et al., 2008] but these 14	

algorithms are known to combine chemically-similar aerosols as they do not incorporate 15	

known particle labels in the training process. Another limitation encountered is the need to 16	

manually reduce the number of final clusters due to grouping of mathematically-similar 17	

yet chemically-distinct aerosols [Murphy et al 2003]. Such ‘unsupervised’ clustering 18	

algorithms automatically group unlabeled data points in feature space, in this case mass 19	

spectral signals. For the purposes of setting broad aerosol categories, which are chemically 20	

distinct and easily separable in feature space, clustering is the simpler tool and the data 21	

easier to interpret. For identifying new or potentially unexpected atmospheric aerosols, 22	

such properties are desirable; however, the advantages of clustering greatly diminish when 23	
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considering similar particle types that overlap in feature space. Fertile soils, for instance, 1	

are often grouped into a single category despite different sources and atmospheric histories.  2	

Clustering algorithms should be considered as a tool to use alongside supervised 3	

classification. The latter may be used to further explore unique aerosol types or verify 4	

manually labeled clusters with higher precision. Furthermore, the ensemble approach 5	

presented here also produces interpretable variable rankings and probabilistic predictions 6	

that assist in characterizing measurement uncertainty. Uncertainties associated with mass 7	

spectrometry include the determination of mass peak areas, internal mixing of aerosols 8	

during the experiment, and transmission efficiency. Additionally, the classification method 9	

itself introduces and quantifies uncertainty in aerosol identification as a result of imperfect 10	

classes separation and parameter uncertainty. The choice of supervised or unsupervised 11	

machine learning will depend on the researcher’s use-case, and each method has unique 12	

advantages and disadvantages. We note a limitation of the random forest approach - and 13	

for supervised learning in general - is the inability to classify aerosol types outside of the 14	

training set. The ability of a random forest to characterize ambient atmospheric datasets, 15	

therefore, will strongly depend on which aerosols are contained within the training set. 16	

Additionally, it is noted that comparisons between all machine learning models are 17	

sensitive to user-defined parameters and algorithm implementation. 18	

In this study, we demonstrate the capabilities of random forests to automatically 19	

differentiate particles on the basis of chemistry and size. The resulting model can capture 20	

minor compositional differences between aerosol mass spectra. By testing predictions 21	

using an independent, or ‘blind’, dataset, we illustrate the feasibility of combining on-line 22	

analysis techniques such as SPMS with machine learning to infer the behavior and origin 23	
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of aerosols in the laboratory and atmosphere.   1	

2. Methodologies  2	
 

2.1 PALMS 3	

The Particle Analysis by Laser Mass Spectrometry (PALMS) instrument was 4	

employed for these studies. PALMS has been described in detail previously [Cziczo et al. 5	

2006]. Briefly, the instrument samples aerosol particles in the size range from ~200 to 6	

~3000 nm using an aerodynamic lens inlet into a differentially-pumped vacuum region. 7	

Particle aerodynamic size is acquired by measuring particle transit time between two 532 8	

nm continuous wave neodymium-doped yttrium aluminum garnet (Nd:YAG) laser beams. 9	

A pulsed UV 193 nm excimer laser is used to desorb and ionize the particles and the 10	

resulting ions are extracted using a unipolar time-of-flight mass spectrometer. The resulting 11	

mass spectra correspond to single particles. The UV ionization extracts both refractory and 12	

semi-volatile components and allows analysis of all chemical components present in 13	

atmospheric aerosol particles [Cziczo et al. 2013].  14	

 15	

2.2 Dataset 16	

A set of ‘training data’ was acquired by sampling atmospherically-relevant aerosols. 17	

The majority of the dataset was acquired at the Karlsruhe Institute of Technology (KIT) 18	

Aerosol Interactions and Dynamics in the Atmosphere (AIDA) facility during the Fifth Ice 19	

Nucleation workshop — Part 1 (FIN01). The remainder were acquired at our Aerosol and 20	

Cloud Laboratory at MIT. The FIN01 workshop was an intercomparison effort of ~10 21	

SPMS instruments, including PALMS. The training data correspond to spectra of known 22	

particle types that were aerosolized into KIT’s main AIDA and a connected auxiliary 23	
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chamber for sampling by PALMS and the other SPMSs (Table 1). Hereafter we group both 1	

chambers with the name ‘AIDA’.  The number of training spectra acquired varied by 2	

particle type, ranging from ~250 for secondary organic aerosol (SOA) to ~1500 for 3	

potassium-rich feldspar (“K-feldspar”). In total, ~50,000 spectra are considered with each 4	

spectrum containing 512 possible mass peaks and an aerodynamic size. (Table 2). 5	

Additionally, the FIN01 workshop included a blind sampling period, where AIDA was 6	

filled with an unknown number of aerosol types known to be from the training set (i.e., for 7	

which spectra had already been acquired) but (a priori) of unknown size, specific types 8	

and at unknown concentrations. 9	

Figure 1 illustrates a simple differentiation of particles using only two mass peaks 10	

in one (negative) polarity. Mass peaks represent fractional ion abundance, measured as a 11	

total signal (ion current) normalized to allow for spectra to spectra comparison [Cziczo et 12	

al., 2006]. In this example, the normalized areas of negative mass peaks 24 (C2-) and 16 13	

(O-) are plotted. Distinct aerosol types are differentiated by color with clusters forming in 14	

this two-dimensional space. Note that spectra of the same aerosol type form distinct 15	

clusters (e.g. Arizona Test Dust, ATD), as do similar aerosol classes (e.g., soil dusts). Co-16	

plotted in Figure 1 are data from the blind experiment. Distinct clusters of spectra from the 17	

blind experiment are noticeable and correlate with known clusters.  Described in the next 18	

section, machine learning algorithms draw “decision boundaries” that best separate 19	

different groups of data points based on set of rules. Machine learning is not bound by the 20	

simplistic two-dimensional space shown in Figure 1 and instead uses all 512 mass peaks 21	

and aerodynamic size. 22	

2.3 Aerosol Classification  23	
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A trained classification model maps a continuous input vector ‘X’ to a discreet 1	

output value using a set of parameters ‘learned’ from the data. Figure 2 illustrates the 2	

mapping of a mass spectrum to vector space. In contrast to traditional, hard-coded 3	

classification methods, machine learning determines parameters that partition the data set. 4	

To form X, mass spectra are converted to dimensional vectors normalized to the total ion 5	

current (i.e., the total of all mass peaks sum to 1 in each spectrum). The elements of the 6	

vectorized mass spectrum, termed ‘features’, hold information about the ionization 7	

efficiency and relative abundance of chemical species in each aerosol and serve as the 8	

variables for the machine learning model.  9	

Machine learning is conducted in two phases: training and testing. During training, 10	

a model is constructed and iteratively updated based on data (i.e., mass spectra) from the 11	

training set. For this work, the set of known aerosol types sampled by PALMS was 12	

converted to dimensional vectors. These data form the basis set for defining each aerosol 13	

type. A random forest was used to generate predictions of aerosol type. A single decision 14	

tree is a statistical decision model that performs classification based on a series of 15	

comparisons relating a variable Xi (in this case a normalized mass peak in X) to a learned 16	

threshold value [Breiman, 2001]. A random forest is an ensemble of perturbed decision 17	

trees, whereby a final classification is made by averaging the predictions across all trees 18	

(described below in 2.4). Represented as an algorithmic tree, a binary decision tree consists 19	

of a hierarchy of nodes where each node connects via branches to two other nodes deeper 20	

in the tree. At each node, one of the two branches is taken based on whether a normalized 21	

peak Xi is greater or less than a threshold value. Each branch leads to another node where 22	

a different test is performed. After a series of tests, one at each node, a class is assigned to 23	
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a given sample; these are the so-called ‘leaves’. Figure 2 illustrates the classification model 1	

for a single decision tree.  2	

Each test in the tree narrows the set of reachable output leaves and thus the sample 3	

space of possible aerosol labels. After h tests in this study, where h ranges from 10 to 3000, 4	

the set of reachable leaves and possible labels is 1 and the decision tree outputs a prediction. 5	

Because PALMS is unipolar – either a positive or negative mass spectrum is produced – 6	

simultaneous generation of positive and negative spectra on a particle-by-particle basis is 7	

not possible.  Two separate classification models, one for each polarity, were generated to 8	

classify aerosols. These are hereafter referred to as the ‘positive’ and ‘negative 9	

classification algorithms’. 10	

2.4 Random Forests  11	

A random forest is an ensemble of decision tree classifiers where each classifer 12	

independently labels an unknown spectrum vector X. To make a final prediction of aerosol 13	

type, trees within an ensemble ‘vote’ on a classification label. Each vote has equal weight 14	

and the spectrum is assigned to the majority choice. Each tree within an ensemble is 15	

independently grown on a subset of the training data so that a commonly voted label 16	

implies a higher certainty. Adding members to an ensemble increases the robustness of a 17	

classification model by providing alternative hypotheses and is therefore preferable to 18	

single classifiers.  19	

Before an ensemble method is implemented for classification, trees are 20	

independently grown during training.  A total of k trees, with k = 110, were grown using a 21	

bootstrap sample from the training set. In bootstrap sampling, each tree sees an independent 22	
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sample set of equal size drawn from the full training set by sampling spectra with 1	

replacement. On average, each tree is built with ~63% of the original data, leaving a portion 2	

of the training set unsampled. The unsampled data for each tree, known as ‘out-of-bag’ 3	

observations, are recorded and later provide a means to assess classification error for the 4	

forest. To determine model error, predictions are made for each point in the dataset using 5	

only the subset of trees that did not use the point for training. Each training point is left out 6	

at least once. This is analogous to making predictions with a separately trained forest that 7	

did not observe the point and prevents testing with the same data used for training.  8	

Given a bootstrap sample, a tree is grown by sequentially creating tests that 9	

maximize the separation between classes in parameter space.  A test is created by defining 10	

a comparison that minimizes the information entropy of a possible split, thus minimizing 11	

the randomness of prediction labels [Breiman, 1996]. To generate variability in the model 12	

only a random set of splits is tested at each node and only the best split in terms of entropy 13	

is chosen [Breiman, 2001]. After iteratively defining thresholds for each new node, the tree 14	

grows in size until a series of tests ending at some node Sq uniquely characterizes an aerosol 15	

as a particle type. A leaf is then appended to node Sq with the corresponding label. In 16	

classification mode, an aerosol spectrum that passes the same tree will undergo the same 17	

series of tests and will end in the same leaf, thus being labeled in the same way. For the 18	

purposes of this study, each tree had ~3,300 nodes.  19	

The number of variables per split is chosen to be 11 and the number of trees is 110. 20	

Using grid search, the optimal model was determined by enumerating combinations of 21	

these parameters on a coarse grid and selecting the values that produce the lowest test error, 22	

or out-of-bag error. Given several lists of parameters, where each list corresponds to a 23	
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different model hyperparameter, models are trained one-by-one until each combination of 1	

parameters has been tested. For this study, the grid representing variables per split was 2	

spaced by 1 and the grid for number of trees was spaced by 5. The number of nodes in each 3	

tree depends on other hyperparmeters and cannot be explicitly set. Model behavior is 4	

primarily sensitive to the number of variables per split, and shows weak dependence on the 5	

number of trees and number of input variables beyond small values. As the number of 6	

variable splits increases, error decreases exponentially to a local minimum before again 7	

rising due to over fitting. Alternatively, as the number of trees is increased the error 8	

converges to some nonzero value, a known characteristic of random forests where test error 9	

converges to the generalization error. The models were trained with the Python 2.7 Scikit-10	

learn module on a MacBook Pro with 16 GB 1600 MHz DDR3 memory and a 2.5 GHz 11	

Intel Core i7 processor. A typical random forest model took about 5-10 seconds to train, 12	

and we found a linear relationship between runtime and both the number of trees and 13	

variables per split.  14	

Overall, the generalizability and robust performance of random forests is owed 15	

significantly to the series of random statistical procedures used to construct such models. 16	

An ensemble classifier reduces variability by averaging predictions over a series of 17	

independently trained models, and bagging introduces additional randomness by producing 18	

“perturbed” versions of the original data via random sampling of input data. The 19	

randomness used in constructing forests, both in bagging the training set and choosing 20	

variable splits, work to decorrelate the output of each tree even as the inputs become 21	

correlated [Breiman, 2001]. As the number of trees increases, the law of large numbers 22	

guarantees a convergence of the out-of-bag error to the generalization error.  23	
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2.5 Dimensionality Reduction and Chemical Feature Selection 1	

Dimensionality reduction is the process of representing data with fewer variables 2	

than initially present in the dataset, in this case less than the original 512 mass peaks and 3	

aerodynamic size. In addition to facilitating data visualization, reducing computation time 4	

and limiting overfitting [Mjolsnes, 2001], dimensionality reduction, in the context of 5	

aerosol mass spectra, also indicates the most important chemical markers for differentiation. 6	

Feature ranking was algorithmically determined by comparing the performance of trees 7	

before and after removing information about peak Xi. The method is that the values of 8	

variable Xi is permuted for tree k in the out-of-bag set so that the variable is irrelevant to 9	

the final label. The change in misclassification before and after the permutation is 10	

calculated and then repeated for all trees so that a variable ranking is obtained [Breimann, 11	

2001]. Table 2 ranks mass peaks (features) by polarity in importance using this method. 12	

The columns at left list feature rankings (i.e., most to least important for correct 13	

classification) for the entire set of aerosol types. The columns at right list rankings when 14	

aerosol types are grouped into the broad, chemically similar, categories. A final ranking 15	

was determined by sequentially adding variables and observing classification performance 16	

response. All variables preceding two e-foldings in classification error were maintained in 17	

the final model. Both the specific aerosol type and broad aerosol category models were 18	

retrained using this subset of the initial variables, listed in Table 2. 19	

2.5 Comparison to Euclidean Distance Classifier  20	

To access relative model performance, we contrast the results with a simple 21	

classifier that compares unseen aerosols to a set of class mean vectors. Using the Euclidean 22	
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distance metric, the unknown aerosol is assigned to the nearest class. This simple baseline 1	

classifier helps to put results in the context of machine learning techniques that rely on 2	

distance-based metrics such as k-means and hierarchical clustering. K-means clustering 3	

attempts to divide the data points into k distinct clusters, representing spectra as vectors. 4	

Using Euclidean distance, the standard algorithm assigns points to centroids, or clusters, 5	

which are essentially mean vectors representing the average of all points in the cluster. 6	

Assuming perfect convergence of k-means clustering, where k is the number of aerosol 7	

classes, each cluster represents the mean of aerosol in that class. The random forest results 8	

below demonstrate many areas of improvement over the simple classifier. 9	

 10	

3. Results 11	

 
3.1 Confusion Matrices and Probabilistic Model Performance  12	
 

A confusion matrix captures misclassification tendencies by pair-wise matching the 13	

model prediction with the true aerosol type or broad category [Powers, 2007], and can be 14	

understood as a contingency table matching model predictions to true labels. Confusion 15	

matrices represent model predictions as columns i and true aerosol type of category as rows 16	

j, where class names are mapped to integers i , j ∈ {1,2, … , y}. In this study, matrices 17	

have been normalized along each column to show the fraction of aerosols labeled as j that 18	

actually belong to i (Figures 3 and 4). For aerosol classification, these matrices can also be 19	

interpreted as similarity measures between particle types. Since the basis of classification 20	

is separation of physical quantities, misclassifications result from similarity in mass peaks 21	
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and their ion abundance between aerosol types. This is most easily visualized as 1	

overlapping clusters in the simple two dimensional space in Figure 1. 2	

Model performance for each aerosol is summarized in the diagonal elements of 3	

the	confusion	matrix, which represent the fraction of aerosol in column j labeled correctly. 4	

The classification accuracy (a) is given by averaging diagonal elements of P. A perfect 5	

classification model produces the identity matrix, as all data points are classified correctly 6	

100% of the time. For example, in the positive confusion matrix, SOA and Agar growth 7	

medium are correctly labeled in the test set 100% of the time. Barring element truncation, 8	

all columns of P add to 1.   9	

Figures 3 and 4 display confusion matrices as heat maps for the full set of particle 10	

labels and broad grouped particle categories, respectively. Broad categories are delineated 11	

by bold horizontal and vertical lines in Figure 3 as fertile soil (Argentinian, Chinese, 12	

Ethiopian, Moroccan and two German soils), pure mineral dust and metallic particles (ATD, 13	

illite NX, fly ash, Na-feldspar, K-feldspar), biological (Agar growth medium, P. syringae 14	

bacteria, cellulose, Snomax, and hazelnut pollen), and other (K-feldspar with sulfuric acid 15	

(SA) and SOA coatings, soot, and SOA) particles. Some model confusion exists between 16	

fertile soils and coated/uncoated feldspars which can be explained since soils are mineral 17	

dust mixed with organic and other materials. 18	

Positive mass spectra appear to hold more information with respect to 19	

differentiating aerosols than negative. Label-wise classification accuracy for the negative 20	

algorithm ranges from 3-5% lower. A large part of this performance discrepancy is due to 21	

greater ability of positive spectra to differentiate coated particles within the ‘other’ 22	

category. 23	
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In addition to quantifying misclassification tendencies between classes, the 1	

confusion matrix can be redefined to show confusion for aerosols within broad categories 2	

themselves. The precision score [Powers, 2007] captures the classification behavior for 3	

some subset of aerosol L by averaging fractions of correctly classified aerosols for labels 4	

within that category:  5	

Precision Score(L) =  1
|3|
∑ P(|7|
89: 𝑖	 ∈ 𝐿, 𝑗 ∈ 𝐿)                  (3) 6	

 7	

When applied to 𝑃A, the precision score captures classification performance on a 8	

population with only aerosol labels contained in L. The algorithm is expected to correctly 9	

label an aerosol in such a population with a probability equal to the precision score. The 10	

precision score is valuable when using the classification model as a particle screener, 11	

producing probability distributions over a subset of aerosol labels of interest. The confusion 12	

characteristics are shown in Table 3 for each category in terms of the precision score and 13	

the mean and standard deviation of misclassification within each category. Although both 14	

models perform similarly for biological spectra, discrepancies of 2-5% appear in the 15	

remaining categories. For regimes consisting of only mineral/metallic or other particles, 16	

the positive algorithm shows intraclass performance advantages in terms of the precision 17	

score, but most notably in terms of fewer mislabeling of mineral/metallic particles.  The 18	

largest precision discrepancy is observed for fertile soils, where the positive ion algorithm 19	

has a 5% advantage in precision with approximately half the false labeling rate.  20	

Across all categories, the random forest shows improvements over the Euclidean 21	

classifier in terms of both accuracy and precision. Figure 4 directly compares confusion 22	

matrices for the two methods, revealing overall accuracy improvements of at least 20%. 23	

The largest improvements are in the fertile soil and other category, where accuracy rises 24	
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between 20% and 39% with the random forest. Computing the full confusion matrix for 1	

the Euclidean technique (as in figure 3) reveals similar results, with far more frequent 2	

mislabeling between fertile soils as well as coated/uncoated particles than our approach. 3	

These results reinforce the fact that chemically-similar aerosols which overlap in feature 4	

space will often be grouped together when using a single, distance-based classifier. The 5	

improvement from random forests is likely a result of a) the ensemble approach, which is 6	

known to produce better generalizability than single classifiers and b) the tendency of 7	

aerosols with similar chemical properties and atmospheric effect to appear mathematically 8	

distinct with a distance metric.      9	

 Beyond classification, the obtained variable rankings alone provide interesting 10	

insights into the dataset. It is noteworthy that while most of the features are logical 11	

differentiators of the aerosol types investigated in FIN01 there were also surprises. One 12	

example is 59+ (cobalt), determined to be one of the most important features for 13	

differentiation. Further investigation determined this material was associated with tungsten 14	

carbide contaminant from dry powder dispersion equipment used on some samples. The 15	

contamination affected feldspar samples used during the second half of the AIDA 16	

measurements in particular. This serves to illustrate the lack of a priori judgment by the 17	

algorithm and an unintended benefit of machine learning process (i.e., contamination 18	

identification).   19	

 20	

3.2 Characterization of Blind Data  21	

As part of the FIN01 workshop, an a priori unknown number of aerosol types from 22	

Table 1 were aerosolized into the ADIA chamber at unknown size and relative 23	
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concentration. PALMS, one member of the blind intercomparison effort, collected  1	

~25,000 spectra. After data analysis, the aerosol types and relative abundances were 2	

provided to each group (Figure 5, top center).  3	

The presence or absence of particle types in the blind set was initially diagnosed by 4	

choosing particles predicted at or above the 1% level. We note here that this step was based 5	

on the knowledge that (1) a distinct set of particles would be placed in the chamber and (2) 6	

particles present at or below the 1% level were most likely contamination. We further note 7	

that this step is unique to a blind study and would not be applicable to the atmosphere.  8	

Figure 5 illustrates the fractional percentages for each aerosol category. Because 9	

SOA was nearly always labeled correctly (Figure 3), the remaining aerosols are considered 10	

separately using the full set of candidate aerosol labels. Both positive and negative models 11	

arrived at similar results, with inconsistencies primarily associated with the presence of 12	

trace fertile soils and mineral dust / fly ash particles. The positive algorithm identifies ~2-13	

4% of the AIDA population as each Argentinean soil, German soil, ATD, and cellulose 14	

whereas the frequency of these aerosols was too low to consider in the negative. 15	

Alternatively, the negative model estimates Na-Feldspar at ~14% of the total population, a 16	

label not identified by the positive algorithm. This discrepancy can partially be explained 17	

by the 1% selection criterion for aerosols present in the population. Fertile soils, ATD, and 18	

cellulose frequently accumulate error along rows in the full positive confusion matrix, 19	

indicating frequent confusion with other categories (Figure 3). Furthermore, with the 20	

observed misclassification rates ranging ~1-4%, it is expected that these aerosol labels are 21	

false positives. The negative model offers an alternative hypothesis, suggesting these 22	

miscellaneous aerosols are Na-feldspar. Since there is significant model agreement on the 23	
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percentages of SOA and coated feldspars, this part of the blind mixture population can be 1	

characterized with more certainty. For the disputed aerosol labels, more credence is lent to 2	

the negative classification algorithm on the basis of improved precision for fertile soils.  3	

The aerosols reported in the blind mixture were soot, mineral dust, and SOA. The 4	

soot aerosols used in the blind study were smaller than in the training data experiments and 5	

were below the cutoff diameter for PALMS; they were therefore not detected and therefore 6	

could not be identified by the algorithms. This bias is transmission efficiency should be 7	

noted, whereby aerosols are detected at a rate that depends on their size and aerodynamic 8	

properties [Cziczo et al., 2006]. The result is that particles with diameters below ~200 nm 9	

or greater than ~1000 nm are detected with increasing inefficiency which lead to relative 10	

undercounting of small soot or large mineral dust [Cziczo et al., 2006]. The specific mineral 11	

component was not identified and may have been either a pure mineral or soil dust. Both 12	

algorithms robustly labeled SOA with large agreement, consistent with the 100% accuracy 13	

observed in the test set.  14	

SOA coated mineral dust was identified as a particle type. This material was not 15	

directly input to AIDA but the report is most likely correct, due to coagulation within the 16	

AIDA chamber during the course of the blind experiment. Since percentages were reported 17	

before particles enter the chamber, it is not possible to directly verify the fraction of SOA-18	

coated aerosols or the extent to which coagulation occurs, as the process is time dependent. 19	

This may also explain some indications of fertile soils, which are known to be mixtures of 20	

mineral and organic components. The training data set did not contain coagulated SOA and 21	

mineral dust but did include SOA-coated K-Feldspar, which explains the identification.  22	
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While both models identified a variety of fertile soils, and not a single type, these 1	

results are largely consistent with the presence of coagulated organics and minerals and the 2	

known uncertainties highlighted by the confusion matrices discussed previously. Given the 3	

presence of any single mineral dust, some confusion with fertile soils, SA coated Feldspar, 4	

and Na-Feldspar is expected (Figure 3). Moreover, as discussed previously [Gallavardin et 5	

al., 2008], AIDA backgrounds are not completely particle-free. During the FIN01 study, 6	

contamination particles from previous test aerosol were frequently observed as background 7	

and they could also be the origin of some low-concentration particles matching fertile soil 8	

chemistry. Overall, discrepancies between the reported aerosol fractions and model 9	

predictions can be accounted for with model and experiential uncertainties.  10	

An additional consideration is experimental bias in the training data, which could 11	

result in test errors that underestimate true generalization errors in real aerosol populations. 12	

For SPMS, spurious relationships between spectra may arise due to instrumental 13	

parameters that are assumed to be constant between the training, test, and blind data. This 14	

consideration plagues all SPMS analysis requiring a training set, where correlations may 15	

arise as a result of signals that depend on ambient properties like temperature, humidity, 16	

and pressure or instrument parameters such as laser power.  Although several well-17	

established steps were taken to minimize overfitting - including dimensionality reduction 18	

and out-of-bag testing - dataset bias may still exist if these quantities vary significantly 19	

between aerosol types in the training or blind data. 20	

 21	

 22	
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4. Conclusions and Future Work  1	

This study lays out a framework for training and implementing random forests on 2	

SPMS data, with a focus on dimensionality reduction and the evaluation of model 3	

performance with confusion matrices. A key benefit to the proposed method is chemical 4	

feature selection, which allows researchers to identify potentially important chemical 5	

markers between arbitrary groups of aerosols or identify sources of contamination. In this 6	

particular study, the contaminant was identified and removed in the dimensionality 7	

reduction step while reasoning through the subset of ranked features. As illustrated by 8	

Figure 2, cobalt is suspiciously identified as the second most important variable for 9	

classification, but it is a known component of the dry powder dispersion equipment used 10	

on some samples. The contaminate peak would be present in a cluster analysis, but it would 11	

not be obvious to pick out and	remove	as	standard	clustering	is	not	typically	suited	for	12	

variable	rankings.   13	

For future studies tackling ambient atmospheric data that may contain aerosol types 14	

absent from the training set, a form of subspace selection may be used to improve results. 15	

The region of parameter space where training data is available can be characterized with a 16	

joint probability density function. One such approach is kernel density estimation - a 17	

machine learning method that approximates a multidimensional probability density 18	

function in a non-parametric manner based on data density. To obtain accurate probability 19	

estimates, the method should be fit with a smaller set of important but uncorrelated peaks. 20	

The task of classification is then preceded by a filtering step. Spectra residing in the 21	

subspace containing the training data should first be identified based on the probability 22	

density function. Then, only these particles that are most certain to lie in the training 23	
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subspace are classified using the classification model as described in this paper. An 1	

alternative is to combine the method with clustering by classifying particles in each 2	

automatically identified cluster. 3	

Overall, the random forest approach allows for differentiation of aerosols within a 4	

SPMS dataset, augmenting existing tools and reducing the need for a qualitative 5	

comparison between mass spectra. Across a representative sample of possible aerosol types, 6	

the behavior of each algorithm predictably allows users to infer the presence or absence of 7	

specific aerosols and quantify aerosol abundance. Machine learning is automated and the 8	

output of the model must then be informed by human knowledge of aerosol chemistry. 9	

Machine learning should therefore be considered as an additional tool to interpret mass 10	

spectra to better distinguish aerosols with unique properties in terms of atmospheric 11	

chemistry, biogenic cycles, and population health.   12	

The random forest classification framework described here may be generalized to 13	

any instrument, or set of instruments, capable of collecting physical and chemical 14	

information that distinguishes particles. Although the method described here is applied to 15	

a stand-alone SPMS and tested with a set of ‘blind’ data, ancillary laboratory or field data 16	

can be integrated to expand the data set. The success of these algorithms is data-dependent, 17	

where better performance is expected for instruments that provide more, and more 18	

quantitative, analysis of the aerosol properties. Although the algorithms implemented in 19	

this study were primarily used to categorize SOA, mineral dust, fertile soil and biological 20	

aerosols, these models can adopt an arbitrary large set of aerosol data.  21	
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Table Captions   1	

 2	

  3	
Aerosol	type	 FIN	

Label		
Description	and/or	supplier	 Generation	method	 Sample	

provided	
by	

Reference	

Argentinian	 SDAr01	 Soil	dust	collected	in	La	Pampa	
province,	Argentina	

Dry-dispersed	 KIT	 (Steinke	et	al.,	
2016)	

Chinese		 SDMo01	 Soil	collected	from	Xilingele	steppe,	
China/Inner	Mongolia	

Dry-dispersed	 KIT	 (Steinke	et	al.,	
2016)	

Ethiopian	 VSE01	 Soil	collected	in	Lake	Shala	National	
Park,	Ethiopia	(collection	
coordinates:	7.5	N,	38.7	E)	

Dry-dispersed	 KIT	 N/A	

German	 SDGe01	 Arable	soil	collected	near	
Karlsruhe,	Germany	

Dry-dispersed	 KIT	 (Steinke	et	al.,	
2016)	

Moroccan	 DDM01	 Soil	collected	in	a	rock	desert	in	
Morocco	(collection	coordinates:	
33.2	N,	2.0	W)	

Dry-dispersed	 KIT	 N/A	

Paulinenaue	 N/A	 Arable	soil	collected	in	Northern	
Germany	(Brandenburg)	

Dry-dispersed	 KIT	 N/A		

ATD	 N/A	 Arizona	Test	Dust,	Powder	
Technology,	Inc.	(Arden	Hills,	MN)	

Dry-dispersed	 MIT	 N/A	

Illite	 IS03	 Illite	NX	(Arginotec,	Germany)	 Dry-dispersed	 KIT	 (Hiranuma	et	al.,	
2015a)	

Fly	ash	 N/A	 Four	samples	of	fly	ash	from	U.S.	
power	plants:	J.	Robert	Welsh	
Power	Plant	(Mount	Pleasant,	TX),	
Joppa	Power	Station	(Joppa,	IL),	
Clifty	Creek	Power	Plant	(Madison,	
IN)	and	Miami	Fort	Generating	
Station	(Miami	Fort,	OH)	(Fly	Ash	
Direct,	Cincinnati,	OH)	

Dry-dispersed	 MIT	 (Garimella,	2016;	
Zawadowicz	et	al.,	
2016)	

Na-Feldspar	 FS05	 Sodium	and	calcium-rich	feldspar,	
samples	provided	by	Institute	of	
Applied	Geosciences,	Technical	
University	of	Darmstadt	(Germany)	
and	University	of	Leeds	(UK)	

Dry-dispersed	 KIT	 (Peckhaus	et	al.,	
2016)	

K-Feldspar	 FS01	 Potassium-rich	feldspar,	samples	
provided	by	Institute	of	Applied	
Geosciences,	Technical	University	
of	Darmstadt	(Germany)	and	
University	of	Leeds	(UK)	

Dry-dispersed	 KIT	 (Peckhaus	et	al.,	
2016)	
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Table 1. Description of aerosol types used in training data set. Rows are grouped and 1	

colored by broad aerosol categories in the following order: Fertile Soil, Mineral/Metallic, 2	

Biological, and Other.  3	

 4	

5	

Agar	 N/A	 Agar	growth	medium	for	bacteria,	
Pseudomonas	Agar	Base	(CM0559,	
Oxoid	Microbiology	Products,	
Hampshire,	UK)	

Wet-generated	 KIT	 N/A	

Bacteria	 	
	
PS32B74	+		
PFCGina01	

	

Two	different	cultures	of	
Pseudomonas	syringae.	

Cultures	grown	on	
the	agar	growth	
medium	(as	above),	
suspended	in	
nanopure	water	and	
wet-generated	

KIT	 (Zawadowicz	et	al.,	
2016)	

Cellulose	 MCC01,	
FC01	

Microcrystalline	and	fibrous	
cellulose	(Sigma	Aldrich,	St.	Louis,	
MO)	

Wet-generated	 KIT	 (Hiranuma	et	al.,	
2015b)	

Hazelnut	 PWW-
hazelnut	

Natural	hazelnut	pollen	(GREER,	
Lenoir,	NC)	wash	water	

Wet-generated	 KIT	 (Zawadowicz	et	al.,	
2016)	

Snomax	 Snomax	 Snomax,	(Snomax	International,	
Denver,	CO)	irradiated,	desiccated	
and	ground	Pseudomonas	syringae	

Wet-generated	 KIT	 (Zawadowicz	et	al.,	
2016)	

PSL	 N/A	 Polystyrene	latex	spheres	
(Polysciences,	Inc.	Warrington,	PA),	
various	sizes	

Wet-generated	 MIT	 N/A	

Soot	 CAST	
minOC	
or	
maxOC	

CAST	soot	 miniCAST	flame	soot	
generator	
(manufactured	by	
Jing	Ltd	Zollikofen,	
Switzerland)	

KIT	 (Henning	et	al.,	
2012)	

SOA	 SOA	 Secondary	organic	aerosol	 Ozonolysis	of	α-
pinene	

KIT	 (Saathoff	et	al.,	
2003)	

K-Feldspar	
cSA	

FS01cSA	
or	
FS04cSA	

Potassium-rich	feldspar	(as	above)	
coated	with	sulfuric	acid	(SA).	

Small	amounts	of	
sulfuric	acid	were	
incrementally	added	
to	the	chamber	
filled	with	K-feldspar	
to	achieve	thin	
coatings,	as	judged	
from	PALMS	spectra	

KIT	 (Saathoff	et	al.,	
2003)	

K-Feldspar	
cSOA	

FS04cSO
A	

Potassium-rich	feldspar	(as	above)	
coated	with	secondary	organic	
aerosol	(SOA,	as	above).	

Small	amounts	of	
SOA	were	
incrementally	added	
to	the	chamber	
filled	with	K-feldspar	
to	achieve	thin	
coatings,	as	judged	
from	PALMS	spectra	

KIT	 (Saathoff	et	al.,	
2003)	
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 1	

Table 2. Features rankings for differentiation of particles between labels and between broad 2	

categories in positive and negative ion modes. See text for additional details. 3	

4	
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 1	

Table 3. Model performance by category and ion mode on a population consisting entirely 2	

of aerosols within that category. Left: Average classification accuracy where 1.0 = 100% 3	

precision (Powers, 2007). Right: mean and standard deviations of misclassification. 4	

5	
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Figure   1	

 2	

Figure 1: Aerosol training data plotted as feature area 16 (O-) verses area 24 (C2-). Axes 3	

represent peak areas normalized to total signal obtained from PALMS (i.e., 1 = 100% of 4	

signal). This illustrates simple 2-dimensional clustering of aerosols from the training data 5	

set by type. Co-plotted are ~500 randomly drawn spectra from the AIDA blind experiment, 6	

which were known to be a subset of the training data aerosols.  7	

 8	

9	
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 1	

Figure 2. Schematic of decision tree classification for a single aerosol spectrum. From left 2	

to right, a mass spectrum is normalized with respect to total ion current, forming the 3	

elements of normalized feature vector X. A trained decision tree then applies a series of 4	

tests to a discreet number of peaks in order to arrive at a categorical aerosol prediction (the 5	

leaves). 6	

  7	
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 1	

Figure 3. Column-normalized confusion matrices 2	

showing fraction of aerosols labeled as j that belong to i, where i and j are row and column 3	

indices, respectively. Confusion matrices are determined from training data of known 4	

origin and are used to compute probability distributions. Aerosol types (Table 1.) are 5	

grouped into four broad categories delineated by the bold horizontal and vertical bars. From 6	

top to bottom or left to right: fertile soils, mineral/metallic, biological, and other. 7	

Classification accuracy, the average probability of a correct aerosol prediction across all 8	

labels, is computed by averaging diagonal matrix elements. For all aerosol types, the 9	

accuracy is 87% in positive ion mode and  87% in negative ion mode. 10	

  11	
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 1	

 2	

Figure 4. Column-normalized confusion matrices for the broad categorization of aerosols 3	

following the convention in Figure 3. Top row: For all aerosol categories, the random forest 4	

has an accuracy of 93% in positive ion mode and 91% in negative ion mode. Bottom row: 5	

The Euclidean distance classifier has an accuracy of 70% in positive ion mode and  69% 6	

in negative ion mode 7	

 8	

  9	
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Figure 5. Model predictions of ~5000 aerosols sampled from the AIDA FIN01 blind 1	

mixture which was known to be a subset of the training data. All percentages represent 2	

relative number concentrations. Middle left: aerosol types input to the chamber for the 3	

blind mixture. Middle right: aerosol types input to the chamber for the blind mixture and 4	

above the detection limit for PALMS. Model predictions are shown for negative and 5	

positive ion mode on the left and right, respectively. Bottom: broad categories. Top: 6	

breakout by aerosol type of the non-SOA categories above the 1% level. Notes (1) the soot 7	

in the blind mixture was known to be below the instrument detection limit and therefore is 8	

not expected to be found in the data [Cziczo et al., 2006], (2) coagulation of SOA and 9	

mineral dust, which occurred after aerosol input to the chamber, was often categorized as 10	

mixed mineral and organic particles or fertile soils (i.e., mixtures of mineral and organic 11	

components) considered in the training data set, (3) the aerosols types reported by AIDA 12	

do not account for PALMS transmission efficiency (see text for details).   13	
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16%	
7%	

16%	

15%	

17%	

39%	

24%	

5%	

Chinese	Fer*le	Soil	

K	Feldspar		

Na	Feldspar	

K	Feldspar	cSOA	

K	Feldspar	cSA		

63%	

2%	

28%	
7%	

37%	

63%	

SOA	

Mineral	+	Organic	

Mineral		

Other	

Soot	

Nega=ve		 Posi=ve		
Aerosols	Report	by		AIDA		

24%	

41%	

35%	

All	 Detectable	by	PALMS	


