
Authors’ response to referee #1

We thank the anonymous referee #1 for the review and comments. We will imple-
ment the following changes according to the referee’s suggestions. We have answered
all comments below (for easier comparison the referee comments are included in italics).
All page and line number refer to the originally submitted manuscript.

Comments:

1. The work uses ERA-Interim as reference data to quantify “biases” of other datasets.
However, comparison to AMSR total column water vapor shows that ERA-Interim may
have dry bias in certain atmospheric conditions. The author also states in Pg. 3 Line 13
that previous work has shown ECMWF reanalysis being drier compared to MERRA
and JPL RO (although there may be differences between ECMWF reanalysis and ERA-
Interim). If the authors think ERA-Interim can be guaranteed as the “truth” at least
at the 4 locations discussed in the paper, they need to clarify with reasons or references
to support this. Otherwise, the authors may consider to mitigate the wording such as
“biases” when referring to differences between other datasets and ERA-Interim.

The reviewer brings up a good point. We have clarified in the paper that we do
not consider ERA-Interim to be the “truth”, but rather use it as a common reference
for comparison of all the data sets. We need a baseline for our comparison, and the
ERA is the most suitable data set for that purpose. ERA assimilates a high number
of quality-controlled observations in a research (rather than operational) mode, which
should overall minimize variability and bias around the true values. ERA also is a com-
plete date set (unlike the observational data sets) because it has data at all comparison
points and at all times. Furthermore, even though ERA is not assumed to be an abso-
lute “truth” and without errors, ERA has the smallest error variances when compared
to RO, RS, and GFS as shown in the related paper (Anthes and Rieckh, 2018).

Thus we modified the first two sentences in the section describing ERA (Sec. 2.2, P. 6,
L. 13–17) to clarify: “We use the ERA as a reference (or baseline) for our comparisons.
We do not consider ERA as “truth”, but we do consider the ERA to be the most accurate
data set (Anthes and Rieckh, 2018), because it uses quality-checked observations with
a 4D-Var data assimilation scheme and an accurate forecast model in a research mode
to produce the variables of interest here (temperature and water vapor) on a 0.7◦ × 0.7◦

grid. In 2007 ERA assimilates measurements from many different observing techniques,
including RS observations, AIRS radiances, and RO bending angles (Dee et al., 2011).
Thus, when using the word “bias” for a data set in a comparison, we refer to the bias
difference with respect to ERA.“

Furthermore, we edited the following sentences: P.11 L.3, P14 L.2, P.16, L.1 (section
title), P.16 L.2–3, P.17 L.1, and P.20 L.10.

2. Different datasets have different footprints as mentioned in the paper. Therefore,
AIRS specific humidity represents average value within the 45 km AIRS footprint, while



radiosondes are point measurement. While GPS RO is occultation, its equivalent hori-
zontal resolution may be lower. How these differences of resolution of different datasets
influence the uncertainty estimates when compared to ERA-Interim with a resolution of
0.7◦?

Since RS is a point measurement, it has the potential to show variability that occurs
on smaller spatial scales compared to AIRS (∼45 km average), ERA (0.7◦ ≈ 78 km and
less, depending on the latitude), and RO (average over ∼200 km). This makes AIRS,
RO, and ERA fairly comparable in terms of horizontal resolution. To account for the
larger vertical variability of RS due to its ability to detect small scale features, we tested
vertically averaging the RS profiles over pressure layers before interpolating to the com-
mon 25 hPa grid. Since results were very similar to the original approach (interpolation
only), we used the original approach throughout the paper.

3. As mentioned on Page 8 Lines 9–13, different datasets have different quality flags
that result in different sampling sizes after paired up with ERA-Interim. As quality
flag of a particular dataset favors particular atmospheric conditions (e.g., AIRS quality
flags favor conditions of less deep-thick clouds). How may these differences in sample
sizes influence the general conclusions of the work? For example, if one constraints
all datasets to have the same samples after paired up with ERA-Interim, will this give
different patterns for plots like Figs. 3–8?

Our goal was to maximize the number of co-locations and show the results of all the
data set compared to ERA. Generally, a higher number of co-locations will create a more
accurate and complete picture. If we restricted all data sets to the same co-locations
and sample size, we would have removed a lot of information. E.g., AIRS passes over the
observed region at around 4:30–5:30 UTC and again at around 17:00–18:00 UTC, while
RS are launched around noon and midnight UTC, which makes a common co-location
within less than 5 hours impossible.

4. Super-refraction seems to be a big problem for GPS retrievals. The authors may
consider including some discussion of how the users of GPS can know if bad quality of
retrievals caused by super-refraction exists in a particular profile. Or if GPS datasets
provide quality flags to inform users if such events occur?

Super-refraction (SR) can generally be detected on an individual profile basis by iden-
tifying profiles with a very sharp change in bending angle and a refractivity bias with
respect to another, unbiased data set. This usually occurs in the tropics in the lower
troposphere, and often at the top of the boundary layer. However, as far as we know,
a robust method that can be applied operationally has not been developed so far. The
authors are not aware that any RO processing center flags profiles that experience SR.

Specific Comments:

Figure 2 caption: “Scatter plots of normalized q for 7 days...” It seems that these are
not “normalized q” as the units are g/kg. Normalized q should have no unit.



Thank you, the reviewer is correct. we removed the work “normalized” from that
sentence.

Pg. 11 Lines 5–8: Such dubious radiosonde profiles with constant humidity profiles
are easily detected and should be excluded from the matched up pairs. Otherwise, the
comparison is unfair for radiosondes. If such data are excluded, will the plots of Fig. 4a,
Figs 6 and 8 be drastically changed?

We do not think any portions of any of our data sets should be removed on the basis
of possible or likely errors. One of the points of the comparisons is to identify such
errors. Each data set may have its own set of errors or issues. To be fair, all data sets
should be compared in their complete form as they passed internal (data set specific)
quality control and are available for the research community. One of the purposes of
our comparison study is to identify strengths and weaknesses, including errors, of all the
data sets, in order that the providers of the data sets may improve their accuracy and
to make users aware of the full characteristics of the data sets.

Pg. 12 Lines 2–3: For deep convective clouds (thick clouds with high cloud top), the
dry bias is throughout the troposphere. For low-level, thick clouds (stratocumulus or
stratus), the large dry bias is confined in the lower troposphere.

We reformulated the sentence on P.12 L.1–3 to: “They found reduced dry biases in
the middle troposphere under thin clouds, but large dry biases in the lower troposphere
(>30%) associated with low thick clouds, and dry biases throughout the troposphere in
the presence of high thick clouds.”

Pg. 12 Line 12 – Pg 13 Line 2: It is good that the authors caution the problem in
ERA-Interim. But in general, can ERA-Interim be regarded as a perfect “truth”? (See
Main Comment #1).

Please see our response to the reviewer’s main comment #1.

Pg. 18 Eqn. (4): Need a bracket for (Xk - Xkinter-center) in the equation before
multiplied by 100/XERAannual.

Thank you, we added parenthesis in the equation.

Pg. 18 Line 14: Need to spend a sentence or two to explain what “inter-center mean”
means. Or use an equation to tell readers how it’s calculated.

We changed the sentence on P.18 L.16 after Eq. (4) to: “where k indicates the profile

number, X
inter-center
k is the inter-center average for the kth profile (1/4·(XUCAR direct

k +

XUCAR 1D-Var
k +XJPL direct

k +XWEGC 1D-Var
k ), and ∆X is the deviation (of q or

N) of one particular RO retrieval from the inter-center average.”

Pg. 20 and Pg. 21: The authors may consider pointing at the figure number that
supports each conclusive bullet.

Thank you. Figure numbers in the conclusions are now added.



Pg. 21 Lines 10–11: “...RO should have a large positive impact on improving the
water vapor analysis in data assimilation in the lower and mid troposphere.” Is this
statement contradicting the claim on Pg. 4 Lines 10–14 that “RO makes a relatively
small contribution in the ERA reanalysis.”?

In our view, the problem is that with current models, RO makes a relatively small
contribution to the moisture analysis in the lower and mid troposphere because the as-
signed errors in the data assimilation process are too large, and so RO observations are
not weighted heavily enough. To make a clearer statement, we rephrased this sentence
to: “If assigned smaller errors (and therefore greater weights) in the assimilation pro-
cess, RO could have a positive impact on improving the water vapor analysis in data
assimilation in the lower and mid troposphere.”
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Authors’ response to referee #2

We thank the anonymous referee #2 for the review and thoughtful comments and
suggestions. We have responded to all comments below (for easier comparison the
referee comments are included in italics). All page and line number refer to the
originally submitted manuscript.

Comments:

1) Page 3, Line 24. The objectives are too general and slightly confusing. Please,
re-write this section. For example, I am not sure what “... quantify RO humidity
retrievals...” or “...quantify how these RO humidity...” mean. I recommend be
specific on the objectives, as you describe them in the next paragraph.

We believe the reviewer is referring to P.3 L.20–23. We removed the short para-
graph on P.3, L.20–23 since it is considered too general and confusing, and the
objectives of this study are stated more clearly and detailed in the following para-
graphs. We changed the beginning sentence in the next paragraph (P.3 L.23) to
make it clear that this paragraph describes the objectives:

“In this study we focus on the water vapor variability in both a temporal and
spatial sense . . . ”

2) Section 2.1. I recommend including the specific humidity accuracy for each
center, including appropriate references.

GPS RO accuracy for humidity is not provided by any of the data processing
centers so far (WEGC is working on propagating errors throughout the retrieval
to provide estimates for the final products). Some general estimates are given in
literature (e.g. Ho et al. (2010); Vergados et al. (2015, 2018) and references therein),
but none are for specific data processing centers. GPS RO humidity accuracy varies
depending on the choice of retrieval (direct versus 1-Dimensional Variational (1D-
Var) retrieval). For a direct retrieval, humidity accuracy is determined by both the
quality of the a-priori temperature (Vergados et al. (2014), Fig. 1) and the refractiv-
ity accuracy. For the 1D-Var retrieval, humidity accuracy depends on the a-priori
temperature and humidity quality, the GPS RO refractivity accuracy, and the al-
lowed error for any of the in-going parameters.

In the companion paper (Anthes and Rieckh, 2018), we present estimates of the
error variances for specific humidity retrieved by the direct method and 1D-Var
method at four stations in the tropics and subtropics.

We have added the following sentences on P.5 L.6: “GPS RO humidity accuracy
varies depending on the choice of retrieval (direct versus 1D-Var retrieval). For a
direct retrieval, humidity accuracy is determined by both the quality of the a-priori
temperature (Vergados et al. (2014), Fig. 1) and the refractivity accuracy. For the
1D-Var retrieval, humidity accuracy depends on the a-priori temperature and hu-



midity quality, the GPS RO refractivity accuracy, and the allowed error for any of
the in-going parameters. A general estimate for RO q accuracy is given in Vergados
et al. (2018) (and references therein) as ∼ 10 %–20 %.”

3) Section 3.1, Figure 2. The authors should provide more discussion on the
observed differences among the data sets, with respect to ERA-Interim, and try to
provide an explanation of where these differences may be coming from. E.g., discuss
the 1000–400 hPa dry bias seen in UCAR 1D-Var, JPL direct, and GFS. Also, at
200–100 hPa, the 1D-Var approach (UCAR and WEGC) show an excellent agree-
ment with ERA-Interim, whereas the rest of the data sets show much larger devi-
ations. The authors should describe that and try to explain the observed behavior.
Additionally, the standard deviations and RMS of all the regressions could provide
a quantitative insight on the degree of agreement with respect to ERA-Interim.

To address the reviewer’s comment, we added the following sentences about the
dry bias seen in most RO retrievals and GFS in the 1000–400 hPa layer (P.8, L.31):
“The large differences occur generally for q values less than 1 g kg−1, with many
lower than 0.1 g kg−1, which indicates dry higher altitudes (i.e. above 500 hPa). RO
refractivity becomes less sensitive to water vapor at these higher altitudes and the
RO retrievals of water vapor, whether direct or 1D-Var, are less reliable at these
levels (Kursinski et al., 1995). The UCAR 1D-Var can also have difficulties retriev-
ing very low humidity values (which is the case in the DJF season at Guam). If
the a-priori temperature is too low, it can happen that the UCAR 1D-Var humidity
values are set to zero, which would lead to a dry RO bias overall for low values of
specific humidity.”

To make the connection between the use of ERA/ECMWF model data as a-priori
(background) information and the resultant greater agreement of the resulting RO
humidity with ERA clearer, we changed the sentence on P.9 L.1–2 to: “while the
UCAR 1D-Var and WEGC 1D-VAR agree very well with ERA, since they are us-
ing ERA and ECMWF short-range forecast profiles as background in the retrieval,
respectively”.

A quantitative insight on the degree of agreement with respect to ERA is given
by the correlation coefficients (in the title of each subplot). To point this out, we
added the following on P.8 L.28: “...depicting the correlation between the observa-
tional data sets and ERA at Guam (log-log correlation coefficients in the title of
each panel).” We added this information in the figure caption.

We also computed the mean and standard deviation of the differences for each
pressure layer and added this information in each panel of Fig. 2. Since humidity
decreases exponentially with altitude, values from lower levels will have a larger
influence on the result. On the other hand, the log-log axes visually emphasize
small differences, e.g. the dry bias of GFS (compared to ERA) above 500 hPa in the



1000–400 hPa panel. While such differences can be important in a climate change
modeling perspective, they generally not play a large role for forecasting. We added
the following sentence on P.8 L.28: “Additionally, the mean and standard deviation
values of the differences for each pressure layer are depicted in each panel (since
values are not normalized, values from the lower levels will have a larger influence
on the result).“

4) Section 3.2, Page 12. Similar to the previous comment, it would be nice if the
authors could provide a more detailed discussion on the differences of each data set
with respect to ERA-Interim at the GUAM location and explain these differences
within the context of the environmental conditions over this region and within the
context of how each profile has been retrieved by each center.

We provide considerable detail on each of the different data sets as well as how
environmental conditions over Guam affect these differences. We tried to strike a
balance between providing too little detail and providing too much. Also, we tried
to avoid too much speculation about the differences in the data sets, because in
many cases the reason for the differences is not known or could be due to multiple
causes.

We provide details about the four RO retrievals, as well as the radiosonde, AIRS,
and GFS data sets in section 2 (Data and methods). A detailed discussion of the
interaction of atmospheric conditions with each data set are given on:

P.9 L.9 to P.10 L.2 about general atmospheric conditions at Guam and the impact
on RO measurements (“Overall, the conditions at Guam are moist (RH>80 % and
q ∼17 g kg−1) year-round in the boundary layer and in the mid troposphere from
July to November, and dry in the mid troposphere during the rest of the year. The
changing humidity pattern above 800 hPa results from the alternation of the high
humidity tropical conditions and dry air intrusions from the subtropical UTLS in
December to June (Randel et al., 2016). These dry intrusions (relative humidity as
low as a few percent) are very stable and suppress convection. The sharp humidity
gradient between the very dry lower mid troposphere and the moist boundary layer
around 800 hPa often leads to conditions of super-refraction, which results in a neg-
ative bias of N and thus q in the RO profiles (Xie et al., 2010).”)

P.10 L.10 to P.11 L.2 on GFS (“This is essentially the layer of strong humidity
variability above the bottom layer of constant (about 80 %) relative humidity. This
behavior may be due to GFS difficulties in capturing the sharp transition between
dry and wet conditions on the bottom of dry layers in December to June. This is
supported by individual profiles (e.g. Randel et al. (2016), Fig. 4), as well as our
comparison of ERA with RS (Fig. 4 (a)), which supports the ERA in this respect.”)

P.11 L.5–8 on RS(“At some point during the ascent, the sensor gets stuck and
keeps reporting the same humidity value, which manifests itself as a dry or wet
bias compared to ERA, depending on if tropospheric conditions are drier (Decem-



ber through May) or wetter (June through November) than the incorrect reported
value.”)

P.11 L.9-11 on AIRS (“The dry bias appears to be less during the dry air intrusion
events in the 600 hPa to 400 hPa layer in the dry season December to June. This
indicates that AIRS is less biased if the overall atmospheric conditions are dry.”)

P.12 L.9–11 on RO (“. . . and a dry bias and/or frequent reduced penetration depth
(loss of signal) in the dry season. The latter is a signature of super-refraction, which
itself is caused by strong humidity gradients, usually between the planetary bound-
ary layer and the free troposphere.”)

5) Page 12, Lines 14–15. I find this statement a bit strong, because it may ex-
clude other possible sources that could cause the observed discrepancies. Could it
also be that ERA-Interim may be overestimating the degree of entrainment above the
PBL, thus introducing more water vapor in the free troposphere aloft? Have the au-
thors considered convection as another possible source of such discrepancies? Also,
it should read: “Figure 5 shows that all data sets are dry-biased with respect to...”.
In Figure 5, the title of the color bar is missing.

We rewrote the paragraph on P.12 L.12 to P.13 L.2 to: “Figure 5 also shows that
all RO data sets are dry-biased with respect to ERA in December through February
in the 800 hPa to 600 hPa layer, which is clearly above the layer of strong humidity
gradients (compare to Fig. 3 (a)). We found similar behavior in previous work. In
Rieckh et al. (2017), Fig. 2, lower right panel, ERA data are given on the 775, 750,
700, and 650 hPa pressure levels (about 2.3, 2.6, 3.1, and 3.8 km). The 775 hPa
and 650 hPa levels agree well with the aircraft and RO measurements; however, the
two levels in between smear the sharp profile and the ERA shows humidity val-
ues 1.5 g kg−1 to 2.5 g kg−1 (20 % to 35 %) larger than the observations. Thus we
conclude that the bias in Fig. 5 may not be a dry bias in RO, but could be a wet
bias in ERA in the layer just above the strong humidity transition from wet (PBL)
to dry (above). The assumed errors for assimilating RO in ERA are large in the
lower troposphere, and all assimilated nadir viewing instruments only provide ver-
tical resolutions of about 2 km to 3 km. Unless a nearby, approved RS contributes
information locally, ERA does not have any vertically well resolved humidity data
that will cause the ERA analysis to develop such sharp humidity gradients.”

We have added to the Fig. 5 caption: “The color bar on the right indicates specific
humidity normalized differences in %.”

6) Figures 6 and 7. The title is missing from the x-axis. Also, the definition of
ND assumes than ND is unitless, yet the differences here are given as percentage.
Either modify the definition of the ND, or redo the figure accordingly. Perhaps, add
2-3 sentences to explain to the reader what the smaller RMS values physically mean



in the radio occultations (e.g., smaller scatter, steadier daily variability, better long-
term robustness, better accuracy... something along these lines, so that the reader
attach a physical interpretation to the results). This way, I believe the analysis
becomes clearer.

We added a label to the x-axis of both plots. We changed the definition of “nor-
malized difference” in Sec. 2.4, P.8, L.21 to “ND = 100 · (data set − ERA)/CLIMO
(expressed as %).”.

We added the following sentences before the paragraph starting on P.14, L.14:
“Since the mean of the paired normalized differences is no indicator of their vari-
ability, we also show the RMS (Fig. 6, bottom). The magnitude of the RMS is a
measure of the accuracy and scatter of the data compared to the reference. All data
sets have . . . ”

7) Page 16, Line 2. It has not become clear from the discussion so far how
different atmospheric conditions could influence the data biases. It would be great if
there were a transitioning paragraph before Section 4 that summarizes in 3 sentences
the conclusions of Section 3. I believe this would be a smooth transition.

We state in Sec. 3.2 how atmospheric conditions possibly influence data biases,
e.g. on:

P.9 L.13 to P.10 L.2 on RO (“The sharp humidity gradient between the very dry
lower mid troposphere and the moist boundary layer around 800 hPa often leads to
conditions of super-refraction, which results in a negative bias of N and thus q in
the RO profiles (Xie et al., 2010).”)

P.11 L.9 on AIRS (“The dry bias appears to be less during the dry air intrusion
events in the 600 hPa to 400 hPa layer in the dry season December to June. This
indicates that AIRS is less biased if the overall atmospheric conditions are dry.”)

P.12 L.9–11 on RO (“. . . a dry bias and/or frequent reduced penetration depth
(loss of signal) in the dry season. The latter is a signature of super-refraction, which
itself is caused by strong humidity gradients, usually between the planetary bound-
ary layer and the free troposphere.”).

The first sentence in Sec. 4 summarizes the main findings of Sec. 3, and this is
intended to serve as a transition between Secs. 3 and 4.

8) Figure 8. At 800–400 hPa over Guam, at 1000–800 hPa over Mina, and at 800–
400 hPa over Mina, the three orange asterisks that indicate values about -21%, -18%,
and -35%, respectively, could they be outliers? Also, it would be good to include the
latitude and the longitude of each station at the beginning.

Figure 8 depicts mean differences of RS, RO (four retrievals), and AIRS com-
pared to ERA. Data sets are divided into “dry” and “wet” atmospheric conditions



depending on the ERA relative humidity average over the 800–400 hPa layer. We
do not consider the AIRS results as outliers since they show the average difference
to ERA of the “dry”/“wet” data set over an entire year.

The latitude and longitude for each stations are given in Sec. 2.3, first sentence.

9) Page 17, Line 5. Could the observed AIRS dry bias be due to cloud-contaminated
radiances? And therefore, the AIRS statistical differences might be statistically in-
significant? I think it would be good if this were mentioned in the interpretation of
the results for completeness, unless only AIRS cloud-cleared pixels are used in the
analysis.

We added the following sentences in the section describing AIRS (Sec. 2.3, P.7,
L.11): “The AIRS retrieval is a cloud-clearing retrieval. Susskind et al. (2003) de-
scribes the cloud-clearing process that yields the “clear” radiances from which all
parameters except clouds are retrieved (Kahn et al., 2014). The humidity retrieval
of Version 6 is basically the same as in Version 5, but yields improved humidity
results due to the improved first guess provided by the Neural-Net start-up system,
improvements in the determination of other atmospheric variables, and improve-
ments in cloud-cleared radiances (Susskind et al., 2014).”

10) Page 17, Line 29. Any physical explanation as to why the signal is strongest
in the layers above 600 hPa?

We modified the sentence on P.17 L.29 to: “The signal is strongest above 600 hPa,
where deep convection associated with the typhoons transports large amounts of wa-
ter vapor and releases latent heat in the middle and upper troposphere (Emanuel,
1991).”

11) Page 18, Lines 4–6. Although this may be true, there have been no results
showing refractivity variations. Therefore, aren’t these lines out of context? What
purpose do they serve? On another note, I would think that due to deep convection
within the eye and eyewall regions of a typhoon, together with the water vapor en-
trainment and vertical overshooting from the well-mixed moist layer that sits at the
bottom of the typhoon, there would be an increase in the water vapor concentration
in the free troposphere that could lead to refractivity increase high up based on Eq.
(1). Perhaps, this could be an explanation to my previous comment above?

The authors agree with the reviewer, since N is not shown, lines 4–6 are out of
context and have been removed.

12) Section 6. Why the inter-center mean and not the GUAM sub-data set?
Is it because there is no “true” RO data set, and thus an inter-center mean is
regarded more realistic? But then again, wouldn’t the inter-center mean smooth
out differences? Why not use the GUAM radiosonde data set as the “true” and redo
Figure 10? Would this change the conclusions of the analysis?

This section is focused only on the RO retrievals. To determine the structural



uncertainty of RO observations, the inter-center average is commonly used as a
baseline (see e.g., Steiner et al. (2013); Ho et al. (2009, 2012)). The structural
uncertainty is computed to get an estimate of the variability among the various RO
retrievals. We have added this information at the beginning of Sec. 6:

“Since we have data from several RO retrievals available, we have the opportunity
to compute the structural uncertainty of RO humidity for our data set, following
the methods of Steiner et al. (2013) and Ho et al. (2009, 2012). The structural
uncertainty is computed to get an estimate of the variability among the various RO
retrievals.”

13) Page 19, Line 3. You mean the absolute value of the mean deviation?
Thank you, the reviewer is correct. We rephrased the sentence to: “For N

(Fig. 10 (a,b)), the absolute value of the mean deviation from the inter-center mean
is largest . . . ”

14) Figure 10. More discussion is required in the refractivity analysis. E.g., over
GUAM, the JPL and WEGC refractivity differences are systematically larger than
the inter-center mean above about 800 hPa and the JPL refractivity difference is
larger even down to 950 hPa. Over the Japanese stations, the JPL refractivity
difference is systematically larger than the inter-center mean. Any explanation as
to why these may be? Could these be associated with the different environmental
conditions over GUAM and the Japanese stations? Additionally, the figure caption
in Figure 10 needs fixing at the part where the authors describe what line represents
each data set.

We included the line style description into the figure caption.

Furthermore, we modified the sentences on P.19 L.3–6 to: “For N (Fig. 10 (a,b)),
the absolute value of the mean deviation from the inter-center mean is largest be-
tween 900 hPa and 700 hPa for all data sets (maximum of 0.7 %), and decreases to
about 0.1 % at 350 hPa (about 8 km) at both locations. The latter result agrees well
with the estimate of Ho et al. (2009), who showed that the absolute values of frac-
tional N anomalies among four centers (UCAR, WEGC, JPL, and GFZ (German
Research Centre for Geosciences)) are 0.2 % from 8 km to 25 km altitude. The larger
differences between the various RO processing centers at lower altitudes primarily
come from different handling of profiles experiencing 1) atmospheric multipath, 2)
receiver tacking errors, and 3) super-refraction (see Ho et al. (2009) for details on
the RO processing center procedures). This is especially true for direct retrievals
(such as the UCAR direct and JPL direct), where both RO N and a-priori T are
assigned zero error, and the differences in Fig. 10 (a) and (b) are dominated by the
previously mentioned conditions. For 1D-Var retrievals, another potential source of
differences is the N error model in the respective 1D-Var retrieval. All these factors
vary with latitude and general atmospheric conditions.”

15) Section 7. I feel that the conclusion section needs re-writing, in order to



focus on the objectives of this investigation. For example, these eight concluding
remarks could be summarized into one single paragraph and then a second paragraph
should describe the findings of this investigation regarding the behavior of the radio
occultations within the context of the: a) wet vs dry conditions, b) typhoon passages,
and c) different geographic locations.

We thank the reviewer for this suggestion, but we think it is important to enu-
merate the different and disparate conclusions in crisp, short sentences as we have
done rather than try to combine them into one paragraph. We have added a sum-
mary paragraph on the main results regarding the behavior of the different data sets
(not just radio occultation) in the different seasons, locations, and under typhoon
conditions.

We added two summary paragraphs after bullet 8 on P. 21: “We find that the
alternating wet and dry seasons at Guam, together with the very sharp transition
at the top of the planetary boundary layer in the dry season at Guam, are especially
challenging for the RO, RS and, AIRS observational systems compared to the con-
ditions at the subtropical Japanese locations. The results comparing the different
data sets to the ERA are similar at the three Japanese RS stations.

All the observational data sets at the Japanese stations show a response to the
rapid increase of water vapor throughout the troposphere during the passage of
typhoons; however, the AIRS response is weaker than the RS and RO responses,
probably because of the extensive clouds associated with the typhoons.”
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Abstract. While water vapor is the most important tropospheric greenhouse gas, it is also highly variable in both space and

time, and water vapor concentrations range over three orders of magnitude in the troposphere. These properties challenge all

observing systems to accurately measure and resolve the vertical structure and variability of tropospheric humidity. In this

study we characterize the humidity measurements of various observing techniques, including four separate Global Positioning

System (GPS) Radio Occultation (RO) humidity retrievals (UCAR direct, UCAR 1D-Var, WEGC 1D-Var, Jet Propulsion5

Laboratory (JPL) direct), radiosonde, and Atmospheric Infrared Sounder (AIRS) data. Furthermore, we evaluate how well

the ERA-Interim reanalysis and National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) model

perform in analyzing water vapor at different levels. To investigate detailed vertical structure, we used
::::::::
analyzed time–height

cross sections over specific locations (
::::
four radiosonde stations in the tropical and subtropical western Pacific ) for the year

2007. We found that RO humidity has comparable or better accuracy than both radiosonde and AIRS humidity over 800 hPa10

to 400 hPa, as well as below 800 hPa if super-refraction is absent. The various RO retrievals of specific humidity agree within

20 % in the 1000 hPa to 400 hPa layer, and differences are most pronounced above 600 hPa.

1 Introduction

Tropospheric humidity is one of the key parameters driving weather and climate, and plays an important role in the development

of many extreme events. To accurately model current and future climate, it is crucial to understand the distribution, transport,15

and vertical structure of tropospheric water vapor. However, measuring water vapor accurately is a great challenge, as it is

highly variable on both spatial and temporal scales, and its tropospheric concentration varies over three orders of magnitude

between the tropical planetary boundary layer and the tropopause. At present, no single observing system can provide accurate

tropospheric humidity data on a global scale with high vertical resolution.

Passive (microwave and infrared) nadir-sounding systems provide data globally, but with
::::::::
relatively low vertical resolution.20

Weighting functions are used to derive
:::::::
quantify vertically resolved humidity information, and these vertical scales are large

(2 km to 3 km) compared to the variability of water vapor in the vertical. Furthermore, infrared based systems cannot provide

data within or below clouds.
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Radiosonde (RS) balloon measurements are launched globally, although with sparse coverage in many areas, such as over

oceans or in the southern hemisphere. They can have a high vertical resolution, but data quality varies strongly depending

on the sensor type (Miloshevich et al., 2006; Ho et al., 2010). Operational weather forecasting still benefits greatly from RS

measurements, but the current global RS network is neither designed nor suitable for detecting and monitoring climate change.

First, many different sensor types are used globally, each with their unique known and unknown biases. Second, sensor types5

at different locations change over time and these changes have been poorly documented in the past, which can lead to artificial

trends or jumps in the station’s record (Dai et al., 2011). The GCOS (Global Climate Observing System) Reference Upper-Air

Network (GRUAN) aims to address this issue by providing long-term high-quality vertical profiles of selected essential climate

variables, including an estimate of the measurement uncertainty (Bodeker et al., 2016). GRUAN will play an important role for

calibrating data from other global networks, however, at this point in time certified data are available at only a few locations10

with a relatively short time range (less than four years).

Research aircraft can provide high-quality, high-resolution profiles, but these missions are infrequent and cannot provide a

complete global picture continuously over time by themselves. They are, however, important to evaluate measurements from

other observing systems or models (Rieckh et al., 2017).

The Global Positioning System (GPS) Radio Occultation (RO) technique provides near-vertical profiles of refractivity with15

high vertical resolution and high accuracy and precision. Other features of the RO technique are global coverage, all-weather

capability, and SI-traceability. Profiles penetrating down into the lower troposphere became available with open-loop tracking

(Sokolovskiy et al., 2006). Since refractivity depends on temperature and water vapor pressure, tropospheric specific humidity

can be derived from refractivity via a so-called direct retrieval (using ancillary temperature information) or a One-Dimensional

Variational retrieval (1D-Var), which finds the optimal solution for water vapor pressure, temperature, and refractivity taking20

their prescribed errors into account. Thus the RO water vapor retrievals and their quality vary depending on the a-priori (and

the accuracy of the prescribed data) and inversion method used. Several RO processing centers currently provide RO water

vapor profile retrievals: University Corporation for Atmospheric Research (UCAR), Jet Propulsion Laboratory (JPL), Danish

Meteorological Institute (DMI), and Wegener Center for Climate and Global Change (WEGC).

The above observing techniques have been used to investigate the global humidity distribution, trends, and radiative impact.25

RO, despite being a relatively young observing technique, has shown the potential to provide data of climate benchmark quality

for refractivity and temperature between about 8 km and 25 km (Ho et al., 2009, 2012; Steiner et al., 2013). The quality of RO

humidity is subject of research since ancillary data are required to retrieve humidity from refractivity. Kursinski et al. (1995)

provided a first estimate for water vapor accuracy of less than 5 % for individual profiles in the boundary layer, and 20 % up

to about 7 km. Chou et al. (2009) found humidity differences smaller than 40 % below 7 km for individual profile comparisons30

between dropsondes and RO. For observations near strong typhoons, they found differences up to 100 % in the mid and upper

troposphere. Regarding global specific humidity distributions, Chou et al. (2009) found good agreement within 15 % between

RO and Atmospheric Infrared Sounder (AIRS), but significant discrepancy between NCEP/NCAR reanalysis and RO humidity.

Ho et al. (2010) showed that UCAR COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate)

water vapor profiles agree well with those of European Center for Medium-range Weather Forecasts (ECMWF) analysis over35
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different regions, demonstrating the quality of the RO humidity data. Furthermore, they used RS and RO co-located data to

identify biases of various RS types. Wang et al. (2013) also used UCAR COSMIC water vapor products and global RS data with

very strict co-location criteria (1 h, 100 km) to verify the quality of UCAR RO humidity and found a mean specific humidity

bias of −0.012 g kg−1, with a standard deviation of 0.666 g kg−1 over the 925 hPa to 200 hPa layer. Ladstädter et al. (2015)

compared WEGC RO profiles from multiple missions to a five year record of GRUAN RS profiles (both of which have the5

potential to serve as reference observations in the GCOS) and to a standard 11 year record of RS profiles (Vaisala RS90/92).

Vaisala RS90/92 shows a dry bias of 40 % in the troposphere compared to RO, whereas GRUAN, with an elaborate humidity

bias correction scheme, agrees within 5 % with RO below 300 hPa. Ladstädter et al. (2015) state that the good agreement of

the RO and GRUAN RS data sets strongly encourages further development and advancement of both systems for the benefit

of future climate monitoring and research. Vergados et al. (2015) compared relative humidity of JPL RO, ECMWF Reanalysis10

Interim (ERA-Interim), and Modern-Era Retrospective analysis for Research and Applications (MERRA) in the tropics and

showed that from a climatological standpoint, MERRA and JPL RO are in agreement, whereas the ECMWF reanalysis is drier.

Vergados et al. (2017)
::::::::::::::::::
Vergados et al. (2018) compared JPL and UCAR RO humidity data sets to MERRA, ERA-Interim, and

AIRS from 2007 to 2015 for the ±40◦ latitude range between 700 hPa and 400 hPa. They found that the both RO humidity

retrievals agree well with MERRA and ERA-Interim, but the JPL retrieval is overall moister than all other data sets, while both15

the UCAR retrieval and AIRS are overall drier than all other data sets.

All of the above work considered differences averaged over large geographical regions and long time periods (a month or

longer). While useful for climate and error estimations, these averages obscure variability that takes place on smaller temporal

and spatial scales. Case studies fill this gap, but they often focus on a single, particular event that occurs over only a few days.

The objectives of this study are to i) quantify RO humidity retrievals in the troposphere using four RO datasets where20

different retrieval methods and ancillary data were used, and ii) quantify how these RO humidity data sets differ from AIRS,

RS humidity measurements, and the ERA-Interim and GFS model analyses.

We zoom into
:
In
::::

this
:::::
study

:::
we

:::::
focus

::
on

:::
the

:
water vapor variability in both a temporal and spatial sense by comparing data

from multiple observing techniques (RO, RS, AIRS) and model (re)-analyses (ERA-Interim, Global Forecast System (GFS))

at particular locations in the tropics and sub-tropics over an entire year. We chose the year 2007, when the maximum number25

of COSMIC RO profiles was available (COSMIC was launched in 2006 (Anthes et al., 2008)). We compare each of these

individual data sets with co-located ERA-Interim humidity results for a) the surface to the upper troposphere, b) four locations,

c) four seasons, and d) during typhoon passages. We quantify the structural uncertainty of RO derived humidity profiles in the

troposphere, which results from different inversion implementations and a-priori. To understand how the RO humidity data sets

are different from other humidity products, we collected RS–ERA pairs, AIRS–ERA pairs, and GFS–ERA pairs near the four30

RS stations. These
:::::::
Although

:::::
these data pairs may not sample the same local times, but

::
the

:
errors due to local time sampling

difference are assumed to be small since water vapor errors over these locations may not vary significantly at different local

times
:::::::::
differences

:::
are

::::::::
probably

:::::
small

::::
over

::::
these

:::::::
oceanic

::::::
regions.

As humidity varies strongly in time and space, this study allows us to show in detail how humidity conditions change

over time, both daily and seasonally, and how atmospheric conditions affect the ability of these data sets to provide accurate35
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and precise humidity information. We can identify high-frequency variability and patterns at selected locations that would be

obscured if only statistical parameters were analyzed.

We focus on several challenging locations in the tropics and sub-tropics where water vapor is highly variable. We show the

entire 1000 hPa to 400 hPa range to show how data quality for different observing and modeling systems varies with altitude.

For example, the humidity data from many RS sensors are biased in the mid and upper troposphere. RO-derived humidity can5

be biased in the lowest few kilometers (due to super-refraction in the atmosphere) and is unreliable once temperatures get as

low as 250 K in the upper troposphere (around 350 hPa in the tropics). Using data from 1000 hPa to 400 hPa without layer

averaging allows us to identify details in the vertical humidity structure as measured by these systems.

ERA-Interim Reanalysis (hereafter ERA) is used as reference for all comparisons. Although all data sets used in this com-

parison are assimilated in the ERA, comparisons are still valuable since i) data from a large number of different observing10

techniques are assimilated (number of assimilated observations more than 107 per day in 2010 (Dee et al., 2011), thus lowering

the impact of any single observation), and ii) the RO uncertainties
::::
used

::
in data assimilation are very large in the mid and lower

troposphere, and hence RO makes a relatively small contribution in the ERA reanalysis. In the ERA, the standard deviation

of the RO observation error distribution (in bending angle space) is assumed to decrease linearly with increasing height, from

20 % at the surface to 1 % at 10 km impact height (Poli et al., 2010).15

In a companion paper (Anthes and Rieckh, 2017)
::::::::::::::::::::::
(Anthes and Rieckh, 2018) , these data sets are compared statistically in

different ways to estimate the error covariances
::::::::
variances of each data set. This method indicates that the ERA-Interim data

set has the smallest errors in refractivity, temperature, specific humidity, and relative humidity from 1000 hPa to 200 hPa. The

current paper sets the stage for this statistical comparison by describing the data sets in detail and showing how they vary over

the year at the four locations.20

The structure of this paper is as follows: Section 2 explains the data sets used in this study. Section 3 shows on overview of

the results for the different observing systems, which are analyzed in greater detail in section 4. Section 7 provides a summary

and conclusions.

2 Data and Method

2.1 Radio occultation25

Radio occultation (RO) is a limb sounding technique that provides near-vertical profiles with high vertical resolution of bending

angles (Melbourne et al., 1994; Hajj et al., 2002), which can be used to retrieve atmospheric refractivity N . N can be related

to atmospheric temperature T , pressure p, and water vapor pressure e via the Smith–Weintraub formula (Smith and Weintraub,

1953):

N = 77.6
p

T
+ 3.73×105

e

T 2
+ [...] (1)30
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The contribution toN from liquid water (the terms in [...] in Eq. (1)) can be neglected in most conditions (Ho et al., 2017). When

e is negligible (at temperatures lower than 250 K (Kursinski et al., 1997)), the second term is assumed zero and atmospheric

temperature can be computed using Eq. (1).

In the troposphere, where water vapor content is significant, Eq. (1) is ambiguous and ancillary temperature data from

another data source (usually model or analysis temperature) are required to solve for e. Direct retrievals use a prescribed T

from another source to derive e. In a One-Dimensional Variational (1D-Var) retrieval, a cost function is minimized to find the

optimal solution for e, T , and N with their prescribed errors (Poli et al., 2002). In this study, three different RO retrievals and5

four different humidity retrievals are compared in order to provide an indication of the uncertainty in RO-derived water vapor.

::::
GPS

:::
RO

:::::::
humidity

::::::::
accuracy

:::::
varies

:::::::::
depending

::
on

:::
the

::::::
choice

::
of

:::::::
retrieval

::::::
(direct

:::::
versus

:::::::
1D-Var

::::::::
retrieval).

:::
For

:
a
:::::
direct

::::::::
retrieval,

:::::::
humidity

::::::::
accuracy

::
is
::::::::::

determined
:::
by

::::
both

::::
the

::::::
quality

:::
of

:::
the

:::::::
a-priori

::::::::::
temperature

::::::::::::::::::::
(Vergados et al. (2014) ,

::::
Fig.

:::
1)

:::
and

::::
the

:::::::::
refractivity

::::::::
accuracy.

:::
For

:::
the

:::::::
1D-Var

::::::::
retrieval,

:::::::
humidity

::::::::
accuracy

:::::::
depends

:::
on

:::
the

:::::::
a-priori

::::::::::
temperature

:::
and

::::::::
humidity

:::::::
quality,

::
the

:::::
GPS

:::
RO

:::::::::
refractivity

:::::::::
accuracy,

:::
and

:::
the

:::::
error

::::::::
variances

:::
for

:::
the

::::
input

::::::::::
parameters.

::
A
:::::::

general
:::::::
estimate

:::
for

:::
RO

::
q
::::::::
accuracy

::
is10

::::
given

::
in
:::::::::::::::::::::::
Vergados et al. (2018) (and

::::::::
references

:::::::
therein)

::
as

::
∼

:::
10 %

:::
–20 %.

:

2.1.1 UCAR 1D-Var

A One-Dimensional Variational (1D-Var) retrieval generally uses an a-priori state of the atmosphere (background vertical

profile), an observable (RO refractivity or bending angle), and their specified associated errors to minimize a quadratic cost

function. At COSMIC Data Analysis and Archive Center (CDAAC), ERA profiles of temperature and humidity are used as15

background, which are interpolated to the time and location of the RO (accounting for tangent point drift during the occul-

tation). The humidity retrieval allows an error
:::::::
specified

::::::
errors for both T and e, but only a very small error for bending

angle/refractivity. CDAAC provides the resulting profiles of N , T , e, and p (wetPrf1), hereafter called UCAR 1D-Var.

2.1.2 UCAR direct

A direct retrieval uses background temperature and RO refractivity to compute humidity using Eq. (1). The influence of a T20

error on e (i.e. the relation between δT and δe) can be directly derived from Eq. (1) (Ware et al., 1996), under the assumption,

that N and p are constant:

dN =
δN

δT
δT +

δN

δe
δe= 0−→ δe=

1

3.73×105
(2NT − 77.6p)δT (2)

Ware et al. (1996) showed that e could be estimated to within 0.25 hPa in the lower troposphere if temperature were known

to within 1 K. Vergados et al. (2014) depict the specific humidity retrieval errors due to temperature uncertainty for several25

latitude bands and pressure levels and show that humidity errors increase with increasing altitude and latitude, since humidity

decreases and thus its contribution to atmospheric refractivity. In the tropics (relevant for this study), the q uncertainty for 1 K

T uncertainty is less than ±3 % below 700 hPa and increases to 18 % at 400 hPa (cut-off altitude in this study).

1http://cdaac-www.cosmic.ucar.edu/cdaac/
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We use the RO variable “N_obs” (observedN before going through the 1D-Var) from the UCAR CDAAC wetPrfs. We chose

T from the co-located GFS profiles as prescribed temperatures in the humidity retrieval for a greater independence between30

RO and ERA. For the four locations in this study, the maximum T difference between GFS and ERA occurs at Guam, with

up to 2 K in the 800 hPa to 500 hPa layer for the individual profiles. Comparisons of the UCAR direct retrieval using GFS

T versus ERA T as background temperature shows specific humidity differences of less than 3.5 % for seasonal and 200 hPa

layer averages within the 800 hPa to 300 hPa layer.

2.1.3 WEGC 1D-Var

The Wegener Center for Climate and Global Change (WEGC) developed a simplified version of a 1D-Var method. As a5

background, they use ECMWF 24 h or 30 h forecast fields, which are spatially interpolated to the location of the RO (Schwärz

et al., 2016). Combining the Smith–Weintraub equation and the hydrostatic equations for dry and moist air, they are solved for

e and p with prescribed T , and for T and p with prescribed e. Iteration continues until the retrieved e and T converge within

a set tolerance. Then the results are combined to get the optimally estimated T and e profiles. More information about the

retrieval and error characteristics can be found in Ladstädter et al. (2015) and references within.10

2.1.4 JPL direct

JPL’s direct retrieval is similar to the UCAR direct, but uses the ECMWF Tropical Ocean and Global Atmosphere (TOGA)

T as a-priori. Humidity is only derived below the level of tropospheric T = 250 K (Kursinski et al., 1997). JPL RO data were

downloaded via the Atmospheric Grid Analysis and Profile Extraction tool2.

2.2 ERA-Interim Reanalyses15

We use the ERA as a reference
::
(or

::::::::
baseline)

:
for our comparisons3. We

::
do

:::
not

:::::::
consider

:::
the

:::::
ERA

::
as

:::::::
“truth”,

:::
but

:::
we

:::
do con-

sider the ERA to be the most accurate data set (Anthes and Rieckh, 2017)
::::::::::::::::::::::
(Anthes and Rieckh, 2018) because it uses quality-

checked observations with a 4D-Var data assimilation scheme and an accurate forecast model in a research mode to produce

the variables of interest here (temperature and water vapor) on a 0.7◦× 0.7◦ grid. In 2007 ERA assimilates
:::::::::
assimilated

:
mea-

surements from many different observing techniques, including RS observations, AIRS radiances, and RO bending angles (Dee20

et al., 2011).
::::
Thus,

:::::
when

:::::
using

:::
the

:::::
word

:::::
“bias”

:::
for

::
a
::::
data

::
set

:::
in

:
a
::::::::::
comparison,

:::
we

:::::
refer

::
to

:::
the

::::
bias

::::::::
difference

::::
with

:::::::
respect

::
to

:::::
ERA.

Apart from using ERA as reference, we also created two baseline data sets from ERA for comparison to the observations.

The first one is climatology (hereafter CLIMO) for 2007, which is simply the ERA 2007 annual mean. The second one is

the persistence (PERSIST) value of each variable from the value of the time series 24 hours earlier. It represents a measure25

of the day-to-day variability in the ERA data set. These two simple data sets represent a baseline against which the value of

2https://genesis.jpl.nasa.gov/agape/
3https://rda.ucar.edu/datasets/ds627.0/
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observations can be compared. A minimum requirement for an observation type to be useful is that it must contribute additional

information above those contributed by these baseline data sets, i.e. they must be more accurate than these data sets.

2.3 Radiosonde, AIRS, and GFS

RS data for Guam (13.5◦N, 144.8◦E) and 3 Japanese stations (Ishigakijima: 24.2◦N, 124.5◦E; Minamidaitojima: 25.6◦N,

131.5◦E; Naze: 28.4◦N, 129.4◦E) (Fig. S1, supplement) were downloaded from the National Oceanic and Atmospheric Ad-

ministration4. The RS are given on six main
:::::::
standard

:
pressure levels between 1000 hPa and 400 hPa, plus additional levels

if there is higher resolution vertical structure. The RS at the four stations are generally launched twice daily during the hour

before midnight and noon, UTC. The four stations use the following sensors: Guam: VIZ/Sippican B2; Ishigakijima: Meisei;5

Minamidaitojima: Vaisala RS92; and Naze: Meisei5. The VIZ/Sippican B2 humidity sensor has a nighttime wet bias (Wang

and Zhang, 2008; Ho et al., 2010), and performs poorly in dry conditions (H. Vömel, personal communication, 2017). Ho

et al. (2010) found no obvious bias for the Meisei sensor. The Vaisala RS92 sensor is known for its dry bias (Vömel et al.,

2007) of ∼9 % at surface, and up to 50 % at 15 km altitude, and several correction schemes have been developed to address

this (Miloshevich et al., 2006; Vömel et al., 2007).10

AIRS is a nadir looking instrument aboard the National Aeronautics and Space Administration (NASA) Aqua satellite,

which was launched in May 2002. AIRS provides atmospheric variables on 28 standard pressure levels between 1100 hPa and

0.1 hPa (8 levels between 1100 hPa and 400 hPa)6. The vertical resolution is ∼1 km for temperature and ∼2 km for humidity7.

The horizontal resolution8 is 50 km. We use the AIRS Version 6 Level 2 (AIRS2RET) data with a quality flag of BEST or

GOOD.15

:::
The

:::::
AIRS

:::::::
retrieval

::
is
::

a
::::::::::::
cloud-clearing

::::::::
retrieval.

::::::::::::::::::::::::::
Susskind et al. (2003) describes

:::
the

::::::::::::
cloud-clearing

:::::::
process

:::
that

::::::
yields

:::
the

::::::
“clear”

::::::::
radiances

::::
from

:::::
which

:::
all

:::::::::
parameters

:::::
except

::::::
clouds

:::
are

:::::::
retrieved

:::::::::::::::::
(Kahn et al., 2014) .

:::
The

::::::::
humidity

:::::::
retrieval

::
of

::::::
Version

::
6

:
is
::::::::

basically
:::
the

:::::
same

:::
as

::
in

:::::::
Version

::
5,

::::
but

:::
still

::::::
yields

::::::::
improved

::::::::
humidity

::::::
results

::::
due

::
to

:::
the

:::::::::
improved

::::
first

:::::
guess

::::::::
provided

::
by

:::
the

::::::::::
Neural-Net

::::::
start-up

:::::::
system,

::::::::::::
improvements

::
in
:::

the
::::::::::::

determination
:::
of

::::
other

:::::::::::
atmospheric

::::::::
variables,

::::
and

::::::::::::
improvements

::
in

:::::::::::
cloud-cleared

::::::::
radiances

:::::::::::::::::::
(Susskind et al., 2014) .

:
20

RO co-located profiles for GFS are added in the comparison to show results from an analysis that is different from ERA.

GFS profiles are given on a 25 hPa or 50 hPa grid (depending on altitude) and are linearly interpolated to the time and location

of the UCAR 1D-Var profiles.

2.4 Design of the comparisons

Since we are investigating humidity differences of various observing systems, we chose regions where humidity conditions are25

highly variable in both space and time with extremely high and low values during the year. We use the tropical location Guam,

4https://www.ncdc.noaa.gov/data-access/weather-balloon/integrated-global-radiosonde-archive
5https://www1.ncdc.noaa.gov/pub/data/igra/history/igra2-metadata.txt
6ftp://airsl2.gesdisc.eosdis.nasa.gov/ftp/data/s4pa/Aqua_AIRS_Level2/AIRS2RET.006/
7http://airs.jpl.nasa.gov/data/physical_retrievals
8http://disc.gsfc.nasa.gov/uui/datasets/AIRS2RET_V006/summary

7



which frequently experiences dry air intrusions from the subtropical upper troposphere – lower stratosphere (UTLS) region

from December to March (Rieckh et al., 2017). This leads to sharp vertical humidity gradients (relative humidity changes from

less than 10 % to about 80 % within a small vertical layer), conditions, that are favorable for RO super-refraction (Garratt,

1992). Super-refraction, in turn, will lead to a negative bias in the RO observed N and q. See Fig. S3 (supplement) for the ERA

2007 time series of specific humidity, relative humidity, temperature, and refractivity at Guam.

The other RS locations are subtropical stations around Japan, which experience a large seasonal variability as well as extreme

conditions associated with occasional typhoons. See Fig. S4 (supplement) for the ERA 2007 time series of specific humidity,

relative humidity, temperature, and refractivity at Ishigakijima.5

To increase the number of co-located profiles, we picked the year 2007 for our analysis when all COSMIC satellites were

operating reliably. Since the measurement techniques for RO, RS, and AIRS are different, we use different co-location criteria

to get a maximum number of high quality co-locations. For the ERA reference grid points matched to the RS stations, the

distance between any of the RS stations and the respective ERA grid point is between 15 km and 35 km, and the time difference

less than an hour from the 00 and 12 UTC ERA data. RO observations are co-located within 3 h and 300 km, and a co-location10

correction as described by Gilpin et al. (2018a)
:::::::::::::::::
Gilpin et al. (2018b) is applied:

∆XSC = (XRO−XRS)SC = (XRO−XRS)− (XRO location
ERA −XRS location

ERA ) (3)

where ∆XSC denotes the spatial-corrected difference ofX ,X is a variable measured by RO and RS, and the co-location correc-

tion is the difference in the ERA values ofX at the RS and RO locations. Gilpin et al. (2018a) show that this
:::::::::::::::::::::
Gilpin et al. (2018b) show

:::
that

:::::::::::::::::
double-differencing correction significantly reduces the mean and RMS differences of the RO and RS observations.15

Since our reference location is an ERA grid point, we replace RS by ERA in Eq. (3), which simplifies to ∆XSC = (XRO−
(XRO location

ERA ).

AIRS profiles are extracted within 30 km from the ERA reference point, the maximum time difference is 3 h. Figure S2 in

the supplement depicts the co-location process for all data sets and one timestamp.

Due to the restrictions as explained above, the resulting profile pairs (and number of profile pairs) between ERA and any of20

the data sets are different. Furthermore, the four RO retrievals have different quality control schemes, which especially lowers

the number of available JPL profiles. The penetration depths also vary for the RO data sets and retrievals, e.g., the UCAR 1D-

Var data is available on lower levels than UCAR direct because the bottom height is given as zOB−eCL, where zOB is the bottom

height of observation, and eCL is the background error correlation length (which is 500 m in the UCAR 1D-Var).

All data sets are interpolated to a common 25 hPa grid. We chose this grid as a compromise between the effective resolutions25

of all data sets used. The effective resolution of RO is estimated to be higher than 100 m in the troposphere (Gorbunov et al.,

2004). The RS has observations on additional levels (significant levels) if there are significant changes in the vertical profile.

ERA and GFS are provided on a pressure grid with 25 hPa or 50 hPa increments. AIRS is sampled on a sparser vertical grid, and

thus does not resolve small scale features in the vertical. But any biases over deep layers will be evident, and if interpolation

leads to biases in certain pressure layers, a pattern will be clearly visible in the individual profiles.30
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Figure 1. ERA annual average profiles on the 25 hPa grid for (a) refractivity, (b) specific humidity, (c) relative humidity, and (d) temperature

at all four locations.

Profile pairs of ERA and each data set are extracted, and the computed differences are normalized by the ERA 2007 mean

value (CLIMO) at each level: ND = (data set−ERA)/CLIMO
:::::::::
Normalized

:::::::::
Difference

::::::::::::::::::::::::::::::::
ND = 100 · (data set−ERA)/CLIMO

:::::::::
(expressed

::
as %). To make it easier to transfer results from normalized to actual differences, the constant value CLIMO is used

to normalize all data sets. The values for CLIMO are shown in Fig. 1 and the exact values are provided in the supplement in

Table S1 for an easy reproduction of the original values.

3 Results

3.1 Overview: General agreement and correlation between the data sets5

Figure 2 shows values of q for UCAR direct, UCAR 1D-Var, WEGC 1D-Var, JPL direct, RS, AIRS, and GFS (left to right)

versus ERA from high to low pressure layers (top to bottom), depicting the correlation between the observational data sets and

ERA at Guam .
::::::
(log-log

:::::::::
correlation

::::::::::
coefficients

::
in

:::
the

:::
title

::
of

::::
each

::::::
panel).

:::::::::::
Additionally,

:::
the

:::::
mean

:::
and

:::::::
standard

::::::::
deviation

::::::
values

::
of

:::
the

:::::::::
differences

:::
for

::::
each

::::::::
pressure

::::
layer

:::
are

::::::::
depicted

::
in

::::
each

:::::
panel

:::::
(since

::::::
values

:::
are

:::
not

::::::::::
normalized,

::::::
values

:::::
from

:::
the

:::::
lower

:::::
levels

:::
will

::::
have

::
a
:::::
larger

::::::::
influence

::
on

:::
the

::::::
result).

:
10
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Figure 2. Guam: Scatter plots of normalized q for 7 data sets versus ERA for 4 pressure layers. Left to right: UCAR direct, UCAR 1D-Var,

WEGC 1D-Var, JPL direct, RS, and AIRS.
::::::::
Correlation

:::::::::
coefficients

::
as

:::
well

::
as
:::::

mean
:::
and

:::::::
standard

:::::::
deviation

::
of

::
the

:::::::::
differences

:::
are

::::
given

:::
for

:::
each

:::::
panel.

:
Note that the

:::
both

:
axes are on a logarithmic scale, and that axis limits vary for different pressure layers.

There is good agreement and high correlation for all data sets in the 1000 hPa to 400 hPa layer (Fig. 2, bottom panels).

The RS shows the largest difference (∼ one order of magnitude) for generally low humidity values. Some larger differences

can also be seen for the UCAR direct, UCAR 1D-Var, JPL direct, and GFS, when these data sets are much drier than ERA

(primarily happening in the DJF season). The
::::
large

::::::::::
differences

:::::
occur

::::::::
generally

:::
for

::
q

::::::
values

:::
less

::::
than

::
1
:
g

::::
kg−1,

:::::
with

:::::
many

:::::
lower

:::
than

:::
0.1

:
g

:::::
kg−1,

:::::
which

::::::::
indicates

:::
dry

:::::
higher

:::::::
altitudes

::::
(i.e.

:::::
above

::::
500

::::
hPa).

:::
RO

::::::::::
refractivity

:::::::
becomes

:::
less

::::::::
sensitive

::
to

:::::
water

:::::
vapor

::
at

::::
these

::::::
higher

:::::::
altitudes

::::
and

:::
the

:::
RO

::::::::
retrievals

::
of

:::::
water

::::::
vapor,

:::::::
whether

:::::
direct

::
or

:::::::
1D-Var,

:::
are

:::
less

:::::::
reliable

::
at

:::::
these

:::::
levels

:::::::::::::::::::
(Kursinski et al., 1995) .

::::
The

::::::
UCAR

::::::
1D-Var

::::
can

:::
also

::::
have

:::::::::
difficulties

:::::::::
retrieving

::::
very

:::
low

::::::::
humidity

:::::
values

::::::
(which

::
is

:::
the

::::
case

::
in

::
the

::::
DJF

::::::
season

::
at

::::::
Guam).

::
If
:::
the

:::::::
a-priori

::::::::::
temperature

:
is
:::
too

::::
low,

::
it

:::
can

::::::
happen

::::
that

:::
the

::::::
UCAR

::::::
1D-Var

::::::::
humidity

:::::
values

:::
are

:::
set

::
to

::::
zero,

:::::
which

::::::
would

::::
lead

::
to

:
a
::::
dry

:::
RO

::::
bias

::::::
overall

::
for

::::
low

::::::
values

::
of

::::::
specific

:::::::::
humidity.

:::
The

:
data sets look similar in the 400 hPa5

to 300 hPa layer, and a dry bias for the RS becomes visible. In the 300 hPa to 200 hPa layer, the UCAR direct spread becomes

very large (indicating limited usefulness for RO direct retrievals at this level), while the UCAR 1D-Var and WEGC 1D-VAR

10



Figure 3. 2007 time series at Guam: (a) ERA relative humidity (%) with blue representing moist air and red representing dry air; (b)

normalized difference of q (%)
:

between PERSIST and ERA; (c) normalized difference of q (%
:
) between GFS and ERA. The bottom panel

shows that there are significant (±50%) differences in the two model data sets.
:::
The

::::
color

:::
bar

::
on

:::
the

::::
right

:::::::
indicates

::::::
relative

:::::::
humidity

:
(%

:
)
::
in

::::
panel

::
(a)

:::
and

::::::
specific

:::::::
humidity

:::::::::
normalized

::::::::
differences

::
in

:
%

::
in

:::::
panels

::
(b)

::::
and

::
(c).

agree very well with ERA(
:
,
::::
since

::::
they

:::
are

:
using ERA and ECMWF short-range forecast profiles as background in the retrieval,

respectively). JPL direct humidity data are not available at these pressure levels. Both RS and AIRS show a dry bias. Finally,

in the 200 hPa to 100 hPa layer the UCAR direct data are useless, the UCAR 1D-Var is practically identical with ERA (simply

recovering ERA a-priori values), and the RS and AIRS data both have a strong dry bias. The GFS agrees fairly well with ERA

in the upper layers and has no obvious bias.

3.2 Timeseries at Guam

Figure 3 (a) shows the time-height cross section of relative humidity (RH) over 2007 from 1000 hPa to 400 hPa at Guam.5

Overall, the conditions at Guam are moist (RH>80 % and q ∼17 g kg−1) year-round in the boundary layer and in the mid

troposphere from July to November, and dry in the mid troposphere during the rest of the year. The changing humidity pattern

11



Figure 4. 2007 time series of the q normalized difference between (a) RS and ERA, and between (b) AIRS and ERA at Guam.
:::
The

::::
color

:::
bar

::
on

::
the

::::
right

:::::::
indicates

::::::
specific

:::::::
humidity

:::::::::
normalized

::::::::
differences

::
in %.

above 800 hPa results from the alternation of the tropical conditions (high humidity , strong convection)
:::
high

::::::::
humidity

:::::::
tropical

::::::::
conditions

:
and dry air intrusions from the subtropical UTLS in December to June (Randel et al., 2016). These dry intrusions

(relative humidity as low as a few percent) are very stable and suppress convection. The sharp humidity gradient between the

very dry lower mid troposphere and the moist boundary layer around 800 hPa often leads to conditions of super-refraction,

which results in a negative bias of N and thus q in the RO profiles (Xie et al., 2010).

The normalized difference (ND) of specific humidity q between the PERSIST data set and ERA (which represents the day-

to-day variability of ERA) shows that q has almost no day-to-day variability in the 1000 hPa to 800 hPa layer during the entire5

year, and in the 800 hPa to 600 hPa layer in August and September (Fig. 3 (b)). Above, day-to-day variability is significant.

Exceptions occur in the 600 hPa to 400 hPa layer during December through May, when persistent dry air intrusions occur. This

shows just how stable and persistent these layers can be, suppressing major changes in humidity for up to 20 days in a row.

The ND of q between GFS and ERA (Fig. 3 (c)) shows that the differences between the two model values of q are much

smaller than the differences between PERSIST and ERA, as might be expected. GFS is up to 50 % moister than ERA in the10

800 hPa to 600 hPa layer in the dry season, and in the 800 hPa to 550 hPa layer in the wet season. This is essentially the layer

of strong humidity variability above the bottom layer of constant (about 80 %) relative humidity. This behavior may be due to

GFS difficulties in capturing the sharp transition between dry and wet conditions on the bottom of dry layers in December to

June. This is supported by individual profiles (e.g. Randel et al. (2016), Fig. 4), as well as our comparison of ERA with RS

(Fig. 4 (a)), which supports the ERA in this respect.15
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The ND between RS and ERA show a small wet bias in the RS
:
of

:::
the

:::
RS

:::::::
relative

::
to

::::
ERA

:
in the lower troposphere and large

wet and dry biases in the middle and upper troposphere throughout the year (Fig. 4 (a)). The large biases are likely caused

by RS sensor malfunctions (H. Vömel, personal communication, 2017), which can start as low as at 800 hPa. At some point

during the ascent, the sensor gets stuck and keeps reporting the same humidity value, which manifests itself as a dry or wet

bias compared to ERA, depending on if tropospheric conditions are drier (December through May) or wetter (June through

November) than the incorrect reported value.

AIRS shows an overall dry bias compared to ERA throughout the entire troposphere in all seasons (Fig. 4 (b)). The dry

bias appears to be less during the dry air intrusion events in the 600 hPa to 400 hPa layer in the dry season December to June.5

This indicates that AIRS is less biased if the overall atmospheric conditions are dry. The AIRS dry bias agrees well with the

findings of Wong et al. (2015), who studied the uncertainties of AIRS Level 2 version 6 q and T depending on cloud types.

They found reduced dry biases in the middle troposphere under thin clouds, but a dry bias up to
::::
large

:::
dry

::::::
biases

::
(>30%

:
)
::
in

:::
the

:::::
lower

:::::::::
troposphere

:::::
with

:::
low

::::
thick

:::::::
clouds,

:::
and

:::
dry

::::::
biases throughout the troposphere in the presence of

:::
high

:
thick clouds.

The normalized differences of the four RO retrievals to ERA show similar patterns in the 1000 hPa to 800 hPa layer, but

larger differences in the mid and upper troposphere (Fig. 5). The UCAR direct data develop a wet bias above 600 hPa in the5

wet season, and alternate between dry and wet during the other seasons. The UCAR 1D-Var data show an overall dry bias

throughout the troposphere with a few exceptions. Both JPL and WEGC data develop a strong wet bias above 600 hPa in the

wet season. Common features of all four RO retrievals include the very small differences to ERA in the wet season in the

1000 hPa to 800 hPa layer, and a dry bias and/or frequent reduced penetration depth (loss of signal) in the dry season. The latter

is a signature of super-refraction, which itself is caused by strong humidity gradients, usually between the planetary boundary10

layer and the free troposphere.

Figure 5 also shows a dry bias
:::
that

:::
all

:::
RO

::::
data

::::
sets

:::
are

:::::::::
dry-biased

:
with respect to ERA in December through February

in the 800 hPa to 600 hPa layer, which is clearly above the layer of strong humidity gradients (compare to Fig. 3 (a)). We

conclude that this is not a dry bias in RO, but is likely a wet bias in ERA in the layer just above the strong humidity transition

from wet (PBL) to dry (above). The assumed errors for assimilating RO in ERA are large in the lower troposphere, and all15

assimilated nadir viewing instruments only provide vertical resolutions of about 2km to 3km.Unless a nearby, approved RS

contributes information locally, ERA does not have any vertically well resolved humidity data that will cause the ERA analysis

to develop such sharp humidity gradients. This conclusion is supported by e.g.the
:::::
found

::::::
similar

::::::::
behavior

::
in

:::::::
previous

::::::
work.

::
In

:::::::::::::::::
Rieckh et al. (2017) ,

::::
Fig.

::
2,

:
lower right panelof Fig. 2 in Rieckh et al. (2017) , where

:
, ERA data are given on the 775,

750, 700, and 650 hPa pressure levels (about 2.3, 2.6, 3.1, and 3.8 km). The 775 hPa and 650 hPa levels agree well with the20

aircraft and RO measurements; however, the two levels in between smear the sharp profile and the ERA shows humidity values

1.5 g kg−1 to 2.5 g kg−1 (20 % to 35 %) larger than the observations.
::::
Thus

:::
we

::::::::
conclude

::::
that

:::
the

::::
bias

::
in

::::
Fig.

:
5
:::::

may
:::
not

::
be

::
a

:::
dry

:::
bias

:::
in

:::
RO,

::::
but

:::::
could

::
be

::
a

:::
wet

::::
bias

::
in

:::::
ERA

::
in

:::
the

::::
layer

::::
just

:::::
above

:::
the

::::::
strong

::::::::
humidity

::::::::
transition

::::
from

::::
wet

:::::
(PBL)

::
to
::::

dry

:::::::
(above).

:::
The

::::::::
assumed

:::::
errors

:::
for

::::::::::
assimilating

:::
RO

::
in

:::::
ERA

:::
are

::::
large

::
in

:::
the

:::::
lower

:::::::::::
troposphere,

:::
and

:::
all

:::::::::
assimilated

:::::
nadir

:::::::
viewing

:::::::::
instruments

:::::
only

::::::
provide

:::::::
vertical

:::::::::
resolutions

:::
of

:::::
about

::
2

::
km

:::
to

:
3

:::
km.

::::::
Unless

:
a
:::::::

nearby,
::::::::
approved

:::
RS

::::::::::
contributes

::::::::::
information25
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Figure 5. The 2007 time series of the q normalized difference at Guam for the (a) UCAR direct, (b) UCAR 1D-Var, (c) WEGC 1D-Var, and

(d) JPL direct retrieval.
:::
The

::::
color

:::
bar

::
on

:::
the

::::
right

::::::
indicates

::::::
specific

:::::::
humidity

:::::::::
normalized

::::::::
differences

::
in

:
%

:
.

::::::
locally,

::::
ERA

:::::
does

:::
not

::::
have

:::
any

::::::::
vertically

::::
well

::::::::
resolved

:::::::
humidity

::::
data

::::
that

:::
will

:::::
cause

:::
the

:::::
ERA

:::::::
analysis

::
to

:::::::
develop

::::
such

:::::
sharp

:::::::
humidity

:::::::::
gradients.

The 2007 time series of the q normalized difference for all data sets are depicted for a Japanese station (Minamidaitojima)

in Fig. S5 and Fig. S6 (supplement).

The 2007 time series of the refractivity N normalized difference for all data sets are depicted for Guam in Fig. S7 and30

Fig. S8 (supplement).
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Figure 6. Guam: The mean (top) and RMS (bottom) of the q normalized difference for all data sets, 3 pressure layers, and 4 seasons. Data

sets from top to bottom (per pressure layer): JPL direct, WEGC 1D-Var, UCAR direct, UCAR 1D-Var, RS, AIRS, GFS, PERSIST, CLIMO.

3.3 Mean and RMS differences from ERA at Guam

We compute the mean and root mean square (RMS) of the normalized differences at Guam to get an
:
a

::::::::
statistical overview of

the biases and the overall differences from the ERA for all data sets for three pressure layers (1000 hPa to 400 hPa in 200 hPa

layers) and four seasons (Fig. 6).

Some general aspects of the different data sets seen in the individual time series are clearly visible in the mean (Fig. 6, top),

such as the large negative (dry) difference of RO compared to ERA (green and blue bars) in DJF for the 1000 hPa to 600 hPa

layer. In the 1000 hPa to 800 hPa layer, a dry bias for RO exists throughout the year. The dry bias is largest in DJF, but it

is smaller and comparable in magnitude to the biases of the RS and AIRS in MAM, JJA, and SON. RO retrievals show the5

greatest differences from each other in the 600 hPa to 400 hPa layer year round, and in the 800 hPa to 600 hPa layer in the wet

season. AIRS shows an overall dry bias at all pressure layers and seasons. As expected, PERSIST has essentially no bias at

any pressure layer or season. Because of the large seasonal variation in water vapor, CLIMO has large seasonal positive and

negative biases above 800 hPa that are much larger than the biases of any other data set. GFS shows significant differences

from ERA, especially in the dry season (DJF and MAM) in the 800 hPa to 600 hPa layer.10
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Figure 7. Mina: Mean (top) and RMS (bottom) of the q normalized difference for all data sets, three pressure layers, and four seasons

::::
Since

::::
the

:::::
mean

::
of

:::
the

::::::
paired

::::::::::
normalized

:::::::::
differences

::
is
:::

no
::::::::
indicator

::
of

:::::
their

:::::::::
variability,

:::
we

::::
also

:::::
show

:::
the

:::::
RMS

::::
(Fig.

:::
6,

:::::::
bottom).

::::
The

:::::::::
magnitude

::
of

:::
the

:::::
RMS

::
is

:
a
:::::::
measure

::
of

:::
the

::::::::
accuracy

::::
and

:::::
scatter

:::
of

:::
the

::::
data

::::::::
compared

::
to

:::
the

:::::::::
reference. All data

sets have a comparable (below 800 hPa) or considerably smaller (above 800 hPa) RMS than both CLIMO and PERSIST in all

seasons (Fig. 6, bottom). The former is expected, considering how little humidity changes throughout the year in the 1000 hPa

to 800 hPa layer. The latter indicates the value (over persistence and climatology) of all observation techniques above 800 hPa.15

As for the individual data sets, we see that the RO RMS for all retrievals is comparable or lower than RS and AIRS RMS for

all seasons and pressure layers. This increases our confidence regarding the value of RO mid and lower tropospheric humidity

data.

3.4 Statistics at the subtropical Minamidaitojima

At Minamidaitojima all data sets have a smaller bias compared to ERA (Fig. 7, top) than at Guam. The strong RO humidity5

bias in the dry season lower troposphere (as seen at Guam) is not present and biases of all observational data sets (with the

exception of AIRS) are less than 5 % in the 800 hPa to 600 hPa layer. Biases are larger in the 600 hPa to 400 hPa layer, especially

for the RS. The RMS values at Minamidaitojima (Fig. 7, bottom) shows a similar pattern to the one at Guam, with the RO
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Figure 8. Mean differences for dry versus wet atmospheric conditions based on RH800−400 at Guam (left) and Minamidaitojima (right). The

different colors represent the different data sets. Circles and stars represent the data sets for dry and wet conditions in the mid troposphere,

respectively.

and GFS RMS differences being smaller than the RS and AIRS differences. The statistics of the other two Japanese stations

(Ishigakijima and Naze) are similar (not shown).10

4 Biases
:::::::::
Differences

:::::
from

:::::
ERA in dry versus wet atmospheric conditions

In section 3 we saw how the general atmospheric humidity conditions (wet versus dry) can have an influence on the biases in the

data sets
::::
with

::::::
respect

::
to

:::::
ERA, especially for RO (super-refraction with strong vertical humidity gradients) and AIRS (smaller

bias in dry conditions). In this section, we investigate the different error characteristics for dry and wet conditions in more

detail at both the tropical and subtropical locations. We created a “dry” and “wet” data set. For every profile pair, we computed

the average relative humidity (RH) of the ERA (background) profile for the 800 hPa to 400 hPa layer (RH800−400). This layer

was chosen according to the humidity distribution throughout the year (see Fig. 3, top). If RH800−400 ≤30 %, the entire profile

is added to the “dry” data set. If RH800−400 ≥ 70 %, the entire profile is added to the “wet” data set. Then the mean and RMS5

are computed for both these data sets separately. These statistical values are depicted for the 1000 hPa to 800 hPa layer and the

800 hPa to 400 hPa layer (Fig. 8).

The mean of the normalized differences shows different patterns for the “dry” and “wet” data sets at both Guam and Mi-

namidaitojima. At Guam, we see a dry bias of 6 % to 14 % in the 1000 hPa to 800 hPa layer for all RO retrievals for the “dry”

data set (Fig. 8, left). We assume that the dry air intrusions and sharp humidity transitions above the PBL with associated10

super-refraction conditions are primarily responsible for the negative N and thus negative q bias at Guam. The RO biases in

the 800 hPa to 400 hPa layer vary around zero (−4 % to 2 %). For the “wet” data set, the mean RO differences from ERA vary
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significantly in the 800 hPa to 400 hPa from 0 % to 16 %, while the bias in the 1000 hPa to 800 hPa layer is between 0 % and

−5 % for the RO retrievals. At Minamidaitojima, the RO data sets show smaller and similar biases for both pressure layers

(Fig. 8, right). The “dry” RO data set has no bias in the 800 hPa to 400 hPa layer and very small biases (2 % to 5 %) in the15

1000 hPa to 800 hPa layer. The bias
::::
with

::::::
respect

::
to

:::::
ERA of the “wet” RO data set ranges from −4 % to 4 % in the 800 hPa to

400 hPa layer and from −4 % to 2 % in the 1000 hPa to 800 hPa layer. Overall, we conclude that there are no major differences

in the RO error characteristics between the “dry” and “wet” data sets and between the two pressure layers at Minamidaitojima,

in contrast to Guam where background humidity conditions clearly matter for the different error characteristics.

AIRS clearly shows a strong dry bias for both pressure layers for wet background conditions. The bias is stronger at Mi-

namidaitojima, reaching more than −30 % in the 800 hPa to 400 hPa layer, and −20 % in the 1000 hPa to 800 hPa layer. For

dry conditions, the AIRS bias ranges from −8 % to 2 % for all locations and pressure layers. This agrees well with the small

bias seen in the regions of dry air intrusions (December to June) in the profile time series (Fig. 4, bottom).5

Finally, the RS shows a small wet bias in the 1000 hPa to 800 hPa layer for both the “dry” and “wet” data sets and both

locations. In the 800 hPa to 400 hPa layer, the “dry” data set shows a large wet bias, which is likely due to the VIZ/Sippican B2

sensor’s poor performance in dry conditions (see Section 2.3). At Minamidaitojima, both the “dry” and “wet” data sets show

a dry bias in the 800 hPa to 400 hPa layer, as described in Vömel et al. (2007) for the Vaisala RS92 sensor for higher altitudes

due to a radiation bias.10

5 Variability during typhoon passages

We used the subtropical RS station Ishigakijima to investigate how the different data sets perform during the extreme conditions

of typhoon passages. In 2007, six typhoons passed Ishigakijima within 350 km (the tracks and other details of the typhoons can

be found online9):

– Typhoon #4, July 6–16, date of closest approach (320 km): July 12, as typhoon category 415

– Typhoon #7, August 4–10, date of closest approach (260 km): August 7, as typhoon category 1

– Super Typhoon #9, August 11–19, date of closest approach (300 km): August 17, as typhoon category 4

– Typhoon #12, September 11–17, date of closest approach (330 km): September 14, as typhoon category 4

– Super Typhoon #13, September 14–20, date of closest approach (40 km): September 18, as typhoon category 3

– Super Typhoon #17, October 1–8, date of closest approach (110 km): October 6, as typhoon category 420

The time series of differences to ERA q for Ishigakijima do not show a specific bias during typhoon passages, which indicates

that all data sets as well as ERA report a signal similar in magnitude during the typhoon passages.

We computed the ERA average over the July to October time range (CLIMOJulOct) to create a typhoon season climatology.

We then compared all data sets to CLIMOJulOct to see how q and T deviate from the summer average during the passage

of a typhoon. All data sets show a rapid increase in humidity (Fig. 9) and higher temperature values (not shown) as the25

9http://weather.unisys.com/hurricane/w_pacific/2007/
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Figure 9. The q difference from CLIMOJulOct for (a) GFS, (b) UCAR direct, (c) RS, and (d) AIRS shows increased humidity during typhoon

passages near Ishigakijima. Typhoon passages are marked by vertical lines (dashed: closer than 110 km, dash-dotted: closer than 330 km).

typhoons approach and pass close to Ishigakijima. The signal is strongest in the layers above 600 hPa.
:
,
:::::
where

:::::
deep

:::::::::
convection

::::::::
associated

::::
with

:::
the

::::::::
typhoons

:::::::
transport

:::::
large

:::::::
amounts

::
of

:::::
water

:::::
vapor

:::
and

::::::
release

:::::
latent

::::
heat

::
in

:::
the

::::::
middle

:::
and

:::::
upper

::::::::::
troposphere

::::::::::::::
(Emanuel, 1991) .

:

GFS, RS, and all RO retrievals show similar results. The AIRS moist deviation during a passage is much weaker than for

any other data set, likely because of all the cloud cover associated with the typhoons, which limits the AIRS retrievals.30

All data sets show increased temperature during the typhoon event (not shown), especially in the upper troposphere. The

UCAR and WEGC 1D-Var show a similar T structure. The signal also agrees well with the GFS T signal. Both direct retrievals

(UCAR and JPL) do not provide physical temperature information for the troposphere.

The refractivity signal is the combined signal of increased q (increases N ) and increased T (decreases N ), as shown by

Eq. (1). Up to about 400hPa, the signal of increased q overpowers the signal of increased T in N (not shown), leading to5

increased N during the typhoon passage.

The signals in q, T , and N during a typhoon passage are similar for Minamidaitojima and Naze (not shown), but fewer

typhoons passed in close proximity to these two stations.

6 Structural uncertainty of RO

Since we have data from several RO retrievals available, we have the opportunity to compute the structural uncertainty of RO10

humidity for our data set.
:
,
::::::::
following

:::
the

:::::::
methods

::
of

::::::::::::::::::::
Steiner et al. (2013) and

:::::::::::::::::::
Ho et al. (2009, 2012) .

:::
The

::::::::
structural

::::::::::
uncertainty

:
is
:::::::::
computed

::
to

:::
get

::
an

:::::::
estimate

::
of

:::
the

:::::::::
variability

::::::
among

:::
the

::::::
various

:::
RO

:::::::::
retrievals.
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First we create sub-data sets, which are limited to the profiles and pressure levels that are available for all four RO humidity

retrievals. The sub-data set for Guam consists of 141 profiles, and the sub-data set for the combined Japanese stations (since

atmospheric conditions are very similar among them) consists of 543 profiles. For each retrieval, the normalized deviation for

N and q from the inter-center mean is computed (per pressure level):

∆X =
1

k

∑
k

(
Xk −X

inter-center
k ∗

) 100

X
ERA
annual

(4)

where
:
k
::::::::
indicates

:::
the

:::::
profile

:::::::
number,

:::::::::
X

inter-center
k ::

is
::
the

::::::::::
inter-center

:::::::
average

::
for

:::
the

:::
kth

:::::
profile

:::::::::::::::
(1/4(XUCAR direct

k ::::::::::::
+XUCAR 1D-Var

k

:::::::::
+XJPL direct

k ::::::::::::::
+XWEGC 1D-Var

k ),
:::
and

:
∆X is the deviation of a

::
(of

::
q

::
or

:::
N )

::
of

:::
one

:
particular RO retrieval and k indicates the profile5

number
::::
from

:::
the

::::::::::
inter-center

::::::
average.

Figure 10 shows the mean deviations of the four RO retrievals from the inter-center mean for Guam (left) and all three

Japanese stations combined (right) forN (top) and q (bottom). Cut-off pressure is 350 hPa since JPL does not provide humidity

data above that level. For N (Fig. 10 (a,b)), the
:::::::
absolute

:::::
value

::
of

:::
the

:
mean deviation from the inter-center mean it is largest

between 900 hPa and 700 hPa for all data sets (maximum : ∼
::
of 0.7 %)), and decreases to about 0.1 % at 350 hPa (about 8 km)10

at both locations. This
:::
The

:::::
latter

:
result agrees well with the estimate of Ho et al. (2009), who showed that the absolute values

of fractional N anomalies among four centers (UCAR, WEGC, JPL, and GFZ (German Research Centre for Geosciences))

are 0.2 % from 8 km to 25 km altitude.
:::
The

::::::
larger

:::::::::
differences

::::::::
between

:::
the

::::::
various

:::
RO

::::::::::
processing

::::::
centers

::
at

:::::
lower

::::::::
altitudes

:::::::
primarily

::::::
come

::::
from

::::::::
different

::::::::
handling

::
of

:::::::
profiles

:::::::::::
experiencing

::
1)

:::::::::::
atmospheric

:::::::::
multipath,

::
2)

:::::::
receiver

:::::::
tacking

::::::
errors,

::::
and

::
3)

:::::::::::::
super-refraction

::::
(see

::::::::::::::::
Ho et al. (2009) for

::::::
details

::
on

:::
the

:::
RO

::::::::::
processing

:::::
center

::::::::::
procedures).

:::::
This

:
is
:::::::::

especially
::::
true

:::
for

:::::
direct5

:::::::
retrievals

:::::
(such

::
as

:::
the

::::::
UCAR

:::::
direct

:::
and

::::
JPL

::::::
direct),

:::::
where

::::
both

:::
RO

::
N

::::
and

::::::
a-priori

::
T

:::
are

:::::::
assigned

::::
zero

::::
error,

::::
and

::
the

::::::::::
differences

::
in

:::
Fig.

:::
10

::
(a)

::::
and

:::
(b)

:::
are

::::::::
dominated

:::
by

:::
the

:::::::::
previously

:::::::::
mentioned

:::::::::
conditions.

:::
For

:::::::
1D-Var

::::::::
retrievals,

::::::
another

::::::::
potential

::::::
source

::
of

:::::::::
differences

::
is

:::
the

::
N

::::
error

::::::
model

::
in

:::
the

::::::::
respective

::::::
1D-Var

::::::::
retrieval.

:::
All

::::
these

::::::
factors

::::
vary

::::
with

:::::::
latitude

:::
and

::::::
general

:::::::::::
atmospheric

:::::::::
conditions.

For q (Fig. 10 (c,d)), the structural uncertainty generally increases with increasing altitude (since the impact of water vapor10

on N decreases with increasing altitude). At Guam, it is about 2 % in the PBL, increases sharply to 5 % around 800 hPa, and

stays around 5 % to 8 % above. At the Japanese stations, the structural uncertainty increases constantly with increasing altitude,

from 2 % close to the surface to 5 % at 400 hPa. At both locations, the center anomalies increase sharply at 350 hPa, which

indicates again that RO derived humidity has high uncertainty at and above that level.

7 Conclusions15

We compared three observational data sets (radio occultation (RO), radiosondes (RS), and AIRS) and two model data sets

(ERA and GFS) over the year 2007. Rather than comparing averages over larger time scales and regions, we compared indi-

vidual profiles over specific locations (in the tropical and subtropical West Pacific). The data sets that were compared to ERA,

which we considered the reference data set, include profiles from four different RO retrievals (UCAR direct, UCAR 1D-Var,

20



Figure 10. Deviations for four RO retrievals from the intercenter mean for refractivity (top) and specific humidity (bottom) at Guam (left)

and the Japanese stations (right). The
::::
mean

::::
(and

:
standard deviation

:
) of each data set is shown

:
by

::::
line

::::
style

::::
(and as shaded and hatched

::::
area): UCAR direct:

::::
black

::::
solid

::::
(and ////

:
o
::
o
::
o,

::::
blue); UCAR 1D-Var:

::::
black

:::::::::
dash-dotted

:::
(and \ \ \

::::
· · ·,

::::
blue); WEGC 1D-Var:

::::
black

::::::
dashed

:::
(and +++

:::
////,

::::
gray); JPL direct:

::::
black

:::::
dotted

::::
(and · · ·

:
\
:
\
:
\,
:::::

gray). Red horizontal lines indicate the number of profile pairs at that pressure

level.

WEGC 1D-Var, JPL direct), RS, AIRS, GFS analysis, ERA PERSIST, and ERA CLIMO (the last two to set a quality baseline).20

We studied both the time series of profile pairs as well as the mean and RMS computed for the four seasons and three pressure

layers (1000 hPa to 800 hPa, 800 hPa to 600 hPa, and 600 hPa to 400 hPa). As expected, we found different characteristics for

each data set. Our main conclusions are:

1. For all four RO humidity retrievals, the magnitude of the mean biases
:::::
relative

::
to
:::::
ERA are smaller or comparable to those

of the RS and AIRS in 800 hPa to 400 hPa layer. Above 600 hPa, differences between the various RO humidity retrievals25

generally become larger
::::
(Fig.

:
6
::::
and

::
7,

:::
top).

2. All data sets have smaller RMS differences than both CLIMO and PERSIST
::::
(Fig.

::
6

:::
and

::
7,

:::::::
bottom). The exception is

the tropical 1000 hPa to 800 hPa layer, where all RMS values are comparable in magnitude due to the nearly constant
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humidity conditions throughout the year. This confirms that all observational data sets contribute valuable information

compared to persistence and climatology.30

3. The RMS of all RO retrievals is comparable or lower than the RMS of the RS and AIRS for all pressure layers below

400 hPa, which confirms the high quality of RO profiles
::::
(Fig.

:
6
::::
and

::
7,

:::::::
bottom). The agreement among the four different

retrievals of specific humidity in the lower and middle troposphere validates the stability of the four retrievals.

4. In the time series, the four RO retrievals agree within 10 % in the 1000 hPa to 600 hPa layer
::::
(Fig.

::
5). Differences become

larger in the 600 hPa to 400 hPa layer, where the UCAR 1D-Var gets drier, the UCAR direct alternates between too dry

and too wet, and both the WEGC 1D-Var and JPL direct become too wet. Since water vapor decreases exponentially with

altitude, the retrieval becomes more and more sensitive to the prescribed temperature, which can lead to larger humidity5

differences.

5. The structural uncertainty of RO humidity retrievals is estimated from anomalies of RO retrievals from the inter-center

mean. Maximum differences among retrievals from 1000 hPa to 400 hPa are between 1 % and 0.2 % for refractivity, and

3 % and 10 % for specific humidity
:::
(Fig.

::::
10).

6. RO has the potential to contribute valuable information on water vapor via data assimilation in the mid and lower10

troposphere, especially when high-quality RS are unavailable (southern hemisphere, over oceans). In contrast to infrared

or microwave sounders, RO can resolve strong vertical gradients of humidity.

7. AIRS is biased dry throughout the entire troposphere, as noted previously (Wong et al., 2015). This bias is particularly

strong for wet atmospheric conditions
::::
(Fig.

::
8).

8. All data sets show increased humidity and temperature values during a typhoon passage
:::
(Fig.

:::
9). Differences from ERA15

do not change noticeably during a typhoon passage, indicating that all data sets and ERA report a signal that is similar

in magnitude during the typhoon passages.

:::
We

:::
find

::::
that

:::
the

:::::::::
alternating

:::
wet

::::
and

:::
dry

:::::::
seasons

:
at
::::::

Guam,
:::::::
together

:::::
with

:::
the

::::
very

::::
sharp

:::::::::
transition

::
at

::
the

::::
top

::
of

:::
the

::::::::
planetary

::::::::
boundary

::::
layer

::
in

:::
the

:::
dry

:::::
season

::
at
::::::
Guam,

:::
are

::::::::
especially

::::::::::
challenging

:::
for

:::
the

:::
RO,

:::
RS,

::::
and

:::::
AIRS

:::::::::::
observational

::::::
systems

:::::::::
compared

::
to

:::
the

::::::::
conditions

::
at
:::
the

::::::::::
subtropical

:::::::
Japanese

:::::::::
locations.

:::
The

::::::
results

:::::::::
comparing

:::
the

::::::::
different

:::
data

::::
sets

::
to

:::
the

:::::
ERA

:::
are

::::::
similar

::
at20

::
the

:::::
three

::::::::
Japanese

::
RS

::::::::
stations.

:::
All

:::
the

:::::::::::
observational

::::
data

:::
sets

::
at
:::
the

::::::::
Japanese

:::::::
stations

::::
show

::
a
:::::::
response

::
to
:::
the

:::::
rapid

:::::::
increase

::
of

:::::
water

:::::
vapor

::::::::::
throughout

:::
the

:::::::::
troposphere

::::::
during

:::
the

:::::::
passage

::
of

:::::::::
typhoons;

:::::::
however,

:::
the

::::::
AIRS

:::::::
response

::
is

::::::
weaker

::::
than

:::
the

:::
RS

::::
and

:::
RO

:::::::::
responses,

::::::::
probably

::::::
because

::
of
:::
the

::::::::
extensive

::::::
clouds

:::::::::
associated

::::
with

:::
the

::::::::
typhoons.

:

Our results support the findings of Vergados et al. (2017)
::::::::::::::::::
Vergados et al. (2018) , e.g. the relative dryness of the UCAR 1D-25

Var and wetness of the JPL RO humidity retrieval, and the dry bias of AIRS. While Vergados et al. (2017)
::::::::::::::::::
Vergados et al. (2018) draw

their conclusions from large-scale multi-year climatologies, we use high resolution time series to depict the short-term and

small scale variability of humidity, and add results below 700 hPa, where the tropospheric water vapor content is highest.
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We conclude that RO humidity retrievals have comparable or better accuracy than both standard RS and AIRS data at the four

tropical and subtropical locations studied here above 800 hPa, as well as below 800 hPa if super-refraction is absent. Featuring30

global coverage and high vertical resolution, RO should have a large
::
If

:::::::
assigned

::::::
smaller

:::::
errors

:::::
(and

:::::::
therefore

::::::
greater

::::::::
weights)

::
in

:::
the

::::::::::
assimilation

:::::::
process,

:::
RO

:::::
could

::::
have

::
a positive impact on improving the water vapor analysis in data assimilation in the

lower and mid troposphere.
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