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Abstract.

We discuss uncertainty quantification for aerosol type selection in satellite-based atmospheric aerosol retrieval. The retrieval

procedure uses pre-calculated aerosol microphysical models stored in look-up tables (LUTs) and top of atmosphere spectral

reflectance measurements to solve the aerosol characteristics. The forward model approximations cause systematic differences

between the modeled and observed reflectance. Acknowledging this model discrepancy as a source of uncertainty allows us to5

produce more realistic uncertainty estimates and assists the selection of the most appropriate LUTs for each individual retrieval.

This paper focuses on the aerosol microphysical model selection and characterization of uncertainty in the retrieved aerosol

type and aerosol optical depth (AOD). The concept of model evidence is used as a tool for model comparison. The method is

based on Bayesian inference approach where all uncertainties are described as a posterior probability distribution. When there

is no single best matching aerosol microphysical model we use a statistical technique based on Bayesian model averaging to10

combine AOD posterior probability densities of the best fitting models to obtain an averaged AOD estimate. We also determine

the shared evidence of the best matching models of a certain main aerosol type in order to quantify how plausible each main

aerosol type is in representing the underlying atmospheric aerosol conditions.

The developed method is applied to Ozone Monitoring Instrument (OMI) measurements using multi-wavelength approach

for retrieving the aerosol type and AOD estimate with uncertainty quantification for cloud-free over-land pixels. Several larger15

pixel set areas were studied in order to investigate robustness of the developed method. We evaluated the retrieved AOD by

comparison with ground-based measurements at example sites. We found that the uncertainty of AOD expressed by posterior

probability distribution reflects the difficulty in model selection. The posterior probability distribution can provide a compre-

hensive characterization of the uncertainty in this kind of problem for aerosol type selection. As a result, the proposed method

can account for the model error and also include the model selection uncertainty in the total uncertainty budget.20

1 Introduction

The atmospheric aerosols play an important role in our understanding of Earth’s climate system. Aerosols have direct and

indirect influence on Earth’s radiation budget. Satellite remote sensing observations have been utilized for years to provide in-

formation about atmospheric aerosol conditions in global scale. The spaceborn data are very useful for detecting and following

dynamic natural or anthropogenic events such as sand storms and active fires. The most common retrieved aerosol character-25

istic is the aerosol optical depth (AOD) which is a function of the loading, size distribution and optical properties of aerosol
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particles. There are a number of satellite instruments delivering aerosol products and providing aerosol characteristics e.g.

the Ozone Monitoring Instrument (OMI) (Torres et al., 2007), the Moderate Resolution Imaging Spectroradiometer (MODIS)

(Levy et al., 2010), the Global Ozone Monitoring Experiment-2 (GOME-2) (Hassinen et al., 2015), the Multi-angle Imaging

SpectroRadiometer (MISR) (Kahn et al., 2010), the (Advanced) Along-Track Scanning Radiometers ((A)ATSR) (Thomas et

al., 2009; Kolmonen et al., 2016), the Cloud-Aerosol Lidar and Infrared Path finder (CALIPSO) (Winker et al., 2009), the5

Scanning Imaging Absorption spectroMeter for Atmospheric Chartography (SCIAMACHY) (Bovensmann et al., 1999), the

Polarisation and Directionality of the Earth’s Reflectance (POLDER) (Dubovik et al., 2011) and the Spinning Enhanced Visible

and Infrared Imager (SEVIRI) (Govaerts et al., 2010; Wagner et al., 2010).

There is an increasing potential for using and incorporating satellite-based aerosol information as the instruments are getting

better in resolution and more sophisticated for detecting aerosols (Holzer-Popp et al., 2013). In addition, the improvement of10

retrieval algorithms and the development of novel methodologies extend opportunities to use the data. Especially, one target

is to derive information about small aerosol particles (diameter less than 1 µm) from satellite measurements. An important

and challenging use of satellite measurements is to assimilate aerosol characteristics into large-scale global aerosol models

(Benedetti et al. , 2009). Furthermore, the satellite based data can be combined with numerical models when estimating aerosol

emission fluxes (Huneeus et al., 2012) or spatially constraining amount of aerosol emissions (Wang et al., 2012; Xu et al.,15

2013). Data validness as well as identification and quantification of uncertainties are acknowledged when data are used.

Uncertainties in satellite-based aerosol retrievals arise from many sources, e.g. cloud contamination, treatment of surface

reflectance and instrumental issues. It is typical in the aerosol retrievals that the radiative transfer (i.e. forward model) calcu-

lations have been replaced by pre-calculated look-up tables (LUTs) in order to speed up the needed computations. The LUTs

are often multi-dimensional tables containing simulated discrete descriptions of varying aerosol conditions. Aerosols can be20

classified into categories (i.e. main types) such as clean background, urban pollution, dust, smoke (from biomass burning)

and sea salt based on the origins of the aerosol particles. The optical and microphysical properties of different aerosol types

are described in corresponding LUTs. The aerosol properties in the LUTs can be based on observations or combination of

observations and climate models (Holzer-Popp et al., 2013). The situation is more complicated for a retrieval algorithm when

an aerosol containing air-mass is a mixture of different types, e.g. mixture of dust aerosols and biomass burning aerosols. The25

proper aerosol type selection from LUTs is a source of uncertainty and affects the accuracy of the retrieval. Povey et al. (2015)

give an overview of the error analysis and representation of uncertainty in the satellite data. One application they discuss is

related to the AOD retrievals where unquantifiable errors arise from the choice of a forward model (i.e. aerosol microphysical

properties).

In this paper we discuss characterization of uncertainty in the aerosol type and AOD retrieval. We utilize the method, de-30

scribed in Määttä et al. (2014), for estimating the uncertainty in the retrieved AOD due to the aerosol microphysical model

selection and the approximations in forward modeling. The method is based on the Bayesian inference approach where un-

certainty estimates are an inherent part of the formulation (MacKay, 1992; Spiegelhalter et al., 2002; Robert, 2007). The

uncertainty is given as a posterior density function of the AOD and a point estimate for the AOD is the maximum a poste-

rior (MAP) value. We calculate the model evidence value for each aerosol microphysical model involved in order to compare35
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models and do the model selection. The selection of single best fitting aerosol microphysical model is not always clear and

this uncertainty has also been addressed in this study. We calculate the averaged posterior probability distribution where the

individual model posterior distributions are weighted by their evidence. This is implemented by the Bayesian model averaging

technique (Hoeting et al., 1999). We also perform the shared evidence of the best matching models within main aerosol type

in order to quantify plausibility of each main aerosol type. We acknowledge the forward modeling uncertainty, i.e. model dis-5

crepancy (Kennedy et al., 2001; Brynjarsdóttir et al., 2014) which arises from non-modeled systematic differences between the

modeled and observed reflectance. The described method is applied for the aerosol retrieval using cloud screened data from

the OMI instrument.

The used data and methodology are introduced in Sect. 2 and 3. We have investigated the performance of the method with

case studies presented in Sect. 4. Section 5 discuss the features and possibilities of the method.10

2 OMI data

The Dutch-Finnish OMI instrument is on board NASA’s Earth Observing System (EOS) Aura platform which was launched

in July 2004 (Levelt et al., 2006). The Aura satellite is in a polar sun-synchronous orbit crossing the equator approximately at

13:45 local time. OMI measures sunlight backscattered from the Earth in the ultraviolet (UV) and visible (VIS) wavelength

bands (270-500 nm). The ground pixel size at nadir is 13× 24 km2. The retrieved products include atmospheric trace gases15

(ozone, NO2, SO2, HCHO, BrO and OClO), surface UV, cloud information and aerosol characteristic.

The two operational aerosol algorithms to retrieve aerosol characteristics from OMI measurements are the OMI near-UV

aerosol data product (OMAERUV) and the OMI multi-wavelength aerosol data product (OMAERO) (Torres et al., 2007, 2002).

OMAERUV uses in the retrieval two wavelength bands at 354 and 388 nm to determine the AOD, aerosol index and single

scattering albedo (Ahn et al., 2014). OMAERO uses the near UV and visible wavelengths between 330 and 500 nm providing20

the AOD, best matching aerosol model and aerosol characteristics associated with the best model (e.g. single scattering albedo

and aerosol indices) (Curier et al., 2008). The retrievals of AOD and single scattering albedo from OMAERUV and OMAERO

have been evaluated using air-borne sunphotometer, ground-based sun/sky radiometer and other satellite measurements (Ahn

et al., 2008; Livingston et al., 2009).

The OMI data used in this study have been extracted via Mirador data search tool provided by the NASA Goddard Earth25

Sciences Data and Information Services Center (GES DISC) data access system (https://urs.earthdata.nasa.gov). We calculated

the top-of-the-atmosphere (TOA) spectral reflectance (referred to as measured or observed reflectance from now on) from the

OMI Level 1B VIS and UV radiances and Level 1B Solar irradiance data. We took the effective cloud fraction information

from the Level 2 OMI O2-O2 cloud product (OMCLDO2). Then we applied a simple scheme by using 0.34 as an effective

cloud fraction threshold value for detecting and excluding a cloudy pixel. Thus we followed only one of three tests for cloud30

screening used by the OMAERO algorithm. The high threshold value of 0.34 was chosen in order to avoid excluding desert dust

scenes (OMAERO Readme Document, 2011). To assure measurement data quality in the retrieval we used the pixel quality
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and error flags from the OMI Level 1B radiance products. In addition, to ensure the forward model quality, we excluded data

where solar zenith angle was above 75◦.

We used GroundPixelQuality flag from the OMI Level 1B radiance product to choose the over land pixels as this study was

concentrated on the aerosol types that are dominant over land areas. We accepted a pixel and specify it as land pixel if the

flag indicated ground type to be land, shallow inland water, ocean coastline/lake shoreline, ephemeral (intermittent) water or5

deep inland water (OMI Level 1B Output products and Metadata, 2009). For surface reflectivity, we used the climatological

surface reflectance database from the OMI Earth Surface Reflectance Climatology product OMLER (v003). The OMLER

(v003) product data file (OMI-Aura_L3-OMLER_2005m01-2009m12_v003-2010m0503t063707.he5) was extracted from the

GES DISC data Service. The OMLER product contains in a 0.5 x 0.5 degree grid global maps of the monthly climatology of

Lambert equivalent reflectance (LER) based on five years (2005-2009) of OMI data (OMLER Readme Document, 2010).10

In our analysis we have used about 1 nm wide wavelength bands centered at 342.5, 367.0, 376.5, 388.0, 399.5, 406.0, 416.0,

425.5, 436.5, 442.0, 451.5, 463.0 and 483.5 nm. These 13 bands include one wavelength in the UV region and the rest in the

VIS region. The O2-O2 absorption wavelength band centered at 477 nm brings important information about the cloud height

and for cloud-free scene about the aerosol layer height for high enough AOD levels (Veihelmann et al., 2007). However, we

omitted in our study the band 477 nm due to experimental purpose and since we did not need aerosol height information.15

2.1 Aerosol microphysical models

The aerosol microphysical models stored in the OMI LUTs are produced via the radiative transfer calculations for a range of

aerosol physical properties and sun-satellite geometries (Torres et al., 2002, 2007). There are four main aerosol types: weakly

absorbing (WA), biomass burning (BB), desert dust (DD) and volcanic (VO) aerosols. The weakly absorbing type aerosol

models are composed of urban-industrial and natural oceanic aerosols (Torres et al., 2002). Veihelmann et al. (2007) discuss20

the capability of the OMI multi-wavelength algorithm to distinguish between different aerosol types.

The main types are split into sub-types (i.e. models) according to the aerosol size distribution, refractive index and vertical

profile. We used a set of OMI aerosol microphysical models, total of fifty models, in the work presented here (see Table 1).

Each model consists of a set of parameters (e.g. AOD, single scattering albedo, viewing and solar zenith angle, relative azimuth

angle, path reflectance, transmission and spherical albedo) with predefined values at node points.25

A weakly absorbing aerosol model ’WA1114’ represents sea salt particles having a higher fraction of coarse particles than

the other weakly absorbing models (see Table 1). We have classified the model ’WA1114’ as the fifth main aerosol type when

reporting results from the case examples (see Sect. 4).

3 Methodology

The proposed method is applied to the retrieval scheme that is similar to the OMAERO algorithm. The unknown aerosol30

parameter is the AOD at the reference wavelength of 500 nm, for which we will use symbol τ . The related uncertainty is

analyzed using Bayesian statistical inference. The observations are TOA reflectances Robs(λ) at a set of wavelengths λ=
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(λ1, . . . ,λn). The modeled spectral reflectance Rmod(τ, λ) depends on τ within the specific aerosol microphysical model in

LUT. The AOD parameter τ is adjusted between the nodal values in the model LUT to find the modeled reflectance that has

the best fit with the observed spectral reflectance.

Assuming a Lambertian surface the contribution of the radiation at the TOA can be separated from that of the atmosphere

(e.g. Chandrasekhar (1960)) leading to the equation for modeled reflectance as5

Rmod (λ, τ, µ, µ0,∆φ, ps) = Ra (λ, τ, µ, µ0,∆φ, ps) +
As(λ)

1 − As(λ)s(λ, τ, ps)
T (λ, τ, µ, µ0, ps) . (1)

Here path reflectanceRa, transmittance T and spherical albedo s of the atmosphere are derived from LUT by interpolation as a

function of λ, τ , ∆φ (relative azimuth angle), ps (surface pressure), µ (cosine of viewing zenith angle) and µ0 (cosine of solar

zenith angle). The sun-satellite geometry data ∆φ, ps, µ and µ0 are included in the OMI Level 1B data. The surface reflectance

As is taken from the Lambertian equivalent surface reflectance climatology based on the geolocation of the retrieved pixel and10

month.

3.1 Acknowledging the model discrepancy

The aerosol microphysical models used in the retrieval procedure are discrete representations of the aerosols in the real at-

mosphere. Approximations in forward modeling together with uncertainties in the assumptions, e.g. in the surface reflectance,

cause model discrepancy, which manifests itself as systematic deviations between the modeled and observed reflectance.15

We pay special attention to the model discrepancy in the fitting process by adding the related uncertainty term η(λ) to the

observation model

Robs(λ) = Rmod(τ, λ) + η(λ) + εobs(λ). (2)

The model discrepancy error term η(λ) enables correlated errors between neighboring wavelengths, thus allowing for smooth

departures from the model. The measurement error εobs(λ) ∼N(0, σ2
obs(λ)) will describe the independent instrument noise20

that will be assumed to be known in the retrieval procedure coming from the instrument properties and from the calculation of

the observed reflectance. In the fitting procedure, for simplicity, we have σobs(λ) =Robs(λ)/SNR, where we used value SNR

= 500 for the signal-to-noise ratio of the instrument.

Our approach to estimate the model discrepancy term η(λ) was to explore systematic differences between the measured and

modeled reflectance (i.e. residuals). The systematic structure in the residuals indicates inadequacy in the forward model. The25

model discrepancy was characterized using a zero mean Gaussian process η(λ)∼GP(0,C) (Rasmussen and Williams, 2006),

as described by Määttä et al. (2014), where the covariance matrix C defines the wavelength-dependent correlation properties of

the discrepancy. The covariance matrix C was constructed by means of an empirical semivariogram when the variances of the

residual differences were calculated for each wavelength pairs with the distance d. Next, the theoretical Gaussian variogram

model was fitted to these empirical semivariogram values. The outcome of this analysis were the values for parameters that30

defines the model discrepancy covariance matrix C (see Määttä et al. (2014) for details).
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We assume that the likelihood function describing the distribution of the observations given the model follows a Gaussian

distribution. The likelihood function has an additional error covariance term due to the model error,

p(Robs|τ, m) ∝ exp

(
−1

2
Rres(λ)T

(
C + diag

(
σ2

obs(λ)
))−1

Rres(λ)

)
, (3)

where Rres(λ) =Robs(λ)−Rmod(τ, λ) is the residual, C is the model discrepancy covariance matrix and diag(σ2(λ)) is a

diagonal matrix of the measurement error variances σ2
obs(λ). The likelihood function is needed for calculation of posterior5

distribution using Bayes’ formula (see Sect. 3.2).

3.2 Aerosol type and AOD retrieval with uncertainty quantification

In the Bayesian inference, the solution of an inverse problem is presented as a posterior distribution of the unknown. This

approach provides a natural way to present the uncertainty in the AOD and in the aerosol microphysical model m. By Bayes’

formula the posterior distribution for τ within the model m and given the observed reflectanceRobs is10

p(τ |Robs, m) =
p(Robs|τ, m)p(τ |m)

p(Robs|m)
, (4)

where p(Robs|τ, m) is the likelihood and p(τ |m) is a prior distribution for τ depending on the aerosol microphysical model

m. The denominator p(Robs|m) does not depend on τ and acts to normalize the numerator. We assumed that the prior p(τ |m)

follows a log-normal distribution in order to ensure that the estimated AOD is positive. The calculation of the actual posterior

distribution requires solving integrals over the parameter and model space. In our case, the model selection procedure seeks the15

solution for one parameter τ and then the calculation of posterior distribution is fairly straightforward by numerical quadrature.

The calculation of the posterior distribution is presented in more detail in Määttä et al. (2014).

The denominator p(Robs|m)=
∫
p(Robs|τ, m) p(τ |m)dτ in Eq. (4) is the probability of the observed reflectance Robs as-

suming the modelm is the correct one. However, when considering our problem of choosing the right modelm, the p(Robs|m)

acts as an evidence in favour for m. Consequently, we compare models using their evidence values. In the retrieval procedure20

we accept the models with the highest evidence until a cumulative sum of the selected models’ evidences pass the value of 0.8

or the number of selected models is ten.

Since we assume that a priori all models are equally likely, we end up calculating the relative evidence for each selected

model mi by formula

p(mi|Robs) =
p(Robs|mi)∑
j

p(Robs|mj)
. (5)25

Here the denominator is a sum over all the evidences of the models mj under the comparison process (see Määttä et al. (2014)

for details). The relative evidence indicates how plausible the aerosol microphysical model is among the set of potential models.

Even when a model has the highest evidence it does not ensure that it gives an adequate fit to the observed reflectance. The

goodness of fit of the selected model is analyzed by the modified chi-squared value

χ2 = 1
n−1Rres(λ)T

(
C + diag(σ2(λ))

)−1
Rres(λ), (6)30
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where C is a covariance matrix for the model discrepancy and n is the number of wavelength bands in the spectral reflectance.

We accepted the retrieved solution (i.e. the selected best model) if this merit function gives a value ≤ 2.

3.3 Bayesian model averaging

Traditionally, the aerosol microphysical model mi with the highest evidence can be treated as the correct one. However,

there can be several models that could explain the measurements equally well when taking into account the uncertainty in5

the selection procedure. In that case the selection of single model (i.e. aerosol sub-type) does not ensure that it is the most

appropriate model since it may have been selected by chance. In addition, the posterior distribution for τ can differ from model

to model among the best models. This indicates that the selection of one particular model as the correct one is not always

self-evident or meaningful.

We have used the Bayesian model averaging approach (Hoeting et al., 1999; Robert, 2007) to calculate averaged posterior10

distribution by formula

pavg (τ |Robs) =

n∑
i=1

p(τ |Robs, mi) p(mi|Robs) , (7)

where the posterior distributions for τ , assuming that mi is the correct model, are weighted by the models’ evidences. By

model averaging we perform the shared inference about the AOD over the best fitting models. Secondly, the uncertainty in the

model selection is incorporated in the uncertainty estimate of the AOD.15

4 Case studies and results

With the following test cases we study functioning of the aerosol type selection procedure, concept of the evidence for model

comparison and the resulted AOD posterior distribution for expressing the uncertainty due to model selection and approxima-

tions in forward modeling. The relative evidence of a single model, with respect to the other selected models, describes the

plausibility of that model to explain the observed reflectance. The width of the posterior density function illustrates the level20

of the uncertainty, i.e. the wider the width the higher the uncertainty.

We consider two test cases where the atmospheric aerosol conditions are different from each other. The first case study

focuses on an urban area around Beijing, where we analyze the retrieved aerosol characteristics on two days to observe the

difference as well as similarity of aerosol conditions in these days. The Beijing case is challenging since the aerosol air-mass

is a mixture of dust from north blending with urban pollution around Beijing. On the other hand, this case enables to examine25

aerosol type selection in situation with high AOD levels. The other test case covers Northern and Central Africa where we

expect dust aerosols in the north and biomass burning aerosols in the central part. In particular, this test case covers a large,

almost cloud free, area.

We evaluated the retrieved AOD estimates using collocated ground-based Aerosol Robotic Network (AERONET) data of

aerosol properties. The AERONET program is a federation of ground-based remote sensing aerosol networks (Holben et al.,30

1998). We downloaded the Version 2 Direct sun Level 2.0 quality assured and cloud-screened aerosol data for the AERONET
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sites under investigation. We tracked clouds and land scene for the case studies by utilizing true-color images from MODIS, on

Aqua satellite, that has the equator crossing time only about 15 minutes earlier than OMI. The MODIS instrument is onboard

both Terra and Aqua spacecraft. The data products derived from MODIS measurements include atmosphere (e.g. cloud mask

and aerosol products), land, cryosphere and ocean products (see e.g. http://modis.gsfc.nasa.gov).

4.1 Beijing area on 16 April and 27 April 20085

In this case study focusing on an urban area around Beijing, we analyzed the retrieved aerosol characteristics on two days: the

16th and 27th of April 2008. In the spring season the atmosphere is typically loaded by a mixture of urban and dust aerosols

(Yu et al., 2016). Figure 1 shows the true-colour images from the MODIS, on-board the NASA’s Aqua satellite, on the 16th of

April 2008 at 05:15 UTC (left) and 27th of April 2008 at 04:55 UTC (right) over the Beijing area.

The OMI pixels that were analysed are located on rows 23-29 across the orbit in the first day case (i.e. the 16th of April)10

and on rows 10-20 in the second day case (i.e. the 27th of April), respectively. No data are reported if the pixel is cloud

contaminated or none of the models had adequate fit with the measured reflectance (Eq. 6).

Figure 2 presents the number of most appropriate models retrieved for each pixel on both days. The maximum number of

best models was restricted to ten (see Sect. 3.2). In the first day case the variety of the number of best models is wide (left)

whereas in the latter day case (right) for the most part of the pixels the maximum number of models are selected to explain the15

measurements.

In Fig. 3 is shown the distribution of the main aerosol types of the retrieved aerosol microphysical models (i.e. sub-types)

having the highest evidence. The main aerosol types are the weakly absorbing (WA), weakly absorbing sea salt (WA1114),

biomass burning (BB), desert dust (DD) and volcanic (VO) aerosols. The prevailing types in both days in the vicinity of Beijing

AERONET site (marked with black star in Fig. 3) are the BB and WA types. The appearance of marine type ’WA1114’ as the20

best matching type may occur due to cloud impact since the nearby pixels with no results have been omitted as cloudy pixels.

In addition, on the 27th of April (right) the desert dust type gets the highest evidence in the upper part of the examination area.

An airmass trajectory analysis (not shown here) indicated that on the 27th dust from the Gobi desert (north of the study area)

was entering the Beijing area.

Figures 4 and 5 illustrate for both days how plausible each main aerosol type is to represent the prevailing aerosol air-mass25

type. We have summed up the relative evidences (%) of the selected models (i.e. sub-types) within each main type to get a

quantity of confidence, i.e. shared evidence, for each main aerosol type. Figures b-f show pixel-wise the shared evidence (%)

for each main type. Whereas, the figure on the upper left corner (a) presents the relative evidence (%) of the single best fitting

aerosol microphysical model indicating how superior the ranked best model is with respect to the other selected models if any.

We can notice that the one best model does not necessarily determine the aerosol type alone, but a mixture of models could30

give a better match. We also observe that both WA and BB type aerosol microphysical models get support as representative

models for some pixel areas (b-d). In addition, on the 27th, the DD type gets strong evidence in the upper right corner of the

examination area (Fig. 5e).
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Figure 6 shows the distribution of the retrieved MAP AOD estimates in both days. The upper row show the MAP estimate

from the aerosol microphysical model with the highest evidence. The lower row show the MAP estimate from the averaged

posterior distribution over the selected best models. In general, the AOD point estimate value from the averaged posterior

distribution is lower than the AOD estimate based on the single best model.

Figure 7 shows the results for a single pixel having a geometric collocation with the AERONET Beijing site, i.e. the Beijing5

site coordinates are inside an OMI pixel. The upper row shows the measured reflectance (in blue) and the selected, best

matching, modeled reflectances (in green) for the 16th of April (left) and the 27th of April (right). In the lower row are shown

the posterior density functions that characterize the uncertainty. Also, the best matching models’ identification numbers and the

associated relative evidences inside brackets are given. The relative evidence (%) (Eq. 5) express how plausible this model is

to explain the measured spectral reflectance with respect to the other selected best models. The averaged posterior distribution10

(Eq. 7) has two peaks indicating difficulty in model selection. The red vertical dashed line denotes the MAP AOD estimate

(i.e. the posterior mode) from the averaged posterior. The grey vertical lines show the AERONET AOD at 500 nm values at

separate measurement times.

On the 16th of April (Fig. 7 left) there are two best matching models, both of the BB type, selected. The other types of

models, e.g. weakly absorbing type, do not match as well as the selected best BB models. The width of the averaged posterior15

is relatively wide indicating high uncertainty in the result. The model with the higher evidence has much weight in the averaged

posterior and this affects the retrieved AOD that is higher than the AERONET values. The AERONET measurements are in the

time range of 00:02-04:59 UTC therefore before the OMI overflight time (∼ 5:25 UTC). However, there are some AERONET

AOD measurements (n=3) within two hours time window including OMI overpass time. These AOD values are marked by

darker grey vertical lines and the black vertical line is the average.20

On the 27th of April (Fig. 7 right) the resulted AOD from the averaged posterior is in agreement with the AERONET data.

In that day the AERONET measurements, marked by grey vertical lines, are in time range of 08:22-09:43 UTC, thus monitored

after the OMI overpass time (∼ 5:06 UTC). The selected best models are BB type, except one WA type model (blue posterior

curve) that is ranked as the second best model in the fitting. The averaged posterior distribution has two modes indicating

two alternative explanations for the observed reflectance. The higher mode of the averaged posterior gets a larger portion of25

the model evidences thus yielding the MAP AOD estimate. But, if the end result is based on the one best fitting model, i.e.

"BB2312", the estimated AOD level would be higher since the corresponding posterior distribution curve is the most right one.

In Table 2 are given the aerosol characteristics for the AERONET sites and results, e.g. AOD at 500 nm and Ångström

exponent values, retrieved by the proposed method. The AERONET data for Beijing shown in Table 2 are the daily averages.

We interpolated AOD at 500 nm by using the AERONET AOD at 440 nm and the AERONET provided Ångström exponent30

440-675 nm. The Ångström exponent describes the dependency of the AOD on wavelength. It gives an approximation of the

aerosol particle size in such a way that when coarse aerosol particles dominate the exponent is small, and vice versa for the

fine particle dominance. In our retrieval we calculated the Ångström exponent (442-500 nm) by Ångström exponent power

law where the AOD at 442 nm was derived from the associated LUT based on the retrieved AOD at 500 nm. Thus the reported

Ångström exponent is completely determined by the model LUT. In Table 2 are presented Ångström exponent values based on35
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the best fitted (α1) and the second best fitted (α2) model. For Beijing case, in both days, the derived Ångström exponent value

of the best model (α1) is in good agreement with the AERONET value. Even so, on the 16th of April α2 deviates more from

the AERONET value although the estimated AOD, based on the second best model, is closer to the AERONET AOD values

(see Fig. 7 left).

4.2 Northern and Central Africa on 26 March 20085

This case study covers a large area over the Northern and Central Africa on the 26th of March 2008. Figure 8 shows the MODIS

true-colour images on the 26th of March 2008 at 13:00 and at 13:05 UTC over the Northern and Central Africa. The view is

mainly cloud free except for some broken-cloud cover in coastal regions. The AOD data from four AERONET sites Agoufou

(North Mali), DMN_Maine_Soroa (Niger), IER_Cinzana (Mali) and Saada (Morocco) are used to evaluate the results. Daily

averaged AERONET Version 2 Direct sun Level 2.0 AOD data are reported in Table 2.10

In Fig. 9 we can see the areas where the maximum number of aerosol microphysical models are selected, as well as the

areas where only one model dominates. In the middle of the orbit is an area where none of the models has adequate fit with the

measured reflectance (Eq. 6). In March 2008 the rows 54-55 (i.e. 53-54 if 0-based) in the OMI measurements are affected by a

row anomaly (OMI row anomaly team, 2016). We have omitted these two rows in the analysis.

As seen in Fig. 10 the desert dust is the dominating type of the selected best models. There are also areas where the BB type15

of models get the highest evidence to explain the measurement. The pixels where the weakly absorbing sea salt type aerosols

(type WA1114) have the best fit are located in the edge areas of clouds or in partly cloudy areas (see Fig. 8). The selection of

volcanic aerosol type as the only appropriate aerosol type happens for pixels located northeast from the Lake Chad where is

seen cloud in the MODIS RGB image (Fig. 8). The location of AERONET sites are marked with black stars.

The Figs. 11b-f reveal that all the selected best models (i.e. sub-types) usually are of the same main type, namely BB or DD20

type. But, in the area around Algeria occurrence of a mixture of main types may be related to the cloud contamination of these

pixels.

From the Fig. 12 it can be concluded that often the MAP estimate from the single best aerosol microphysical model has

slightly higher AOD level (left) than the MAP estimate from the averaged posterior distribution over the selected best models

(right). We can notice that in the area south of the latitude of 8◦, where the biomass burning type of models dominate, the AOD25

estimates are higher. Active fire maps from satellite data (not shown here) support the fire activity at that area. We can also

notice the DD type dominating area near the Agoufou AERONET site where AOD level is higher (see Fig. 12 and Fig. 11e).

Figure 13 shows the Ångström exponent (442-500 nm) values based on the best fitted (left) and the second best fitted (right)

model. In the Table 2 are shown the calculated Ångström exponent (442-500 nm) values at the locations of the reference

AERONET sites. Again, it should be noted here that the retrieved Ångström exponent is completely determined by the model30

LUT. Consequently, as seen in Fig. 13 the Ångström parameters reflect the selected aerosol microphysical models. That is, the

Ångström values are low where the desert dust type of models dominate. Correspondingly, in the coastal region where typically

is smoke and urban polluted air the Ångström exponent is higher.
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Figures 14 and 15 show the spectral reflectance fitting curves (on the left hand side) and the retrieved AOD estimates with

uncertainty (on the right hand side) for the single pixels located around the AERONET sites: Agoufou, DMN_Maine_Soroa,

IER_Cinzana and Saada. In the figure showing the posterior distributions (right) the grey vertical lines indicate AERONET

Direct sun Level 2.0 AOD at 500 nm values measured during that day. The darker grey vertical lines denote AERONET AOD

values within two hour time window including the OMI overpass time and the black vertical line is the average of these AOD5

values.

The measured reflectance at the Agoufou site (first row in Fig. 14) has a rather unique spectral structure and there is only one

dust type model that fits to the measured reflectance at all. The associated AOD from the model LUT is high with respect to the

AERONET values. The large width of the posterior distribution, that is the averaged posterior distribution as well, indicates

high uncertainty in the model selection and thus in the retrieved AOD. Even the retrieval uncertainty is high, the posterior10

density does not cover the AERONET AOD values at all. But the posterior density covers AOD from the OMAERO product

that is also high compared to AERONET daily average value (Table 2). It can be noted here that AERONET measurements at

the Agoufou site were made in the morning in time range of 06:58-09:27 UTC whereas the OMI overpass time at that location

was at ∼ 13:15 UTC. However, the derived Ångström exponent α1 has rather good agreement with the AERONET value

(Table 2).15

At the other three reference AERONET sites there are measured AOD values during the OMI overpass time. In Fig. 14,

showing the results for DMN_Maine_Soroa case (lower row), all the ten selected models belong to the biomass burning type

and their posteriors indicate an uniform small uncertainty. The estimated AOD values are consistent with the AERONET AOD

values within uncertainty but the derived Ångström exponents, α1 and α2, do not agree with the AERONET value (Table 2). In

the IER_Cinzana case (Fig. 15 upper row) the selected models are the desert dust type (orange) except for one biomass burning20

type model (red curve). The estimated AOD is a bit lower than the AERONET measurements. In the Saada case (Fig. 15

bottom row) the AERONET AOD values are in good agreement with estimated AOD, although the averaged AERONET AOD

(black vertical line) of the measurements made around the OMI overpass time is slightly lower than the MAP estimate of

AOD (red dashed vertical line). Also, the AOD values from OMAERO product are in good agreement with the AERONET

values (Table 2). For the sites IER_Cinzana and Saada the best and the second best models have as good evidence (Fig. 1525

right column) indicating that the selection of the best model happened by chance. Consequently, the derived α1 for Saada

site is consistent with the AERONET value whereas the derived α2 for IER_Cinzana has better agreement than α1 with the

AERONET value.

5 Discussion and Conclusions

In this paper, we focused on the aerosol microphysical model selection in the aerosol retrieval and on the quantification of un-30

certainty for the retrieved aerosol type and AOD using OMI TOA spectral reflectance measurements. The aerosol type selection

from LUTs is a source of uncertainty and affects the accuracy of the retrieval. The main targets of our study are 1) to improve

the retrieval error estimate (i.e. to produce more realistic uncertainty estimate), 2) to evaluate the model choice procedure and
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3) to find more robust AOD estimate that is based on the average of the most appropriate aerosol microphysical models instead

of on a single model chosen probably by chance. The retrieval scheme is similar to the OMAERO algorithm using information

from several wavelength bands between 330 and 500 nm and pre-calculated LUTs for aerosol microphysical properties. The

presented methodology was introduced and previously used by Määttä et al. (2014) for the uncertainty quantification in the

retrieval of AOD at the reference wavelength of 500 nm. This new research investigates the uncertainty in the aerosol type5

selection in more detail. What’s more, we experimented the proposed methodology with test cases covering large pixel areas.

We evaluated the retrieved AOD by comparison with AERONET measurements at example sites. For simplicity, we studied

only cloud-free over-land OMI pixels.

The method uses Bayesian statistical inference to quantify uncertainties due to model selection and due to approximations

in the forward modeling. The concept of model evidence is used as a tool for model comparison and to assist in the selection10

of the best models. The forward model approximations cause model error that results in systematic differences between the

modeled and observed reflectance. We acknowledge this model discrepancy when choosing the most appropriate LUTs in

order to produce more realistic uncertainty estimates of the retrieved AOD. Following the Bayesian approach the uncertainty

is described by the posterior probability distribution. The selection of single best fitting aerosol microphysical model is not

always clear and this uncertainty is addressed in this study. We use a statistical technique based on Bayesian model averaging15

to combine the AOD posterior probability densities of the best models to obtain the averaged posterior distribution. Then the

retrieved AOD is the MAP estimate of the averaged posterior function. We also determine the shared evidence of the best

matching models within a main aerosol type (weakly absorbing, sea salt, biomass burning, dust and volcanic) in order to

quantify plausibility of each main aerosol type.

Retrieving the aerosol type and AOD from the TOA reflectance measurements is an ill-posed problem and a priori informa-20

tion of prevailing aerosol conditions are needed to get a solution. The limited information content in the OMI measurements

and the narrow wavelength band range ending up to 500 nm make the problem very challenging to solve. In our approach we

did not pre-select aerosol microphysical models based on e.g. a climatology of aerosol geographical distribution. Instead, we

fitted all the available models (i.e. LUTs), a total of fifty models, to the spectral measurement. This makes the whole process

slower but is justified here to study the uncertainty in the aerosol model selection. The goodness-of-fit value (Eq. 6) was used to25

analyze whether the retrieved solution is acceptable. It is highly likely that the used model set is not comprehensive enough to

represent all aerosol air-mass conditions. In the Beijing case studies the absorbing biomass burning type aerosol microphysical

models dominate (Sect. 4.1) and the reason could be the lack of proper models for the prevailing aerosol conditions during the

selected days. In addition, in the Northern and Central Africa case (Sect. 4.2) there is an area in the middle of the orbit where

none of the available models gave an adequate fit.30

We made the cloud screening in a straightforward way just using the effective cloud fraction threshold value of 0.34 (see

Sect. 2) and thus there were most probably cloud affected pixels left. The suspicious results were often localized to pixels in the

edge of a cloud or inside broken-cloud areas. In these cases the observed reflectance was such that the unexpected model, e.g.

an oceanic or volcanic aerosol model, had the best fit (see Fig. 10). This feature could be used as an additional cloud detection.
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Here the model discrepancy was determined empirically by exploring a set of residuals (i.e. the difference between observed

and modeled reflectance) and then fitting a Gaussian process to find the characteristics of the model error (see Määttä et al.,

2014). Brynjarsdóttir et al. (2014) discussed model discrepancy and its effect on results with simple examples. They also

emphasized the importance of modeling the model error properly and the use of realistic priors for the model discrepancy.

The presented method accounts for the forward modeling uncertainty and also includes the uncertainty due to model selection5

in the total uncertainty budget. In particular, it gives tools for analyzing the different sources of uncertainties and the influence

of aerosol microphysical model selection on the estimated AOD. The case studies indicate that the developed methodology, in

general, works in the varying aerosol conditions as expected. But, even the method gives a solution that passed the goodness-of-

fit test it does not ensure correctness of the result. We found that the increased uncertainty of AOD expressed by the posterior

distribution reflects the difficulty in model selection. This brings more information about the uncertainty and produce more10

realistic uncertainty estimate, as well. We can also conclude that, for the most part, the combination of aerosol models obtained

by the Bayesian model averaging approach gives better AOD estimate than if based on one best model that may have been

selected by chance. There are cases when several selected models have almost the same portion of the relative evidence and

then the order of the best models may have been happened by chance. This situation is even more complicated if the level of

the AOD varies from model to model.15

The comparison with the AERONET data revealed that if the estimated AOD at 500 nm from the averaged posterior distri-

bution is not consistent with the AERONET AOD values the derived uncertainty of AOD is higher. Then, in the most cases,

the averaged posterior density covers the AERONET AOD values. The derived, even if LUT dependent, Ångström exponent

values are in rather good agreement with the AERONET values (see Table 2). In general, the retrieved AOD values are also

consistent with the AOD from the OMAERO product and the solution is achieved for a larger pixel set.20

However, in order to confirm robustness of the methodology more comprehensive and systematic assessment and evaluation

of the method are needed. This involves validation studies with reference data as well as implementation of the method using

other instruments’ measurements. Also, the examination of the method with simulated data would bring additional information

about usability and reliability of the approach. Moreover, further study and discussion is needed to determine how to express

the uncertainty information, provided by the posterior distribution, in more compact form.25

The method described in this work is applicable to any instrument measurements where the observed reflectance is available

as well as the aerosol microphysical models. Our plan is to apply this method to an AATSR retrieval algorithm where the models

are constructed during the fitting using a limited amount of aerosol components describing non-absorbing and absorbing fine

particles together with coarse marine and dust particles (Kolmonen et al., 2016).
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Figure 1. True-colour MODIS image (RGB) on 16 April 2008 at 05:15 UTC (left) and on 27 April 2008 at 04:55 UTC (right) over Beijing

area. MODIS, on Aqua satellite, has the equator crossing time only about 15 minutes earlier than OMI. The area of analysed OMI pixels is

marked with red contours.

Figure 2. The number of most appropriate aerosol microphysical models at the retrieved pixels on 16th April (left) and 27th April (right).
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Figure 3. The main aerosol type of the retrieved model with the highest evidence i.e. the best model, on 16th April (left) and 27th April

(right). The main aerosol types are: WA1114 (Weakly absorbing sea salt), WA (Weakly absorbing), BB (Biomass burning), DD (Desert dust)

and VO (Volcanic). The location of AERONET site Beijing, China, (see Table 2) is marked by a black star.
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Figure 4. The relative evidence distribution (%) of the selected models on 16th April 2008. (a) The relative evidence of the best model with

the highest evidence and the shared evidence of the best models of each main aerosol type: (b) weakly absorbing, (c) weakly absorbing sea

salt, (d) biomass burning, (e) desert dust and (f) volcanic aerosols.
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Figure 5. Same as Fig. 4 but the relative evidence distribution (%) of the selected best models on 27th April 2008.
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Figure 6. The MAP estimate of AOD based on the best model (upper row) and based on the averaged posterior distribution (lower row)

shown for 16th April (left) and 27th April (right). Please note the different colour scale.
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10 best fitting models: 

BB2312 (14.2 %), WA1313 (13.5 %), BB2213 (11.9 %), 

BB2123 (11.5 %), BB2311 (11.2 %), BB2113 (9.3 %), 

BB2133 (9.3 %), BB2212 (7.6 %), BB2222 (6.0 %), 

BB2221 (5.4 %)

Figure 7. Beijing, 16th April (on the left) and 27th April (on the right). Upper row: The observed reflectance (blue dots) and modeled

reflectance (green dots) of the selected best fitting models. The error-bars in blue correspond to 2 x standard measurement error and the error-

bars in grey correspond to 2 x standard uncertainty due to measurement and model error. Lower row: The posterior probability distribution

of AOD for each best fitting model. The biomass burning type model’s posterior density curve is in red and weakly absorbing type model’s

curve in blue. The dashed black curve is the averaged posterior distribution over the best fitting models (Eq. 7). The red vertical dashed line

indicates the MAP estimate from the averaged posterior distribution. The grey vertical lines show AERONET Version 2 Direct sun Level 2

AOD at 500 nm values position at the horizontal axis. The darker grey vertical lines (bottom left hand panel) denote AERONET AOD values

(n=3) within two hours time window including OMI overpass time and the black vertical line is the average of these values.
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Figure 8. Merged true-colour Aqua/MODIS image (RGB) on 26 March 2008 at 13:00 UTC and 13:05 UTC. The area of analysed OMI

pixels is marked with red contours.

Figure 9. The number of most appropriate aerosol microphysical models at the retrieved pixels.
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Figure 10. The main aerosol type of the retrieved model model with the highest evidence. The locations of AERONET sites Agoufou,

DMN_Maine_Soroa, IER_Cinzana and Saada (see Table 2) are marked by black stars.
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Figure 11. Same as Fig. 4 but the relative evidence distribution (%) of the selected best models in Africa case on 26th March 2008.
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Figure 12. The MAP estimate for AOD based on the best model (left) and based on the averaged posterior distribution (right).

Figure 13. The Ångström exponent at 442-500 nm of the ranked best (left) and the second best (right) aerosol microphysical model.

27



340 360 380 400 420 440 460 480 500

Wavelength [nm]

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

R
e

fl
e

c
ta

n
c
e

Orbit: 19663, lat: 15.3428, lon: -1.37441, 26-Mar-2008

DD3211

std of uncertainty due to measurement and model error (2 σ)

observed

modelled

0 1 2 3 4 5 6 7

AOD500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
o

s
te

ri
o

r 
d

e
n

s
it
y

Orbit: 19663, lat: 15.3428, lon: -1.37441, 26-Mar-2008

1 best fitting model:

DD3211

340 360 380 400 420 440 460 480 500

Wavelength [nm]

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

R
e

fl
e

c
ta

n
c
e

Orbit: 19663, lat: 13.2668, lon: 11.8907, 26-Mar-2008

std of uncertainty due to measurement and model error (2 σ)

observed

modelled

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

AOD500

0

1

2

3

4

5

6

7

P
o

s
te

ri
o

r 
d

e
n

s
it
y

Orbit: 19663, lat: 13.2668, lon: 11.8907, 26-Mar-2008

10 best fitting models:

BB2323 (16.9 %), BB2322 (13.1 %), BB2333 (12.6 %),

BB2321 (10.6 %), BB2332 (10.0 %), BB2233 (8.1 %),

BB2331 (8.1 %), BB2313 (7.8 %), BB2223 (6.8 %), 

BB2232 (6.0 %)

Figure 14. Same as Fig. 7 but for the pixels located at Agoufou (upper row) and DMN_Maine_Soroa (lower row). The grey vertical lines

show AERONET Version 2 Direct sun Level 2 AOD at 500 nm values. The darker grey vertical lines (bottom right hand panel) denote

AERONET AOD values within two hours time window including OMI overpass time and the black vertical line is the average of these

values.
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9 best fitting models:
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Figure 15. Same as Fig. 14 but for the pixels located at IER_Cinzana (upper row) and Saada (lower row). Right column: The desert dust

type models’ posterior density curves are marked with orange colour and biomass burning type models’ with red.
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Table 1. Aerosol size distribution parameters and wavelength dependent single scattering albedo (SSA) for aerosol microphysical models

stored in LUTs. The third digit (’x’) in the model ID number for BB and DD models has a range of 1–3 and is intended for different vertical

distributions. The size distribution is given by log-normal functions. The mean particle radius, rg [micron], and the standard deviation, σ

[micron], are given for both modes, m1 and m2. A second mode fraction of the number concentration is given in column ’n21’. The SSA

depend on wavelength and the values shown here are for the first and last wavelength band.

Model rg m1 rg m2 σ m1 σ m2 n21 SSA

WA1111 0.078 0.497 1.499 2.160 4.36e-4 1–1

WA1112 0.088 0.509 1.499 2.160 4.04e-4 1–1

WA1113 0.137 0.567 1.499 2.160 8.10e-4 1–1

WA1114 0.030 0.240 2.030 2.030 1.53e-2 1–1

WA1211 0.078 0.497 1.499 2.160 4.36e-4 0.96–0.95

WA1212 0.088 0.509 1.499 2.160 4.04e-4 0.97–0.96

WA1213 0.137 0.567 1.499 2.160 8.10e-4 0.97–0.98

WA1311 0.078 0.497 1.499 2.160 4.36e-4 0.91–0.88

WA1312 0.088 0.509 1.499 2.160 4.04e-4 0.91–0.90

WA1313 0.137 0.567 1.499 2.160 8.10e-4 0.92–0.92

BB21x1 0.074 0.511 1.537 2.203 1.70e-4 0.94–0.93

BB21x2 0.087 0.567 1.537 2.203 2.06e-4 0.94–0.93

BB21x3 0.124 0.719 1.537 2.203 2.94e-4 0.93–0.94

BB22x1 0.074 0.511 1.537 2.203 1.70e-4 0.90–0.88

BB22x2 0.087 0.567 1.537 2.203 2.06e-4 0.90–0.89

BB22x3 0.124 0.719 1.537 2.203 2.94e-4 0.89–0.90

BB23x1 0.074 0.511 1.537 2.203 1.70e-4 0.86–0.82

BB23x2 0.087 0.567 1.537 2.203 2.06e-4 0.86–0.84

BB23x3 0.124 0.719 1.537 2.203 2.94e-4 0.84–0.85

DD31x1 0.042 0.670 1.697 1.806 4.35e-3 0.82–0.94

DD31x2 0.052 0.670 1.697 1.806 4.35e-3 0.86–0.95

DD32x1 0.042 0.670 1.697 1.806 4.35e-3 0.74–0.90

DD32x2 0.052 0.670 1.697 1.806 4.35e-3 0.79–0.91

VO4111 0.230 0.230 0.800 0.800 0.5 1–1
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Table 2. The retrieved aerosol characteristics for AERONET sites and results from the presented method. The collocated OMI pixel indices

in orbit are given in the column ’Pixel ind’. The AERONET AOD at 440 and the Ångström exponent α(440-675) nm are daily averages of

the data from Level 2.0 Version 2 Direct sun algorithm. We interpolated AERONET AOD at 500 nm (marked by *) by Ångström power law

using the instant values of α(440-675) nm and AOD at 440 nm. The AOD at 500 nm retrieved by the presented method is the MAP estimate

of the averaged posterior density. The Ångström exponents α1(442-500) nm and α2(442-500) nm are calculated from the best matching

model LUT and from the second best matching model LUT, respectively. We interpolated OMAERO AOD at 500 nm (marked by **) in the

best fitting LUT using AOD at 342.5 nm.

Site Name (Lat, Lon) Pixel ind AOD 440 AOD 500 α(440-675) AOD 500 α1 α2 AOD 500

AERONET AERONET OMI AERONET AERONET AERONET OMAERO

Beijing a) (39.9◦ N, 116.3◦ W) (1029,25) 2.488 2.160* 1.108 3.602 1.008 1.610 -

Beijing b) (39.9◦ N, 116.3◦ W) (1004,12) 0.807 0.665* 1.522 0.624 1.560 1.259 -

Agoufou (15.3◦ N, 1.4◦ W) (905,9) 0.228 0.218* 0.375 2.549 0.293 - 1.557**

DMN_Maine_Soroa (13.2◦ N, 12.0◦ E) (873,53) 0.143 0.139* 0.267 0.087 0.978 1.560 0.148**

IER_Cinzana (13.2◦ N, 5.9◦ W) (899,2) 0.424 0.414* 0.236 0.206 0.561 0.290 0.234**

Saada (31.6◦ N, 8.1◦ W) (1047,6) 0.302 0.276* 0.697 0.312 0.561 0.290 -

a) 16.4.2008 b) 27.4.2008
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