
Dear	Associate	Editor,		
		
Please	 find	 below	 our	 detailed	 point-by-point	 response	 to	 all	 Anonymous	
Referee	 #1	 and	 Referee	 #2	 comments	 and	 specification	 of	 all	 changes	 in	 the	
revised	 manuscript.	 We	 have	 also	 attached	 an	 Appendix	 as	 a	 supplement	
material	 to	 the	 Referee	 #2	 response.	 The	 marked-up	 manuscript	 version	
showing	the	changes	made	is	given	in	the	end.	
		
The	 response	 to	 the	 Referees	 is	 structured	 as	 follows:	 (1)	 comments	 from		
Referee	in	bold	(2)	author's	response	in	normal	font	and	(3)	author's	changes	in		
manuscript	in	blue.		
	
Please	 note	 that	 the	 page,	 line	 and	 figure	 numbers	 in	 the	 given	 response	 and	
changes	description	refer	here	to	the	marked-up	manuscript.		
		
We	like	to	note	that	the	main	changes	in	the	text	concern	Section	5	(Discussion	
and	Conclusions).		
			
With	best	regards,		
Anu	Kauppi		
Finnish	Meteorological	Institute	
	
	
Response	to	Anonymous	Referee	#1	
	

There	are	a	few	improvement	that	I	deem	necessary	for	this	paper	to	be	

acceptable.	In	its	present	form	it	lacks	a	clear	definite	conclusion	and	

recommendation.	A	very	decent	physical	and	mathematical	framework	is	

presented,	however	at	the	end	the	reader	is	left	with	a	somewhat	

unsatisfactory	feeling,	not	knowing	whether	the	whole	exercise	was	

successful	or	not.	For	me	the	questions	that	are	addressed	here	are:	1)	does	

the	AOD	retrieval	improve	when	a	combination	of	aerosol	models	is	

allowed	and	combined	using	the	Bayesian	model	evidence?	2)	Does	the	

model	selection	uncertainty	give	a	better	estimate	of	the	AOD	uncertainty	

than	the	current	one?	

	
The	authors	pose	the	questions	and	address	them,	but	I	see	no	clear	

answer	for	these	questions.	It’s	left	hanging	in	the	conclusion	section.	It	

says	‘the	posterior	probability	distribution	can	characterise	the	

uncertainty	more	extensively	than	commonly	given	standard	deviation’.	

Fair	enough,	but	what	does	this	mean?	Is	it	better?	Should	we	generally	

apply	this	method?	Also	from	the	provided	sensitivity	studies	it	is	just	not	

clear	whether	things	work	as	expected	(probably	leading	to	the	general	

inconclusive	conclusion	section).	

	
What	I	lack	is	an	answer	to	these	questions	(supported	by	evidence):	Does	

the	average	AOD	perform	better	than	the	standard	one,	when	compared	to	

AERONET?	If	not,	is	this	reflected	in	a	larger	uncertainty?	If	yes,	are	the	



AERONET	and	OMI	AOD	retrievals	consistent	within	this	new	the	

uncertainty?	

	
If	this	could	be	adequately	answered,	i	recommend	this	paper	for	

publication.		

	
These	 are	 very	 important	 question.	We	have	now	 included	more	discussion	 of	
these	points	in	the	end	of	Section	5	(Discussion	and	Conclusions)	(p12-14).	For	
the	 sake	 of	 clarity	 and	 as	 suggested	 by	Anonymous	Referee	#2,	we	made	 also	
some	other	modifications	in	Section	5.		
	
In	order	to	highlight	the	main	targets	of	our	study,	we	added	in	the	beginning	of	
Conclusions	section	(p12	lines13-16):	
1)	 to	 improve	 the	 retrieval	 error	 estimate	 (i.e.	 to	 produce	 more	 realistic	
uncertainty	estimate),		
2)	to	evaluate	the	model	choice	procedure	and		
3)	 to	 find	more	 robust	AOD	estimate	 that	 is	 based	on	 the	 average	of	 the	most	
appropriate	 aerosol	microphysical	models	 instead	of	 on	 a	 single	model	 chosen	
probably	by	chance.	
	
The	aim	was	not	actually	to	develop	retrieval	algorithm	or	improve	the	existing	
one	 (OMAERO),	but	 to	 examine	 the	 influence	of	 aerosol	model	 selection	 to	 the	
resulted	AOD	and	uncertainty.		
	
It	is	difficult	to	give	clear	answers	to	the	Referee	#1	questions	since	we	have	not	
done	 yet	 the	 comprehensive	 testing	 and	 validation.	 However,	 we	 can	 present	
conclusions	and	give	some	recommendations	based	on	the	set	of	test	cases	done	
so	 far	 and	 based	 on	 the	 application	 of	 the	 method	 to	 measurements	 of	 one	
instrument.	
	
1)	does	the	AOD	retrieval	improve	when	a	combination	of	aerosol	models	

is	allowed	and	combined	using	the	Bayesian	model	evidence?	2)	Does	the	

model	selection	uncertainty	give	a	better	estimate	of	the	AOD	uncertainty	

than	the	current	one?	

1)	 In	 general,	 combination	 of	 aerosol	 models	 by	 utilizing	 Bayesian	 model	
averaging	approach	improve	the	retrieved	AOD.	From	the	test	cases	we	can	see	
that,	usually,	the	averaged	posterior	gives	better	AOD	estimate	than	if	based	on	
one	best	model,	when	compared	to	AERONET.		
We	have	added	discussion	of	this	in	the	conclusions	section	(p13	lines33-35	and	
p14	lines1-2)	
2)	The	uncertainty	 that	accounts	 for	 the	model	selection	has	more	 information	
about	the	difficulty	in	model	selection	and	thus	the	uncertainty	is	more	realistic.		
We	also	 considered	 the	 forward	modeling	uncertainty	 (i.e.	model	discrepancy)	
separately	 in	order	 to	 take	 into	account	 the	 imperfect	 forward	modeling	when	
fitting	the	LUT-based	reflectance	into	observations.		
We	have	added	discussion	of	this	in	the	conclusions	section	(p13	lines25-33)	
	

	



‘the	 posterior	 probability	 distribution	 can	 characterise	 the	 uncertainty	

more	 extensively	 than	 commonly	 given	 standard	 deviation’.	 Fair	 enough,	

but	what	does	this	mean?	Is	it	better?	

The	posterior	distributions	of	the	best	models	and	averaged	posterior	give	more	
information	about	the	uncertainty	in	model	selection	and	in	estimated	AOD	than	
one	 number	 and	 standard	 deviation	 can	 give.	 But	 presenting	 this	 pixel-wise	
uncertainty	 information,	 given	 by	 the	 posterior	 densities,	 in	 compact	 but	 still	
informative	 form	 is	 not	 clear.	 In	 addition,	 the	 other	 question	 could	 be	 what	
information	of	the	uncertainty	is	needed	or	is	sufficient	to	present.		
	
We	have	now	removed	this	sentence	since	it	was	unclear	statement	(Discussion	
and	 Conclusions,	 p13	 lines31-32)	 and	 added	 the	 following	 expression	 (p14	
lines11-12):.	
“Moreover,	further	study	and	discussion	is	needed	to	determine	how	to	express	
the	 uncertainty	 information,	 provided	 by	 the	 posterior	 distribution,	 in	 more	
compact	form.	
	
Should	we	generally	apply	this	method?	Also	from	the	provided	sensitivity	

studies	it	is	just	not	clear	whether	things	work	as	expected	

The	method	brings	more	 information	about	 the	uncertainty	and	 it	 can	be	used	
for	evaluation	of	the	model	selection	process	e.g.	study	the	 influence	of	aerosol	
microphysical	model	selection	on	the	estimated	AOD.	
So	 far,	 the	 sensitivity	 studies	 have	 brought	 interesting	 information	 about	 the	
uncertainty	 related	 to	 the	 model	 selection	 process,	 e.g.	 difficulty	 in	 model	
selection	or	lack	of	appropriate	model	LUTs.	However,	the	case	studies	have	also	
shown	 that	 the	 aerosol	 type	 selection	 works	 as	 expected,	 albeit	 with	 some	
exceptions	e.g.	resulted	unexpected	type	of	model.	
We	 have	 added	 discussion	 of	 these	 issues	 in	 the	 conclusions	 section	 (p13	
lines25-35	and	p14	lines1-2,	p14	lines8-12)	
	
Does	 the	 average	 AOD	 perform	 better	 than	 the	 standard	 one,	 when	

compared	 to	AERONET?	 If	not,	 is	 this	 reflected	 in	a	 larger	uncertainty?	 If	

yes,	are	 the	AERONET	and	OMI	AOD	retrievals	 consistent	within	 this	new	

the	uncertainty?	
The	case	studies	reveal	that	the	proposed	method	using	averaged	AOD	was	not	
better	 than	 the	 standard	 one	 (OMAERO)	 if	 compared	 only	 the	 retrieved	 AOD	
values	to	AERONET.	But	the	proposed	method	got	solution	for	more	pixels	than	
OMAERO.	Also	 the	 retrieved,	but	LUT-dependent,	Ångström	exponents	were	 in	
rather	good	agreement	with	the	AERONET	values.		
The	 test	 cases	 also	 show	 that,	 in	 general,	 the	 larger	 uncertainty,	 i.e.	 posterior	
width,	 reflected	 the	uncertainty	 in	 the	 retrieval.	Also,	when	 the	deviation	 from	
the	AERONET	AOD	was	larger	then	the	uncertainty	was	higher.	
We	have	added	discussion	of	this	in	the	conclusions	section	(p14	lines3-7)	
	
Minor	comments:	

	
p1l24	(and	a	few	more):	data	is	->	data	are	

Corrected	(p1line24,	p2line16	and	p14line18)	
	



p3l25:	referred	->	referred	to	

Corrected.	(p3	line27)	
	
p3l28:	a	cloudy	ground	pixel	sounds	strange.	I	would	say	a	cloudy	

atmosphere	pixel.	Or	just	a	cloudy	pixel.	
We	changed	“a	cloudy	ground	pixel”	to	”a	cloudy	pixel”.	(p3	line30)	
	
p3l31:	What	is	a	wise	quality?	

This	is	a	typo;	”wise”	removed	(p4	line1)	
	
p4l4:	Before	the	start	of	the	new	sentence,	add	‘For	surface	reflectivity,’	(we	

used..	etc)	

Added,	thank	you.	(p4	line6)	
	
p4l11-13:	you	say:	the	band	at	477	nm	adds	important	info,	yet	you	exclude	

it	specifically.	Why?	

We	 excluded	 band	 at	 477	 nm	 since	 we	 did	 not	 need	 aerosol	 layer	 height	
information	in	our	study.	The	other	reason	is	based	on	experimental	issue	since	
we	found	that	this	band	brought	extra	complexity	when	examined	the	modeled	
spectral	reflectance	fit	to	the	observed	reflectance.	
We	changed	 the	order	of	 the	 last	 two	sentences	 in	 the	 revised	manuscript	and	
rephrased	the	sentence	as	(p4	lines13-16):	
	“However,	 we	 omitted	 in	 our	 study	 the	 band	 477	 nm	 due	 to	 experimental	
purpose	and	since	we	did	not	need	aerosol	height	information.”	
	
p5l3:	Equation	(1)	is	not	just	a	‘formula’.	Start	this	discussion	with	a	

physical	description	like:	Assuming	a	Lambertian	surface	the	contribution	

of	the	radiation	at	the	TOA	can	be	separated	from	that	of	the	atmosphere	

(e,g.	Chandrasekhar,	1960),	viz.	etc.	
Thank	you,	we	have	rephrased	the	sentence	as	suggested.		
The	sentence	now	reads	(p5	lines5-7):	
“Assuming	a	Lambertian	surface	the	contribution	of	the	radiation	at	the	TOA	can	
be	separated	from	that	of	the	atmosphere	(e.g.	Chandrasekhar,	1960)	leading	to	
the	equation	for	modeled	reflectance	as	…”	
	
p5l10:	of	the	real	->	of	the	aerosols	in	the	real	

Corrected.	(p5	line15)	
	
p5l10-11:	This	forward	model	app	error,..	Which	one?	You	haven’t	

described	an	error	yet.	Do	you	mean	the	difference	between	real	and	

approx.	reflectances?	Then	describe	that.	

By	 “forward	model	 approximation	 error”	 we	mean	 error	 that	 originates	 from	
forward	model	approximation.	
The	beginning	of	 the	sentence	has	been	revised	to	“Approximations	 in	 forward	
modeling	…”	(p5	line16)	
	
p5l13:	This	is	strange:	I	would	expect	that	a	total	(megs)	error	would	be	

forward	model	error,	noise	(and	perhaps	more).	Noise	surely	doesn’t	



include	forward	model	error?	What	is	epsilon_obs?	Noise	or	total?	

Rephrase	l11.	

Thank	 you	 for	 notifying	 this	 incoherent	 statement;	 “Measurement	 noise”	 is	 	 a	
wrong	expression.	
We	have	now	removed	this	sentence	since	it	is	unnecessary	here.	(p5	line19)	
	
εobs	 is	 the	measurement	 error	 (or	 noise)	 and	 εobs(λ)	∼	N(0,	 σ2obs(λ)).	We	 have	
clarified	this	in	the	revised	manuscript.	(p5	line24)	
	
To	 make	 clear,	 we	 have	 also	 expressed	 the	 measurement	 error	 standard	
deviation	σobs(λ)	=	Robs(λ)/SNR	(in	p5	line27)		
and	changed	the	notation	“σ(λ)”	to	“σobs(λ)”	(in	Eq.	3)	
	
p6.	Increase	the	size	of	eq.	4	and	5,	like	eq.	1.	They	are	the	basis	of	the	

paper.	

Done.	(p6	lines	9	&	17)	
	
p7l19:	cover	->	covers	

Corrected.	(p8	line5)	
	
p7l20:	cover	->	covers	a	

Corrected.	(p8	line6)	
	
p7l22-25:	Move	this	to	section	2.	And	add	a	description	of	MODIS,	which	is	

introduced	in	the	next	paragraph.	

The	 text	 part	 p7l22-25	 introduces	 the	 AERONET	 data	 that	 are	 used	 for	
evaluating	 the	 case	 studies.	 That’s	why	we	would	 like	 to	 retain	 the	 AERONET	
description	part	in	this	Section	4	(Case	studies	and	results)(p8	lines8-11).	
	
As	suggested,	we	have	now	added	a	description	of	MODIS	in	the	end	of	Section	4.	
The	added	text	reads	(p8	lines11-14):	
“We	 tracked	 clouds	 and	 land	 scene	 for	 the	 case	 studies	 by	 utilizing	 true-color	
images	 from	MODIS,	 on	Aqua	 satellite,	 that	has	 the	 equator	 crossing	 time	only	
about	15	minutes	earlier	than	OMI.	The	MODIS	instrument	is	onboard	both	Terra	
and	 Aqua	 spacecraft.	 The	 data	 products	 derived	 from	 MODIS	 measurements	
include	atmosphere	(e.g.	cloud	mask	and	aerosol	products),	land,	cryosphere	and	
ocean	products	(see	e.g.	http://modis.gsfc.nasa.gov).”	
	
p8l1	&	Figure	1.	The	OMI	pixels	->	The	OMI	pixels	that	were	analysed	The	

location	of	the	OMI	pixels	within	the	MODIS	swath	are	not	clear.	In	Figure	1	

add	the	contours	of	the	OMI	pixels	that	are	used	in	Fig	2-6.	

(P8	line20)	Corrected:	“The	OMI	pixels”	->	“The	OMI	pixels	that	were	analysed”.	
Fig	1.:	We	added	contours	of	the	OMI	pixels.		
We	also	added	in	the	figure	caption:	“The	area	of	analysed	OMI	pixels	is	marked	
with	red	contours.”(p18)	
	
p8l2:	The	pixel	has	no	data	if	->	No	data	are	reported	if	the	pixel	is	

Corrected	(p8	lines21-22)	
	



p8l18:	pixel	wise	->	pixel-wise	

Corrected.	(p9	line3)	
	
p823:	in	the	latter	day	case	->	On	the	27th,	

Corrected.	(p9	line8)	
	
p9l8-10:	Figure	8	is	superfluous.	Remove	it	and	on	describe	the	results	

from	it	in	the	text.	It	will	reduce	the	number	of	figures,	which	is	needed	

anyway.	

We	agree.	We	removed	Fig	8.	(p9	lines29-31),	rephrased	the	text	accordingly	and	
moved	 it	 to	 the	 beginning	 of	 the	 paragraph.	 	 The	 sentence	 reads	 now	 (p9	
lines23-24):	
“The	other	types	of	models,	e.g.	weakly	absorbing	type,	do	not	match	as	well	as	
the	selected	best	BB	models.”	
	
p9l11-13;:	Elaborate	on	this	result.	It	is	as	important	as	the	16th.	

As	suggested,	we	have	now	included	more	discussion	in	the	revised	manuscript	
about	the	results	of	27th	case.	(p9	lines32-35	and	p10	lines1-5)	
	
p9l14-22:	Here’s	the	first	missing	conclusion.	So	you	compared	the	

Angstrom	exponents.	Whats	the	conclusion	from	all	this?	Does	it	improve	

as	expected	or	not.	Describe	this,	instead	of	just	showing	numbers	in	a	

table.	The	table	is	just	there	to	backup	the	story.	
The	conclusion	from	comparison	with	AERONET	values	is	that	the	derived,	even	
if	LUT	dependent,	Ångström	exponent	values	are	in	rather	good	agreement	with	
the	 AERONET	 values	 (see	 Table	 2).	 But	 in	 some	 cases	 we	 observed	 that	
agreement	 between	 the	 AOD	 values	 do	 not	 necessarily	 lead	 to	 agreement	
between	the	Ångström	exponent	values.	
Unfortunately	we	cannot	answer	to	the	question	“does	it	improve	as	expected	or	
not”	 since	 we	 have	 only	 done	 the	 comparison	 between	 LUT-based	 derived	
α1(442-500	nm)	(or	α2)	and	AERONET	α(440-675	nm).		
	
We		have	now	included	the	following	description	in	the	end	of	section	4.1	in	the	
revised	version	(p10	lines14-17):	
“For	Beijing	case,	in	both	days,	the	derived	Ångström	exponent	value	of	the	best	
model	(α1)	is	in	good	agreement	with	the	AERONET	value.	Even	so,	on	the	16th	
of	April	α2	deviates	more	from	the	AERONET	value	although	the	estimated	AOD,	
based	on	the	second	best	model,	is	closer	to	the	AERONET	AOD	values	(see	Fig.	7	
left).”	
	
For	 Africa	 case,	 the	 Figure	 13	 shows	 distribution	 of	 α1	 (left)	 and	 α2	 (right)	
values,	 respectively.	 We	 added	 the	 following	 description	 in	 the	 revised	
manuscript	(p11	lines14-16):	
“That	 is,	 the	 Ångström	 values	 are	 low	 where	 the	 desert	 dust	 type	 of	 models	
dominate.	 Correspondingly,	 in	 the	 coastal	 region	where	 typically	 is	 smoke	 and	
urban	polluted	air	the	Ångström	exponent	is	higher.”	
	
When	we	compare	Ångström	exponent	values	at	 locations	of	AERONET	sites	 in	
Africa	the	agreement	is	generally	good,	except	at	DMN_Maine_Soroa	site.		



We	added	the	following	sentences	related	to	Ångström	exponent	comparison	for	
Agoufou	(p11	lines30-31):	
“However,	 the	derived	Ångström	exponent	α1	has	rather	good	agreement	with	
the	AERONET	value	(Table	2).”	
	
and	for	DMN_Maine_Soroa	(p11	line35):	
“…	 but	 the	 derived	 Ångström	 exponents,	 α1	 and	 α2,	 do	 not	 agree	 with	 the	
AERONET	value	(Table	2).”	
	
and	for	IER_Cinzana	and	Saada	(p12	lines5-9):	
“For	the	sites	IER_Cinzana	and	Saada	the	best	and	the	second	best	models	have	
as	good	evidence	(Fig.	15	right	column)	indicating	that	the	selection	of	the	best	
model	 happened	 by	 chance.	 Consequently,	 the	 derived	 α1	 for	 Saada	 site	 is	
consistent	with	the	AERONET	value	whereas	the	derived	α2	for	IER_Cinzana	has	
better	agreement	than	α1	with	the	AERONET	value.”	
	
p9l24	&	Figure	9:	This	figure	is	inadequate.	Again	the	location	of	the	OMI	

pixels	is	not	clear.	Merge	MODIS	quicklookd	into	one	RGB	image	and	

overlay	the	OMI	pixel	contours.	

We	 have	 now	 merger	 the	 two	 MODIS	 RGB	 images	 (figure	 8)	 and	 added	 the	
contours	of	the	OMI	pixels.	We	also	added	in	the	figure	caption	(p24):	“The	area	
of	analysed	OMI	pixels	is	marked	with	red	contours.”	
	
p10l3:	the	selection	of	the	volcanic	type	is	most	probably..	:	Most	probably?	

Who	is	going	to	give	a	conclusive	answer	to	that	if	not	the	authors	

themselves?	First,	indicate	where	the	OMI	pixels	are	in	the	MODIS	RGB	

image	as	suggested	above.	Then,	conclude	whether	or	not	this	is	due	to	the		

‘white	area’.	.	.	Do	you	mean	cloud?	

The	 contours	 of	 the	 OMI	 pixels	 added	 in	 the	 MODIS	 RGB	 image	 as	 suggested	
above.		(fig.8	p24)	
	
We	have	now	 changed	 the	notation	 “white	 area”	 as	 “cloud”	 and	 rephrased	 the	
text	as	(p10	lines30-33):	
“The	 selection	 of	 volcanic	 aerosol	 type	 as	 the	 only	 appropriate	 aerosol	 type	
happens	for	pixels	located	northeast	from	the	Lake	Chad	where	is	seen	cloud	in	
the	MODIS	RGB	image	(Fig.	8).”	
	
p10l10:	perhaps	indicating..:	Again,	why	perhaps?	Tell	the	reader	whether	

there	was	dust	or	not.	If	not,	why	select	this	day?	Surely	a	dust	event	can	be	

easily	found	using	OMI	UVAI	on	a	clear	day.	Indeed,	26	March	2008	shows	

low	UVAI	over	the	northern	Sahara,	so	change	this	day	and	choose	a	day	

where	you	know	what’s	going	on	and	what	aerosol	model	you	should	

expect.	

The	criterion	 for	 selecting	 that	date,	26	March,	 is	 almost	 cloud	 free	 scene	over	
Northern	 and	 Central	 Africa	 thus	 providing	 large	 pixel	 area	 to	 study.	 The	 aim	
was	 to	 study	 the	 uncertainty	 in	 aerosol	 model	 selection	 and	 its	 effect	 on	 the	
results	in	“the	normal	aerosol	situation”	and	we	did	not	seek	a	special	case	with	
known	dust	or	smoke	event.	The	resulted	aerosol	types	were	what	we	expected	
i.e.	dust	in	the	north	and	urban	pollution/smoke	in	the	coast	region.	



	
We	have	now	removed	this	imprecise	statement	(p11	line6):		
“The	retrieved	AOD	estimates	are	rather	small	perhaps	indicating	that	no	dust	
event	or	active	fires	were	going	on.”	
in	the	manuscript	since	it	is	not	relevant	here.	
	
p10l24-26.	So	what’s	the	conclusion	here?	Is	the	posterior	uncertainty	

better	or	the	same	in	the	case	of	one	chosen	model?	Does	the	(new)	high	

uncertainty	include	the	difference	between	the	two	measurements,	or	is	it	

too	small?	

The	 paragraph	 p10l24-26	 considers	 results	 in	 one	 OMI	 pixel	 located	 around	
AERONET	Agoufou	site.		
	
As	a	result	there	is	only	one	selected	model	having	a	sufficient,	even	poor,	fit	to	
the	 measured	 reflectance.	 As	 expected,	 the	 large	 width	 of	 the	 posterior	
distribution,	 that	 is	 the	 averaged	 posterior	 distribution	 as	well,	 indicates	 high	
uncertainty	in	the	model	selection	and	thus	in	the	retrieved	AOD.	Consequently,	
the	answer	to	the	first	question	is:	even	the	method	gives	a	solution	that	passed	
the	goodness-of-fit	test	it	does	not	ensure	correctness	of	the	result.	
The	answer	to	the	second	questions	is:	the	posterior	uncertainty	is	the	same	in	
case	of	one	chosen	model.	
	
The	 retrieval	 uncertainty	 is	 high	 and	 still	 the	posterior	 density	 does	not	 cover	
the	AERONET	Agoufou	AOD	values	(or	daily	average)	but	it	covers	the	OMAERO	
AOD	 (1.557).	 However,	 the	 Ångström	 exponent	 values	 for	 AERONET	 daily	
average	 α(440-675	 nm)	 and	 proposed	method	 α1(442-500nm),	 i.e.	 0.375	 and	
0.293	respectively,	match	quite	well	(Table	2).	
It	must	be	noted	here	that	the	AERONET	measurements	at	the	Agoufou	site	were	
made	in	the	morning	and	the	last	one		about	3.5	hours	before	OMI	overpass	time.		
	
We	have	now	added	more	discussion	and	rephrased	the	paragraph	in	the	revised	
version.	(p11	lines23-30)	
	
The	conclusion	section	should	be	extended	with	a	clear	recommendation.	

We	have	included	more	text	for	recommendation,	and	hopefully	in	clear	way,	in	
the	Discussion	and	Conclusions	section.	(p13	lines25-28	and	p14	lines8-12)	
	
	
Response	to	Anonymous	Referee	#2	
	
The	paper	is	interesting	with	sound	math.	For	it	to	be	published	and	attract	

wider	readability,	it	needs	significant	revisions,	especially	in	many	places	

where	Maatta	et	al’s	paper	is	referred.		

We	agree	that	we	have	frequently	referred	to	the	paper	Määttä	et	al.	(2014)	for	
the	theoretical	details.	In	that	paper	the	theoretical	background	and	construction	
of	the	method	is	presented	in	detail	and	we	did	not	want	to	repeat	it	in	this	
manuscript.	
As	suggested	by	the	Referee	#2,	we	have	now	included	more	description	of	the	
method	in	the	revised	version	and	took	into	account	the	detailed	Referee	



comments	listed	below.	We	have	also	included	an	Appendix	document,	as	
supplement	to	the	comments,	for	describing	our	computational	implementation	
of	the	method.		
	
Detailed	comments	are	

	
1.	what	is	the	key	difference	in	method	between	this	paper	and	Maatta	et	

al?	Is	it	simply	that	Maatta	et	al.	didn’t	analyze	the	retrieval	uncertainty	(p.	

11,	line	5)?	

The	method	is	the	same	in	both	papers	and	applied	to	OMI	measurements.	Both	
papers	also	analyze	the	retrieval	uncertainty.	
The	difference	is	that	in	the	paper	Määttä	et	al.	the	test	cases	examined	the	
method	at	single	OMI	pixels	using	two	ways:	with	and	without	the	included	
model	discrepancy	term.	Whereas	in	this	manuscript	the	method	includes	the	
model	discrepancy	term	and	is	applied	to	more	comprehensive	data	set.			
In	addition	this	manuscript	considers	more	the	presentation	and	description	of	
the	uncertainty	due	to	the	model	selection.	
We	have	now	rephrases	the	first	part	of	Section	5	(Discussion	and	Conclusions)	
to	express	more	clearly	the	difference	between	the	papers.	(p12	lines18-21)	
	
2.	equation	1.	To	compute	reflectance,	one	needs	to	know	path	reflectance	

that	in	turn	is	related	to	aerosol	optical	depth.	the	same	is	true	for	

transmittance.	Please	explain	how	the	calculation	in	equation	1	is	

implemented?	what	are	the	inputs	and	from	where?	

The	path	reflectance	Ra(λ,τ,μ,μ0,∆φ,ps)	and	transmittance	T(λ,τ,μ,μ0,ps)	are	both	
related	to	τ	(i.e.	AOD).	They,	as	well	as	spherical	albedo	s(λ,τ,ps),	are	taken	from	
the	associated	multi-dimensional	model	table	LUT	by	interpolating	between	LUT	
contained		nodal	point	values	of	τ,	Δϕ,	ps	,	μ	and	μ0	.	This	is	explained	in	the	
manuscript	(Discussion	paper:	page	5	lines	1-7).	
As	input	data	we	use	wavelength	bands	λ		and	sun-satellite	geometry	data	
included	in	OMI	data	(	Δϕ	,	ps,	μ	and	μ0).	Please	see	Section	2.1.	and	e.g.	Torres	et	
al.,	(2002)	for	more	information	about	content	of	OMI	LUTs.		
We	added	in	the	revised	manuscript	the	sentence	(page	5):	“The	sun-satellite	
geometry	data	∆φ,	ps,	μ	and	μ0	are	included	in	the	OMI	Level	1B	data.”	(p5	
lines11-12).	We	also	changed	“by	LUT”	to	“from	LUT”	for	clarity	(p5	line	9).	
	
3.	equation	2.	Is	observation	error	kept	constant	for	each	wavelength	in	

this	case?	

The	observation	error	εobs(λ)	is	assumed	to	be	Gaussian	distributed	with	zero	
mean	and	variance	σ2obs(λ).	The	variance	is	not	constant	as	the	standard	
deviation	is	calculated	by	σobs(λ)	=	Robs(λ)/SNR	where	we	set	SNR=500.	
To	make	this	clear	we	added	εobs(λ)	∼	N(0,	σ2obs(λ))	and	σobs(λ)	=	Robs(λ)/SNR		in	
the	revised	manuscript	in	Section	3.1.	(p5	line24	and	line27)	
	
4.	page	5.	line	25,	"we	constructed	the	covariance	function	empirically	by	

using	the	wavelength	distance	dependent	correlation	structure	of	the	

residuals	(See	Maata	et	al	2014	details)".	This	sentence	is	very	difficult	to	

understand.	The	paper	should	standalone	by	itself.	



We	have	now	clarified	this	sentence	in	the	revised	manuscript.	We	also	changed	
the	“covariance	function”	to	“covariance	matrix”	for	simplicity.	
However,	the	theoretical	details	are	left	to	the	reference	paper	Määttä	et	al.	
(2014).	
	
In	hope	of	clarifying	the	process	for	constructing	the	covariance	matrix	C,	we	
have	changed	the	sentence	to:	
“The	covariance	matrix	C	was	constructed	by	means	of	an	empirical	
semivariogram	when	the	variances	of	the	residual	differences	were	calculated	
for	each	wavelength	pairs	with	the	distance	d.	Next,	the	theoretical	Gaussian	
variogram	model	was	fitted	to	these	empirical	semivariogram	values.	The	
outcome	of	this	analysis	were	the	values	for	parameters	that	defines	the	model	
discrepancy	covariance	matrix	C	(see	Määttä	et	al.	(2014)	for	details).”	(p6	
lines2-6)	
	
5.	eq.	3.	Where	does	this	equation	come	from?	how	is	measurement	error	

variance	computed?	

Equation	(3)	is	the	likelihood	function	that	describes	the	distribution	of	the	
observations	given	the	model	and	is	dependent	on	the	residuals.	The	likelihood	
has	that	form	(Eq.	3)	since	we	assume	it	follows	a	multivariate	Gaussian	
distribution	with	non-diagonal	covariance	matrix	C+diag(σ2obs(λ)).	Here	C	is	the	
model	discrepancy	covariance	matrix.	
	
We	added	the	following	sentence	in	the	revised	manuscript	(page	5	line	28):	
“We	assume	that	the	likelihood	function	describing	the	distribution	of	the	
observations	given	the	model	follows	a	Gaussian	distribution.”	(p6	lines7-8)	
	
The	measurement	error	variance	σ2obs(λ)	is	computed	as	described	above	(the	
comment	3),	i.e.	σ2obs(λ)	=	(Robs(λ)/SNR)2	where	we	have	used	SNR	=	500.	
Formula	for	σobs(λ)	added	(p5	line	27)	
	
6.	eq.	4.	It	is	not	clear	how	p(tau|m)	is	constructed.	“In	the	present	case,	the	

estimation	and	model	selection	procedure	seeks	the	solution	for	a	one-

dimensional	parameters	tau,	and	the	calculations	will	be	fairly	

straightforward	by	numerical	quadrature.	The	posterior	distribution	

calculation	is	presented	in	the	more	detail	in	Maata	et	al	2014”.	Again,	this	

reviewer	doesn’t	understand	this.	

The	prior	p(τ|m)	,	i.e.	the	prior	distribution	for	τ	depending	on	the	aerosol	
microphysical	model	m,	is	constructed	in	our	study	by	assuming	that	it	follows	a	
log-normal	distribution	with	mean	value,	say	2.	This	confirms	that	p(τ|m)	can	
take	only	positive	real	values	and	thus	ensures	that	estimated	AOD	is	positive.	
	
We	have	now	added	in	the	revised	manuscript	the	sentence	(page	6	line	19-20):	
“We	assumed	that	the	prior	p(τ|m)	follows	a	log-normal	distribution	in	order	to	
ensure	that	the	estimated	AOD	is	positive.”	
	
This	sentence	was	unclear	and	we	have	now	rephrased	the	text	in	the	revised	
manuscript	as	(p6	lines	21-24):	



“In	our	case,	the	model	selection	procedure	seeks	the	solution	for	one	parameter	
τ	and	then	the	calculation	of	posterior	distribution	is	fairly	straightforward	by	
numerical	quadrature.	The	calculation	of	the	posterior	distribution	is	presented	
in	more	detail	in	Määttä	et	al.	(2014).”	
	
Please,	note	that	we	have	also	included	an	Appendix	document,	as	supplement	to	
the	comments,	for	describing	our	computational	implementation	of	the	method.		
	
7.	P6,	L11-15.	How	the	evidence	is	computed?	This	reviewer	doesn’t	

understand	this	paragraph.	Later	again,	Maata	et	al	2014	is	cited,	

generating	a	pause	in	text	flow.	

The	evidence	p(Robs|m)		is	calculated	by	numerical	integration		
p(Robs|m)		=	�	p(Robs|�,m)	p(�|m)	d�.		
	
We	added	this	formula	and	the	sentence	reads	now	(p6	lines25-26)	
�The	denominator	p(Robs|m)	=	�	p(Robs|�,	m)	p(�|m)d�		in	Eq.	(4)	is	the	
probability	of	the	observed	reflectance	Robs	assuming	the	model	m	is	the	correct	
one.�	
	
8.	Overall,	the	method	presented	here	lacks	materials	for	readers	to	

comprehend.	An	specific	example	will	be	helpful	to	illustrate	how	all	these	

equations	are	implemented.	

We	have	now	included	Appendix	document,	as	supplement	to	the	Referee	#2	
comments,	for	describing	computational	implementation	of	the	method.		
	
9.	The	results	part	also	lack	validation	or	inter-comaprison	with	MODIS	

AOD.	Does	the	method	help	to	interpret	the	inter-comparison?	

The	inter-comparison	with	MODIS,	or	with	other	satellite	retrievals,	is	outside	
scope	of	this	paper.			
This	is	an	interesting	question.	The	method	presented	can	help	to	interpret	the	
results	from	inter-comparison	if	the	uncertainty	is	determined	and	characterized	
in	a	way	it	is	comparable.	But	in	principle,	maybe	in	the	future,	the	method	
described	can	give	additional	benefit	for	the	inter-comparison.	
			
10.	Introduction	part	needs	to	include	couple	of	references	that	reflect	the	

research	activities	in	U.S.		

(1)	p2,	L15.	The	following	paper	used	AOD	to	constrain	the	emissions	as	

well.	

Wang,	J.	et	al.,	2012.	Top-down	estimate	of	dust	emissions	through	

integration	of	MODIS	and	MISR	aerosol	retrievals	with	the	GEOS-Chem	

adjoint	model,	Geophys.	Res.	Lett.	L08802.	

Xu	et	al.,	2013.	Constraints	on	aerosol	sources	using	GEOS-Chem	adjoint	

and	MODIS	radiances,	and	evaluation	with	Multi-sensor	(OMI,	MISR)	data,	J.	

Geophys.	Res.	At-	mos.,	118,	6396-6413.	

We	have	now	added	the	reference	papers	Wang	et	al.	(2012)	and	Xu	et	al.	(2013).		
We	also	rephrased	the	sentence	in	as	(p2	lines14-16)	
”Furthermore,	the	satellite	based	data	can	be	combined	with	numerical	models	
when	estimating	aerosol	emission	fluxes	(Huneeus	et	al.,2012)	or	spatially	
constraining	amount	of	aerosol	emissions	(Wang	et	al.,	2012;	Xu	et	al.,	2013).”	



	
(2)	P2,	L	17-27.	while	LUT	is	widely	used	in	operational	retrieval	algorithm,	

several	research	algorithm	used	aerosol	properties	from	chemistry	

transport	models.	This	point	should	be	mentioned	here.	

We	apologizes	we	do	not	have	better	knowledge	of	the	research	algorithms	that	
use	chemistry	transport	models	for	aerosol	properties.	And	we	do	not	have	a	
reference	to	this	research	work	either.	
	
But	in	order	to	mention	the	use	of	climate	models	in	the	retrievals	we	have	
added	the	following	sentence	(p2	lines23-24):	
“The	aerosol	properties	in	the	LUTs	can	be	based	on	observations	or	
combination	of	observations	and	climate	models	(Holzer-Popp	et	al.,	2013).”	
	
	



A APPENDIX

A Appendix

A.1 Computational implementation of the method

This Appendix presents a pseudo-code for implementation of a method ap-
plied in manuscript Kauppi et al. (2017) and introduced in paper Määttä et
al. (2014) step-by-step for a one Ozone Monitoring Instrument (OMI) pixel.
The method is based on Bayesian inference approach.

OMI Data:

• The observed top-of-the-atmosphere (TOA) spectral reflectance ~R
obs

(�)
at selected wavelength bands � = (�

1

, . . . ,�n) calculated from the OMI
Level 1B VIS and UV radiances and Level 1B Solar irradiance data

• The measurement error variances �2

obs

(�), � = (�
1

, . . . ,�n)

• The set of Look-up-tables (LUTs) containing pre-calculated aerosol
microphysical models (e.g. hdf5 files)

Outcome:

• Posterior distribution p(⌧ |~R
obs

,m) of ⌧ (i.e. AOD) given as a discrete
set of values for ⌧ in the range of [0,⌧

max

]. The posterior distribution
is evaluated for each selected best fitting model (maximum of 10) and
stored in a table.

• Averaged posterior distribution p
avg

(⌧ |~R
obs

) given as a discrete set of
values for ⌧ in the range of [0,⌧

max

] and stored in a table.

• Point estimate for AOD at 500 nm determined as maximum a poste-
riori (MAP) estimate, i.e.mode of the averaged posterior distribution

We use a symbol ⌧ for AOD in the formulas. The modeled reflectance
~R
mod

(⌧, �) depends on ⌧ and is calculated by interpolation between nodal
values of LUT while fitted to the measured reflectance ~R

obs

in order to find
⌧ that minimizes

�2

mod

(⌧) = ~R
res

(�)T (C + diag(�2

obs

(�)))�1 ~R
res

(�). (1)

Here ~R
res

(�) = ~R
obs

(�)� ~R
mod

(⌧, �) is the residual of model fit. This is done
for each aerosol microphysical model in turn. In the formula �2

obs

(�) are the
measurement error variances and C is non-diagonal covariance matrix for
model discrepancy (i.e. forward modelling uncertainty). In our experiment
we calculated the elements of the covariance matrix C for wavelength pair
�i and �j as

Ci,j = �2

1

exp

✓
�1

2
(�i � �j)

2 /l2
◆
+ �2

0

(2)

1
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where parameter l is a correlation length, parameter �2

0

is non-spectral
(i.e. non-spatial) diagonal variance and �2

1

is spectral (i.e. spatial) variance.
We like to note that our used parameter values are specific for this study
with OMI data and have been empirically evaluated. These parameter val-
ues were estimated from an ensemble of the residuals, i.e. the di↵erences
between the observed and modeled reflectances, as described in the paper
Määttä et al. (2014). Here we used l = 90 nm and for �2

0

and �2

1

we used
values of 1% and 2% of the observed reflectance, respectively.

By Bayes’ formula the posterior distribution for ⌧ within the model m and
given the observed reflectance ~R

obs

is

p(⌧ |~R
obs

,m) =
p(~R

obs

|⌧, m) p(⌧ |m)

p(~R
obs

|m)
. (3)

In this case we have one unknown ⌧ (i.e. AOD at 500 nm) and the full
posterior distribution is calculated as described below.

The posterior is evaluated at a dense grid, e.g. at 200 points, of ⌧ values,
basically in the range of [0, ⌧

max

]. The maximum allowed ⌧
max

is determined
by the model LUT.

We calculated the likelihood as

p(~R
obs

|⌧, m) = c exp(�1

2
⇤ �2

mod

(⌧)), (4)

where �2

mod

(⌧) is calculated from Eq. 1 for the set of ⌧ values in the range of
[0, ⌧

max

]. The constant c ensures that the probability distribution is prop-
erly defined and it is the same for all the models m.

We assumed that a prior distribution p(⌧ |m) for ⌧ within aerosol microphys-
ical model m follows a log-normal distribution

p(⌧ |m) / logN(⌧
0

,�2

⌧ ). (5)

This confirms that p(⌧ |m) can take only positive real values and ensures that
AOD is positive. We set mean value ⌧

0

= 2 for the log-normal distribution.

We calculated the normalizing constant (or scaled factor) of the posterior
numerically as

p(~R
obs

|m) = c

Z
p(⌧ |m) ⇤ exp(�1

2
⇤ �2

mod

(⌧))d⌧. (6)

2
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Consequently, we have now calculated all the elements of the posterior dis-
tribution for ⌧ (Eq. 3).

In our study we call p(~R
obs

|m) as the model evidence that is used to make
the model selection. We select models with the highest evidence value until
the cumulative sum of the selected models’ evidences pass the value 0.8 or
the number of chosen models is 10.

Next we calculate relative evidence for model mi with respect to the other
models selected above (max 10) by

p(mi|~R
obs

) =
p(~R

obs

|mi)P
j(
~R
obs

|mj)
. (7)

These relative evidence values are used to compare models among the set of
selected best fitting models.

The averaged posterior distribution over the selected best models mi is cal-
culated as

p
avg

⇣
⌧ |~R

obs

⌘
=

nX

i=1

p(⌧ |~R
obs

, mi) p(mi|~R
obs

), (8)

where n is the number of models.

We accept the solution for the pixel if the threshold value �2  2 calculated
by following modified chi-squared formula

�2 =
1

n� 1
~R
res

(�)T
�
C + diag(�2(�))

��1 ~R
res

(�). (9)

We do this test only for the best model.

As a summary, we do the following for model selection, calculation of pos-
terior distributions and getting MAP estimate of AOD:

1. fit each model from LUT (i.e. ~R
mod

(⌧, �)) in turn to the measured
reflectance ~R

obs

(�)

2. for each model, find ⌧ that minimizes �2

mod

(⌧) (Eq. 1)

3. for each model, calculate posterior distribution p(⌧ |~R
obs

,m) (Eq. 3)

4. use model evidence (Eq. 6) to select max 10 best models

5. calculate the relative evidence (Eq. 7) for each model among the se-
lected best models. Actually, we first carry out steps 2.-3. once more
for the selected best models and then calculate the relative evidences.

3
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6. calculate the averaged posterior distribution (Eq. 8) and get point
estimate for AOD, i.e. MAP estimate

7. finally, do the goodness-of-fit test (Eq. 9)
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Abstract.

We discuss uncertainty quantification for aerosol type selection in satellite-based atmospheric aerosol retrieval. The retrieval

procedure uses pre-calculated aerosol microphysical models stored in look-up tables (LUTs) and top of atmosphere spectral

reflectance measurements to solve the aerosol characteristics. The forward model approximations cause systematic differences

between the modeled and observed reflectance. Acknowledging this model discrepancy as a source of uncertainty allows us to5

produce more realistic uncertainty estimates and assists the selection of the most appropriate LUTs for each individual retrieval.

This paper focuses on the aerosol microphysical model selection and characterization of uncertainty in the retrieved aerosol

type and aerosol optical depth (AOD). The concept of model evidence is used as a tool for model comparison. The method is

based on Bayesian inference approach where all uncertainties are described as a posterior probability distribution. When there

is no single best matching aerosol microphysical model we use a statistical technique based on Bayesian model averaging to10

combine AOD posterior probability densities of the best fitting models to obtain an averaged AOD estimate. We also determine

the shared evidence of the best matching models of a certain main aerosol type in order to quantify how plausible each main

aerosol type is in representing the underlying atmospheric aerosol conditions.

The developed method is applied to Ozone Monitoring Instrument (OMI) measurements using multi-wavelength approach

for retrieving the aerosol type and AOD estimate with uncertainty quantification for cloud-free over-land pixels. Several larger15

pixel set areas were studied in order to investigate robustness of the developed method. We evaluated the retrieved AOD by

comparison with ground-based measurements at example sites. We found that the uncertainty of AOD expressed by posterior

probability distribution reflects the difficulty in model selection. The posterior probability distribution can provide a compre-

hensive characterization of the uncertainty in this kind of problem for aerosol type selection. As a result, the proposed method

can account for the model error and also include the model selection uncertainty in the total uncertainty budget.20

1 Introduction

The atmospheric aerosols play an important role in our understanding of Earth’s climate system. Aerosols have direct and in-

direct influence on Earth’s radiation budget. Satellite remote sensing observations have been utilized for years to provide infor-

mation about atmospheric aerosol conditions in global scale. The spaceborn data is
::
are

:
very useful for detecting and following

dynamic natural or anthropogenic events such as sand storms and active fires. The most common retrieved aerosol character-25

istic is the aerosol optical depth (AOD) which is a function of the loading, size distribution and optical properties of aerosol

1



particles. There are a number of satellite instruments delivering aerosol products and providing aerosol characteristics e.g.

the Ozone Monitoring Instrument (OMI) (Torres et al., 2007), the Moderate Resolution Imaging Spectroradiometer (MODIS)

(Levy et al., 2010), the Global Ozone Monitoring Experiment-2 (GOME-2) (Hassinen et al., 2015), the Multi-angle Imaging

SpectroRadiometer (MISR) (Kahn et al., 2010), the (Advanced) Along-Track Scanning Radiometers ((A)ATSR) (Thomas et

al., 2009; Kolmonen et al., 2016), the Cloud-Aerosol Lidar and Infrared Path finder (CALIPSO) (Winker et al., 2009), the5

Scanning Imaging Absorption spectroMeter for Atmospheric Chartography (SCIAMACHY) (Bovensmann et al., 1999), the

Polarisation and Directionality of the Earth’s Reflectance (POLDER) (Dubovik et al., 2011) and the Spinning Enhanced Visible

and Infrared Imager (SEVIRI) (Govaerts et al., 2010; Wagner et al., 2010).

There is an increasing potential for using and incorporating satellite-based aerosol information as the instruments are getting

better in resolution and more sophisticated for detecting aerosols (Holzer-Popp et al., 2013). In addition, the improvement of re-10

trieval algorithms and the development of novel methodologies extend opportunities to use the data. Especially, one target is to

derive information about small aerosol particles (diameter less than 1 µm) from satellite measurements. An important and chal-

lenging use of satellite measurements is to assimilate aerosol characteristics into large-scale global aerosol models (Benedetti

et al. , 2009). Furthermore, the satellite based data can be combined with numerical models when estimating aerosol emission

fluxes (Huneeus et al., 2012)
::
or

:::::::
spatially

::::::::::
constraining

:::::::
amount

::
of

:::::::
aerosol

::::::::
emissions

:::::::::::::::::::::::::::::
(Wang et al., 2012; Xu et al., 2013). Data15

validness as well as identification and quantification of uncertainties are acknowledged when data is
:::
are used.

Uncertainties in satellite-based aerosol retrievals arise from many sources, e.g. cloud contamination, treatment of surface

reflectance and instrumental issues. It is typical in the aerosol retrievals that the radiative transfer (i.e. forward model) calcu-

lations have been replaced by pre-calculated look-up tables (LUTs) in order to speed up the needed computations. The LUTs

are often multi-dimensional tables containing simulated discrete descriptions of varying aerosol conditions. Aerosols can be20

classified into categories (i.e. main types) such as clean background, urban pollution, dust, smoke (from biomass burning)

and sea salt based on the origins of the aerosol particles. The optical and microphysical properties of different aerosol types

are described in corresponding LUTs. The
::::::
aerosol

:::::::::
properties

::
in

:::
the

::::::
LUTs

:::
can

:::
be

:::::
based

:::
on

::::::::::
observations

:::
or

::::::::::
combination

:::
of

::::::::::
observations

:::
and

:::::::
climate

::::::
models

::::::::::::::::::::::
(Holzer-Popp et al., 2013).

::::
The situation is more complicated for a retrieval algorithm when

an aerosol containing air-mass is a mixture of different types, e.g. mixture of dust aerosols and biomass burning aerosols. The25

proper aerosol type selection from LUTs is a source of uncertainty and affects the accuracy of the retrieval. Povey et al. (2015)

give an overview of the error analysis and representation of uncertainty in the satellite data. One application they discuss is

related to the AOD retrievals where unquantifiable errors arise from the choice of a forward model (i.e. aerosol microphysical

properties).

In this paper we discuss characterization of uncertainty in the aerosol type and AOD retrieval. We utilize the method, de-30

scribed in Määttä et al. (2014), for estimating the uncertainty in the retrieved AOD due to the aerosol microphysical model

selection and the approximations in forward modeling. The method is based on the Bayesian inference approach where un-

certainty estimates are an inherent part of the formulation (MacKay, 1992; Spiegelhalter et al., 2002; Robert, 2007). The

uncertainty is given as a posterior density function of the AOD and a point estimate for the AOD is the maximum a poste-

rior (MAP) value. We calculate the model evidence value for each aerosol microphysical model involved in order to compare35
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models and do the model selection. The selection of single best fitting aerosol microphysical model is not always clear and

this uncertainty has also been addressed in this study. We calculate the averaged posterior probability distribution where the

individual model posterior distributions are weighted by their evidence. This is implemented by the Bayesian model averaging

technique (Hoeting et al., 1999). We also perform the shared evidence of the best matching models within main aerosol type

in order to quantify plausibility of each main aerosol type. We acknowledge the forward modeling uncertainty, i.e. model dis-5

crepancy (Kennedy et al., 2001; Brynjarsdóttir et al., 2014) which arises from non-modeled systematic differences between the

modeled and observed reflectance. The described method is applied for the aerosol retrieval using cloud screened data from

the OMI instrument.

The used data and methodology are introduced in Sect. 2 and 3. We have investigated the performance of the method with

case studies presented in Sect. 4. Section 5 discuss the features and possibilities of the method.10

2 OMI data

The Dutch-Finnish OMI instrument is on board NASA’s Earth Observing System (EOS) Aura platform which was launched

in July 2004 (Levelt et al., 2006). The Aura satellite is in a polar sun-synchronous orbit crossing the equator approximately at

13:45 local time. OMI measures sunlight backscattered from the Earth in the ultraviolet (UV) and visible (VIS) wavelength

bands (270-500 nm). The ground pixel size at nadir is 13⇥ 24 km2. The retrieved products include atmospheric trace gases15

(ozone, NO2, SO2, HCHO, BrO and OClO), surface UV, cloud information and aerosol characteristic.

The two operational aerosol algorithms to retrieve aerosol characteristics from OMI measurements are the OMI near-UV

aerosol data product (OMAERUV) and the OMI multi-wavelength aerosol data product (OMAERO) (Torres et al., 2007, 2002).

OMAERUV uses in the retrieval two wavelength bands at 354 and 388 nm to determine the AOD, aerosol index and single

scattering albedo (Ahn et al., 2014). OMAERO uses the near UV and visible wavelengths between 330 and 500 nm providing20

the AOD, best matching aerosol model and aerosol characteristics associated with the best model (e.g. single scattering albedo

and aerosol indices) (Curier et al., 2008). The retrievals of AOD and single scattering albedo from OMAERUV and OMAERO

have been evaluated using air-borne sunphotometer, ground-based sun/sky radiometer and other satellite measurements (Ahn

et al., 2008; Livingston et al., 2009).

The OMI data used in this study have been extracted via Mirador data search tool provided by the NASA Goddard Earth25

Sciences Data and Information Services Center (GES DISC) data access system (https://urs.earthdata.nasa.gov). We calculated

the top-of-the-atmosphere (TOA) spectral reflectance (referred
:
to

:
as measured or observed reflectance from now on) from the

OMI Level 1B VIS and UV radiances and Level 1B Solar irradiance data. We took the effective cloud fraction information

from the Level 2 OMI O2-O2 cloud product (OMCLDO2). Then we applied a simple scheme by using 0.34 as an effective

cloud fraction threshold value for detecting and excluding a cloudy ground pixel. Thus we followed only one of three tests for30

cloud screening used by the OMAERO algorithm. The high threshold value of 0.34 was chosen in order to avoid excluding

desert dust scenes (OMAERO Readme Document, 2011). To assure measurement data quality in the retrieval we used the pixel

3
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wise quality and error flags from the OMI Level 1B radiance products. In addition, to ensure the forward model quality, we

excluded data where solar zenith angle was above 75�.

We used GroundPixelQuality flag from the OMI Level 1B radiance product to choose the over land pixels as this study was

concentrated on the aerosol types that are dominant over land areas. We accepted a pixel and specify it as land pixel if the flag

indicated ground type to be land, shallow inland water, ocean coastline/lake shoreline, ephemeral (intermittent) water or deep5

inland water (OMI Level 1B Output products and Metadata, 2009). We
:::
For

::::::
surface

::::::::::
reflectivity,

:::
we

:
used the climatological

surface reflectance database from the OMI Earth Surface Reflectance Climatology product OMLER (v003). The OMLER

(v003) product data file (OMI-Aura_L3-OMLER_2005m01-2009m12_v003-2010m0503t063707.he5) was extracted from the

GES DISC data Service. The OMLER product contains in a 0.5 x 0.5 degree grid global maps of the monthly climatology of

Lambert equivalent reflectance (LER) based on five years (2005-2009) of OMI data (OMLER Readme Document, 2010).10

In our analysis we have used about 1 nm wide wavelength bands centered at 342.5, 367.0, 376.5, 388.0, 399.5, 406.0, 416.0,

425.5, 436.5, 442.0, 451.5, 463.0 and 483.5 nm. These 13 bands include one wavelength in the UV region and the rest in the

VIS region. We note that we have omitted in our study the
:::
The O2-O2 absorption wavelength band centered at 477 nm . The

band 477 brings important information about the cloud height and for cloud-free scene about the aerosol layer height for high

enough AOD levels (Veihelmann et al., 2007).
::::::::
However,

::
we

:::::::
omitted

::
in

:::
our

:::::
study

:::
the

::::
band

::::
477 nm

:::
due

::
to

:::::::::::
experimental

:::::::
purpose15

:::
and

::::
since

:::
we

:::
did

:::
not

:::::
need

::::::
aerosol

:::::
height

:::::::::::
information.

2.1 Aerosol microphysical models

The aerosol microphysical models stored in the OMI LUTs are produced via the radiative transfer calculations for a range of

aerosol physical properties and sun-satellite geometries (Torres et al., 2002, 2007). There are four main aerosol types: weakly

absorbing (WA), biomass burning (BB), desert dust (DD) and volcanic (VO) aerosols. The weakly absorbing type aerosol20

models are composed of urban-industrial and natural oceanic aerosols (Torres et al., 2002). Veihelmann et al. (2007) discuss

the capability of the OMI multi-wavelength algorithm to distinguish between different aerosol types.

The main types are split into sub-types (i.e. models) according to the aerosol size distribution, refractive index and vertical

profile. We used a set of OMI aerosol microphysical models, total of fifty models, in the work presented here (see Table 1).

Each model consists of a set of parameters (e.g. AOD, single scattering albedo, viewing and solar zenith angle, relative azimuth25

angle, path reflectance, transmission and spherical albedo) with predefined values at node points.

A weakly absorbing aerosol model ’WA1114’ represents sea salt particles having a higher fraction of coarse particles than

the other weakly absorbing models (see Table 1). We have classified the model ’WA1114’ as the fifth main aerosol type when

reporting results from the case examples (see Sect. 4).

3 Methodology30

The proposed method is applied to the retrieval scheme that is similar to the OMAERO algorithm. The unknown aerosol

parameter is the AOD at the reference wavelength of 500 nm, for which we will use symbol ⌧ . The related uncertainty is
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analyzed using Bayesian statistical inference. The observations are TOA reflectances Robs(�) at a set of wavelengths �=

(�1, . . . ,�n). The modeled spectral reflectance Rmod(⌧, �) depends on ⌧ within the specific aerosol microphysical model in

LUT. The AOD parameter ⌧ is adjusted between the nodal values in the model LUT to find the modeled reflectance that has

the best fit with the observed spectral reflectance.

The formula for the modeled reflectance above
:::::::::
Assuming a Lambertian surface over a land pixel is

::
the

::::::::::
contribution

:::
of

:::
the5

:::::::
radiation

::
at

:::
the

:::::
TOA

:::
can

:::
be

::::::::
separated

:::::
from

:::
that

:::
of

:::
the

::::::::::
atmosphere

::::
(e.g.

:::::::::::::::::::
Chandrasekhar (1960))

:::::::
leading

::
to

:::
the

::::::::
equation

:::
for

:::::::
modeled

:::::::::
reflectance

::
as

:

Rmod (�, ⌧, µ, µ0,��, ps) = Ra (�, ⌧, µ, µ0,��, ps)+
As(�)

1 � As(�)s(�, ⌧, ps)
T (�, ⌧, µ, µ0, ps) . (1)

In the formula,
:::
Here

:
path reflectance Ra, transmittance T and spherical albedo s of the atmosphere are derived by LUT

::::
from

::::
LUT

:::
by interpolation as a function of �, ⌧ , �� (relative azimuth angle), ps (surface pressure), µ (cosine of viewing zenith10

angle) and µ0 (cosine of solar zenith angle). The
:::::::::
sun-satellite

::::::::
geometry

::::
data

::::
��,

:::
ps,::

µ
:::
and

:::
µ0 :::

are
:::::::
included

::
in

:::
the

:::::
OMI

:::::
Level

::
1B

:::::
data.

::::
The surface reflectance As is taken from the Lambertian equivalent surface reflectance climatology based on the

geolocation of the retrieved pixel and month.

3.1 Acknowledging the model discrepancy

The aerosol microphysical models used in the retrieval procedure are discrete representations of the
:::::::
aerosols

::
in

:::
the

:
real at-15

mosphere. This forward model approximation error,
:::::::::::::
Approximations

::
in

:::::::
forward

::::::::
modeling

:
together with uncertainties in the

assumptions, e.g. in the surface reflectance, cause model discrepancy, which manifests itself as systematic deviations between

the modeled and observed reflectance.

In general description of a retrieval method, a measurement noise term includes the measurement and forward model error.

We pay special attention to the model discrepancy in the fitting process by adding the related uncertainty term ⌘(�) to the20

observation model

Robs(�) = Rmod(⌧, �) + ⌘(�) + ✏obs(�). (2)

The new model discrepancy error term ⌘(�) enables correlated errors between neighboring wavelengths, thus allowing for

smooth departures from the model. The measurement error term ✏obs(�) :::::::::::::::::::
✏obs(�) ⇠N(0, �2

obs(�)) will describe the independent

instrument noise that will be assumed to be known in the retrieval procedure coming from the instrument properties and from25

the calculation of the observed reflectance. In the fitting procedure, for simplicity, we use measurement error ✏obs(�) determined

as Robs(�)/SNR, where SNR = 500 is
::::
have

::::::::::::::::::::
�obs(�)=Robs(�)/SNR,

::::::
where

:::
we

::::
used

:::::
value

::::
SNR

::::::
= 500

::
for

:
the signal-to-noise

ratio of the instrument.

Our approach to estimate the model discrepancy term ⌘(�) was to explore systematic differences between the measured and

modeled reflectance (i.e. residuals). The systematic structure in the residuals indicates inadequacy in the forward model. The30

model discrepancy was characterized using a zero mean Gaussian process ⌘(�)⇠GP (0,C) (Rasmussen and Williams, 2006)
:::::::::::::
⌘(�)⇠GP(0,C)

:::::::::::::::::::::::::::
(Rasmussen and Williams, 2006), as described by Määttä et al. (2014). The covariance function

:
,
:::::
where

:::
the

:::::::::
covariance

::::::
matrix
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C of the Gaussian process defines the
::::::
defines

::
the

:::::::::::::::::::
wavelength-dependent correlation properties of the discrepancy. We constructed

the covariance function empirically by using the wavelength distance dependent correlation structure of the residuals
:::
The

:::::::::
covariance

:::::
matrix

:::
C

:::
was

::::::::::
constructed

:::
by

:::::
means

::
of

:::
an

::::::::
empirical

::::::::::::
semivariogram

:::::
when

:::
the

::::::::
variances

::
of
:::

the
:::::::

residual
::::::::::
differences

::::
were

:::::::::
calculated

:::
for

::::
each

::::::::::
wavelength

::::
pairs

::::
with

:::
the

::::::::
distance

::
d.

:::::
Next,

:::
the

:::::::::
theoretical

::::::::
Gaussian

::::::::
variogram

::::::
model

::::
was

:::::
fitted

::
to

::::
these

::::::::
empirical

:::::::::::::
semivariogram

::::::
values.

::::
The

::::::::
outcome

::
of

::::
this

:::::::
analysis

::::
were

::::
the

:::::
values

:::
for

::::::::::
parameters

:::
that

:::::::
defines

:::
the

::::::
model5

::::::::::
discrepancy

:::::::::
covariance

:::::
matrix

::
C
:
(see Määttä et al. (2014) for details).

As a result,
::
We

::::::
assume

::::
that the likelihood function

::::::::
describing

:::
the

::::::::::
distribution

::
of

:::
the

:::::::::::
observations

:::::
given

::
the

::::::
model

::::::
follows

::
a

:::::::
Gaussian

:::::::::::
distribution.

:::
The

:::::::::
likelihood

:::::::
function has an additional error covariance term due to the model error,

p(Robs|⌧, m) / exp

 
�1

2

Rres(�)
T

✓
C + diag

✓
�obs

::

2
(�)

◆◆�1

Rres(�)

!
, (3)

where Rres(�) =Robs(�)�Rmod(⌧, �) is the residual, C is the model discrepancy covariance matrix and diag(�2
(�)) is10

a diagonal matrix of the measurement error variances �2
(�).

::::::
�2

obs(�).:The likelihood function is needed for calculation of

posterior distribution using Bayes’ formula (see Sect. 3.2).

3.2 Aerosol type and AOD retrieval with uncertainty quantification

In the Bayesian inference, the solution of an inverse problem is presented as a posterior distribution of the unknown. This

approach provides a natural way to present the uncertainty in the AOD and in the aerosol microphysical model m. By Bayes’15

formula the posterior distribution for ⌧ within the model m and given the observed reflectance Robs is

p(⌧ |Robs, m) =

p(Robs|⌧, m)p(⌧ |m)

p(Robs|m)

, (4)

where p(Robs|⌧, m) is the likelihood and p(⌧ |m) is a prior distribution for ⌧ depending on the aerosol microphysical model

m. The denominator p(Robs|m) does not depend on ⌧ and acts to normalize the numerator.
:::
We

:::::::
assumed

::::
that

:::
the

::::
prior

:::::::
p(⌧ |m)

::::::
follows

:
a
::::::::::
log-normal

:::::::::
distribution

:::
in

::::
order

::
to
::::::
ensure

::::
that

:::
the

::::::::
estimated

:::::
AOD

:
is
::::::::
positive. The calculation of the actual posterior20

distribution requires solving integrals over the parameter and model space. In the present
::
In

:::
our

:
case, the estimation and

model selection procedure seeks the solution for a one-dimensional
:::
one parameter ⌧ , and the calculations will be

:::
and

::::
then

::
the

::::::::::
calculation

::
of

:::::::
posterior

::::::::::
distribution

::
is fairly straightforward by numerical quadrature. The posterior distribution calculation

:::::::::
calculation

::
of

:::
the

:::::::
posterior

::::::::::
distribution

:
is presented in more detail in Määttä et al. (2014).

The denominator p(Robs|m)

:::
The

:::::::::::
denominator

::::::::::::::::::::::::::::::::
p(Robs|m)=

R
p(Robs|⌧, m) p(⌧ |m)d⌧

:
in Eq. (4) is the probability of the25

observed reflectance Robs assuming the model m is the correct one. However, when considering our problem of choosing the

right model m, the p(Robs|m) acts as an evidence in favour for m. Consequently, we compare models using their evidence

values. In the retrieval procedure we accept the models with the highest evidence until a cumulative sum of the selected models’

evidences pass the value of 0.8 or the number of selected models is ten.
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Since we assume that a priori all models are equally likely, we end up calculating the relative evidence for each selected

model mi by formula

p(mi|Robs) =
p(Robs|mi)P
j
p(Robs|mj)

. (5)

Here the denominator is a sum over all the evidences of the models mj under the comparison process (see Määttä et al. (2014)

for details). The relative evidence indicates how plausible the aerosol microphysical model is among the set of potential models.5

Even when a model has the highest evidence it does not ensure that it gives an adequate fit to the observed reflectance. The

goodness of fit of the selected model is analyzed by the modified chi-squared value

�2 = 1
n�1Rres(�)T

�
C + diag(�2

(�))
��1

Rres(�), (6)

where C is a covariance matrix for the model discrepancy and n is the number of wavelength bands in the spectral reflectance.

We accepted the retrieved solution (i.e. the selected best model) if this merit function gives a value  2.10

3.3 Bayesian model averaging

Traditionally, the aerosol microphysical model mi with the highest evidence can be treated as the correct one. However,

there can be several models that could explain the measurements equally well when taking into account the uncertainty in

the selection procedure. In that case the selection of single model (i.e. aerosol sub-type) does not ensure that it is the most

appropriate model since it may have been selected by chance. In addition, the posterior distribution for ⌧ can differ from model15

to model among the best models. This indicates that the selection of one particular model as the correct one is not always

self-evident or meaningful.

We have used the Bayesian model averaging approach (Hoeting et al., 1999; Robert, 2007) to calculate averaged posterior

distribution by formula

pavg (⌧ |Robs) =

nX

i=1

p(⌧ |Robs, mi) p(mi|Robs) , (7)20

where the posterior distributions for ⌧ , assuming that mi is the correct model, are weighted by the models’ evidences. By

model averaging we perform the shared inference about the AOD over the best fitting models. Secondly, the uncertainty in the

model selection is incorporated in the uncertainty estimate of the AOD.

4 Case studies and results

With the following test cases we study functioning of the aerosol type selection procedure, concept of the evidence for model25

comparison and the resulted AOD posterior distribution for expressing the uncertainty due to model selection and approxima-

tions in forward modeling. The relative evidence of a single model, with respect to the other selected models, describes the

plausibility of that model to explain the observed reflectance. The width of the posterior density function illustrates the level

of the uncertainty, i.e. the wider the width the higher the uncertainty.
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We consider two test cases where the atmospheric aerosol conditions are different from each other. The first case study

focuses on an urban area around Beijing, where we analyze the retrieved aerosol characteristics on two days to observe the

difference as well as similarity of aerosol conditions in these days. The Beijing case is challenging since the aerosol air-mass

is a mixture of dust from north blending with urban pollution around Beijing. On the other hand, this case enables to examine

aerosol type selection in situation with high AOD levels. The other test case cover
:::::
covers

:
Northern and Central Africa where5

we expect dust aerosols in the north and biomass burning aerosols in the central part. In particular, this test case cover
:::::
covers

::
a

large, almost cloud free, area.

We evaluated the retrieved AOD estimates using collocated ground-based Aerosol Robotic Network (AERONET) data of

aerosol properties. The AERONET program is a federation of ground-based remote sensing aerosol networks (Holben et al.,

1998). We downloaded the Version 2 Direct sun Level 2.0 quality assured and cloud-screened aerosol data for the AERONET10

sites under investigation.
:::
We

::::::
tracked

::::::
clouds

:::
and

::::
land

:::::
scene

:::
for

:::
the

:::
case

:::::::
studies

::
by

:::::::
utilizing

::::::::
true-color

:::::::
images

::::
from

:::::::
MODIS,

:::
on

::::
Aqua

::::::::
satellite,

:::
that

:::
has

:::
the

:::::::
equator

:::::::
crossing

::::
time

::::
only

:::::
about

:::
15

:::::::
minutes

:::::
earlier

::::
than

:::::
OMI.

::::
The

:::::::
MODIS

:::::::::
instrument

::
is

:::::::
onboard

::::
both

::::
Terra

::::
and

:::::
Aqua

:::::::::
spacecraft.

:::
The

::::
data

::::::::
products

::::::
derived

:::::
from

:::::::
MODIS

::::::::::::
measurements

::::::
include

::::::::::
atmosphere

::::
(e.g.

:::::
cloud

:::::
mask

:::
and

::::::
aerosol

:::::::::
products),

::::
land,

:::::::::
cryosphere

::::
and

:::::
ocean

:::::::
products

::::
(see

:::
e.g.

:
http://modis.gsfc.nasa.gov

:
).
:

4.1 Beijing area on 16 April and 27 April 200815

In this case study focusing on an urban area around Beijing, we analyzed the retrieved aerosol characteristics on two days: the

16th and 27th of April 2008. In the spring season the atmosphere is typically loaded by a mixture of urban and dust aerosols

(Yu et al., 2016). Figure 1 shows the true-colour images from the MODIS, on-board the NASA’s Aqua satellite, on the 16th of

April 2008 at 05:15 UTC (left) and 27th of April 2008 at 04:55 UTC (right) over the Beijing area.

The OMI pixels
:::
that

::::
were

::::::::
analysed are located on rows 23-29 across the orbit in the first day case (i.e. the 16th of April) and20

on rows 10-20 in the second day case (i.e. the 27th of April), respectively. The pixel has no data if it
::
No

::::
data

:::
are

:::::::
reported

::
if

:::
the

::::
pixel is cloud contaminated or none of the models had adequate fit with the measured reflectance (Eq. 6).

Figure 2 presents the number of most appropriate models retrieved for each pixel on both days. The maximum number of

best models was restricted to ten (see Sect. 3.2). In the first day case the variety of the number of best models is wide (left)

whereas in the latter day case (right) for the most part of the pixels the maximum number of models are selected to explain the25

measurements.

In Fig. 3 is shown the distribution of the main aerosol types of the retrieved aerosol microphysical models (i.e. sub-types)

having the highest evidence. The main aerosol types are the weakly absorbing (WA), weakly absorbing sea salt (WA1114),

biomass burning (BB), desert dust (DD) and volcanic (VO) aerosols. The prevailing types in both days in the vicinity of Beijing

AERONET site (marked with black star in Fig. 3) are the BB and WA types. The appearance of marine type ’WA1114’ as the30

best matching type may occur due to cloud impact since the nearby pixels with no results have been omitted as cloudy pixels.

In addition, on the 27th of April (right) the desert dust type gets the highest evidence in the upper part of the examination area.

An airmass trajectory analysis (not shown here) indicated that on the 27th dust from the Gobi desert (north of the study area)

was entering the Beijing area.
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Figures 4 and 5 illustrate for both days how plausible each main aerosol type is to represent the prevailing aerosol air-mass

type. We have summed up the relative evidences (%) of the selected models (i.e. sub-types) within each main type to get a

quantity of confidence, i.e. shared evidence, for each main aerosol type. Figures b-f show pixel wise
:::::::::
pixel-wise the shared

evidence (%) for each main type. Whereas, the figure on the upper left corner (a) presents the relative evidence (%) of the

single best fitting aerosol microphysical model indicating how superior the ranked best model is with respect to the other5

selected models if any. We can notice that the one best model does not necessarily determine the aerosol type alone, but a

mixture of models could give a better match. We also observe that both WA and BB type aerosol microphysical models get

support as representative models for some pixel areas (b-d). In addition, in the latter day case
::
on

:::
the

::::
27th,

:
the DD type gets

strong evidence in the upper right corner of the examination area (Fig. 5e).

Figure 6 shows the distribution of the retrieved MAP AOD estimates in both days. The upper row show the MAP estimate10

from the aerosol microphysical model with the highest evidence. The lower row show the MAP estimate from the averaged

posterior distribution over the selected best models. In general, the AOD point estimate value from the averaged posterior

distribution is lower than the AOD estimate based on the single best model.

Figure 7 shows the results for a single pixel having a geometric collocation with the AERONET Beijing site, i.e. the Beijing

site coordinates are inside an OMI pixel. The upper row shows the measured reflectance (in blue) and the selected, best15

matching, modeled reflectances (in green) for the 16th of April (left) and the 27th of April (right). In the lower row are shown

the posterior density functions that characterize the uncertainty. Also, the best matching models’ identification numbers and the

associated relative evidences inside brackets are given. The relative evidence (%) (Eq. 5) express how plausible this model is

to explain the measured spectral reflectance with respect to the other selected best models. The averaged posterior distribution

(Eq. 7) has two peaks indicating difficulty in model selection. The red vertical dashed line denotes the MAP AOD estimate20

(i.e. the posterior mode) from the averaged posterior. The grey vertical lines show the AERONET AOD at 500 nm values at

separate measurement times.

On the 16th of April (
::::
Fig.

:
7
:
left) there are two best matching models, both of the BB type, selected. The

::::
other

:::::
types

:::
of

::::::
models,

::::
e.g.

::::::
weakly

::::::::
absorbing

:::::
type,

::
do

:::
not

::::::
match

::
as

::::
well

::
as

:::
the

:::::::
selected

::::
best

:::
BB

:::::::
models.

:::
The

:
width of the averaged posterior

is relatively wide indicating high uncertainty in the result. The model with the higher evidence has much weight in the averaged25

posterior and this affects the retrieved AOD that is higher than the AERONET values. The AERONET measurements are in the

time range of 00:02-04:59 UTC therefore before the OMI overflight time (⇠ 5:25 UTC). However, there are some AERONET

AOD measurements (n=3) within two hours time window including OMI overpass time. These AOD values are marked by

darker grey vertical lines and the black vertical line is the average. Figure ?? shows the best fitted modeled reflectances when

we considered only weakly absorbing type models’ LUTs. We can see that the match with the observed reflectance is not as30

good as the selected best BB models have (Fig. 7 left).

On the 27th of April (Fig. 7 right) we can be confident with the result as it
::
the

:::::::
resulted

:::::
AOD

::::
from

:::
the

:::::::
averaged

::::::::
posterior is in

agreement with the AERONET data. There is one WA type model (blue posterior curve) ranked as the second best model in the

fitting. At that time the AERONET measurement
:
In

::::
that

:::
day

:::
the

::::::::::
AERONET

::::::::::::
measurements,

:::::::
marked

::
by

:::::
grey

::::::
vertical

:::::
lines, are

in time range of 08:22-09:43 UTC, thus monitored after the OMI overpass time (⇠ 5:06 UTC).
::::
The

:::::::
selected

:::
best

:::::::
models

:::
are35
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:::
BB

::::
type,

::::::
except

:::
one

::::
WA

::::
type

:::::
model

:::::
(blue

:::::::
posterior

::::::
curve)

::::
that

:
is
::::::
ranked

::
as

:::
the

::::::
second

::::
best

::::::
model

::
in

:::
the

:::::
fitting.

::::
The

::::::::
averaged

:::::::
posterior

::::::::::
distribution

:::
has

::::
two

::::::
modes

:::::::::
indicating

:::
two

:::::::::
alternative

:::::::::::
explanations

:::
for

:::
the

::::::::
observed

::::::::::
reflectance.

::::
The

::::::
higher

:::::
mode

::
of

:::
the

:::::::
averaged

::::::::
posterior

::::
gets

::
a

:::::
larger

::::::
portion

::
of

::::
the

:::::
model

:::::::::
evidences

::::
thus

:::::::
yielding

:::
the

:::::
MAP

:::::
AOD

:::::::
estimate.

::::
But,

::
if
:::
the

::::
end

::::
result

::
is
:::::
based

:::
on

:::
the

:::
one

::::
best

:::::
fitting

::::::
model,

:::
i.e.

::::::::::
"BB2312",

::
the

:::::::::
estimated

::::
AOD

:::::
level

:::::
would

:::
be

:::::
higher

:::::
since

:::
the

::::::::::::
corresponding

:::::::
posterior

::::::::::
distribution

:::::
curve

::
is

::
the

:::::
most

::::
right

::::
one.

:
5

In Table 2 are given the aerosol characteristics for the AERONET sites and results, e.g. AOD at 500 nm and Ångström

exponent values, retrieved by the proposed method. The AERONET data for Beijing shown in Table 2 are the daily averages.

We interpolated AOD at 500 nm by using the AERONET AOD at 440 nm and the AERONET provided Ångström exponent

440-675 nm. The Ångström exponent describes the dependency of the AOD on wavelength. It gives an approximation of the

aerosol particle size in such a way that when coarse aerosol particles dominate the exponent is small, and vice versa for the10

fine particle dominance. In our retrieval we calculated the Ångström exponent (442-500 nm) by Ångström exponent power

law where the AOD at 442 nm was derived from the associated LUT based on the retrieved AOD at 500 nm. Thus the reported

Ångström exponent is completely determined by the model LUT. In Table 2 are presented Ångström exponent values based on

the best fitted (↵1) and the second best fitted (↵2) model.
:::
For

::::::
Beijing

:::::
case,

::
in

::::
both

::::
days,

:::
the

:::::::
derived

::
Å

::::
ngstr

:
ö

:
m

::::::::
exponent

:::::
value

::
of

:::
the

:::
best

::::::
model

::::
(↵1)

::
is

::
in

:::::
good

:::::::::
agreement

::::
with

:::
the

:::::::::
AERONET

::::::
value.

::::
Even

:::
so,

:::
on

:::
the

::::
16th

::
of

:::::
April

:::
↵2

:::::::
deviates

::::
more

:::::
from15

::
the

::::::::::
AERONET

:::::
value

::::::::
although

:::
the

::::::::
estimated

:::::
AOD,

:::::
based

:::
on

:::
the

::::::
second

::::
best

::::::
model,

::
is

:::::
closer

::
to
:::

the
::::::::::

AERONET
:::::
AOD

::::::
values

:::
(see

::::
Fig.

:
7
:::::
left).

4.2 Northern and Central Africa on 26 March 2008

This case study covers a large area over the Northern and Central Africa on the 26th of March 2008. Figure 8 shows the MODIS

true-colour images on the 26th of March 2008 at 13:00 and at 13:05 UTC over the Northern and Central Africa. The view is20

mainly cloud free except for some broken-cloud cover in coastal regions. The AOD data from four AERONET sites Agoufou

(North Mali), DMN_Maine_Soroa (Niger), IER_Cinzana (Mali) and Saada (Morocco) are used to evaluate the results. Daily

averaged AERONET Version 2 Direct sun Level 2.0 AOD data are reported in Table 2.

In Fig. 9 we can see the areas where the maximum number of aerosol microphysical models are selected, as well as the

areas where only one model dominates. In the middle of the orbit is an area where none of the models has adequate fit with the25

measured reflectance (Eq. 6). In March 2008 the rows 54-55 (i.e. 53-54 if 0-based) in the OMI measurements are affected by a

row anomaly (OMI row anomaly team, 2016). We have omitted these two rows in the analysis.

As seen in Fig. 10 the desert dust is the dominating type of the selected best models. There are also areas where the BB type

of models get the highest evidence to explain the measurement. The pixels where the weakly absorbing sea salt type aerosols

(type WA1114) have the best fit are located in the edge areas of clouds or in partly cloudy areas (see Fig. 8). The unexpected30

:::::::
selection

:::
of volcanic aerosol type appears as the only best aerosol type in the

:::::::::
appropriate

:::::::
aerosol

::::
type

:::::::
happens

:::
for

:
pixels

located northeast from the Lake Chad . The selection of volcanic type is most probably related to a white area seen
:::::
where

::
is

::::
seen

::::
cloud

:
in the MODIS RGB

::::
image

::
(Fig. 8(left).

:
).
:
The location of AERONET sites are marked with black stars.
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The Figs. 11b-f reveal that all the selected best models (i.e. sub-types) usually are of the same main type, namely BB or DD

type. But, in the area around Algeria occurrence of a mixture of main types may be related to the cloud contamination of these

pixels.

From the Fig. 12 it can be concluded that often the MAP estimate from the single best aerosol microphysical model has

slightly higher AOD level (left) than the MAP estimate from the averaged posterior distribution over the selected best models5

(right). The retrieved AOD estimates are rather small perhaps indicating that no dust event or active fires were going on.

However, we
:::
We can notice that in the area south of the latitude of 8�, where the biomass burning type of models dominate,

the AOD estimates are higher. Active fire maps from satellite data (not shown here) support the fire activity at that area. We

can also notice the DD type dominating area near the Agoufou AERONET site where AOD level is higher (see Fig. 12 and

Fig. 11e).10

Figure 13 shows the Ångström exponent (442-500 nm) values based on the best fitted (left) and the second best fitted (right)

model. In the Table 2 are shown the calculated Ångström exponent (442-500 nm) values at the locations of the reference

AERONET sites. Again, it should be noted here that the retrieved Ångström exponent is completely determined by the model

LUT. Consequently, as seen in Fig. 13 the Ångström parameters reflect the selected aerosol microphysical models.
:::
That

:::
is,

:::
the

:
Å
::::
ngstr

:
ö
::
m

:::::
values

:::
are

::::
low

:::::
where

:::
the

:::::
desert

::::
dust

::::
type

::
of

::::::
models

::::::::
dominate.

:::::::::::::::
Correspondingly,

::
in

:::
the

::::::
coastal

::::::
region

:::::
where

::::::::
typically15

:
is
::::::
smoke

:::
and

:::::
urban

::::::::
polluted

::
air

:::
the

::
Å

::::
ngstr

:
ö
::
m

:::::::
exponent

::
is
::::::
higher.

:

Figures 14 and 15 show the spectral reflectance fitting curves (on the left hand side) and the retrieved AOD estimates with

uncertainty (on the right hand side) for the single pixels located around the AERONET sites: Agoufou, DMN_Maine_Soroa,

IER_Cinzana and Saada. In the figure showing the posterior distributions (right) the grey vertical lines indicate AERONET

Direct sun Level 2.0 AOD at 500 nm values measured during that day. The darker grey vertical lines denote AERONET AOD20

values within two hour time window including the OMI overpass time and the black vertical line is the average of these AOD

values.

The measured reflectance at the Agoufou site (first row in Fig. 14) has a rather unique spectral structure but there is
:::
and

::::
there

::
is

::::
only

:
one dust type model that fits to the measured reflectance adequately well.

::
at

:::
all. The associated AOD from the

model LUT is unreasonable high with respect to
:::
the AERONET values. Also the

:::
The

:
large width of posterior

::
the

::::::::
posterior25

::::::::::
distribution,

:::
that

::
is
:::
the

::::::::
averaged

::::::::
posterior

:::::::::
distribution

:::
as

::::
well,

:
indicates high uncertainty .

::
in

:::
the

:::::
model

::::::::
selection

::::
and

::::
thus

::
in

::
the

::::::::
retrieved

:::::
AOD.

:::::
Even

:::
the

:::::::
retrieval

::::::::::
uncertainty

::
is

::::
high,

:::
the

::::::::
posterior

::::::
density

::::
does

::::
not

::::
cover

:::
the

::::::::::
AERONET

:::::
AOD

::::::
values

::
at

::
all.

::::
But

:::
the

:::::::
posterior

:::::::
density

:::::
covers

:::::
AOD

:::::
from

::
the

::::::::::
OMAERO

::::::
product

::::
that

::
is

:::
also

::::
high

:::::::::
compared

::
to

::::::::::
AERONET

::::
daily

:::::::
average

::::
value

::::::
(Table

::
2).

:
It can be noted here that AERONET measurements at the Agoufou site were made in the morning in time range

of 06:58-09:27 UTC whereas the OMI overpass time at that location was at ⇠ 13:15 UTC.
:::::::
However,

::::
the

::::::
derived

::
Å

::::
ngstr

:
ö
::
m30

:::::::
exponent

:::
↵1

:::
has

:::::
rather

:::::
good

:::::::::
agreement

::::
with

:::
the

::::::::::
AERONET

::::
value

::::::
(Table

:::
2).

At the other three reference AERONET sites there are measured AOD values during the OMI overpass time. In Fig. 14,

showing the results for DMN_Maine_Soroa case (lower row), all the ten selected models belong to the biomass burning type

and their posteriors indicate an uniform small uncertainty. The estimated AOD values are consistent with the AERONET AOD

values within uncertainty
:::
but

:::
the

::::::
derived

::
Å

::::
ngstr

:
ö
::
m

:::::::::
exponents,

::
↵1

::::
and

:::
↵2,

::
do

:::
not

:::::
agree

::::
with

:::
the

::::::::::
AERONET

:::::
value

:::::
(Table

::
2). In35
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the IER_Cinzana case (Fig. 15 upper row) the selected models are the desert dust type (orange) except for one biomass burning

type model (red curve). The estimated AOD is a bit lower than the AERONET measurements. In the Saada case (Fig. 15

bottom row) the AERONET AOD values are in good agreement with estimated AOD, although the averaged AERONET AOD

(black vertical line) of measurements
::
the

::::::::::::
measurements

:::::
made

:
around the OMI overpass time is slightly lower than the MAP

estimate of AOD (red dashed vertical line).
::::
Also,

:::
the

:::::
AOD

::::::
values

:::::
from

:::::::::
OMAERO

::::::
product

::::
are

::
in

::::
good

:::::::::
agreement

:::::
with

:::
the5

:::::::::
AERONET

::::::
values

:::::
(Table

:::
2).

:::
For

:::
the

::::
sites

::::::::::::
IER_Cinzana

:::
and

:::::
Saada

:::
the

::::
best

:::
and

:::
the

::::::
second

::::
best

::::::
models

::::
have

:::
as

::::
good

::::::::
evidence

::::
(Fig.

::
15

:::::
right

:::::::
column)

:::::::::
indicating

:::
that

:::
the

::::::::
selection

::
of

:::
the

::::
best

::::::
model

::::::::
happened

:::
by

::::::
chance.

::::::::::::
Consequently,

:::
the

:::::::
derived

:::
↵1

:::
for

:::::
Saada

:::
site

::
is

::::::::
consistent

::::
with

:::
the

::::::::::
AERONET

:::::
value

:::::::
whereas

:::
the

::::::
derived

:::
↵2

:::
for

:::::::::::
IER_Cinzana

:::
has

:::::
better

:::::::::
agreement

::::
than

:::
↵1

::::
with

::
the

::::::::::
AERONET

:::::
value.

:

5 Discussion and Conclusions10

In this paper, we focused on the aerosol microphysical model selection in the aerosol retrieval and on the quantification of

uncertainty for the retrieved aerosol type and AOD using OMI TOA spectral reflectance measurements. The retrieval
::::::
aerosol

:::
type

::::::::
selection

:::::
from

:::::
LUTs

::
is

::
a

:::::
source

:::
of

:::::::::
uncertainty

::::
and

::::::
affects

:::
the

::::::::
accuracy

::
of

:::
the

::::::::
retrieval.

::::
The

::::
main

::::::
targets

::
of

::::
our

:::::
study

::
are

:::
1)

::
to

:::::::
improve

::::
the

:::::::
retrieval

::::
error

::::::::
estimate

::::
(i.e.

::
to

:::::::
produce

:::::
more

:::::::
realistic

:::::::::
uncertainty

:::::::::
estimate),

::
2)

:::
to

:::::::
evaluate

:::
the

::::::
model

:::::
choice

:::::::::
procedure

::::
and

::
3)

:::
to

:::
find

:::::
more

::::::
robust

:::::
AOD

::::::::
estimate

:::
that

:::
is

:::::
based

:::
on

:::
the

:::::::
average

::
of

::::
the

::::
most

::::::::::
appropriate

:::::::
aerosol15

:::::::::::
microphysical

:::::::
models

::::::
instead

::
of

::
on

:
a
::::::
single

:::::
model

::::::
chosen

:::::::
probably

:::
by

::::::
chance.

::::
The

:::::::
retrieval scheme is similar to the OMAERO

algorithm using information from several wavelength bands between 330 and 500 nm and pre-calculated LUTs for aerosol

microphysical properties. The presented methodology was
::::::::
introduced

::::
and

:
previously used by Määttä et al. (2014) for the

:::::::::
uncertainty

::::::::::::
quantification

::
in

:::
the retrieval of AOD at the reference wavelength of 500 nm. This new research investigates the

uncertainty in the aerosol type selection in more detail.
:::::
What’s

:::::
more,

:::
we

::::::::::::
experimented

:::
the

::::::::
proposed

:::::::::::
methodology

::::
with

::::
test20

::::
cases

::::::::
covering

::::
large

:::::
pixel

:::::
areas.

:::
We

::::::::
evaluated

:::
the

::::::::
retrieved

:::::
AOD

::
by

::::::::::
comparison

::::
with

::::::::::
AERONET

::::::::::::
measurements

::
at
::::::::
example

::::
sites.

:
For simplicity, we studied only cloud-free over-land OMI pixels.

The method uses Bayesian statistical inference to quantify uncertainties due to model selection and due to approximations

in the forward modeling. The concept of model evidence is used as a tool for model comparison and to assist in the selection

of the best models. The forward model approximations cause model error that results in systematic differences between the25

modeled and observed reflectance. We acknowledge this model discrepancy when choosing the most appropriate LUTs in

order to produce more realistic uncertainty estimates of the retrieved AOD. Following the Bayesian approach the uncertainty

is described by the posterior probability distribution. The selection of single best fitting aerosol microphysical model is not

always clear and this uncertainty is addressed in this study. We use a statistical technique based on Bayesian model averaging

to combine the AOD posterior probability densities of the best models to obtain the averaged posterior distribution. Then the30

retrieved AOD is the MAP estimate of the averaged posterior function. We also determine the shared evidence of the best

matching models within a main aerosol type (weakly absorbing, sea salt, biomass burning, dust and volcanic) in order to

quantify plausibility of each main aerosol type.
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Retrieving the aerosol type and AOD from the TOA reflectance measurements is an ill-posed problem and a priori informa-

tion of prevailing aerosol conditions are needed to get a solution. The limited information content in the OMI measurements

and the narrow wavelength band range ending up to 500 nm make the problem very challenging to solve. We investigated

the developed method by studies covering several larger pixel set areas. We evaluated the retrieved AOD by comparison with

AERONET measurements at example sites.5

In our approach we did not pre-select aerosol microphysical models based on e.g. a climatology of aerosol geographical

distribution. Instead, we fitted all the available models (i.e. LUTs),
::
a

::::
total

::
of

::::
fifty

:::::::
models, to the spectral measurement. This

makes the whole process slower but is justified here to study the uncertainty in the aerosol model selection. The goodness-of-fit

value (Eq. 6) was used to analyze whether the retrieved solution is acceptable. We used a limited set of aerosol microphysical

models, a total of fifty models. It is highly likely that the used model set is not comprehensive enough to represent all aerosol10

air-mass conditions. In the Beijing case studies the absorbing biomass burning type aerosol microphysical models dominate

(Sect. 4.1) and the reason could be the lack of proper models for the prevailing aerosol conditions during the selected days.

In addition, in the Northern and Central Africa case (Sect. 4.2) there is an area in the middle of the orbit where none of the

available models gave an adequate fit.

We made the cloud screening in a straightforward way just using the effective cloud fraction threshold value of 0.34 (see15

Sect. 2) and thus there were most probably cloud affected pixels left. The suspicious results were often localized to pixels in

the edge of a cloud or inside broken-cloud areas. In these cases the observed reflectance was such that the unexpected model,

e.g. an oceanic or volcanic aerosol model, had the best fit .
:::
(see

::::
Fig.

::::
10). This feature could be used as an additional cloud

detection.

Here the model discrepancy was determined empirically by exploring a set of residuals (i.e. the difference between observed20

and modeled reflectance) and then fitting a Gaussian process to find the characteristics of the model error (see Määttä et al.,

2014). Brynjarsdóttir et al. (2014) discussed model discrepancy and its effect on results with simple examples. They also

emphasized the importance of modeling the model error properly and the use of realistic priors for the model discrepancy.

The aerosol type selection from LUTs is a source of uncertainty and affects the accuracy of the retrieval. The aim of our

study was to produce more realistic uncertainty estimates. As a result, we can account for
::::
The

::::::::
presented

::::::
method

::::::::
accounts

:::
for25

::
the

:::::::
forward

::::::::
modeling

::::::::::
uncertainty

::::
and

:::
also

::::::::
includes

:::
the

:::::::::
uncertainty

::::
due

::
to

:::::
model

::::::::
selection

::
in

:::
the

::::
total

::::::::::
uncertainty

::::::
budget.

:::
In

::::::::
particular,

::
it

:::::
gives

::::
tools

:::
for

:::::::::
analyzing

:::
the

:::::::
different

:::::::
sources

::
of

:::::::::::
uncertainties

::::
and the model error and also include the model

selection uncertainty in the total uncertainty budget
:::::::
influence

:::
of

::::::
aerosol

::::::::::::
microphysical

:::::
model

::::::::
selection

::
on

:::
the

::::::::
estimated

:::::
AOD.

The case studies indicate that the developed methodology,
::
in

:::::::
general, works in the varying aerosol conditions as expected.

::::
But,

::::
even

:::
the

::::::
method

:::::
gives

:
a
:::::::
solution

::::
that

:::::
passed

:::
the

:::::::::::::
goodness-of-fit

:::
test

::
it
::::
does

:::
not

::::::
ensure

:::::::::
correctness

:::
of

::
the

::::::
result. We found that30

the increased uncertainty of AOD expressed by the posterior distribution reflects the difficulty in model selection. The posterior

probability distribution can characterize the uncertainty more extensively than commonly given standard deviation.
:::
This

::::::
brings

::::
more

::::::::::
information

:::::
about

:::
the

::::::::::
uncertainty

:::
and

:::::::
produce

:::::
more

:::::::
realistic

::::::::::
uncertainty

:::::::
estimate,

:::
as

::::
well.

::::
We

:::
can

::::
also

::::::::
conclude

::::
that,

::
for

:::
the

:::::
most

::::
part,

:::
the

:::::::::::
combination

::
of

::::::
aerosol

:::::::
models

:::::::
obtained

:::
by

:::
the

::::::::
Bayesian

::::::
model

::::::::
averaging

::::::::
approach

:::::
gives

:::::
better

:::::
AOD

:::::::
estimate

::::
than

:
if
:::::
based

:::
on

:::
one

::::
best

:::::
model

::::
that

::::
may

::::
have

::::
been

:::::::
selected

::
by

:::::::
chance.

:::::
There

:::
are

:::::
cases

:::::
when

::::::
several

::::::
selected

:::::::
models35
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::::
have

:::::
almost

:::
the

:::::
same

::::::
portion

::
of

:::
the

::::::
relative

::::::::
evidence

:::
and

::::
then

:::
the

:::::
order

::
of

:::
the

:::
best

::::::
models

::::
may

:::::
have

::::
been

::::::::
happened

::
by

:::::::
chance.

::::
This

:::::::
situation

::
is

::::
even

:::::
more

::::::::::
complicated

::
if

:::
the

::::
level

::
of

:::
the

:::::
AOD

:::::
varies

::::
from

::::::
model

::
to

::::::
model.

:::
The

::::::::::
comparison

:::::
with

:::
the

::::::::::
AERONET

::::
data

::::::::
revealed

:::
that

:::
if

:::
the

::::::::
estimated

:::::
AOD

:::
at

:::
500

::::
nm

:::::
from

:::
the

::::::::
averaged

::::::::
posterior

:::::::::
distribution

::
is
:::
not

:::::::::
consistent

::::
with

:::
the

::::::::::
AERONET

:::::
AOD

::::::
values

:::
the

:::::::
derived

:::::::::
uncertainty

:::
of

::::
AOD

::
is
:::::::

higher.
:::::
Then,

::
in

:::
the

:::::
most

:::::
cases,

:::
the

::::::::
averaged

::::::::
posterior

::::::
density

::::::
covers

:::
the

::::::::::
AERONET

:::::
AOD

::::::
values.

::::
The

::::::::
derived,

::::
even

::
if

:::::
LUT

:::::::::
dependent,

::
Å

::::
ngstr

:
ö
::
m5

:::::::
exponent

::::::
values

:::
are

::
in

:::::
rather

:::::
good

:::::::::
agreement

::::
with

:::
the

::::::::::
AERONET

:::::
values

::::
(see

:::::
Table

:::
2).

::
In

:::::::
general,

:::
the

:::::::
retrieved

:::::
AOD

::::::
values

::
are

::::
also

:::::::::
consistent

::::
with

:::
the

::::
AOD

:::::
from

:::
the

:::::::::
OMAERO

::::::
product

::::
and

:::
the

:::::::
solution

::
is

:::::::
achieved

:::
for

:
a
:::::
larger

:::::
pixel

:::
set.

:

::::::::
However,

::
in

::::
order

::
to

:::::::
confirm

:::::::::
robustness

::
of

:::
the

:::::::::::
methodology

:::::
more

::::::::::::
comprehensive

:::
and

:::::::::
systematic

::::::::::
assessment

:::
and

:::::::::
evaluation

::
of

:::
the

::::::
method

:::
are

:::::::
needed.

::::
This

:::::::
involves

:::::::::
validation

::::::
studies

::::
with

::::::::
reference

::::
data

::
as

::::
well

::
as

:::::::::::::
implementation

::
of

:::
the

:::::::
method

:::::
using

::::
other

:::::::::::
instruments’

::::::::::::
measurements.

:::::
Also,

:::
the

::::::::::
examination

::
of

:::
the

::::::
method

::::
with

:::::::::
simulated

:::
data

::::::
would

::::
bring

:::::::::
additional

::::::::::
information10

::::
about

::::::::
usability

:::
and

:::::::::
reliability

::
of

:::
the

::::::::
approach.

:::::::::
Moreover,

::::::
further

:::::
study

:::
and

:::::::::
discussion

::
is
::::::
needed

:::
to

::::::::
determine

::::
how

::
to

:::::::
express

::
the

::::::::::
uncertainty

::::::::::
information,

::::::::
provided

::
by

:::
the

::::::::
posterior

::::::::::
distribution,

::
in

:::::
more

:::::::
compact

:::::
form.

:

The method described in this work is applicable to any instrument measurements where the observed reflectance is available

as well as the aerosol microphysical models. Our plan is to apply this method to an AATSR retrieval algorithm where the models

are constructed during the fitting using a limited amount of aerosol components describing non-absorbing and absorbing fine15

particles together with coarse marine and dust particles (Kolmonen et al., 2016).
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Figure 1. True-colour MODIS image (RGB) on 16 April 2008 at 05:15 UTC (left) and on 27 April 2008 at 04:55 UTC (right) over Beijing

area. MODIS, on Aqua satellite, has the equator crossing time only about 15 minutes earlier than OMI.
:::
The

::::
area

::
of

::::::
analysed

::::
OMI

:::::
pixels

::
is

:::::
marked

::::
with

:::
red

:::::::
contours.

Figure 2. The number of most appropriate aerosol microphysical models at the retrieved pixels on 16th April (left) and 27th April (right).
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Figure 3. The main aerosol type of the retrieved model with the highest evidence i.e. the best model, on 16th April (left) and 27th April

(right). The main aerosol types are: WA1114 (Weakly absorbing sea salt), WA (Weakly absorbing), BB (Biomass burning), DD (Desert dust)

and VO (Volcanic). The location of AERONET site Beijing, China, (see Table 2) is marked by a black star.
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Figure 4. The relative evidence distribution (%) of the selected models on 16th April 2008. (a) The relative evidence of the best model with

the highest evidence and the shared evidence of the best models of each main aerosol type: (b) weakly absorbing, (c) weakly absorbing sea

salt, (d) biomass burning, (e) desert dust and (f) volcanic aerosols.
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Figure 5. Same as Fig. 4 but the relative evidence distribution (%) of the selected best models on 27th April 2008.

21



Figure 6. The MAP estimate of AOD based on the best model (upper row) and based on the averaged posterior distribution (lower row)

shown for 16th April (left) and 27th April (right). Please note the different colour scale.
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Figure 7. Beijing, 16th April (on the left) and 27th April (on the right). Upper row: The observed reflectance (blue dots) and modeled

reflectance (green dots) of the selected best fitting models. The error-bars in blue correspond to 2 x standard measurement error and the error-

bars in grey correspond to 2 x standard uncertainty due to measurement and model error. Lower row: The posterior probability distribution

of AOD for each best fitting model. The biomass burning type model’s posterior density curve is in red and weakly absorbing type model’s

curve in blue. The dashed black curve is the averaged posterior distribution over the best fitting models (Eq. 7). The red vertical dashed line

indicates the MAP estimate from the averaged posterior distribution. The grey vertical lines show AERONET Version 2 Direct sun Level 2

AOD at 500 nm values position at the horizontal axis. The darker grey vertical lines (bottom left hand panel) denote AERONET AOD values

(n=3) within two hours time window including OMI overpass time and the black vertical line is the average of these values.
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Figure 8. True-colour
:::::

Merged
:::::::::
true-colour

:::::
Aqua/MODIS image (RGB) on 26 March 2008 at 13:00 UTC (left) and 13:05 UTC(right).

::::
The

:::
area

::
of

:::::::
analysed

::::
OMI

::::
pixels

::
is
::::::
marked

:::
with

:::
red

:::::::
contours.

Figure 9. The number of most appropriate aerosol microphysical models at the retrieved pixels.
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Figure 10. The main aerosol type of the retrieved model model with the highest evidence. The locations of AERONET sites Agoufou,

DMN_Maine_Soroa, IER_Cinzana and Saada (see Table 2) are marked by black stars.
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Figure 11. Same as Fig. 4 but the relative evidence distribution (%) of the selected best models in Africa case on 26th March 2008.
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Figure 12. The MAP estimate for AOD based on the best model (left) and based on the averaged posterior distribution (right).

Figure 13. The Ångström exponent at 442-500 nm of the ranked best (left) and the second best (right) aerosol microphysical model.
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1 best fitting model:
DD3211
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Orbit: 19663, lat: 13.2668, lon: 11.8907, 26-Mar-2008

10 best fitting models:
BB2323 (16.9 %), BB2322 (13.1 %), BB2333 (12.6 %),
BB2321 (10.6 %), BB2332 (10.0 %), BB2233 (8.1 %),
BB2331 (8.1 %), BB2313 (7.8 %), BB2223 (6.8 %), 
BB2232 (6.0 %)

Figure 14. Same as Fig. 7 but for the pixels located at Agoufou (upper row) and DMN_Maine_Soroa (lower row). The grey vertical lines

show AERONET Version 2 Direct sun Level 2 AOD at 500 nm values. The darker grey vertical lines (bottom right hand panel) denote

AERONET AOD values within two hours time window including OMI overpass time and the black vertical line is the average of these

values.
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9 best fitting models:
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Figure 15. Same as Fig. 14 but for the pixels located at IER_Cinzana (upper row) and Saada (lower row). Right column: The desert dust

type models’ posterior density curves are marked with orange colour and biomass burning type models’ with red.
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Table 1. Aerosol size distribution parameters and wavelength dependent single scattering albedo (SSA) for aerosol microphysical models

stored in LUTs. The third digit (’x’) in the model ID number for BB and DD models has a range of 1–3 and is intended for different vertical

distributions. The size distribution is given by log-normal functions. The mean particle radius, rg [micron], and the standard deviation, �

[micron], are given for both modes, m1 and m2. A second mode fraction of the number concentration is given in column ’n21’. The SSA

depend on wavelength and the values shown here are for the first and last wavelength band.

Model rg m1 rg m2 � m1 � m2 n21 SSA

WA1111 0.078 0.497 1.499 2.160 4.36e-4 1–1

WA1112 0.088 0.509 1.499 2.160 4.04e-4 1–1

WA1113 0.137 0.567 1.499 2.160 8.10e-4 1–1

WA1114 0.030 0.240 2.030 2.030 1.53e-2 1–1

WA1211 0.078 0.497 1.499 2.160 4.36e-4 0.96–0.95

WA1212 0.088 0.509 1.499 2.160 4.04e-4 0.97–0.96

WA1213 0.137 0.567 1.499 2.160 8.10e-4 0.97–0.98

WA1311 0.078 0.497 1.499 2.160 4.36e-4 0.91–0.88

WA1312 0.088 0.509 1.499 2.160 4.04e-4 0.91–0.90

WA1313 0.137 0.567 1.499 2.160 8.10e-4 0.92–0.92

BB21x1 0.074 0.511 1.537 2.203 1.70e-4 0.94–0.93

BB21x2 0.087 0.567 1.537 2.203 2.06e-4 0.94–0.93

BB21x3 0.124 0.719 1.537 2.203 2.94e-4 0.93–0.94

BB22x1 0.074 0.511 1.537 2.203 1.70e-4 0.90–0.88

BB22x2 0.087 0.567 1.537 2.203 2.06e-4 0.90–0.89

BB22x3 0.124 0.719 1.537 2.203 2.94e-4 0.89–0.90

BB23x1 0.074 0.511 1.537 2.203 1.70e-4 0.86–0.82

BB23x2 0.087 0.567 1.537 2.203 2.06e-4 0.86–0.84

BB23x3 0.124 0.719 1.537 2.203 2.94e-4 0.84–0.85

DD31x1 0.042 0.670 1.697 1.806 4.35e-3 0.82–0.94

DD31x2 0.052 0.670 1.697 1.806 4.35e-3 0.86–0.95

DD32x1 0.042 0.670 1.697 1.806 4.35e-3 0.74–0.90

DD32x2 0.052 0.670 1.697 1.806 4.35e-3 0.79–0.91

VO4111 0.230 0.230 0.800 0.800 0.5 1–1
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Table 2. The retrieved aerosol characteristics for AERONET sites and results from the presented method. The collocated OMI pixel indices

in orbit are given in the column ’Pixel ind’. The AERONET AOD at 440 and the Ångström exponent ↵(440-675) nm are daily averages of

the data from Level 2.0 Version 2 Direct sun algorithm. We interpolated AERONET AOD at 500 nm (marked by *) by Ångström power law

using the instant values of ↵(440-675) nm and AOD at 440 nm. The AOD at 500 nm retrieved by the presented method is the MAP estimate

of the averaged posterior density. The Ångström exponents ↵1(442-500) nm and ↵2(442-500) nm are calculated from the best matching

model LUT and from the second best matching model LUT, respectively. We interpolated OMAERO AOD at 500 nm (marked by **) in the

best fitting LUT using AOD at 342.5 nm.

Site Name (Lat, Lon) Pixel ind AOD 440 AOD 500 ↵(440-675) AOD 500 ↵1 ↵2 AOD 500

AERONET AERONET OMI AERONET AERONET AERONET OMAERO

Beijing a) (39.9� N, 116.3� W) (1029,25) 2.488 2.160* 1.108 3.602 1.008 1.610 -

Beijing b) (39.9� N, 116.3� W) (1004,12) 0.807 0.665* 1.522 0.624 1.560 1.259 -

Agoufou (15.3� N, 1.4� W) (905,9) 0.228 0.218* 0.375 2.549 0.293 - 1.557**

DMN_Maine_Soroa (13.2� N, 12.0� E) (873,53) 0.143 0.139* 0.267 0.087 0.978 1.560 0.148**

IER_Cinzana (13.2� N, 5.9� W) (899,2) 0.424 0.414* 0.236 0.206 0.561 0.290 0.234**

Saada (31.6� N, 8.1� W) (1047,6) 0.302 0.276* 0.697 0.312 0.561 0.290 -

a) 16.4.2008 b) 27.4.2008
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