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Abstract. While water vapor is the most important tropo-
spheric greenhouse gas, it is also highly variable in both
space and time, and water vapor concentrations range over
three orders of magnitude in the troposphere. These proper-
ties challenge all observing systems to accurately measure5

and resolve the vertical structure and variability of tropo-
spheric humidity. In this study we characterize the humid-
ity measurements of various observing techniques, including
four separate Global Positioning System (GPS) Radio Occul-
tation (RO) humidity retrievals (UCAR direct, UCAR 1D-10

Var, WEGC 1D-Var, Jet Propulsion Laboratory (JPL) di-
rect), radiosonde, and Atmospheric Infrared Sounder (AIRS)
data. Furthermore, we evaluate how well the ERA-Interim
reanalysis and National Centers for Environmental Predic-
tion (NCEP) Global Forecast System (GFS) model perform15

in analyzing water vapor at different levels. To investigate de-
tailed vertical structure, we analyzed time–height cross sec-
tions over four radiosonde stations in the tropical and sub-
tropical western Pacific for the year 2007. We found that
RO humidity has comparable or better accuracy than both20

radiosonde and AIRS humidity over 800 hPa to 400 hPa, as
well as below 800 hPa if super-refraction is absent. The var-
ious RO retrievals of specific humidity agree within 20 % in
the 1000 hPa to 400 hPa layer, and differences are most pro-
nounced above 600 hPa.25

1 Introduction

Tropospheric humidity is one of the key parameters driving
weather and climate, and plays an important role in the devel-
opment of many extreme events. To accurately model current

and future climate, it is crucial to understand the distribution, 30

transport, and vertical structure of tropospheric water vapor.
However, measuring water vapor accurately is a great chal-
lenge, as it is highly variable on both spatial and temporal
scales, and its tropospheric concentration varies over three
orders of magnitude between the tropical planetary bound- 35

ary layer and the tropopause. At present, no single observing
system can provide accurate tropospheric humidity data on a
global scale with high vertical resolution.

Passive (microwave and infrared) nadir-sounding systems
provide data globally, but with relatively low vertical reso- 40

lution. Weighting functions are used to quantify vertically
resolved humidity information, and these vertical scales are
large (2 km to 3 km) compared to the variability of water va-
por in the vertical. Furthermore, infrared based systems can-
not provide data within or below clouds. 45

Radiosonde (RS) balloon measurements are launched
globally, although with sparse coverage in many areas, such
as over oceans or in the southern hemisphere. They can have
a high vertical resolution, but data quality varies strongly de-
pending on the sensor type (Miloshevich et al., 2006; Ho 50

et al., 2010). Operational weather forecasting still benefits
greatly from RS measurements, but the current global RS
network is neither designed nor suitable for detecting and
monitoring climate change. First, many different sensor types
are used globally, each with their unique known and un- 55

known biases. Second, sensor types at different locations
change over time and these changes have been poorly doc-
umented in the past, which can lead to artificial trends or
jumps in the station’s record (Dai et al., 2011). The GCOS
(Global Climate Observing System) Reference Upper-Air 60

Network (GRUAN) aims to address this issue by providing
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long-term high-quality vertical profiles of selected essential
climate variables, including an estimate of the measurement
uncertainty (Bodeker et al., 2016). GRUAN will play an im-
portant role for calibrating data from other global networks,
however, at this point in time certified data are available at5

only a few locations with a relatively short time range (less
than four years).

Research aircraft can provide high-quality, high-resolution
profiles, but these missions are infrequent and cannot pro-
vide a complete global picture continuously over time by10

themselves. They are, however, important to evaluate mea-
surements from other observing systems or models (Rieckh
et al., 2017).

The Global Positioning System (GPS) Radio Occultation
(RO) technique provides near-vertical profiles of refractivity15

with high vertical resolution and high accuracy and preci-
sion. Other features of the RO technique are global cover-
age, all-weather capability, and SI-traceability. Profiles pen-
etrating down into the lower troposphere became available
with open-loop tracking (Sokolovskiy et al., 2006). Since re-20

fractivity depends on temperature and water vapor pressure,
tropospheric specific humidity can be derived from refractiv-
ity via a so-called direct retrieval (using ancillary tempera-
ture information) or a One-Dimensional Variational retrieval
(1D-Var), which finds the optimal solution for water vapor25

pressure, temperature, and refractivity taking their prescribed
errors into account. Thus the RO water vapor retrievals and
their quality vary depending on the a-priori (and the accu-
racy of the prescribed data) and inversion method used. Sev-
eral RO processing centers currently provide RO water vapor30

profile retrievals: University Corporation for Atmospheric
Research (UCAR), Jet Propulsion Laboratory (JPL), Danish
Meteorological Institute (DMI), and Wegener Center for Cli-
mate and Global Change (WEGC).

The above observing techniques have been used to in-35

vestigate the global humidity distribution, trends, and ra-
diative impact. RO, despite being a relatively young ob-
serving technique, has shown the potential to provide data
of climate benchmark quality for refractivity and tempera-
ture between about 8 km and 25 km (Ho et al., 2009, 2012;40

Steiner et al., 2013). The quality of RO humidity is sub-
ject of research since ancillary data are required to retrieve
humidity from refractivity. Kursinski et al. (1995) provided
a first estimate for water vapor accuracy of less than 5 %
for individual profiles in the boundary layer, and 20 % up45

to about 7 km. Chou et al. (2009) found humidity differ-
ences smaller than 40 % below 7 km for individual profile
comparisons between dropsondes and RO. For observations
near strong typhoons, they found differences up to 100 %
in the mid and upper troposphere. Regarding global spe-50

cific humidity distributions, Chou et al. (2009) found good
agreement within 15 % between RO and Atmospheric In-
frared Sounder (AIRS), but significant discrepancy between
NCEP/NCAR reanalysis and RO humidity. Ho et al. (2010)
showed that UCAR COSMIC (Constellation Observing Sys-55

tem for Meteorology, Ionosphere, and Climate) water va-
por profiles agree well with those of European Center for
Medium-range Weather Forecasts (ECMWF) analysis over
different regions, demonstrating the quality of the RO humid-
ity data. Furthermore, they used RS and RO co-located data 60

to identify biases of various RS types. Wang et al. (2013)
also used UCAR COSMIC water vapor products and global
RS data with very strict co-location criteria (1 h, 100 km) to
verify the quality of UCAR RO humidity and found a mean
specific humidity bias of −0.012 g kg−1, with a standard de- 65

viation of 0.666 g kg−1 over the 925 hPa to 200 hPa layer.
Ladstädter et al. (2015) compared WEGC RO profiles from
multiple missions to a five year record of GRUAN RS pro-
files (both of which have the potential to serve as reference
observations in the GCOS) and to a standard 11 year record 70

of RS profiles (Vaisala RS90/92). Vaisala RS90/92 shows a
dry bias of 40 % in the troposphere compared to RO, whereas
GRUAN, with an elaborate humidity bias correction scheme,
agrees within 5 % with RO below 300 hPa. Ladstädter et al.
(2015) state that the good agreement of the RO and GRUAN 75

RS data sets strongly encourages further development and
advancement of both systems for the benefit of future cli-
mate monitoring and research. Vergados et al. (2015) com-
pared relative humidity of JPL RO, ECMWF Reanalysis In-
terim (ERA-Interim), and Modern-Era Retrospective analy- 80

sis for Research and Applications (MERRA) in the tropics
and showed that from a climatological standpoint, MERRA
and JPL RO are in agreement, whereas the ECMWF re-
analysis is drier. Vergados et al. (2018) compared JPL and
UCAR RO humidity data sets to MERRA, ERA-Interim, and 85

AIRS from 2007 to 2015 for the±40◦ latitude range between
700 hPa and 400 hPa. They found that the both RO humidity
retrievals agree well with MERRA and ERA-Interim, but the
JPL retrieval is overall moister than all other data sets, while
both the UCAR retrieval and AIRS are overall drier than all 90

other data sets.
All of the above work considered differences averaged

over large geographical regions and long time periods (a
month or longer). While useful for climate and error estima-
tions, these averages obscure variability that takes place on 95

smaller temporal and spatial scales. Case studies fill this gap,
but they often focus on a single, particular event that occurs
over only a few days.

In this study we focus on the water vapor variability in
both a temporal and spatial sense by comparing data from 100

multiple observing techniques (RO, RS, AIRS) and model
(re)-analyses (ERA-Interim, Global Forecast System (GFS))
at particular locations in the tropics and sub-tropics over
an entire year. We chose the year 2007, when the maxi-
mum number of COSMIC RO profiles was available (COS- 105

MIC was launched in 2006 (Anthes et al., 2008)). We com-
pare each of these individual data sets with co-located ERA-
Interim humidity results for a) the surface to the upper tro-
posphere, b) four locations, c) four seasons, and d) during
typhoon passages. We quantify the structural uncertainty of 110
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RO derived humidity profiles in the troposphere, which re-
sults from different inversion implementations and a-priori.
To understand how the RO humidity data sets are different
from other humidity products, we collected RS–ERA pairs,
AIRS–ERA pairs, and GFS–ERA pairs near the four RS sta-5

tions. Although these data pairs may not sample the same
local times, the errors due to local time sampling differences
are probably small over these oceanic regions.

As humidity varies strongly in time and space, this study
allows us to show in detail how humidity conditions change10

over time, both daily and seasonally, and how atmospheric
conditions affect the ability of these data sets to provide accu-
rate and precise humidity information. We can identify high-
frequency variability and patterns at selected locations that
would be obscured if only statistical parameters were ana-15

lyzed.
We focus on several challenging locations in the tropics

and sub-tropics where water vapor is highly variable. We
show the entire 1000 hPa to 400 hPa range to show how data
quality for different observing and modeling systems varies20

with altitude. For example, the humidity data from many RS
sensors are biased in the mid and upper troposphere. RO-
derived humidity can be biased in the lowest few kilome-
ters (due to super-refraction in the atmosphere) and is un-
reliable once temperatures get as low as 250 K in the up-25

per troposphere (around 350 hPa in the tropics). Using data
from 1000 hPa to 400 hPa without layer averaging allows us
to identify details in the vertical humidity structure as mea-
sured by these systems.

ERA-Interim Reanalysis (hereafter ERA) is used as ref-30

erence for all comparisons. Although all data sets used in
this comparison are assimilated in the ERA, comparisons
are still valuable since i) data from a large number of dif-
ferent observing techniques are assimilated (number of as-
similated observations more than 107 per day in 2010 (Dee35

et al., 2011), thus lowering the impact of any single observa-
tion), and ii) the RO uncertainties used in data assimilation
are large in the mid and lower troposphere, and hence RO
makes a relatively small contribution in the ERA reanaly-
sis. In the ERA, the standard deviation of the RO observa-40

tion error distribution (in bending angle space) is assumed
to decrease linearly with increasing height, from 20 % at the
surface to 1 % at 10 km impact height (Poli et al., 2010).

In a companion paper (Anthes and Rieckh, 2018), these
data sets are compared statistically in different ways to esti-45

mate the error variances of each data set. This method indi-
cates that the ERA-Interim data set has the smallest errors in
refractivity, temperature, specific humidity, and relative hu-
midity from 1000 hPa to 200 hPa. The current paper sets the
stage for this statistical comparison by describing the data50

sets in detail and showing how they vary over the year at the
four locations.

The structure of this paper is as follows: Section 2 explains
the data sets used in this study. Section 3 shows on overview
of the results for the different observing systems, which are55

analyzed in greater detail in section 4. Section 7 provides a
summary and conclusions.

2 Data and Method

2.1 Radio occultation

Radio occultation (RO) is a limb sounding technique that 60

provides near-vertical profiles with high vertical resolution
of bending angles (Melbourne et al., 1994; Hajj et al., 2002),
which can be used to retrieve atmospheric refractivity N .
N can be related to atmospheric temperature T , pressure p,
and water vapor pressure e via the Smith–Weintraub formula 65

(Smith and Weintraub, 1953):

N = 77.6
p

T
+ 3.73×105

e

T 2
+ [...] (1)

The contribution to N from liquid water (the terms in [...]
in Eq. (1)) can be neglected in most conditions (Ho et al.,
2018). When e is negligible (at temperatures lower than 70

250 K (Kursinski et al., 1997)), the second term is assumed
zero and atmospheric temperature can be computed using
Eq. (1).

In the troposphere, where water vapor content is signif-
icant, Eq. (1) is ambiguous and ancillary temperature data 75

from another data source (usually model or analysis tem-
perature) are required to solve for e. Direct retrievals use
a prescribed T from another source to derive e. In a One-
Dimensional Variational (1D-Var) retrieval, a cost function
is minimized to find the optimal solution for e, T , and N 80

with their prescribed errors (Poli et al., 2002). In this study,
three different RO retrievals and four different humidity re-
trievals are compared in order to provide an indication of the
uncertainty in RO-derived water vapor.

GPS RO humidity accuracy varies depending on the 85

choice of retrieval (direct versus 1D-Var retrieval). For a di-
rect retrieval, humidity accuracy is determined by both the
quality of the a-priori temperature (Vergados et al. (2014),
Fig. 1) and the refractivity accuracy. For the 1D-Var retrieval,
humidity accuracy depends on the a-priori temperature and 90

humidity quality, the GPS RO refractivity accuracy, and the
error variances for the input parameters. A general estimate
for RO q accuracy is given in Vergados et al. (2018) (and
references therein) as ∼ 10 %–20 %.

2.1.1 UCAR 1D-Var 95

A One-Dimensional Variational (1D-Var) retrieval generally
uses an a-priori state of the atmosphere (background verti-
cal profile), an observable (RO refractivity or bending angle),
and their specified associated errors to minimize a quadratic
cost function. At COSMIC Data Analysis and Archive Cen- 100

ter (CDAAC), ERA profiles of temperature and humidity are
used as background, which are interpolated to the time and
location of the RO (accounting for tangent point drift during
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the occultation). The humidity retrieval allows specified er-
rors for both T and e, but only a very small error for bending
angle/refractivity. CDAAC provides the resulting profiles of
N , T , e, and p (wetPrf1), hereafter called UCAR 1D-Var.5

2.1.2 UCAR direct

A direct retrieval uses background temperature and RO re-
fractivity to compute humidity using Eq. (1). The influence
of a T error on e (i.e. the relation between δT and δe) can be
directly derived from Eq. (1) (Ware et al., 1996), under the10

assumption, that N and p are constant:

dN =
δN

δT
δT +

δN

δe
δe= 0−→ (2)

δe=
1

3.73×105
(2NT − 77.6p)δT (3)

Ware et al. (1996) showed that e could be estimated to
within 0.25 hPa in the lower troposphere if temperature were15

known to within 1 K. Vergados et al. (2014) depict the spe-
cific humidity retrieval errors due to temperature uncertainty
for several latitude bands and pressure levels and show that
humidity errors increase with increasing altitude and latitude,
since humidity decreases and thus its contribution to atmo-20

spheric refractivity. In the tropics (relevant for this study), the
q uncertainty for 1 K T uncertainty is less than ±3 % below
700 hPa and increases to 18 % at 400 hPa (cut-off altitude in
this study).

We use the RO variable “N_obs” (observed N before go-25

ing through the 1D-Var) from the UCAR CDAAC wetPrfs.
We chose T from the co-located GFS profiles as prescribed
temperatures in the humidity retrieval for a greater indepen-
dence between RO and ERA. For the four locations in this
study, the maximum T difference between GFS and ERA oc-30

curs at Guam, with up to 2 K in the 800 hPa to 500 hPa layer
for the individual profiles. Comparisons of the UCAR direct
retrieval using GFS T versus ERA T as background temper-
ature shows specific humidity differences of less than 3.5 %
for seasonal and 200 hPa layer averages within the 800 hPa35

to 300 hPa layer.

2.1.3 WEGC 1D-Var

The Wegener Center for Climate and Global Change
(WEGC) developed a simplified version of a 1D-Var method.
As a background, they use ECMWF 24 h or 30 h forecast40

fields, which are spatially interpolated to the location of the
RO (Schwärz et al., 2016). Combining the Smith–Weintraub
equation and the hydrostatic equations for dry and moist air,
they are solved for e and pwith prescribed T , and for T and p
with prescribed e. Iteration continues until the retrieved e and45

T converge within a set tolerance. Then the results are com-
bined to get the optimally estimated T and e profiles. More

1http://cdaac-www.cosmic.ucar.edu/cdaac/

information about the retrieval and error characteristics can
be found in Ladstädter et al. (2015) and references within.

2.1.4 JPL direct 50

JPL’s direct retrieval is similar to the UCAR direct, but
uses the ECMWF Tropical Ocean and Global Atmosphere
(TOGA) T as a-priori. Humidity is only derived below the
level of tropospheric T = 250 K (Kursinski et al., 1997). JPL
RO data were downloaded via the Atmospheric Grid Analy- 55

sis and Profile Extraction tool2.

2.2 ERA-Interim Reanalyses

We use the ERA as a reference (or baseline) for our com-
parisons3. We do not consider the ERA as “truth”, but we
do consider the ERA to be the most accurate data set (An- 60

thes and Rieckh, 2018) because it uses quality-checked ob-
servations with a 4D-Var data assimilation scheme and an
accurate forecast model in a research mode to produce the
variables of interest here (temperature and water vapor) on
a 0.7◦× 0.7◦ grid. In 2007 ERA assimilated measurements 65

from many different observing techniques, including RS ob-
servations, AIRS radiances, and RO bending angles (Dee
et al., 2011). Thus, when using the word “bias” for a data set
in a comparison, we refer to the bias difference with respect
to ERA. 70

Apart from using ERA as reference, we also created two
baseline data sets from ERA for comparison to the obser-
vations. The first one is climatology (hereafter CLIMO) for
2007, which is simply the ERA 2007 annual mean. The sec-
ond one is the persistence (PERSIST) value of each variable 75

from the value of the time series 24 hours earlier. It represents
a measure of the day-to-day variability in the ERA data set.
These two simple data sets represent a baseline against which
the value of observations can be compared. A minimum re-
quirement for an observation type to be useful is that it must 80

contribute additional information above those contributed by
these baseline data sets, i.e. they must be more accurate than
these data sets.

2.3 Radiosonde, AIRS, and GFS

RS data for Guam (13.5◦N, 144.8◦E) and 3 Japanese stations 85

(Ishigakijima: 24.2◦N, 124.5◦E; Minamidaitojima: 25.6◦N,
131.5◦E; Naze: 28.4◦N, 129.4◦E) (Fig. S1, supplement)
were downloaded from the National Oceanic and Atmo-
spheric Administration4. The RS are given on six standard
pressure levels between 1000 hPa and 400 hPa, plus addi- 90

tional levels if there is higher resolution vertical structure.
The RS at the four stations are generally launched twice

2https://genesis.jpl.nasa.gov/agape/
3https://rda.ucar.edu/datasets/ds627.0/
4https://www.ncdc.noaa.gov/data-access/weather-

balloon/integrated-global-radiosonde-archive
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daily during the hour before midnight and noon, UTC. The
four stations use the following sensors: Guam: VIZ/Sippican
B2; Ishigakijima: Meisei; Minamidaitojima: Vaisala RS92;
and Naze: Meisei5. The VIZ/Sippican B2 humidity sensor5

has a nighttime wet bias (Wang and Zhang, 2008; Ho et al.,
2010), and performs poorly in dry conditions (H. Vömel, per-
sonal communication, 2017). Ho et al. (2010) found no ob-
vious bias for the Meisei sensor. The Vaisala RS92 sensor is
known for its dry bias (Vömel et al., 2007) of ∼9 % at sur-10

face, and up to 50 % at 15 km altitude, and several correction
schemes have been developed to address this (Miloshevich
et al., 2006; Vömel et al., 2007).

AIRS is a nadir looking instrument aboard the National
Aeronautics and Space Administration (NASA) Aqua satel-15

lite, which was launched in May 2002. AIRS provides
atmospheric variables on 28 standard pressure levels be-
tween 1100 hPa and 0.1 hPa (8 levels between 1100 hPa and
400 hPa)6. The vertical resolution is ∼1 km for tempera-
ture and ∼2 km for humidity7. The horizontal resolution8 is20

50 km. We use the AIRS Version 6 Level 2 (AIRS2RET) data
with a quality flag of BEST or GOOD.

The AIRS retrieval is a cloud-clearing retrieval. Susskind
et al. (2003) describes the cloud-clearing process that yields
the “clear” radiances from which all parameters except25

clouds are retrieved (Kahn et al., 2014). The humidity re-
trieval of Version 6 is basically the same as in Version 5,
but still yields improved humidity results due to the im-
proved first guess provided by the Neural-Net start-up sys-
tem, improvements in the determination of other atmo-30

spheric variables, and improvements in cloud-cleared radi-
ances (Susskind et al., 2014).

RO co-located profiles for GFS are added in the compar-
ison to show results from an analysis that is different from
ERA. GFS profiles are given on a 25 hPa or 50 hPa grid (de-35

pending on altitude) and are linearly interpolated to the time
and location of the UCAR 1D-Var profiles.

2.4 Design of the comparisons

Since we are investigating humidity differences of various
observing systems, we chose regions where humidity con-40

ditions are highly variable in both space and time with
extremely high and low values during the year. We use
the tropical location Guam, which frequently experiences
dry air intrusions from the subtropical upper troposphere –
lower stratosphere (UTLS) region from December to March45

(Rieckh et al., 2017). This leads to sharp vertical humidity
gradients (relative humidity changes from less than 10 % to
about 80 % within a small vertical layer), conditions, that
are favorable for RO super-refraction (Garratt, 1992). Super-

5https://www1.ncdc.noaa.gov/pub/data/igra/history/igra2-
metadata.txt

6ftp://airsl2.gesdisc.eosdis.nasa.gov/ftp/data/s4pa/Aqua_AIRS_Level2/AIRS2RET.006/
7http://airs.jpl.nasa.gov/data/physical_retrievals
8http://disc.gsfc.nasa.gov/uui/datasets/AIRS2RET_V006/summary

refraction, in turn, will lead to a negative bias in the RO ob- 50

served N and q. See Fig. S3 (supplement) for the ERA 2007
time series of specific humidity, relative humidity, tempera-
ture, and refractivity at Guam.

The other RS locations are subtropical stations around
Japan, which experience a large seasonal variability as well 55

as extreme conditions associated with occasional typhoons.
See Fig. S4 (supplement) for the ERA 2007 time series of
specific humidity, relative humidity, temperature, and refrac-
tivity at Ishigakijima.

To increase the number of co-located profiles, we picked 60

the year 2007 for our analysis when all COSMIC satellites
were operating reliably. Since the measurement techniques
for RO, RS, and AIRS are different, we use different co-
location criteria to get a maximum number of high quality co-
locations. For the ERA reference grid points matched to the 65

RS stations, the distance between any of the RS stations and
the respective ERA grid point is between 15 km and 35 km,
and the time difference less than an hour from the 00 and
12 UTC ERA data. RO observations are co-located within
3 h and 300 km, and a co-location correction as described by 70

Gilpin et al. (2018) is applied:

∆XSC = (XRO−XRS)SC = (XRO−XRS)−(XRO location
ERA −XRS location

ERA )

(4)

where ∆XSC denotes the spatial-corrected difference of X ,
X is a variable measured by RO and RS, and the co-location
correction is the difference in the ERA values of X at the 75

RS and RO locations. Gilpin et al. (2018) show that double-
differencing correction significantly reduces the mean and
RMS differences of the RO and RS observations. Since our
reference location is an ERA grid point, we replace RS
by ERA in Eq. (4), which simplifies to ∆XSC = (XRO− 80

(XRO location
ERA ).
AIRS profiles are extracted within 30 km from the ERA

reference point, the maximum time difference is 3 h. Fig-
ure S2 in the supplement depicts the co-location process for
all data sets and one time. 85

Due to the restrictions as explained above, the resulting
profile pairs (and number of profile pairs) between ERA and
any of the data sets are different. Furthermore, the four RO
retrievals have different quality control schemes, which espe-
cially lowers the number of available JPL profiles. The pen- 90

etration depths also vary for the RO data sets and retrievals,
e.g., the UCAR 1D-Var data is available on lower levels than
UCAR direct because the bottom height is given as zOB−eCL,
where zOB is the bottom height of observation, and eCL is the
background error correlation length (which is 500 m in the 95

UCAR 1D-Var).
All data sets are interpolated to a common 25 hPa grid. We

chose this grid as a compromise between the effective reso-
lutions of all data sets used. The effective resolution of RO
is estimated to be higher than 100 m in the troposphere (Gor- 100

bunov et al., 2004). The RS has observations on additional
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levels (significant levels) if there are significant changes in
the vertical profile. ERA and GFS are provided on a pressure
grid with 25 hPa or 50 hPa increments. AIRS is sampled on
a sparser vertical grid, and thus does not resolve small scale5

features in the vertical. But any biases over deep layers will
be evident, and if interpolation leads to biases in certain pres-
sure layers, a pattern will be clearly visible in the individual
profiles.

The horizontal scale (footprint) of each data set10

varies. The horizontal resolutions of the ERA and GFS
models (grid size) are approximately 80 km×80 km and
28 km×28 km respectively. The AIRS footprint is approxi-
mately 50 km×50 km. The RO observations have a horizon-
tal length scale along the ray path of order 200 km (Anthes,15

2011). Finally, the RS is essentially a point measurement.
These differences can lead to representativeness errors, or
differences, because the finer-scale data sets can resolve hor-
izontal variability on smaller scales than the lower resolu-
tion of the RO (200 km). Some of this representativeness dif-20

ference is reduced by the vertical averaging to 25 hPa lay-
ers. The remaining differences tend to cancel in the mean
because the ERA, RS and RO observations are located ran-
domly with respect to each other and the smaller-scale struc-
tures that they resolve vary randomly within the model grid25

volumes. However, these differences in representative scale
will contribute to the RMS differences from the ERA data
set.

Profile pairs of ERA and each data set are extracted, and
the computed differences are normalized by the ERA 200730

mean value (CLIMO) at each level: Normalized Difference
ND = 100 · (data set−ERA)/CLIMO (expressed as %). To
make it easier to transfer results from normalized to actual
differences, the constant value CLIMO is used to normalize
all data sets. The values for CLIMO are shown in Fig. 1 and35

the exact values are provided in the supplement in Table S1
for an easy reproduction of the original values.

3 Results

3.1 Overview: General agreement and correlation
between the data sets40

Figure 2 shows values of q for UCAR direct, UCAR 1D-Var,
WEGC 1D-Var, JPL direct, RS, AIRS, and GFS (left to right)
versus ERA from high to low pressure layers (top to bottom),
depicting the correlation between the observational data sets
and ERA at Guam (log-log correlation coefficients in the title45

of each panel). Additionally, the mean and standard deviation
values of the differences for each pressure layer are depicted
in each panel (since values are not normalized, values from
the lower levels will have a larger influence on the result).

There is good agreement and high correlation for all data50

sets in the 1000 hPa to 400 hPa layer (Fig. 2, bottom panels).
The RS shows the largest difference (∼ one order of magni-

tude) for generally low humidity values. Some larger differ-
ences can also be seen for the UCAR direct, UCAR 1D-Var,
JPL direct, and GFS, when these data sets are much drier 55

than ERA (primarily happening in the DJF season). The large
differences occur generally for q values less than 1 g kg−1,
with many lower than 0.1 g kg−1, which indicates dry higher
altitudes (i.e. above 500 hPa). RO refractivity becomes less
sensitive to water vapor at these higher altitudes and the RO 60

retrievals of water vapor, whether direct or 1D-Var, are less
reliable at these levels (Kursinski et al., 1995). The UCAR
1D-Var can also have difficulties retrieving very low humid-
ity values (which is the case in the DJF season at Guam).
If the a-priori temperature is too low, it can happen that the 65

UCAR 1D-Var humidity values are set to zero, which would
lead to a dry RO bias overall for low values of specific humid-
ity. The data sets look similar in the 400 hPa to 300 hPa layer,
and a dry bias for the RS becomes visible. In the 300 hPa to
200 hPa layer, the UCAR direct spread becomes very large 70

(indicating limited usefulness for RO direct retrievals at this
level), while the UCAR 1D-Var and WEGC 1D-VAR agree
very well with ERA, since they are using ERA and ECMWF
short-range forecast profiles as background in the retrieval,
respectively. JPL direct humidity data are not available at 75

these pressure levels. Both RS and AIRS show a dry bias. Fi-
nally, in the 200 hPa to 100 hPa layer the UCAR direct data
are useless, the UCAR 1D-Var is practically identical with
ERA (simply recovering ERA a-priori values), and the RS
and AIRS data both have a strong dry bias. The GFS agrees 80

fairly well with ERA in the upper layers and has no obvious
bias.

3.2 Timeseries at Guam

Figure 3 (a) shows the time-height cross section of relative
humidity (RH) over 2007 from 1000 hPa to 400 hPa at Guam. 85

Overall, the conditions at Guam are moist (RH>80 % and
q ∼17 g kg−1) year-round in the boundary layer and in the
mid troposphere from July to November, and dry in the mid
troposphere during the rest of the year. The changing humid-
ity pattern above 800 hPa results from the alternation of the 90

high humidity tropical conditions and dry air intrusions from
the subtropical UTLS in December to June (Randel et al.,
2016). These dry intrusions (relative humidity as low as a
few percent) are very stable and suppress convection. The
sharp humidity gradient between the very dry lower mid tro- 95

posphere and the moist boundary layer around 800 hPa of-
ten leads to conditions of super-refraction, which results in a
negative bias of N and thus q in the RO profiles (Xie et al.,
2010).

The normalized difference (ND) of specific humidity q be- 100

tween the PERSIST data set and ERA (which represents the
day-to-day variability of ERA) shows that q has almost no
day-to-day variability in the 1000 hPa to 800 hPa layer during
the entire year, and in the 800 hPa to 600 hPa layer in August
and September (Fig. 3 (b)). Above, day-to-day variability is
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Figure 1. ERA annual average profiles on the 25 hPa grid for (a) refractivity, (b) specific humidity, (c) relative humidity, and (d) temperature
at all four locations.

significant. Exceptions occur in the 600 hPa to 400 hPa layer
during December through May, when persistent dry air intru-
sions occur. This shows just how stable and persistent these
layers can be, suppressing major changes in humidity for up5

to 20 days in a row.
The ND of q between GFS and ERA (Fig. 3 (c)) shows that

the differences between the two model values of q are much
smaller than the differences between PERSIST and ERA, as
might be expected. GFS is up to 50 % moister than ERA in10

the 800 hPa to 600 hPa layer in the dry season, and in the
800 hPa to 550 hPa layer in the wet season. This is essen-
tially the layer of strong humidity variability above the bot-
tom layer of constant (about 80 %) relative humidity. This be-
havior may be due to GFS difficulties in capturing the sharp15

transition between dry and wet conditions on the bottom of
dry layers in December to June. This is supported by individ-
ual profiles (e.g. Randel et al. (2016), Fig. 4), as well as our
comparison of ERA with RS (Fig. 4 (a)), which supports the
ERA in this respect.20

The ND show a small wet bias of the RS relative to
ERA in the lower troposphere and large wet and dry bi-
ases in the middle and upper troposphere throughout the year
(Fig. 4 (a)). The large biases are likely caused by RS sensor
malfunctions (H. Vömel, personal communication, 2017),25

which can start as low as at 800 hPa. At some point during
the ascent, the sensor gets stuck and keeps reporting the same
humidity value, which manifests itself as a dry or wet bias

compared to ERA, depending on if tropospheric conditions
are drier (December through May) or wetter (June through 30

November) than the incorrect reported value.
AIRS shows an overall dry bias compared to ERA

throughout the entire troposphere in all seasons (Fig. 4 (b)).
The dry bias appears to be less during the dry air intrusion
events in the 600 hPa to 400 hPa layer in the dry season De- 35

cember to June. This indicates that AIRS is less biased if the
overall atmospheric conditions are dry. The AIRS dry bias
agrees well with the findings of Wong et al. (2015), who
studied the uncertainties of AIRS Level 2 version 6 q and
T depending on cloud types. They found reduced dry biases 40

in the middle troposphere under thin clouds, but large dry bi-
ases (>30%) in the lower troposphere with low thick clouds,
and dry biases throughout the troposphere in the presence of
high thick clouds.

The normalized differences of the four RO retrievals to 45

ERA show similar patterns in the 1000 hPa to 800 hPa layer,
but larger differences in the mid and upper troposphere
(Fig. 5). The UCAR direct data develop a wet bias above
600 hPa in the wet season, and alternate between dry and wet
during the other seasons. The UCAR 1D-Var data show an 50

overall dry bias throughout the troposphere with a few ex-
ceptions. Both JPL and WEGC data develop a strong wet
bias above 600 hPa in the wet season. Common features of
all four RO retrievals include the very small differences to
ERA in the wet season in the 1000 hPa to 800 hPa layer, and
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Figure 2. Guam: Scatter plots of q for 7 data sets versus ERA for 4 pressure layers. Left to right: UCAR direct, UCAR 1D-Var, WEGC 1D-
Var, JPL direct, RS, and AIRS. Correlation coefficients as well as mean and standard deviation of the differences are given for each panel.
Note that both axes are on a logarithmic scale, and that axis limits vary for different pressure layers.

a dry bias and/or frequent reduced penetration depth (loss of
signal) in the dry season. The latter is a signature of super-
refraction, which itself is caused by strong humidity gradi-
ents, usually between the planetary boundary layer and the5

free troposphere.
Figure 5 also shows that all RO data sets are dry-biased

with respect to ERA in December through February in the
800 hPa to 600 hPa layer, which is clearly above the layer of
strong humidity gradients (compare to Fig. 3 (a)). We found10

similar behavior in previous work. In Rieckh et al. (2017),
Fig. 2, lower right panel, ERA data are given on the 775,
750, 700, and 650 hPa pressure levels (about 2.3, 2.6, 3.1,
and 3.8 km). The 775 hPa and 650 hPa levels agree well with
the aircraft and RO measurements; however, the two levels in15

between smear the sharp profile and the ERA shows humidity
values 1.5 g kg−1 to 2.5 g kg−1 (20 % to 35 %) larger than the
observations. Thus we conclude that the bias in Fig. 5 may
not be a dry bias in RO, but could be a wet bias in ERA in
the layer just above the strong humidity transition from wet20

(PBL) to dry (above). The assumed errors for assimilating
RO in ERA are large in the lower troposphere, and all assim-
ilated nadir viewing instruments only provide vertical reso-
lutions of about 2 km to 3 km. Unless a nearby, approved RS

contributes information locally, ERA does not have any ver- 25

tically well resolved humidity data that will cause the ERA
analysis to develop such sharp humidity gradients.

The 2007 time series of the q normalized difference for all
data sets are depicted for a Japanese station (Minamidaito-
jima) in Fig. S5 and Fig. S6 (supplement). 30

The 2007 time series of the refractivity N normalized dif-
ference for all data sets are depicted for Guam in Fig. S7 and
Fig. S8 (supplement).

3.3 Mean and RMS differences from ERA at Guam

We compute the mean and root mean square (RMS) of the 35

normalized differences at Guam to get a statistical overview
of the differences from the ERA for all data sets for three
pressure layers (1000 hPa to 400 hPa in 200 hPa layers) and
four seasons (Fig. 6).

Some general aspects of the different data sets seen in the 40

individual time series are clearly visible in the mean (Fig. 6,
top), such as the large negative (dry) difference of RO com-
pared to ERA (green and blue bars) in DJF for the 1000 hPa
to 600 hPa layer. In the 1000 hPa to 800 hPa layer, a dry bias
for RO exists throughout the year. The dry bias is largest in
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Figure 3. 2007 time series at Guam: (a) ERA relative humidity (%) with blue representing moist air and red representing dry air; (b)
normalized difference of q (%) between PERSIST and ERA; (c) normalized difference of q (%) between GFS and ERA. The bottom panel
shows that there are significant (±50%) differences in the two model data sets. The color bar on the right indicates relative humidity (%) in
panel (a) and specific humidity normalized differences in % in panels (b) and (c).

Figure 4. 2007 time series of the q normalized difference between (a) RS and ERA, and between (b) AIRS and ERA at Guam. The color bar
on the right indicates specific humidity normalized differences in %.
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Figure 5. The 2007 time series of the q normalized difference at Guam for the (a) UCAR direct, (b) UCAR 1D-Var, (c) WEGC 1D-Var, and
(d) JPL direct retrieval. The color bar on the right indicates specific humidity normalized differences in %.

DJF, but it is smaller and comparable in magnitude to the
biases of the RS and AIRS in MAM, JJA, and SON. RO re-
trievals show the greatest differences from each other in the
600 hPa to 400 hPa layer year round, and in the 800 hPa to5

600 hPa layer in the wet season. AIRS shows an overall dry
bias at all pressure layers and seasons. As expected, PER-
SIST has essentially no bias at any pressure layer or sea-
son. Because of the large seasonal variation in water vapor,
CLIMO has large seasonal positive and negative biases above10

800 hPa that are much larger than the biases of any other data
set. GFS shows significant differences from ERA, especially
in the dry season (DJF and MAM) in the 800 hPa to 600 hPa
layer.

Since the mean of the paired normalized differences is no15

indicator of their variability, we also show the RMS (Fig. 6,

bottom). The magnitude of the RMS is a measure of the ac-
curacy and scatter of the data compared to the reference. All
data sets have a comparable (below 800 hPa) or considerably
smaller (above 800 hPa) RMS than both CLIMO and PER- 20

SIST in all seasons (Fig. 6, bottom). The former is expected,
considering how little humidity changes throughout the year
in the 1000 hPa to 800 hPa layer. The latter indicates the
value (over persistence and climatology) of all observation
techniques above 800 hPa. As for the individual data sets, we 25

see that the RO RMS for all retrievals is comparable or lower
than RS and AIRS RMS for all seasons and pressure layers.
This increases our confidence regarding the value of RO mid
and lower tropospheric humidity data.
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Figure 6. Guam: The mean (top) and RMS (bottom) of the q normalized difference for all data sets, 3 pressure layers, and 4 seasons. Data
sets from top to bottom (per pressure layer): JPL direct, WEGC 1D-Var, UCAR direct, UCAR 1D-Var, RS, AIRS, GFS, PERSIST, CLIMO.

3.4 Statistics at the subtropical Minamidaitojima

At Minamidaitojima all data sets have a smaller bias com-
pared to ERA (Fig. 7, top) than at Guam. The strong RO
humidity bias in the dry season lower troposphere (as seen5

at Guam) is not present and biases of all observational data
sets (with the exception of AIRS) are less than 5 % in the
800 hPa to 600 hPa layer. Biases are larger in the 600 hPa to
400 hPa layer, especially for the RS. The RMS values at Mi-
namidaitojima (Fig. 7, bottom) shows a similar pattern to the10

one at Guam, with the RO and GFS RMS differences being
smaller than the RS and AIRS differences. The statistics of
the other two Japanese stations (Ishigakijima and Naze) are
similar (not shown).

4 Differences from ERA in dry versus wet atmospheric15

conditions

In section 3 we saw how the general atmospheric humidity
conditions (wet versus dry) can have an influence on the bi-
ases in the data sets with respect to ERA, especially for RO
(super-refraction with strong vertical humidity gradients) and20

AIRS (smaller bias in dry conditions). In this section, we in-
vestigate the different error characteristics for dry and wet
conditions in more detail at both the tropical and subtropical
locations. We created a “dry” and “wet” data set. For every
profile pair, we computed the average relative humidity (RH) 25

of the ERA (background) profile for the 800 hPa to 400 hPa
layer (RH800−400). This layer was chosen according to the
humidity distribution throughout the year (see Fig. 3, top).
If RH800−400 ≤30 %, the entire profile is added to the “dry”
data set. If RH800−400 ≥ 70 %, the entire profile is added to 30

the “wet” data set. Then the mean and RMS are computed for
both these data sets separately. These statistical values are de-
picted for the 1000 hPa to 800 hPa layer and the 800 hPa to
400 hPa layer (Fig. 8).

The mean of the normalized differences shows different 35

patterns for the “dry” and “wet” data sets at both Guam and
Minamidaitojima. At Guam, we see a dry bias of 6 % to 14 %
in the 1000 hPa to 800 hPa layer for all RO retrievals for the
“dry” data set (Fig. 8, left). We assume that the dry air in-
trusions and sharp humidity transitions above the PBL with 40

associated super-refraction conditions are primarily respon-
sible for the negative N and thus negative q bias at Guam.
The RO biases in the 800 hPa to 400 hPa layer vary around
zero (−4 % to 2 %). For the “wet” data set, the mean RO
differences from ERA vary significantly in the 800 hPa to 45

400 hPa from 0 % to 16 %, while the bias in the 1000 hPa to
800 hPa layer is between 0 % and−5 % for the RO retrievals.
At Minamidaitojima, the RO data sets show smaller and sim-
ilar biases for both pressure layers (Fig. 8, right). The “dry”
RO data set has no bias in the 800 hPa to 400 hPa layer and 50

very small biases (2 % to 5 %) in the 1000 hPa to 800 hPa
layer. The bias with respect to ERA of the “wet” RO data set
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Figure 7. Mina: Mean (top) and RMS (bottom) of the q normalized difference for all data sets, three pressure layers, and four seasons

Figure 8. Mean differences for dry versus wet atmospheric conditions based on RH800−400 at Guam (left) and Minamidaitojima (right). The
different colors represent the different data sets. Circles and stars represent the data sets for dry and wet conditions in the mid troposphere,
respectively.

ranges from−4 % to 4 % in the 800 hPa to 400 hPa layer and
from −4 % to 2 % in the 1000 hPa to 800 hPa layer. Overall,
we conclude that there are no major differences in the RO er-
ror characteristics between the “dry” and “wet” data sets and5

between the two pressure layers at Minamidaitojima, in con-
trast to Guam where background humidity conditions clearly
matter for the different error characteristics.

AIRS clearly shows a strong dry bias for both pressure
layers for wet background conditions. The bias is stronger at 10

Minamidaitojima, reaching more than −30 % in the 800 hPa
to 400 hPa layer, and−20 % in the 1000 hPa to 800 hPa layer.
For dry conditions, the AIRS bias ranges from −8 % to 2 %
for all locations and pressure layers. This agrees well with the
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small bias seen in the regions of dry air intrusions (December
to June) in the profile time series (Fig. 4, bottom).

Finally, the RS shows a small wet bias in the 1000 hPa
to 800 hPa layer for both the “dry” and “wet” data sets and5

both locations. In the 800 hPa to 400 hPa layer, the “dry”
data set shows a large wet bias, which is likely due to the
VIZ/Sippican B2 sensor’s poor performance in dry condi-
tions (see Section 2.3). At Minamidaitojima, both the “dry”
and “wet” data sets show a dry bias in the 800 hPa to 400 hPa10

layer, as described in Vömel et al. (2007) for the Vaisala
RS92 sensor for higher altitudes due to a radiation bias.

5 Variability during typhoon passages

We used the subtropical RS station Ishigakijima to investi-
gate how the different data sets perform during the extreme15

conditions of typhoon passages. In 2007, six typhoons passed
Ishigakijima within 350 km (the tracks and other details of
the typhoons can be found online9):

– Typhoon #4, July 6–16, date of closest approach
(320 km): July 12, as typhoon category 420

– Typhoon #7, August 4–10, date of closest approach
(260 km): August 7, as typhoon category 1

– Super Typhoon #9, August 11–19, date of closest ap-
proach (300 km): August 17, as typhoon category 4

– Typhoon #12, September 11–17, date of closest ap-25

proach (330 km): September 14, as typhoon category 4
– Super Typhoon #13, September 14–20, date of closest

approach (40 km): September 18, as typhoon category 3
– Super Typhoon #17, October 1–8, date of closest ap-

proach (110 km): October 6, as typhoon category 430

The time series of differences to ERA q for Ishigakijima
do not show a specific bias during typhoon passages, which
indicates that all data sets as well as ERA report a signal
similar in magnitude during the typhoon passages.

We computed the ERA average over the July to October35

time range (CLIMOJulOct) to create a typhoon season clima-
tology. We then compared all data sets to CLIMOJulOct to see
how q and T deviate from the summer average during the
passage of a typhoon. All data sets show a rapid increase in
humidity (Fig. 9) and higher temperature values (not shown)40

as the typhoons approach and pass close to Ishigakijima. The
signal is strongest above 600 hPa, where deep convection as-
sociated with the typhoons transport large amounts of water
vapor and release latent heat in the middle and upper tropo-
sphere (Emanuel, 1991).45

GFS, RS, and all RO retrievals show similar results. The
AIRS moist deviation during a passage is much weaker than
for any other data set, likely because of all the cloud cover as-
sociated with the typhoons, which limits the AIRS retrievals.

9http://weather.unisys.com/hurricane/w_pacific/2007/

All data sets show increased temperature during the ty- 50

phoon event (not shown), especially in the upper troposphere.
The UCAR and WEGC 1D-Var show a similar T structure.
The signal also agrees well with the GFS T signal. Both di-
rect retrievals (UCAR and JPL) do not provide physical tem-
perature information for the troposphere. 55

The signals in q, T , and N during a typhoon passage
are similar for Minamidaitojima and Naze (not shown), but
fewer typhoons passed in close proximity to these two sta-
tions.

6 Structural uncertainty of RO 60

Since we have data from several RO retrievals available, we
have the opportunity to compute the structural uncertainty
of RO humidity for our data set, following the methods of
Steiner et al. (2013) and Ho et al. (2009, 2012). The structural
uncertainty is computed to get an estimate of the variability 65

among the various RO retrievals.
First we create sub-data sets, which are limited to the pro-

files and pressure levels that are available for all four RO hu-
midity retrievals. The sub-data set for Guam consists of 141
profiles, and the sub-data set for the combined Japanese sta- 70

tions (since atmospheric conditions are very similar among
them) consists of 543 profiles. For each retrieval, the nor-
malized deviation for N and q from the inter-center mean is
computed (per pressure level):

∆X =
1

k

∑
k

(
Xk −X

inter-center
k

) 100

X
ERA
annual

(5) 75

where k indicates the profile number, X
inter-center
k is the

inter-center average for the kth profile (1/4(XUCAR direct
k

+XUCAR 1D-Var
k +XJPL direct

k +XWEGC 1D-Var
k ), and ∆X is the

deviation (of q or N ) of one particular RO retrieval from the
inter-center average. 80

Figure 10 shows the mean deviations of the four RO re-
trievals from the inter-center mean for Guam (left) and all
three Japanese stations combined (right) for N (top) and q
(bottom). Cut-off pressure is 350 hPa since JPL does not pro-
vide humidity data above that level. ForN (Fig. 10 (a,b)), the 85

absolute value of the mean deviation from the inter-center
mean is largest between 900 hPa and 700 hPa for all data sets
(maximum of 0.7 %), and decreases to about 0.1 % at 350 hPa
(about 8 km) at both locations. The latter result agrees well
with the estimate of Ho et al. (2009), who showed that the ab- 90

solute values of fractional N anomalies among four centers
(UCAR, WEGC, JPL, and GFZ (German Research Centre
for Geosciences)) are 0.2 % from 8 km to 25 km altitude. The
larger differences between the various RO processing centers
at lower altitudes primarily come from different handling of 95

profiles experiencing 1) atmospheric multipath, 2) receiver
tacking errors, and 3) super-refraction (see Ho et al. (2009)
for details on the RO processing center procedures). This is
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Figure 9. The q difference from CLIMOJulOct for (a) GFS, (b) UCAR direct, (c) RS, and (d) AIRS shows increased humidity during typhoon
passages near Ishigakijima. Typhoon passages are marked by vertical lines (dashed: closer than 110 km, dash-dotted: closer than 330 km).

Figure 10. Deviations for four RO retrievals from the intercenter mean for refractivity (top) and specific humidity (bottom) at Guam (left)
and the Japanese stations (right). The mean (and standard deviation) of each data set is shown by line style (and as shaded and hatched area):
UCAR direct: black solid (and o o o, blue); UCAR 1D-Var: black dash-dotted (and · · ·, blue); WEGC 1D-Var: black dashed (and ////, gray);
JPL direct: black dotted (and \ \ \, gray). Red horizontal lines indicate the number of profile pairs at that pressure level.

especially true for direct retrievals (such as the UCAR di-
rect and JPL direct), where both RO N and a-priori T are

assigned zero error, and the differences in Fig. 10 (a) and
(b) are dominated by the previously mentioned conditions.
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For 1D-Var retrievals, another potential source of differences
is the N error model in the respective 1D-Var retrieval. All
these factors vary with latitude and general atmospheric con-
ditions.5

For q (Fig. 10 (c,d)), the structural uncertainty generally
increases with increasing altitude (since the impact of water
vapor on N decreases with increasing altitude). At Guam,
it is about 2 % in the PBL, increases sharply to 5 % around
800 hPa, and stays around 5 % to 8 % above. At the Japanese10

stations, the structural uncertainty increases constantly with
increasing altitude, from 2 % close to the surface to 5 % at
400 hPa. At both locations, the center anomalies increase
sharply at 350 hPa, which indicates again that RO derived
humidity has high uncertainty at and above that level.15

7 Conclusions

We compared three observational data sets (radio occultation
(RO), radiosondes (RS), and AIRS) and two model data sets
(ERA and GFS) over the year 2007. Rather than comparing
averages over larger time scales and regions, we compared20

individual profiles over specific locations (in the tropical and
subtropical West Pacific). The data sets that were compared
to ERA, which we considered the reference data set, in-
clude profiles from four different RO retrievals (UCAR di-
rect, UCAR 1D-Var, WEGC 1D-Var, JPL direct), RS, AIRS,25

GFS analysis, ERA PERSIST, and ERA CLIMO (the last two
to set a quality baseline). We studied both the time series of
profile pairs as well as the mean and RMS computed for the
four seasons and three pressure layers (1000 hPa to 800 hPa,
800 hPa to 600 hPa, and 600 hPa to 400 hPa). As expected,30

we found different characteristics for each data set. Our main
conclusions are:

1. For all four RO humidity retrievals, the magnitude of
the mean biases relative to ERA are smaller or compa-
rable to those of the RS and AIRS in 800 hPa to 400 hPa35

layer. Above 600 hPa, differences between the various
RO humidity retrievals generally become larger (Fig. 6
and 7, top).

2. All data sets have smaller RMS differences than both
CLIMO and PERSIST (Fig. 6 and 7, bottom). The ex-40

ception is the tropical 1000 hPa to 800 hPa layer, where
all RMS values are comparable in magnitude due to
the nearly constant humidity conditions throughout the
year. This confirms that all observational data sets con-
tribute valuable information compared to persistence45

and climatology.

3. The RMS of all RO retrievals is comparable or lower
than the RMS of the RS and AIRS for all pressure layers
below 400 hPa, which confirms the high quality of RO
profiles (Fig. 6 and 7, bottom). The agreement among50

the four different retrievals of specific humidity in the

lower and middle troposphere validates the stability of
the four retrievals.

4. In the time series, the four RO retrievals agree within
10 % in the 1000 hPa to 600 hPa layer (Fig. 5). Differ- 55

ences become larger in the 600 hPa to 400 hPa layer,
where the UCAR 1D-Var gets drier, the UCAR direct
alternates between too dry and too wet, and both the
WEGC 1D-Var and JPL direct become too wet. Since
water vapor decreases exponentially with altitude, the 60

retrieval becomes more and more sensitive to the pre-
scribed temperature, which can lead to larger humidity
differences.

5. The structural uncertainty of RO humidity retrievals is
estimated from anomalies of RO retrievals from the 65

inter-center mean. Maximum differences among re-
trievals from 1000 hPa to 400 hPa are between 1 % and
0.2 % for refractivity, and 3 % and 10 % for specific hu-
midity (Fig. 10).

6. RO has the potential to contribute valuable information 70

on water vapor via data assimilation in the mid and
lower troposphere, especially when high-quality RS are
unavailable (southern hemisphere, over oceans). In con-
trast to infrared or microwave sounders, RO can resolve
strong vertical gradients of humidity. 75

7. AIRS is biased dry throughout the entire troposphere, as
noted previously (Wong et al., 2015). This bias is par-
ticularly strong for wet atmospheric conditions (Fig. 8).

8. All data sets show increased humidity and temperature
values during a typhoon passage (Fig. 9). Differences 80

from ERA do not change noticeably during a typhoon
passage, indicating that all data sets and ERA report a
signal that is similar in magnitude during the typhoon
passages.

We find that the alternating wet and dry seasons at Guam, 85

together with the very sharp transition at the top of the plane-
tary boundary layer in the dry season at Guam, are especially
challenging for the RO, RS, and AIRS observational systems
compared to the conditions at the subtropical Japanese lo-
cations. The results comparing the different data sets to the 90

ERA are similar at the three Japanese RS stations.
All the observational data sets at the Japanese stations

show a response to the rapid increase of water vapor through-
out the troposphere during the passage of typhoons; however,
the AIRS response is weaker than the RS and RO responses, 95

probably because of the extensive clouds associated with the
typhoons.

Our results support the findings of Vergados et al. (2018),
e.g. the relative dryness of the UCAR 1D-Var and wetness of
the JPL RO humidity retrieval, and the dry bias of AIRS. 100

While Vergados et al. (2018) draw their conclusions from
large-scale multi-year climatologies, we use high resolution
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time series to depict the short-term and small scale variabil-
ity of humidity, and add results below 700 hPa, where the
tropospheric water vapor content is highest.

We conclude that RO humidity retrievals have compara-5

ble or better accuracy than both standard RS and AIRS data
at the four tropical and subtropical locations studied here
above 800 hPa, as well as below 800 hPa if super-refraction
is absent. If assigned smaller errors (and therefore greater
weights) in the assimilation process, RO could have a pos-10

itive impact on improving the water vapor analysis in data
assimilation in the lower and mid troposphere.
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