
The	authors	 thank	Referee	#2	 for	useful	 comments	and	 suggestion	 to	 improve	
the	 paper.	 Below	 we	 answer	 to	 the	 comments	 point-by-point.	 The	 Referee	
comments	 are	 in	 bold.	 The	 pages	 and	 lines	 reported	 correspond	 to	 the	
manuscript	under	discussion.	
	
Response	to	Anonymous	Referee	#2	
	
This	paper	presents	an	analysis	of	aerosol	type	retrieval	and	uncertainty	
quantification	from	OMI	data.	The	method	is	based	on	Bayesian	inference	
approach.	The	aerosol	types	are	used	in	forward	calculation	of	OMI	spectra	
and	compare	that	with	the	measured	one.	The	differences	are	then	used	to	
create	the	probability	density	function	to	estimate	the	uncertainty	in	
retrieval	of	AOD.	With	this	approach,	this	retrieval	and	its	uncertainty	can	
be	assessed	in	probability	terms.	
The	paper	is	interesting	with	sound	math.	For	it	to	be	published	and	attract	
wider	readability,	it	needs	significant	revisions,	especially	in	many	places	
where	Maatta	et	al’s	paper	is	referred.		
	
We	thank	the	Referee	#2	for	reviewing	our	manuscript.		
We	agree	that	we	have	frequently	referred	to	the	paper	Määttä	et	al.	(2014)	for	
the	theoretical	details.	In	that	paper	the	theoretical	background	and	construction	
of	 the	method	 is	 presented	 in	 detail	 and	 we	 did	 not	 want	 to	 repeat	 it	 in	 this	
manuscript.	
	
As	suggested	by	the	Referee	#2,	we	have	now	included	more	description	of	the	
method	 in	 the	 revised	 version	 and	 took	 into	 account	 the	 detailed	 Referee	
comments	 listed	 below.	 We	 have	 also	 included	 an	 Appendix	 document,	 as	
supplement	to	the	comments,	for	describing	our	computational	implementation	
of	the	method.		
	
Detailed	comments	are	
	
1.	what	is	the	key	difference	in	method	between	this	paper	and	Maatta	et	
al?	Is	it	simply	that	Maatta	et	al.	didn’t	analyze	the	retrieval	uncertainty	(p.	
11,	line	5)?	
The	method	is	the	same	in	both	papers	and	applied	to	OMI	measurements.	Both	
papers	also	analyze	the	retrieval	uncertainty.	
The	 difference	 is	 that	 in	 the	 paper	 Määttä	 et	 al.	 the	 test	 cases	 examined	 the	
method	 at	 single	 OMI	 pixels	 using	 two	 ways:	 with	 and	 without	 the	 included	
model	 discrepancy	 term.	Whereas	 in	 this	manuscript	 the	method	 includes	 the	
model	discrepancy	term	and	is	applied	to	more	comprehensive	data	set.			
In	addition	this	manuscript	considers	more	the	presentation	and	description	of	
the	uncertainty	due	to	the	model	selection.	
	
We	have	now	rephrases	the	first	part	of	Section	5	(Discussion	and	Conclusions)	
(p11,	lines	4-9)	to	express	more	clearly	the	difference	between	the	papers.	
	
2.	equation	1.	To	compute	reflectance,	one	needs	to	know	path	reflectance	
that	in	turn	is	related	to	aerosol	optical	depth.	the	same	is	true	for	



transmittance.	Please	explain	how	the	calculation	in	equation	1	is	
implemented?	what	are	the	inputs	and	from	where?	
The	 path	 reflectance	 Ra(λ,τ,μ,μ0,∆φ,ps) and	 transmittance	 T(λ,τ,μ,μ0,ps) are	
both	related	to	τ	(i.e.	AOD).	They,	as	well	as	spherical	albedo	s(λ,τ,ps),	are	taken	
from	 the	 associated	 multi-dimensional	 model	 table	 LUT	 by	 interpolating	
between	 LUT	 contained	 	 nodal	 point	 values	 of	 τ,	 Δϕ,	 ps	 ,	 μ	 and	 μ0	 .	 This	 is	
explained	in	the	manuscript	(page	5	lines	1-7).	

As	 input	 data	 we	 use	 wavelength	 bands	 λ	 	 and	 sun-satellite	 geometry	 data	
included	in	OMI	data	(	Δϕ	,	ps,	μ	and	μ0).	Please	see	Section	2.1.	and	e.g.	Torres	et	
al.,	(2002)	for	more	information	about	content	of	OMI	LUTs.		

We	 added	 in	 the	 revised	manuscript	 the	 sentence	 (page	 5):	 “The	 sun-satellite	
geometry	data	∆φ,	ps,	μ	and	μ0	are	included	in	the	OMI	Level	1B	data.”		

3.	equation	2.	Is	observation	error	kept	constant	for	each	wavelength	in	
this	case?	
The	observation	error	εobs(λ) is assumed to be Gaussian distributed with zero 
mean and variance σ2obs(λ). The variance is not constant as the standard 
deviation is calculated by σobs(λ) = Robs(λ)/SNR where we set SNR=500.	
To	make	this	clear	we	added	εobs(λ)	∼	N(0,	σ2obs(λ))	and	σobs(λ) = Robs(λ)/SNR 	
in	the	revised	manuscript	in	Section	3.1. 

4.	page	5.	line	25,	"we	constructed	the	covariance	function	empirically	by	
using	the	wavelength	distance	dependent	correlation	structure	of	the	
residuals	(See	Maata	et	al	2014	details)".	This	sentence	is	very	difficult	to	
understand.	The	paper	should	standalone	by	itself.	
We	have	now	clarified	this	sentence	in	the	revised	manuscript.	We	also	changed	
the	“covariance	function”	to	“covariance	matrix”	for	simplicity.	
However,	 the	 theoretical	 details	 are	 left	 to	 the	 reference	 paper	 Määttä	 et	 al.	
(2014).	
	
In	 hope	 of	 clarifying	 the	 process	 for	 constructing	 the	 covariance	matrix	 C,	 we	
have	changed	the	sentence	to:	
“The	 covariance	 matrix	 C	 was	 constructed	 by	 means	 of	 an	 empirical	
semivariogram	when	 the	 variances	 of	 the	 residual	 differences	were	 calculated	
for	 each	 wavelength	 pairs	 with	 the	 distance	 d.	 Next,	 the	 theoretical	 Gaussian	
variogram	 model	 was	 fitted	 to	 these	 empirical	 semivariogram	 values.	 The	
outcome	of	this	analysis	were	the	values	for	parameters	that	defines	the	model	
discrepancy	covariance	matrix	C	(see	Määttä	et	al.	(2014)	for	details).”	
	
5.	eq.	3.	Where	does	this	equation	come	from?	how	is	measurement	error	
variance	computed?	
Equation	 (3)	 is	 the	 likelihood	 function	 that	 describes	 the	 distribution	 of	 the	
observations	given	the	model	and	is	dependent	on	the	residuals.	The	likelihood	
has	 that	 form	 (Eq.	 3)	 since	 we	 assume	 it	 follows	 a	 multivariate	 Gaussian	
distribution	with	non-diagonal	covariance	matrix	C+diag(σ2

obs(λ)).	Here	C	is	the	
model	discrepancy	covariance	matrix.	



	
We	added	the	following	sentence	in	the	revised	manuscript	(page	5	line	28):	
“We	 assume	 that	 the	 likelihood	 function	 describing	 the	 distribution	 of	 the	
observations	given	the	model	follows	a	Gaussian	distribution.”	
	
The	measurement	error	variance	σ2

obs(λ) is	 computed	as	described	above	 (the	
comment	3),	i.e.	σ2

obs(λ) = (Robs(λ)/SNR)2 where	we	have	used	SNR	=	500. 

6.	eq.	4.	It	is	not	clear	how	p(tau|m)	is	constructed.	“In	the	present	case,	the	
estimation	and	model	selection	procedure	seeks	the	solution	for	a	one-
dimensional	parameters	tau,	and	the	calculations	will	be	fairly	
straightforward	by	numerical	quadrature.	The	posterior	distribution	
calculation	is	presented	in	the	more	detail	in	Maata	et	al	2014”.	Again,	this	
reviewer	doesn’t	understand	this.	
The	 prior	 p(τ|m)	 ,	 i.e.	 the	 prior	 distribution	 for	 τ	 depending	 on	 the	 aerosol	
microphysical	model	m,	is	constructed	in	our	study	by	assuming	that	it	follows	a	
log-normal	 distribution	with	mean	 value,	 say	 2.	 This	 confirms	 that	 p(τ|m)	 can	
take	only	positive	real	values	and	thus	ensures	that	estimated	AOD	is	positive.	
	
We	have	now	added	in	the	revised	manuscript	the	sentence	(page	6	line	7):	
“We	assumed	that	the	prior	p(τ|m)	follows	a	log-normal	distribution	in	order	to	
ensure	that	the	estimated	AOD	is	positive.”	
	
This	sentence	(page	6	 lines	8-10)	was	unclear	and	we	have	now	rephrased	the	
text	in	the	revised	manuscript	as:	
“In	our	case,	the	model	selection	procedure	seeks	the	solution	for	one	parameter	
τ	 and	 then	 the	 calculation	of	posterior	distribution	 is	 fairly	 straightforward	by	
numerical	quadrature.	The	calculation	of	the	posterior	distribution	is	presented	
in	more	detail	in	Määttä	et	al.	(2014).”	
	
Please,	note	that	we	have	also	included	an	Appendix	document,	as	supplement	to	
the	comments,	for	describing	our	computational	implementation	of	the	method.		
	
7.	P6,	L11-15.	How	the	evidence	is	computed?	This	reviewer	doesn’t	
understand	this	paragraph.	Later	again,	Maata	et	al	2014	is	cited,	
generating	a	pause	in	text	flow.	
The	evidence	p(Robs|m)		is	calculated	by	numerical	integration		
p(Robs|m)		=	∫	p(Robs|τ,m)	p(τ|m)	dτ.		
	
We	added	this	formula	(page	6	line	11)	and	the	sentence	reads	now	
“The	 denominator	 p(Robs|m)	 =	 ∫	 p(Robs|τ,	 m)	 p(τ|m)dτ	 	 in	 Eq.	 (4)	 is	 the	
probability	of	the	observed	reflectance	Robs	assuming	the	model	m	is	the	correct	
one.”	
	
8.	Overall,	the	method	presented	here	lacks	materials	for	readers	to	
comprehend.	An	specific	example	will	be	helpful	to	illustrate	how	all	these	
equations	are	implemented.	
We	 have	 now	 included	 Appendix	 document,	 as	 supplement	 to	 the	 Referee	 #2	
comments,	for	describing	computational	implementation	of	the	method.		



	
9.	The	results	part	also	lack	validation	or	inter-comaprison	with	MODIS	
AOD.	Does	the	method	help	to	interpret	the	inter-comparison?	
The	 inter-comparison	with	MODIS,	 or	with	 other	 satellite	 retrievals,	 is	 outside	
scope	of	this	paper.			
This	is	an	interesting	question.	The	method	presented	can	help	to	interpret	the	
results	from	inter-comparison	if	the	uncertainty	is	determined	and	characterized	
in	 a	 way	 it	 is	 comparable.	 But	 in	 principle,	 maybe	 in	 the	 future,	 the	 method	
described	can	give	additional	benefit	for	the	inter-comparison.	
			
10.	Introduction	part	needs	to	include	couple	of	references	that	reflect	the	
research	activities	in	U.S.		
(1)	p2,	L15.	The	following	paper	used	AOD	to	constrain	the	emissions	as	
well.	
Wang,	J.	et	al.,	2012.	Top-down	estimate	of	dust	emissions	through	
integration	of	MODIS	and	MISR	aerosol	retrievals	with	the	GEOS-Chem	
adjoint	model,	Geophys.	Res.	Lett.	L08802.	
Xu	et	al.,	2013.	Constraints	on	aerosol	sources	using	GEOS-Chem	adjoint	
and	MODIS	radiances,	and	evaluation	with	Multi-sensor	(OMI,	MISR)	data,	J.	
Geophys.	Res.	At-	mos.,	118,	6396-6413.	
We	have	now	added	the	reference	papers	Wang	et	al.	(2012)	and	Xu	et	al.	(2013).		
We	also	rephrased	the	sentence	in	p2	line	15	as	
”Furthermore,	 the	satellite	based	data	can	be	combined	with	numerical	models	
when	 estimating	 aerosol	 emission	 fluxes	 (Huneeus	 et	 al.,2012)	 or	 spatially	
constraining	amount	of	aerosol	emissions	(Wang	et	al.,	2012;	Xu	et	al.,	2013).”	
	
(2)	P2,	L	17-27.	while	LUT	is	widely	used	in	operational	retrieval	algorithm,	
several	research	algorithm	used	aerosol	properties	from	chemistry	
transport	models.	This	point	should	be	mentioned	here.	
We	apologizes	we	do	not	have	better	knowledge	of	the	research	algorithms	that	
use	 chemistry	 transport	models	 for	 aerosol	 properties.	 And	we	 do	 not	 have	 a	
reference	to	this	research	work	either.	
	
But	 in	 order	 to	 mention	 the	 use	 of	 climate	 models	 in	 the	 retrievals	 we	 have	
added	the	following	sentence	(p2,	line	23):	
“The	 aerosol	 properties	 in	 the	 LUTs	 can	 be	 based	 on	 observations	 or	
combination	of	observations	and	climate	models	(Holzer-Popp	et	al.,	2013).”	
	



A APPENDIX

A Appendix

A.1 Computational implementation of the method

This Appendix presents a pseudo-code for implementation of a method ap-
plied in manuscript Kauppi et al. (2017) and introduced in paper Määttä et
al. (2014) step-by-step for a one Ozone Monitoring Instrument (OMI) pixel.
The method is based on Bayesian inference approach.

OMI Data:

• The observed top-of-the-atmosphere (TOA) spectral reflectance ~R
obs

(�)
at selected wavelength bands � = (�

1

, . . . ,�n) calculated from the OMI
Level 1B VIS and UV radiances and Level 1B Solar irradiance data

• The measurement error variances �2

obs

(�), � = (�
1

, . . . ,�n)

• The set of Look-up-tables (LUTs) containing pre-calculated aerosol
microphysical models (e.g. hdf5 files)

Outcome:

• Posterior distribution p(⌧ |~R
obs

,m) of ⌧ (i.e. AOD) given as a discrete
set of values for ⌧ in the range of [0,⌧

max

]. The posterior distribution
is evaluated for each selected best fitting model (maximum of 10) and
stored in a table.

• Averaged posterior distribution p
avg

(⌧ |~R
obs

) given as a discrete set of
values for ⌧ in the range of [0,⌧

max

] and stored in a table.

• Point estimate for AOD at 500 nm determined as maximum a poste-
riori (MAP) estimate, i.e.mode of the averaged posterior distribution

We use a symbol ⌧ for AOD in the formulas. The modeled reflectance
~R
mod

(⌧, �) depends on ⌧ and is calculated by interpolation between nodal
values of LUT while fitted to the measured reflectance ~R

obs

in order to find
⌧ that minimizes

�2

mod

(⌧) = ~R
res

(�)T (C + diag(�2

obs

(�)))�1 ~R
res

(�). (1)

Here ~R
res

(�) = ~R
obs

(�)� ~R
mod

(⌧, �) is the residual of model fit. This is done
for each aerosol microphysical model in turn. In the formula �2

obs

(�) are the
measurement error variances and C is non-diagonal covariance matrix for
model discrepancy (i.e. forward modelling uncertainty). In our experiment
we calculated the elements of the covariance matrix C for wavelength pair
�i and �j as

Ci,j = �2

1

exp

✓
�1

2
(�i � �j)

2 /l2
◆
+ �2

0

(2)

1
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where parameter l is a correlation length, parameter �2

0

is non-spectral
(i.e. non-spatial) diagonal variance and �2

1

is spectral (i.e. spatial) variance.
We like to note that our used parameter values are specific for this study
with OMI data and have been empirically evaluated. These parameter val-
ues were estimated from an ensemble of the residuals, i.e. the di↵erences
between the observed and modeled reflectances, as described in the paper
Määttä et al. (2014). Here we used l = 90 nm and for �2

0

and �2

1

we used
values of 1% and 2% of the observed reflectance, respectively.

By Bayes’ formula the posterior distribution for ⌧ within the model m and
given the observed reflectance ~R

obs

is

p(⌧ |~R
obs

,m) =
p(~R

obs

|⌧, m) p(⌧ |m)

p(~R
obs

|m)
. (3)

In this case we have one unknown ⌧ (i.e. AOD at 500 nm) and the full
posterior distribution is calculated as described below.

The posterior is evaluated at a dense grid, e.g. at 200 points, of ⌧ values,
basically in the range of [0, ⌧

max

]. The maximum allowed ⌧
max

is determined
by the model LUT.

We calculated the likelihood as

p(~R
obs

|⌧, m) = c exp(�1

2
⇤ �2

mod

(⌧)), (4)

where �2

mod

(⌧) is calculated from Eq. 1 for the set of ⌧ values in the range of
[0, ⌧

max

]. The constant c ensures that the probability distribution is prop-
erly defined and it is the same for all the models m.

We assumed that a prior distribution p(⌧ |m) for ⌧ within aerosol microphys-
ical model m follows a log-normal distribution

p(⌧ |m) / logN(⌧
0

,�2

⌧ ). (5)

This confirms that p(⌧ |m) can take only positive real values and ensures that
AOD is positive. We set mean value ⌧

0

= 2 for the log-normal distribution.

We calculated the normalizing constant (or scaled factor) of the posterior
numerically as

p(~R
obs

|m) = c

Z
p(⌧ |m) ⇤ exp(�1

2
⇤ �2

mod

(⌧))d⌧. (6)

2
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Consequently, we have now calculated all the elements of the posterior dis-
tribution for ⌧ (Eq. 3).

In our study we call p(~R
obs

|m) as the model evidence that is used to make
the model selection. We select models with the highest evidence value until
the cumulative sum of the selected models’ evidences pass the value 0.8 or
the number of chosen models is 10.

Next we calculate relative evidence for model mi with respect to the other
models selected above (max 10) by

p(mi|~R
obs

) =
p(~R

obs

|mi)P
j(
~R
obs

|mj)
. (7)

These relative evidence values are used to compare models among the set of
selected best fitting models.

The averaged posterior distribution over the selected best models mi is cal-
culated as

p
avg

⇣
⌧ |~R

obs

⌘
=

nX

i=1

p(⌧ |~R
obs

, mi) p(mi|~R
obs

), (8)

where n is the number of models.

We accept the solution for the pixel if the threshold value �2  2 calculated
by following modified chi-squared formula

�2 =
1

n� 1
~R
res

(�)T
�
C + diag(�2(�))

��1 ~R
res

(�). (9)

We do this test only for the best model.

As a summary, we do the following for model selection, calculation of pos-
terior distributions and getting MAP estimate of AOD:

1. fit each model from LUT (i.e. ~R
mod

(⌧, �)) in turn to the measured
reflectance ~R

obs

(�)

2. for each model, find ⌧ that minimizes �2

mod

(⌧) (Eq. 1)

3. for each model, calculate posterior distribution p(⌧ |~R
obs

,m) (Eq. 3)

4. use model evidence (Eq. 6) to select max 10 best models

5. calculate the relative evidence (Eq. 7) for each model among the se-
lected best models. Actually, we first carry out steps 2.-3. once more
for the selected best models and then calculate the relative evidences.

3
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6. calculate the averaged posterior distribution (Eq. 8) and get point
estimate for AOD, i.e. MAP estimate

7. finally, do the goodness-of-fit test (Eq. 9)
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