
We thank the three referees for their thoughtful comments. We have revised the paper after carefully 
considering their comments. Their comments (in italics) and our responses are addressed below. All 
page and line numbers in the referee’s comments refer to the originally submitted version of the paper. 
All page and line numbers in our response refer to the revised paper.

Reviewer 1: Interactive comment on Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2017-487, 
2018

General Comments:
The authors estimate the observation and model error variances by using the “N-cornered hat 
method”. In this study, they estimate the error variances for observation and model in several 
variables, e.g., refractivity, temperature, specific humidity and relative humidity. They compare their 
results with previous studies and find that the error patterns are consistent. The errors characters for 
the GPS RO retrieved temperature and moisture are rarely discussed in previous studies, and it is good
to see the estimation in the study. For the manuscript, I have some comments as follows.

Specific comments:
1. The manuscript discusses the observational error variances for the refractivity, temperature, and 
moisture (q and RH) from GPS RO, but not for the bending angle. The bending angle from GPSRO has
been assimilated in several operational centers for weather forecast. Is it possible to provide the error 
estimation for the bending angle as well? This could be interesting and useful for community users 
and/or the NWP people.

We agree that the bending angle (BA) error variance estimates would be very interesting. However, as 
shown by Gilpin et al. (2018b), adding BA to the observations currently in the study (refractivity, 
temperature, relative humidity and specific humidity) is not trivial.  To use the 3CH method, BA 
corresponding to radiosonde, ERA-Interim and GFS data sets would have to be computed from the 
refractivity of these data sets using a forward model (the Abel Integral). The Abel Integral requires 
vertical differentiation of refractivity, which requires accurate vertical interpolation of refractivity 
between the model (or radiosonde) levels. The vertical resolutions of the models (and often also the 
radiosonde) are low compared to the resolution required to accurately approximate the Abel Integral. 
For these low-resolution data sets, small-scale atmospheric structures as well as the quasi-exponential 
variation of refractivity with height, can create large errors in the calculated bending angle. Thus, to 
add discussion on the forward model and interpolation methods and then to compute error variances for
bending angles is outside the scope of this study.

2. The samples are picked up within 600km and 3h for comparison, is the criteria the same for ERA 
and GFS? For example, do the authors apply a spatiotemporal interpolation when comparing ERA and
RO? If it uses the co-location criteria, how much could this affect the error variance?

In response to this comment, we have added more detail to how the data sets are co-located. We have 
added a new Section 2.5 (on Page 4) titled “Co-location of the data sets”:

“The locations of the four radiosonde stations are chosen for the comparisons.  We use RO observations
that are located within 600 km and 3 hours of the radiosonde launches. CDAAC provides GFS and 
ERA profiles that are already linearly interpolated in space and time to the RO location and time. These
interpolated profiles, along with the RO observations, were corrected for their time and spatial 
differences from the radiosonde data using a model correction algorithm (Gilpin et al., 2018). Thus the 
effect of spatial and temporal differences among the data sets is expected to be minor.”



3. The abstract does not point out the major conclusion of the study. I would suggest to add the part 
into the abstract.

We agree and have added the following paragraph to the abstract:

“Our results show that different combinations of the four data sets yield similar relative and specific 
humidity, temperature, and refractivity error variance profiles at the four stations, and these estimates 
are consistent with previous estimates where available. These results thus indicate that the correlations 
of the errors among all data sets are small and the 3CH method yields realistic error variance profiles. 
The estimated error variances of the ERA-Interim data set are smallest, a reasonable result considering 
the excellent model and data assimilation system and assimilation of high-quality observations. For the 
four locations studied, RO has smaller error variances than radiosondes, in agreement with previous 
studies.”

4. The statistics are based on samplings near the four stations. According to previous studies, the 
observational error variance could vary with latitudes, can the results in this study be applied 
globally?

The main point of this paper is to show how the 3CH method can be used to estimate vertical profiles 
of temperature, relative and specific humidity, and refractivity error variances of five data sets at 
selected challenging locations in the tropics and sub-tropics. The error variances of all data sets are 
likely to vary with latitude, and also over different regions and seasons (at least for the models and 
radiosondes with their different radiosonde sensor types). A study using different locations, seasons, 
and years would be interesting and would be a better indicator of the error variances on a global scale. 
A calculation of these error variances at many locations over a number of years would also be 
interesting, to see how the errors of the various systems vary over time.

5. In Fig. 5a, A1 and A3, there are several gaps in STD (ERA-True). The ERA-Interim data should be 
continuous.

The ERA data themselves are continuous, but the estimated ERA-Interim error variances are close to 
zero. Furthermore, we neglect the error covariance terms in the computation and have a limited sample 
size. The combination of these three factors can lead to negative estimated error variances at times 
when the true error variance is so close to zero, and the STD is thus undefined. This is discussed briefly
at the end of Section 3 and also in Appendix A, with references.

We added the following sentence on page 9 lines 5-7:
“The gap in the computed ERA error STD in Fig. 5a occurs due to negative estimated error variance 
values, which can result from having a limited sample size, neglecting error covariance terms during 
computation, and having an error variance that is already close to zero (as is the case for ERA).”

6. In the manuscript, the "N" can be represented for several meanings, e.g., RO refractivity, the number
of samples for statistic, and number of data sets, etc. It would be better to use different characters to 
avoid confusing.



Thank you. We now use “N” for refractivity and “n” for the number of samples now throughout the 
manuscript.

7. Page 4 line 15: There are three types of COSMIC data provided from CDAAC, i.e., re-processed, 
post-processed, and real-time data. In this manuscript, it uses the ERA-Interim data as the background 
for the 1DVAR retrieval, do the authors get the COSMIC data from re-processed data?

We use only COSMIC re-processed data in this study. We added this information in Section 2.3 
describing RO.

Technical corrections:
1. The variables should be in the same form with italics, for example, page 4 line 17:
“Specific humidity q”→please change to “Specific humidity q”; page 4 line 18: “water vapor pressure
e”→“water vapor pressure e”.

Corrected

2. Page 22 line 14 and line 16: three-cornered hat (THC) → three-cornered hat (TCH)

Corrected to 3CH, which we now use throughout the paper.

3. Pages 24 and 25: The descriptions for equations (13)-(15) are inconsistent, for example, the 
equation (13) is computed from Eqs. (3), (5) and (6), not (1), (2) and (3) that indicated in line 26.

We have eliminated the derivation and associated discussion of the linearly dependent equations for 
estimating the error variances and so these equations no longer exist.

4. Page 29 Fig. A4 figure caption: Mean of six...
of normalized “specific humidity”→ should be “refractivity”

Thank you. We have deleted this figure from the revised paper.

Reviewer 2: Interactive comment on Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2017-487, 
2018 Received and published: 19 April 2018

This manuscript applies the N-cornered hat technique to estimate errors in geophysical
measurements: radio occultation, radiosondes, ERA-Interim reanalysis and weather
forecast outputs at four locations in the tropics and subtropics. The N-cornered hat
technique is closely related to the method of triple collocation, which has been widely
applied to geophysical datasets in the literature (as the authors note). However, some
subtle differences between the approaches are missed in this analysis, which may
impact the results.

One important difference between triple collocation (TC) and the three-cornered hat
(3CH) is the treatment of the underlying truth. TC treats the underlying truth as a random



variable (Stoffelen 1998), whereas 3CH does not. As a result, TC requires an additional assumption 
compared to 3CH: the errors must be uncorrelated with the underlying truth. Since the underlying 
truth is not considered to be a random variable in 3CH, the correlation between the errors and truth is 
always zero. So, should the underlying truth be treated as a random variable (as in TC) or as 
deterministic (as in 3CH)? I would argue that, for assessing the stability of clocks, the assumption of a
deterministic underlying truth is quite reasonable. However, when considering atmospheric 
applications, as in this study, it is hard to justify. The atmosphere is a chaotic system with substantial 
internal variability. Differences between measurements can be due to measurement errors, but they can
also be due to the internal variability of the chaotic system. In Figure 3a, for example, there are clear 
differences between the specific humidity profile estimated by GFS and RS on 13 January, 2007 at 
00:23 UTC. Even if the measurement and modelling errors of both GFS and RS were both zero,
we would expect there to be some difference between these two profiles because of the internal 
variability of the system, even accounting for some assimilation of observations into the GFS. Yet the 
3CH implicitly attributes ALL differences between different measurement types to measurement errors 
in one or more measurement types. This seems misguided and is one of the reasons TC is typically 
applied to geophysical measurements rather than 3CH. Treating the underlying truth as deterministic 
rather than random leads the authors to neglect the impacts of possible covariance between the errors 
and the underlying truth, which is likely biasing the error estimates in this study.

The 3CH method allows for a temporally varying “truth” and is appropriate for complex geophysical 
systems such as the atmosphere. For example, it has been successfully used by Valty et al. (2013) to 
estimate the geophysical load deformation computed from GRACE satellites, GPS vertical 
displacement measurements, and global general circulation (GCM) models. O’Carroll et al. (2008) 
estimated the errors associated with two radiometer and buoy measurements of sea-surface 
temperatures using exactly the same equations we used. They also provide an excellent discussion on 
“truth,” and in particular conclude that the basic equations in the 3CH method (our Eqs. (7)-(9)) 
“continues to hold regardless of whatever our definition of the true value might be.” 

The differences associated with the “internal variability” of the atmosphere as illustrated in Fig. 3a are 
partly due to measurement errors and partly due to representativeness errors, as the reviewer notes. 
Both types of errors are included in the error estimates using the 3CH methods.

The main difference between the 3CH and TC method is that the TC method corrects for additive and 
multiplicative biases among the three data sets, as discussed by Stoffelen (1998), Vogelzang et al. 
(2011) and others. The TC method calibrates two of the data sets against the third, eliminating biases 
among the three data sets.

We have added a new section (A3) in Appendix A that compares the 3CH and TC method for a subset 
of our data sets. Also, Appendix A now includes more discussion of the differences between the two 
methods and the additive and multiplicative biases. The results in A3 of the Appendix show that the 
two methods give very similar results (please see next response).

 A second important difference is that TC accounts for multiplicative biases in the measurements in a 
way that 3CH does not. 3CH implies the following measurement model:
i = T + e_i . . . (1)
where T is the unknown true value, and e_i is the error in measurement i. In contrast, triple collocation
starts with the measurement model:
i = a_i + b_i*T + e_i . . . (2)
where a_i and b_i are additive and multiplicative biases, respectively (see Gruber et al. (2016), 



equation 1). The advantage of the measurement model in TC is that it is robust to multiplicative biases.
If multiplicative biases exist but are not factored into the measurement model (as in 3CH), the 
multiplicative biases will lead to substantial correlations between the errors and the unknown truth. In 
turn, the neglect of these correlations will bias 3CH error estimates.

Given both of these problems with the analysis, it is not surprising that the estimated errors (for 
example, in Figure 10) are not internally consistent (as they should be, if either technique – 3CH or TC
– were applied appropriately). 

We have applied the 3CH method appropriately. Our equations are correct and all assumptions are 
stated clearly. As mentioned above, the 3CH method has been applied successfully to other geophysical
data sets. Biases in the measurements may be present, but tend to cancel as discussed in our discussion 
paper AMT-2018-75 “Evaluating two methods of estimating error variances from multiple data sets 
using an error model.” 

We do not consider the results shown in Fig. 10 to be inconsistent. Using different combinations of data
sets to estimate the error variance profiles will lead to different estimates because of different (though 
small) error covariances in the different data sets and the limited sample size. This is also shown using 
the error model and idealized data sets in AMT-2018-75. We describe this in the summary and give 
more detail in Appendix A where the variation of three estimates is discussed: “If all the neglected error
covariance terms were in fact identically zero and the sample size was very large (much larger than our 
sample size), all three estimates of the error variances would be the same. The fact that they give 
different solutions is because the neglected COVerr terms are in reality not zero, and hence their neglect 
affects the three approximate equations in different ways to give three different solutions. The relatively
small sample size n also contributes to the differences in the three solutions, which are a measure of 
these effects.”

Furthermore, as discussed above, we computed the estimated error variances for specific humidity 
using the TC method (including multiplicative and additive biases) and showed that the results are very
similar to the 3CH method, confirming that the effect of biases is small in the 3CH method for these 
data sets. Please see two figures below for radio occultation (RO), radiosonde (RS), ERA, and GFS. We
have added these results to Appendix A in the revised paper.



Fig. 1: Estimated RO and RS error variances for specific humidity at Minamidaitojima (Japan) using 
calibrated data as in the TC method (left) and the uncalibrated data as in the 3CH method (right). For 
the TC method, the RO, RS and GFS data sets are calibrated with respect to ERA as the reference data 
set. The following combinations of the 4 data sets are used: (ERA, RO, RS), (ERA, RO, GFS), and 
(ERA, GFS, RS).



Fig. 2: Estimated ERA and GFS specific error variances for ERA at Minamidaitojima (Japan) using the 
triple co-location (TC) method (left) and the three-cornered hat (THC) method (right). For the TC 
method, the RO, RS and GFS data sets are calibrated with respect to ERA. The following combinations
of the 4 data sets are used: (ERA, RO, RS), (ERA, RO, GFS), and (ERA, GFS, RS).

While 3CH and TC are similar in many respects, there are good reasons to use TC rather than 3CH 
when characterizing errors in geophysical data. Therefore, to address these concerns, I recommend the
authors reframe their analysis using TC rather than 3CH. The differences between the techniques are 
relatively small, but significant, and warrant a substantial rewrite of the manuscript, in my view.  

It would be interesting to do a detailed comparison of the 3CH and TC methods. However, given the 
small differences of the error variances computed of the TC and 3CH methods (as depicted in Figs. 1 
and 2 above), there is no reason to redo our entire study using a different method. The 3CH method is 
well established for geophysical systems (O’Carroll et al., 2008; Valty et al., 2013) and the realistic 
results shown in our paper speak for themselves. As discussed in the previous response, our error model
in paper AMT-2018-75 showed that biases have a relatively small effect in the 3CH method, a result 
that is supported by the similarity in the results comparing the 3CH and TC methods (Figs. 1 and 2 
above)



We have addressed this issue, as discussed above, by adding a new section in Appendix A that 
compares the TC and 3CH methods using a subset of our data, and shows that the two methods give 
very similar results. 

Specific comments Line 7, p 16: “. . .indicate that our estimates are reasonable and consistent with 
these studies.” It seems unreasonable to be making this claim given the estimates in this study vary 
enormously. It is easy for an imprecise estimate to be consistent with previous studies, but this is not 
particularly informative.

To our knowledge, this is this first study of its kind comparing multiple error variance estimates by 
using several different combinations of data sets at the same locations and time using the 3CH method. 
As far as we know, there are no previous studies of any kind that estimate vertical profiles of the errors 
associated with specific humidity, relative humidity, temperature and refractivity estimates over the 
entire range of the troposphere as done in our paper. In addition, as discussed in the response to 
Reviewer 1, the error characteristics of the models, radiosondes and RO are likely to vary with latitude,
longitude, seasons and year (as the models change, radiosondes use different sensors, and even RO data
and processing change). Thus there are no standards for comparison. However, as we show, the results 
we obtain are reasonable and consistent with other studies of individual observing systems and the 
consistency in the three estimates for each observations and the clear differences in the error estimates 
of the different data sets support the validity of the results.

References
Stoffelen, Ad. “Toward the True Near-Surface Wind Speed: Error Modeling and Calibration
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Reviewer 3: Interactive comment on Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2017-487, 
2018 Received and published: 1 May 2018

General comments:
This is a very well written paper describing how one can estimate the error variances of different 
datasets of atmospheric profiles using the differences between three or more independent datasets of 
the same variable. The method ("N-cornered hat") is used to estimate the error variances in tropo-
spheric profiles of four variables in five datasets at four locations in Japan and in Guam. The results 
indicate that the main assumption of neglecting error correlations between the datasets is reasonably 
valid. I enjoyed reading the paper and have only a few minor specific comments and technical correc-
tions.

Thank you for your remarks and the detailed comments below.

https://doi.org/10.1016/j.jag.2015.09.002


Specific comments:

Page 3, line 4: "Paper 1" is only referred to once a few lines below (line 9). Thus it seems overkill to 
introduce it as "Paper 1" here. Perhaps in line 9 you can just say something like "Because the focus in 
Rieckh et al. (2017) was ...".

We agree and deleted the “Paper 1” reference.

Page 3, section 2.1. Please clarify if you are using analysis or forecast products from ERA-Interim. If 
you are using forecast products, that would be another good argument for small correlations, since the 
ERA forecasts only contain earlier observations via the assimilation, and are therefore independent of 
the observations that they are compared to.  

We are using the analysis products from ERA-Interim and now state that on Page 3 Line 8 in the re-
vised manuscript.

Figs. 6-9: The results without RO (those involving only RS,GFS,ERA) are listed twice in b,c,d panels. I 
would have expected identical curves, but there are small differences (e.g. refractivity from 
GFS,ERA,RS below 900 hPa in Fig 9c - light and dark gray dotted curves). Why is that?

This is a subtle point. The differences in the results using only RS, GFS, and ERA as pointed out above 
are due to slightly different sample sizes associated with the two RO retrievals in the mid and lower 
troposphere. There are two estimates of the error variances for RO because we estimate the error vari-
ance for RO using the Direct and 1D-VAR humidity retrievals of RO. This is discussed in the first para-
graph of Section 5.1. For each RO retrieval, all four data sets (RS, RO, ERA, and GFS) are co-located. 
The data ensemble at each level is used only if data from all four sources are available on that level. 
The 1D-VAR RO data set extends to lower levels than the Direct RO data set because of the way the 
1D-VAR is calculated. We now show this in a revised Figure 1 of the revised manuscript.  Therefore, 
the number of data ensembles (including GFS, ERA and RS) available per level is slightly higher for all
comparisons using the 1D-VAR retrieval compared to the number using Direct retrievals. These 
slightly different data sets give slightly different error variance estimates for the two (GFS,RS and 
ERA) ensembles.

Page 15, line 26: "... mean of the six estimates of the error variances ...". But it looks like the light and 
dark results are separated. Is the mean only over three estimates each? How is the standard deviation 
with only three estimates taken? For small samples, it becomes important that the denominator in the 
expression for the sample variance is more correctly written as N-1 (N=3 here). This would also alter 
the shaded areas in the appendix.

The reviewer is correct, this is the mean of the three estimates. We corrected the text on page 13 line 8 
and the caption of Fig. 10. 

Regarding the comment on how we computed the standard deviation, we used N, not N-1 in the origi-
nal paper. We corrected this to use N-1 (two) in the revised paper (updated Figs. 10 and B1-B4). The 
results were not significantly different. We included the equation used to compute the STD in a foot-
note on page 13.

Page 21, line 30: "... dry and wet water vapor biases ...". Needs reformulation.



We reworded this to "...uses a radiosonde that is thought to have large water vapor biases...."

Page 24, line 26: Shouldn’t it be Eqs. (3), (5), and (6)? And the same for the following
eqs.

The reviewer is correct. However, we removed this entire section of the appendix (please see next com-
ment). 

However, eqs. (10), (11), and (12), with (13), (14), and (15) inserted are not additional independent 
equations (as you also write). For example, (10) with (13) inserted is equivalent to (7) + (8) - (9). In 
general, you could get many more (infinitely many) equations if you don’t care that they are dependent,
namely A*(7)+B*(8)+C*(9), where A, B, and C are any numbers, except those where A+B+C=0. 
Thus, there are not only six different ways. There are three independent ways and infinitely many if you 
also count dependent ones that can be formed by linear combinations of the first three. I think you need
to make clear that there is nothing unique about the three additional equations that you choose. As it is,
one could get the impression that they are in some way special (in line 5 you write "the full six equa-
tions" and in line 18 "the remaining three estimates"). Perhaps they are special if one can show that 
they give rise to the smallest possible standard deviation of the variance estimates. I don’t know if that 
is the case. In the first three independent equations, there are 3/2 MS terms, and 3 COV terms involved.
In the additional three equations there are 5/2 MS terms and 5 COV terms. The more terms there are, 
the larger the standard deviation of the variance estimates will become, at least potentially. Interesting 
stuff!

We agree with this comment. And indeed the standard deviations of the estimated error variances using 
the three linearly dependent equations are greater than those from the three linearly dependent equa-
tions, as stated in line 6 page 29 of the original manuscript. However, we decided to eliminate the re-
sults from the three linearly dependent equations in the revised paper. We added the following para-
graph in Appendix A:

“As noted by an anonymous reviewer, it is possible to derive infinitely many linearly dependent 
equations by combining Eqs. (A8)-(A10) in different ways using the form M1 x Eq. (A8) + M2 x Eq. 
(A9) + M3 x Eq. (A10) where M1 , M2 and M3 are any numbers except those for which M1 + M2 + M3 = 
0. We did not pursue this possibility in this paper, but instead used the three linearly independent 
equations only in our estimates of error variances.”

Page 25, line 15-16: I do not understand this part of the sentence: "...the set of observations in the 
pairs (RO,ERA), (RO,GFS), (GFS,ERA), (RO,RS), (RS,ERA) and (RS,GFS) are the same (they are in 
our case)..." What are the set of observations here?

We clarified this by writing: “If all the neglected covariance terms were in fact identically zero and the 
sample size was very large (much larger than our sample size), all three estimates of the error variances
would be the same.” 

Technical corrections:
Page 2, line 3: model -> modeled



Done

Page 3, line 14: Missing "a" in front of global.

Done

Page 11, line 6: Acronym STD should be written out first time.

Done

Page 12, line 32: that -> than

Done

Page 15-16, lines 30,1-2: Should RS and RO be switched in the text here? RO is the
one that oscillates between 0.1 and 0.3 (% squared). RS is fairly constant about 0.1.

Yes. We corrected and clarified the description in the revised text.

Page 21, line 17: Missing "to" in front of RO.

Corrected

Page 22, line 27: Vogelznang -> Vogelzang

Corrected

Page 25, line 18: "in are in"?

A typo-we deleted the first “in”.
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Abstract. In this paper we show how multiple data sets, including observations and models, can be combined using the “three

cornered hatmethod”
:
”
::::::
(3CH)

::::::
method

:
to estimate vertical profiles of the errors of each system. Using data from 2007, we esti-

mate the error variances of radio occultation, radiosondes, ERA-Interim
:
, and GFS model data sets at four radiosonde locations

in the tropics and subtropics. A key assumption is the neglect of error covariances among the different data sets, and we examine

the consequences of this assumption on the resulting error estimates.
:::
Our

::::::
results

::::
show

::::
that

:::::::
different

::::::::::::
combinations

::
of

:::
the

::::
four5

:::
data

::::
sets

::::
yield

::::::
similar

::::::
relative

::::
and

::::::
specific

::::::::
humidity,

:::::::::::
temperature,

:::
and

:::::::::
refractivity

::::
error

::::::::
variance

::::::
profiles

::
at

:::
the

:::
four

:::::::
stations,

::::
and

::::
these

::::::::
estimates

:::
are

:::::::::
consistent

::::
with

:::::::
previous

::::::::
estimates

::::::
where

::::::::
available.

:::::
These

::::::
results

::::
thus

:::::::
indicate

:::
that

:::
the

::::::::::
correlations

:::
of

:::
the

:::::
errors

::::::
among

::
all

::::
data

::::
sets

:::
are

::::
small

::::
and

:::
the

::::
3CH

:::::::
method

:::::
yields

:::::::
realistic

::::
error

:::::::
variance

:::::::
profiles.

::::
The

::::::::
estimated

:::::
error

::::::::
variances

::
of

:::
the

:::::::::::
ERA-Interim

:::
data

:::
set

:::
are

::::::::
smallest,

:
a
:::::::::
reasonable

:::::
result

::::::::::
considering

:::
the

:::::::
excellent

::::::
model

:::
and

::::
data

::::::::::
assimilation

::::::
system

::::
and

::::::::::
assimilation

::
of

::::::::::
high-quality

:::::::::::
observations.

::::
For

:::
the

::::
four

::::::::
locations

::::::
studied,

::::
RO

:::
has

::::::
smaller

:::::
error

::::::::
variances

::::
than

:::::::::::
radiosondes,

::
in10

::::::::
agreement

::::
with

::::::::
previous

::::::
studies.

:

1 Introduction

Estimating the error characteristics of any observational system or model is important for many reasons. Not only are these

errors of scientific interest, they are important for data assimilation systems and numerical weather prediction. In many modern

data assimilation schemes, observations of a given type are weighted proportionally to the inverse of their error variance (e.g.15

Desroziers and Ivanov, 2001).

Kuo et al. (2004) and Chen et al. (2011) used the difference between radio occultation (RO) observations of a variable

X (e.g.refractivity) and short-range model forecasts of X to estimate the error of the RO observations, using the concept of

apparent or perceived errors, defined by

XAE = XRO −Xfcst (1)20

where XAE is the apparent error of the RO observation and XRO and Xfcst are the RO observations and model forecast values,

respectively.

1



The error variance σ2
a of the apparent error is given by

σ2
a =

1

n
:

∑ X2
AE

N :
X2

AE
::

(2)

where N
::
n is the number of samples of observed and model

:::::::
modeled

:
RO at the same location and time.

The relationship between the apparent error variance σ2
a, the observational error variance σ2

o , and the forecast error variance

σ2
f is given by:5

σ2
a = σ2

o +σ2
f − 2COVerr

::
(XRO,Xfcst) (3)

where the COV
:::err term is the error covariance between the observations and the forecasts. If the error variance of the forecast

σ2
f is estimated independently, the observational error variance can be estimated from the apparent error variance, under the

assumption that the observational errors are uncorrelated with the forecast errors (in which case the COV
::err:

term in Eq. (3) is

zero).10

σ2
a = σ2

o +σ2
f (4)

We note that the apparent errors are the same as the (O – B) (observation minus background) or innovations as used in data

assimilation methods and studies (Chen et al., 2011).

As discussed by Kuo et al. (2004) and Chen et al. (2011), the forecast error variance can be estimated by two alternative

methods, the “NMC method ”
:::::
NMC

::::::
method

:
(Parrish and Derber, 1992) or the Hollingsworth and Lönnberg (1986) method.15

Kuo et al. (2004) used both methods to estimate the observational errors of RO refractivity using the NCEP AVN model. Chen

et al. (2011) used the NMC method and Weather and Research Forecast Model (WRF) to estimate the forecast error variance

and then the RO refractivity error variance.

In this paper, we develop a method for estimating
::::::
estimate

:
the error variances of multiple data sets

:::::
using

:::
the

:::::::::::::
“three-cornered

:::
hat”

::::::
(3CH)

:::::::
method

::::::::::::::::::::
(Gray and Allan, 1974) . Unlike the apparent error method, this method does not require independent20

estimates of the error variance of a forecast; it uses the differences between combinations of three data setsusing the “three

cornered hat” method (description
:
.
:::
The

:::::
3CH

:::::::
method

::
is

::::::::
described

:
in Appendix A )

:::::
along

::::
with

:::
the

:::::::
closely

::::::
related

::::::
“triple

:::::::::
co-location

:::::::
method”

:::::::::::::::
(Stoffelen, 1998) . The data sets may be either different model or observational data and estimates of the

error variances of all the data sets are computed by the method. We compare three observational data sets (two versions of

radio occultation
:::
RO retrievals and radiosondes

::::
(RS)) and two model data sets at four locations in the tropics and subtropics to25

estimate the error variances of all five data sets. We find that the results are consistent with each other and with previous error

estimates, where available.

2 Discussion of data sets

We use five data sets from an entire year (2007) in this study. Rieckh et al. (2017, hereafter Paper 1) ,
::::::::::::::::
Rieckh et al. (2018) extensively

studied the properties of these data sets and their daily variability over 2007 in the tropical and sub-tropical western Pacific.30

They are described in more detail there, but are summarized briefly here for convenience.
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We chose 2007 for the year of our study because the number of COSMIC (Constellation Observing System for Meteorology,

Ionosphere and Climate) RO observations was near a maximum at this time. Because our
:::
the primary interest in Paper 1

::::::::::::::::
Rieckh et al. (2018) was the evaluation of water vapor observations and model analyses in challenging tropical and subtropical

environments, we chose one radiosonde (RS )
::
RS

:
station in the deep tropics and three Japanese stations in the subtropics.

Because of our focus on water vapor, we carry out the analysis from 1000 to 200 hPa.5

2.1 ERA-Interim

The ERA-Interim (hereafter ERA) reanalysis is
:
a global model reanalysis produced by the European Centre for Medium-Range

Weather Forecasts (ECMWF) (Dee et al., 2011). Information about the current status of ERA-Interim production, availabil-

ity of data online, and near-real-time updates of various climate indicators derived from ERA-Interim data , can be found at

https://www.ecmwf.int/en/research/climate-reanalysis/reanalysis-datasets/era-interimhttps://www.ecmwf.int/en/research/climate-reanalysis/10

reanalysis-datasets/era-interim.

The ERA
:::
We

:::
use

:::
the

::::
ERA

:::::::
analysis

:::::::
product,

::::::
which assimilates both RS and RO data for the entire year of 2007; hence some

correlation of model, RS, and RO errors is likely.
::::::::
However,

:::::
there

:::
are

:::::
many

::::
other

:::::::::::
observations

:::::
going

::::
into

:::
the

::::
ERA

:::::::::
reanalysis

:::
and

:::::
model

::::::::::
correlations

::::
with

::::
any

:::
one

:::::::::::
observational

::::
data

:::
set

:::
are

:::::
likely

::
to

::
be

::::::
small.

2.1.1 NCEP Global Forecast System (GFS)15

2.2
:::::

NCEP
::::::
Global

::::::::
Forecast

:::::::
System

:::::
(GFS)

The Global Forecast System (GFS) is a forecast model produced by the National Centers for Environmental Prediction (NCEP).

Data are available for download through the NOAA National Operational Model Archive and Distribution System (NOMADS).

Forecast products and more information on GFS are available at https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs.

20

Prior to January 2003, the GFS was known as the Aviation model (AVN), which was one of the models used by Kuo et al. (2004) in

their estimation of RO errors using the apparent error methodhttps://www.ncdc.noaa.gov/data-access/model-data/model-datasets/

global-forcast-system-gfs.

The GFS assimilated RS observations for the entire year 2007, but began assimilating RO data on 1 May, 2007, along

with many other changes to the model and analysis system (Cucurull and Derber, 2008; Kleist et al., 2009). Thus the GFS25

and RS and RO errors are also likely correlated to some degree. However, we computed vertical profiles of the correlation

coefficients for RO and GFS refractivity, temperature, specific humidity
:
, and relative humidity in the two months before and

after May 1, 2007 when the GFS started assimilating RO data and found little differences, so the error correlations between

RO and GFS are likely small.

3
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https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
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2.2.1 Radio occultation observations

2.3
:::::

Radio
::::::::::
occultation

:::::::::::
observations

The RO observations used in this study are
::::::::::
re-processed

::::
data

:
obtained from the UCAR COSMIC Data Analysis and Archive

Center (CDAAC). Two methods for estimating the temperature and water vapor from the RO refractivity are used. In the direct

method, the GFS temperature is used in the Smith and Weintraub (1953) equation5

N = 77.6
P

T

p

T
:

+ 3.73 · 105
e

T 2
(5)

to compute water vapor pressure e
:
e from the observed N

:::::::::
refractivity

::
N

:
and GFS temperature T

:
T .

A one-dimensional variational (1D-VAR) method is also used to estimate temperature and water vapor pressure from N
:
T
::::
and

:
e
::::
from

::
N . The 1D-VAR method uses an a-priori state of the atmosphere (background profile) and an observed RO refractivity

::
N

:::::
profile

:
to minimize a quadratic cost function. At CDAAC, an ERA-Interim profile is used as background, which is interpolated10

to the time and location of the RO observation (accounting for tangent point drift during the occultation). The humidity retrieval

allows an error for both T and e
::
T

:::
and

:
e, but only a very small error for bending angle/refractivity. Specific humidity q

:
q is then

computed from the derived water vapor pressure e
:
e.

2.3.1 Radiosonde observations

2.4
::::::::::

Radiosonde
:::::::::::
observations15

Radiosonde
::
RS

:
data from Guam and three Japanese stations are used in this comparison. The radiosondes

:::
RS

::::
data are given

on nine main pressure levels between 1000 hPa and 200 hPa, plus additional levels if atmospheric conditions are variable. The

four stations use the following sensors: Guam: VIZ/Sippican B2; Ishigakijima: Meisei; Minamidaitojima: Vaisala RS92; and

Naze: Meisei. They are launched twice daily in the hour before noon and midnight, UTC.

Guam is located in the deep tropics at 13.7◦N 144.8◦E. Ishigahijima (hereafter called Ishi), Minamidaitojima (hereafter20

called Mina), and Naze are located relatively close together in the western Pacific subtropics south of Japan and northeast of

Taiwan:

Naze: Naze/Funchatoge (Kagoshima) 28.4◦N 129.4◦W

Mina: Minami-daitojima (Okinawa) 25.6◦N 131.5◦W

Ishi: Ishigakijima (Okinawa) 24.2◦N 124.5◦W25

The RO observations used in the comparisonsare those

2.5
:::::::::

Co-location
:::
of

:::
the

::::
data

::::
sets

:::
The

::::::::
locations

::
of

:::
the

::::
four

:::::::::
radiosonde

:::::::
stations

:::
are

::::::
chosen

:::
for

:::
the

:::::::::::
comparisons.

:::
We

:::
use

::::
RO

::::::::::
observations

::::
that

:::
are

::::::
located

:
within

600 km and 3 hours of the radiosonde launch. The model observations closest to the four radiosonde stations respectively are

4



Figure 1. Number of RO refractivity profiles matching the co-location criteria
:::::::
co-located

:::::::::::
measurements

:
for Mina (a)

::::
Mina

:
and Guam (b)

during the year 2007.
:::::
Guam. These are also the number of samples

:::::
sample

:::::::
numbers

:
in the calculations of the estimated error variances for

the five data sets(RO Direct and
:
.
:::::
When

::::
using

::
the

:
RO 1D-VAR, RS, ERA and GFS)

::
the

::::::
number

::
of

:::::::::
co-locations

::
is
::::::
slightly

:::::
higher

::::
than

::
for

:::
the

::::::::
RO-Direct

::::::::
throughout

:::
the

:::::
profile

:::
due

::
to

::
the

::::
way

::
the

:::::::
1D-VAR

::
is

:::::::
computed.

used. Corrections for the spatial separation are made using the model data . The details are described by Gilpin et al. (2017, in preparation)
::::::::
launches.

:::::::
CDAAC

:::::::
provides

::::
GFS

::::
and

::::
ERA

:::::::
profiles

::::
that

:::
are

::::::
already

:::::::
linearly

::::::::::
interpolated

::
in

:::::
space

:::
and

::::
time

::
to
:::

the
::::
RO

:::::::
location

:::
and

:::::
time.

:::::
These

::::::::::
interpolated

:::::::
profiles,

:::::
along

:::::
with

:::
the

:::
RO

:::::::::::
observations,

:::::
were

::::::::
corrected

:::
for

:::::
their

::::
time

::::
and

:::::
spatial

::::::::::
differences

:::::
from

:::
the

:::::::::
radiosonde

::::
data

:::::
using

:
a
::::::
model

::::::::
correction

::::::::
algorithm

::::::::::::::::::::::::::::
(described in Gilpin et al., 2018) .

:::::
Thus

:::
the

:::::
effect

::
of

::::::
spatial

:::
and

::::::::
temporal

:::::::::
differences

::::::
among

:::
the

::::
data

:::
sets

::
is

:::::::
expected

:::
to

::
be

:::::
minor.5

The refractivity for the radiosonde and model data is computed from Eq. (5) using the pressure, temperature,
:
and water

vapor from these data. Normalized differences are computed for all combinations of the data sets (RO–ERA, RO–GFS, GFS–

ERA, RS–ERA, RS–GFS, RS–RO),
::::::
where

:::
RO

::
is
:::::
either

:::
the

:::::::::
RO-Direct

:::
or

:::
the

:::
RO

::::::::
1D-VAR

::::
data. The ERA annual mean for

2007 at each RS station is used to normalize the differences in the data sets associated with that station. We consider the

differences among the five
::
all

:
data sets for four variables: refractivity (N

::
N ), temperature (T

:
T ), specific humidity (q)

::
q),

:
and10

relative humidity (RH).

2.5.1 Number of samples

2.6
:::::::

Number
::
of

:::::::
samples

The number of samples is limited by the number of RO observations that are within the co-location criteria of three
:
3 hours

and 600 km. Figure 1 shows the number of RO profiles
:::
data

:::::::
samples

:::
per

:::::::
pressure

:::::
level that meet these criteria during 2007 at15

Mina (the numbers at Ishi and Naze are similar) and Guam. The number of samples at the Japanese stations is a maximum

of approximately 900 at 300hPa. It decreases rapidly above 300hPa to zero at 200hPa because of the
::::
sharp

::::::
cut-off

:::
on

:::
the

:::
top

::
of

:::
the

::::::
profiles

::
is
::::
due

::
to

::::::
limited

:::
RS

::::
data

::::::::::
availability

::
at

::::
high

::::::::
altitudes.

::::
The

::::::
smooth

::::::::
transition

:::
to

:::::
lower

:::::::
numbers

::
at
:::
the

:::::::
bottom

:::::
results

:::::
from

:
a
:
decrease in the number of RS observations above

:::
RO

::::::::::
observations

::::
with

::::::
lower

:::::::
altitudes

::
in

:::
the

::::
mid

::::
and

:::::
lower

5



Figure 2. The mean ERA profiles over 2007 at Guam and Mina of specific humidity q
:
q (a), relative humidity RH (b), temperature T

::
T (c),

and refractivity N
::
N (d). The standard deviations about the mean profiles are indicated by the shading.

::::::::::
troposphere.

::::
The

:::::::
number

::
of

:::::::
samples

::
at

:::
the

::::::::
Japanese

:::::::
stations

::
is

:
a
:::::::::

maximum
:::
of

::::::::::::
approximately

::::
900

::
at 300 hPa. The number

decreases to about 100 at 950 hPaat the three Japanese stations. At Guam, the number ranges from a maximum of about 500

at 200 hPa to about 50 at 950 hPaat Guam. Thus the effect of the limited sample size will be greatest for the Japanese stations

above 300 hPa and for all four stations below 900 hPa where the sample size is less than 500.

2.6.1 Mean ERA profiles for 2007 and example of profiles and normalized difference profiles5

2.7
::::

Mean
:::::
ERA

:::::::
profiles

:::
for

::::
2007

::::
and

::::::::
example

::
of

:::::::
profiles

:::
and

:::::::::::
normalized

:::::::::
difference

::::::
profiles

Before showing the statistical comparisons of the normalized differences between the data sets and their estimated errors, we

present the mean ERA profiles of q
:
q, RH, T and N

:
T
::::
and

::
N

:
at Mina and Guam for the year 2007 (Figure

:::
Fig. 2). The standard

deviations are shown by the shading around each mean profile. As shown by Figure
:::
Fig. 2, the water vapor (especially relative

humidity) shows the greatest variability over the year. The variability in specific humidity, temperature,
:

and refractivity is10

greater at Mina, which is located in the subtropics, than Guam, which is located in the deep tropics.

We next present a single example of soundings from the five data sets, to illustrate how the profiles of the normalized differ-

ences of the variables (which we use in all the following calculations) compare to the actual profiles. Figure 3 illustrates the q
:
q,

6



Figure 3. Profiles of specific humidity (a), relative humidity (b), temperature (c) and refractivity (d) for the five data sets for 13 January, 2007

at 00:23 UTC.

RH, T and N
::
T ,

:::
and

::
N

:
profiles from 13 January 2007 at approximately 00 GMT and Figure

:::
Fig. 4 illustrates the corresponding

profiles of the normalized differences of the variables from ERA, for example (q− qERA)/CLIMO, where CLIMO
::̄
q,

:::::
where

::̄
q

is the 2007 mean ERA value of the variable
:
q.

A comparison of Figures
::::
Figs. 3 and 4 shows that the normalized difference profiles highlight the similarities and differences

of the five data sets better than the actual profiles, especially in the upper troposphere. The magnitudes of the normalized5

differences are the same order of magnitude at all levels, whereas the differences in the actual profiles can vary by more than

an order of magnitude from the lower to the upper troposphere. Figure 4 shows that typical percentage differences between

data sets are ∼50 % for q
:
q and RH, 0.5 % for T

::
T , and 5 % for N

::
N .

3 Derivation of error variances

In this section we summarize the derivation of the equations relating the error variances and covariances among the five data10

sets. The complete derivation and a discussion of the limitations is given in Appendix A.

The error variance of a variable X (e.g. q
:
q, RH, T or N

:
T

::
or

:::
N ) is defined as

VARerr
::

(X) =
1

n
:

∑
(X−XtTrue

::::
)2/N=

1

n

∑
X2

err
::::::::::

(6)

7



Figure 4. Same as Figure
:::
Fig. 3 except for normalized differences from ERA.

where Xt ::::
True is the true (but unknown) value of X and the summation is over N

:
n
:
samples.

As shown in Appendix A, we can derive three different linearly independent equations for estimating the error variance of any

data set, assuming that the error covariances among all the data sets are negligible compared to the differences in the observed

mean square (MS) differences between the data sets. Three more equations can be derived by using linear combinations of the

first three. Appendix A provides examples of the error estimates using the six and three equations. For example, the
:::
The

:
three5

complete (and exact) linearly independent solutions for estimating the error variance of RO are

2VAR(RO – True) =
::::
VARerr(

:: :::
RO) =

::
MS(RO – ERA) + MS(RO – GFS) - MS(GFS – ERA)

::::::
MS(RO

::
–

:::::
ERA)

::
+

::::::
MS(RO

::
–
:::::
GFS)

:
–
::::::::
MS(GFS

:
–
::::::
ERA)]

+ 2 COV(RO, ERA) + COV(RO, GFS) – COV(GFS, ERA)2
:

[
::::
COVerr(

:: :::
RO,

:::::
ERA)+

::::::
COVerr(

:: :::
RO,

::::
GFS)−

::::::
COVerr(

:: ::::
GFS,

:::::
ERA)

]
(7)

2VAR(RO – True) =
::::
VARerr(

:: :::
RO) =

::
MS(RO – ERA) + MS(RO – RS) - MS(RS – ERA)

::::::
MS(RO

::
–

:::::
ERA)

::
+

::::::
MS(RO

::
–
:::
RS)

::
–
::::::
MS(RS

::
–
:::::
ERA)]

+ 2 COV(RO, ERA) + COV(RO, RS) – COV(RS, ERA)2
:

[
::::
COVerr(

:: :::
RO,

:::::
ERA)+

::::::
COVerr(

:: :::
RO,

:::
RS)−

::::::
COVerr(

:: :::
RS,

::::
ERA)

]
(8)

8



2VAR(RO – True) =
::::
VARerr(

:: :::
RO) =

::
MS(RO – GFS) + MS(RO – RS) - MS(RS – GFS)

::::::
MS(RO

::
–

:::::
GFS)

:
+
:::::::
MS(RO

:
–
::::
RS)

::
–

::::::
MS(RS

::
–

::::
GFS)]

+ 2 COV(RO, GFS) + COV(RO, RS) – COV(RS, GFS)2
:

[
::::
COVerr(

:: :::
RO,

::::
GFS)+

::::::
COVerr(

:: :::
RO,

:::
RS)−

::::::
COVerr(

:: :::
RS,

::::
GFS)

]
(9)

where RO (or ERA, GFS, RS) corresponds to the value of X as estimated by RO (or ERA, GFS, RS) , True corresponds to

the true (but unknown) value of X and MS denotes the mean square difference between the values from two data sets (e.g.

RO –
:
ERA).5

We use Eq. (7)–(9) to provide three independent estimates of VAR(RO – True
::::::err(RO) by neglecting the COV

::err terms in each

equation. The assumption that the error covariances are small compared to the difference in variances between the data sets is

similar to the assumption used in the apparent error method that the errors of the observations and model forecasts are uncorre-

lated. Of course in
::
In general the COV

::err terms are not zero; thus we will examine the validity of this assumption by checking

whether the various estimates of the error variances from the three equations are consistent with each other and reasonable com-10

pared to other independent studies that estimate error variances in other ways.
::
In

:
a
::::::
related

:::::
paper

:::::::::::::::::::::::::
(Rieckh and Anthes, 2018) we

:::::::
examine

:::
the

:::::
effect

::
of

::::::
various

:::::::
degrees

::
of

::::
error

::::::::::
correlations

:::::::
between

::::
two

::
of

:::
the

:::::
three

:::
data

::::
sets

:::::
using

::
an

::::
error

::::::
model.

:

The same procedure can be used to derive three equations for estimating the error variances for the other three data sets, RS,

ERA, and GFS (equations not shown here).

So for each of the five data sets, RO Direct and
:::
RO

:
1D-VAR, RS, ERA, and GFS, there are three independent ways to15

estimate their respective error variances. This is the “three cornered hat” method described in Appendix A. We note that it is

possible that the estimated error variances from any of the three equations are negative because of the neglect of the COV
::err

terms and the small sample size, especially above 300 hPa for the Japanese stations and below 800 hPa for all four stations

(Figure
:::
Fig. 1).

4 Comparison with previous studies for RO refractivity20

We first compute the estimated error variance for RO refractivity using GFS and ERA data for comparison with the Kuo et al.

(2004) and Chen et al. (2011) estimates of RO error variance to illustrate the three cornered hat
:::
3CH

:
method. In an analogy to

the apparent error Eq. (4), with RO being the observation and ERA being the forecast

MS(RO – ERA) = VAR(RO – True) + VAR(ERA – True)MS(RO – ERA) = VARerr(RO) + VARerr(ERA)
::::::::::::::::::::::::::::::::::::::

(10)

which is Eq. (A2) in Appendix A with neglect of the COVterms.25

::err::::::
terms. We compute MS(RO – ERA) from the RO and ERA data sets (analogous to the apparent error variance σ2

a in

Eq. (4)) and plot its square root as the black line in Figure
:::
Fig. 5. Then we estimate VAR(RO – True

::::::err(RO) using Eq. (7) and

the data sets (RO – GFS) and (GFS – ERA), along with the apparent error MS(RO – ERA), neglecting the COV
::err:

terms.

9



Figure 5. Standard deviations of the apparent error STD(RO – ERA) (black line), estimated RO error STD(RO – True) computed from

Eq. (11
:
7) (blue line) and ERA error STD(ERA – True) (pink line) for refractivity at a) Guam, b) Ishi, c) Mina, and d) Naze.

The square root of VAR(RO-True
:::::err(RO) gives the blue curve labelled STD(RO – True) in Figure 5

::::::
standard

::::::::
deviation

::::::
(STD)

::::
(Fig.

::
5,

::::
blue

::::::
curve). Finally, the ERA error variance (analogous to the forecast error) is obtained by subtracting VAR(RO –

True
:::::err(RO) from MS(RO – ERA) using Eq. (10) above (pink line in Figure

:::
Fig. 5).

:::
The

::::
gap

::
in

::
the

:::::::::
computed

::::
ERA

:::::
error

::::
STD

::
in

:::
Fig.

:::
5a

:::::
occurs

::::
due

::
to

:::::::
negative

::::::::
estimated

:::::
error

:::::::
variance

::::::
values,

:::::
which

::::
can

:::::
result

::::
from

::::::
having

:
a
:::::::
limited

::::::
sample

::::
size,

:::::::::
neglecting

::::
error

:::::::::
covariance

:::::
terms

::::::
during

:::::::::::
computation,

:::
and

::::::
having

::
an

:::::
error

:::::::
variance

:::
that

::
is
:::::::
already

::::
close

::
to

::::
zero

:::
(as

::
is

:::
the

::::
case

:::
for

:::::
ERA).

:
5

The results shown in Figure
:::
Fig. 5 are quite similar to those from Kuo et al. (2004, Figure 13) and Chen et al. (2011, Figure 3d)

::::::::::::::::::::::::
Kuo et al. (2004, Fig. 13) and

::::::::::::::::::::::
Chen et al. (2011, Fig. 3d) who used different models and different data sets. The STD of normalized RO refractivity errors are

a maximum of between 2.0 and 2.5 % near the surface, decreasing to about 0.5 % at 10 km. The shape of the profiles between

0 and 2km is also similar in the two methods, with a small local minimum in the profile at about 1km. These similarities give

credibility to both methods.10

5 Calculation of the error variance terms using the multiple data sets

This section shows the estimated error variances for N, q, T
::
N ,

::
q,

::
T ,

:
and RH at one of the four stations (Mina) for the five data

sets and summarizes the results for the other three stations (Naze, Ishi and Guam).
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Figure 6. Estimated error variances (% squared) of specific humidity at Mina: a) RO, b) RS, c) GFS,
:

and d) ERA.

5.1 Results for Mina

The following plots show the estimated error variances computed from Eq. (7), (8), or (9). Two RO data sets (Direct and 1D-

VAR) are considered one at a time using the other three data sets. Thus we have two sets of error estimates for each data set: one

using the Direct RO
:::::::::
RO-Direct with RS, ERA,

:
and GFS, and one using the 1D-VAR RO

:::
RO

:::::::
1D-VAR

:
with RS, ERA

:
, and GFS.

In the following plots, results for six error estimates are indicated by the color. Darker
:::::
darker

:
colors correspond to the three5

results using the 1D-VAR RO,
::
RO

::::::::
1D-VAR

:::
and

:
lighter colors correspond to the three results using the Direct RO

::::::::
RO-Direct.

Figure 6 shows the results for specific humidity. Error variances are shown rather than STD because they are easier to

interpret using the three equations used to derive them and because the STD are undefined for the occasional negative estimated

error variance. Figure 6a shows the q error variance profiles for the two RO data sets (Direct and 1D-VAR). The direct method

:
(use of GFS temperature in Eq. (5)

:
)
:
shows a steady increase of error variance with height, from about 100 %2 (STD ∼10 %)10

at 950 hPa to 800 %
:

2
:
(STD ∼28 %) at 500 hPa and 2000 %

:

2 (STD ∼45 %) at 300 hPa. This is expected since the refractivity

contains little information on water vapor above about 400 hPa and we are using an independent estimate of temperature, with

no constraints on the water vapor retrieval. The q error variance profile for RO using the 1D-VAR method is similar to that of

the direct method below 500 hPa, but reaches a maximum at about 500 hPa of about 500 %2 (STD ∼22 %) and then decreases

toward zero at 200 hPa. The 1D-VAR method uses the ERA-Interim fields as background and thus constrains the water vapor15

11



Figure 7. Estimated error variances (% squared) of relative humidity at Mina: a) RO, b) RS, c) GFS,
:
and d) ERA.

profile retrieval at high altitudes. It is notable that the three equations used to estimate the error variance profiles agree closely

and the difference among the three estimates is much smaller than the differences in the mean profiles using the two RO

retrieval methods.

The
::
RS

:
specific humidity error variance profiles associated with the radiosonde at Mina (Figure

::::
Fig. 6b) show a similar

behavior as the direct RO
::::::::
RO-Direct, with a steady increase with height, exceeding a VAR of 2000 %2 (STD of ∼45 %) at5

400 hPa. The STD of the RS are slightly larger than the two RO estimates below 600 hPa. The error variance estimates using

the Direct RO
::::::::
RO-Direct

:
(orange) and 1D-VAR RO

:::
RO

::::::::
1D-VAR (red) are similar.

The error variance profiles from the two model sets (Figure
::::
Figs. 6c, d) are quite different. The GFS error variance is less

that the RO Direct and radiosonde
:::
than

:::
the

:::::::::
RO-Direct

::::
and

:::
RS

::::
error

::::::::
variances

:
at all levels, and also less than the RO

:
1D-VAR

::::
error

:::::::
variance

:
except above 300 hPa. Although there is more scatter, especially in the upper troposphere, the ERA profiles are10

different from all the other data sets in that they show only a small increase of error variance with height, from a variance

near zero at the surface to up to a mean of about 100 %2 (STD ∼10 %) at 200 hPa. The ERA profiles contain examples of the

estimated error variances becoming negative. This is because the true values of the error variances are close to zero and so

neglect of the error covariance terms can produce small negative values.

Figure 7 shows the estimated error variances of relative humidity. As with specific humidity, there is consistency among the15

estimates for the different data sets. The general behavior of the RH error variance profiles is similar to those
:::
that for q, as might

12



Figure 8. Estimated error variances (% squared) of temperature at Mina: a) RO, b) RS, c) GFS
:
, and d) ERA.

be expected because the percentage variability of water vapor is greater than that of temperature at this subtropical location.

Again, the estimated error variances of the RO derived RH are less than those of the radiosondes
::
RS

:
in the lower troposphere.

The GFS error variances are smaller than the RO and RS variances, except for the RO 1D-VAR profile above 300 hPa, which

is constrained by the ERA observations in the upper troposphere. The ERA error variances are significantly smaller than the

other data sets, averaging between 50 and 200 %2 (STD 7-14
::::
7–14 %) throughout the troposphere.5

Figure 8 shows the estimated error variances of temperature. Because the RO-Direct retrieval uses the exact GFS temper-

ature, the results for the direct retrieval (light blue) using the (RO, GFS, ERA) and (RO, RS and GFS) are not meaningful in

Figure
:::
Fig. 8a (they are identically zero). The result from Eq. (8) (RO, ERA and RS), given by the dashed light blue line in

Figure
:::
Fig. 8a is valid, but in reality, this is an estimate of the GFS T error variance, and it is in fact very similar to the profiles

in Figure
:::
Fig. 8c.10

The RO 1D-VAR results for temperature from all three equations give somewhat larger results (Figure 9a
:::
Fig.

::
8, dark blue

profiles). The estimated error variance profiles oscillate between 0.1 and 0.3 %2 (STD 0.3 to 0.55 %). For a temperature of

300 K, these correspond to 0.9 to 1.65 K.

The radiosonde
::
RS

:
temperature error variances (Figure

::::
Fig. 8b) vary between 0.05 and 0.15 %2 (STD 0.2 to 0.4 % or 0.6 to

1.2 K for T=300 K). The GFS temperature error variances are a little lower, averaging around 0.05 –0.10
::
to

::::
0.10 %

:

2 (STD 0.215

-0.3
::
to

:::
0.3 %), while the ERA estimated temperature error variances average close to zero (Figure

:::
Fig. 8d).
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Figure 9. Estimated error variances (% squared) of refractivity at Mina: a) RO, b) RS, c) GFS, and d) ERA.

Figure 9 shows the estimates of the normalized refractivity errors for the five data sets. There is more spread in the refractivity

estimates compared to those of the other variables, especially in the lower troposphere where the estimates vary between about

4 and 9 %2 (STD 2 to 3 %) for the two RO variances. Recall that the RO-Direct N
::
N

:
are the observed RO N

::
N as provided

by CDAAC while the RO 1D-VAR N
::
N

:
are modified based on the background (ERA) N

::
N . The average of the N

::
N

:
error

variances for the radiosondes (Figure
:::
Fig. 9b) shows a maximum of ∼10 %2 (STD ∼3.2 %) around 900 hPa. The GFS error5

variance profiles show a maximum around 750 hPa of ∼8 %2 (STD ∼2.8 %). The ERA profiles show the smallest errors, with

a maximum in the lower troposphere of an average of ∼2 %2 (STD ∼1.4 %). All data sets show a decrease of error variance to

less than 0.5 %2 (STD<0.7 %) at 400 hPa. The reason for the large scatter in estimates of N
::
N below about 800 hPa may be

related to errors in N
::
N

:
caused by super-refraction in the lower troposphere, which occurs often in the tropics and subtropics.

Super-refraction causes a negative N
::
N bias, which may lead to larger error covariances in this layer. The smaller number of10

RO samples below 800 hPa (Figure
:::
Fig. 1) may also be a factor.

Figure 10 shows the mean of the six
::::
three

:
estimates of the error variances of the five data sets for q

:
q, RH, T and N

::
T ,

:::
and

:::
N

at Mina. The standard deviation1 about these means is shown by the shaded areas. These figures show clearly the significant

differences among the error variance estimates of the five data sets. In Figure
:::
Fig. 10a, the error variance for specific humidity

is greatest for the radiosonde (red and orange profiles) and least for the ERA profiles. As discussed earlier, the mean of the RO15

1
:::::::::::::::::::::::
σ =

(
1

n−1

∑n=3
n=1 (xn − x̄)2

)1/2
::::
where

::
xn:::::

denote
::
the

::::
three

:::
error

::::::
variance

:::::::
estimates

14



Figure 10. Mean of the six
::::
three estimates of error variance plots for q

:
q, RH, T

:
T and N

::
N using RO-Direct and RO 1D-VAR for each data

set at Mina. The standard deviation about the mean is indicated by shaded areas. (a) specific humidity; (b) relative humidity; (c) temperature;

and (d) refractivity. RO (blue), radiosonde (red), GFS (gray), and ERA (purple).

1D-VAR retrieval reaches a maximum at about 550 hPa and then decreases back toward zero as it becomes constrained by the

background profile at high levels. Figures 10b–d show the mean profiles of error variance for relative humidity, temperature

and refractivity. The relative humidity profiles are similar to the specific humidity profiles. The ERA errors are the smallest,

followed by GFS, the RO and finally the radiosondes. The temperature error variance profiles show that the ERA errors are

very close to zero throughout the entire troposphere. The GFS and RO profiles are fairly constant with height at values of about5

::::::
profiles

:::::
(gray)

::::
and

:::
the

:::
RS

::::::
profiles

::::
(red

:::
and

:::::::
orange)

:::::
show

::::::::
relatively

:::::::
constant

::::::
values

::::
with

:::::
height

::
of

::::::::::::
approximately

:
0.05 %

:

2
:
and

0.1%2 respectively (0.22or
::::::::::::
corresponding

::
to

::::::::::
temperature

:::::
errors

:::
of 0.7 K at 300K and 0.32or

::
and

:
0.9 K at 300 Krespectively.

The RS ,
:::::::::::
respectively).

::::
The

:::
RO shows an oscillating error variance profile ranging between 0.1 and 0.3 %2 (0.3and 0.5or 0.9 K

and 1.5
::
1.6 K at 300 Krespectively). Finally, the refractivity profiles show the greatest variability, but the mean profiles are still

quite distinct. ERA again shows the lowest errors, followed by GFS, RO,
:
and RS.10

It is difficult to find previous results for RS temperature and specific humidity error variances. However, previous studies

comparing RO with RS and models indicate that our estimates are reasonable and consistent with these studies. Ho et al. (2017a)
:::::::::::::::
Ho et al. (2017b) found

STD between RO and RS pairs for many RS types of about 1.5 K in the layer 200–20 hPa
::::
layer, where RO temperatures are most

15



Table 1. Normalized differences of zonal mean RO and ERA specific humidity in the tropics for cloudy conditions (computed from data in

Vergados et al., 2014)

Pressure (hPa) VAR (%2) STD (%)

925 320 17.8

850 460 21.4

700 1260 35.5

500 2760 53.5

400 4220 65.0

300 5625 75.0

accurate (Table 2 in Ho et al. (2017a)
::::::::::::::
Ho et al. (2017b) ). This value corresponds to the apparent error between RS and RO,

which is larger than the RS error. The estimated RS temperature error variances from 200 to 100
:::::::
200–100 hPa in Figure

:::
Fig. 10c

is about 0.15 %2, which corresponds to a STD of 0.39 % or 0.9 K for a mean temperature of 230 K. Ladstädter et al. (2015)

compared high-quality GRUAN
:::
The

::::::
GCOS

:::::::
(Global

:::::::
Climate

:::::::::
Observing

:::::::
System)

:::::::::
Reference

:::::::::
Upper-Air

::::::::
Network

:::::::::
(GRUAN)

RS to RO globally and for a tropical station (Nauru) and subtropical station (Tateno, Japan) from 2002 to 2013. They found5

temperature STD of about 0.5 K for Nauru and 0.5 -0.8
:
to

:::
0.8 K at Tateno averaged over the layer 800 hPa to 300 hPa. For

specific humidity, they found STD between RO and RS of about 10 % increasing to about 40 % in the upper troposphere. In

our calculations for Guam and the three subtropical Japanese stations our estimates for STD of q are similar (Figure
:::
Fig. 10a;

and Appendix B Figure
:::
Fig. B1), ranging from about 10 % at 900 hPa to 45 % at 300 hPa.

Ho et al. (2010) compared COSMIC RO observations to ECMWF analyses and several types of radiosondes for the period10

August–November, 2006. They found mean specific humidity STD of RO–ECMWF of ∼0.5 g kg−1 and RO–RS (Meisei) of

∼0.9 g kg−1. From their plots of the vertical profiles of the STD, these numbers are typical for the layer 800–500 hPa, which,

given the normalization values from the four RS stations in our study (Figure
::::
Fig. 3) of about 9 g kg−1 at 800 hPa and 2 g kg−1 at

500 hPa, correspond to STD /VAR
::::
STD

::::::
(VAR) values of ∼6 % /(36 %2

:
) at 800 hPa and 25 % /

:
(625 %2)

:
at 500 hPa for ECMWF

and ∼10 % /
:
(100 %2)

:
at 800 hPa and 45 % /(2025 %2

:
) at 500 hPa for Meisei RS. These values are similar to the estimates of15

the GFS analysis and RS analysis for the Japanese stations shown in Figure
:::
Fig. B1 of Appendix B.

Vergados et al. (2014) compared RO-derived observations of specific humidity with radiosondes and ERA-Interim under

cloudy conditions in the tropics for August–October 2006. They used the direct method for computing specific humidity from

the RO refractivity using the ERA-Interim temperatures. They found the following
::::
Their

:
differences between zonal means of

normalized RO and ERA-Interim observations of q
:::
are

::::::::
presented

::
in

:::::
Table

::
1
:
(we computed the normalized differences from20

their data in Table 3 for the tropics):

The VAR values in Table 1 correspond to apparent errors(RO compared to ERA
:
,
:::::
where

::::
RO

:::
and

:::::
ERA

:::::::::
correspond

:::
to

:::
the

:::::::::
observation

::::
and

:::::::
forecast

:::::::
variables

:::::::::::
respectively

::::
(Eq.

::::
(10)). As expected, they are larger than the estimated error variances for

RO-Direct shown in Figure
:::
Fig. 6a because , as shown by Figure 5, the apparent errors are

:::::
always

:
larger than the estimated true
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errors
::::::::::
observation

:::::
errors

::
as

::::::
shown

::
in

:::
Eq.

:::
(4). This comparison indicates that the estimates of true errors in Figure

:::
Fig. 6a are

reasonable.

5.2 Summary of results at Naze, Ishi and Guam

The mean and STD error profiles for Naze, Ishi,
:

and Guam corresponding to the above results for Mina are presented in

Appendix B. Here we summarize the main similarities and differences between the error variance estimates for these stations5

compared to those for Mina. In general, we find similar magnitudes and shapes of the profiles of the estimated error variances

of the five data sets for all four variables (q
:
q, RH, T and N

::
T ,

:::
and

::
N ).

The estimated error profiles are especially similar for the three Japanese stations. This close similarity may be due primarily

to the fact that the three locations are relatively close together and two of the three use the same type of radiosonde (Meisei).

The results from Guam are also similar in general magnitudes and shapes of the profiles to those from the three Japanese10

stations, but there are somewhat greater differences in some of the profiles (e.g. GFS q, RHand N and RS N
:
q,

::::
RH,

::::
and

:::
N ;

:::
and

:::
RS

:::
N ). These differences are likely due to the different location and the use of a different radiosonde type at Guam

(VIZ/Sippican B2). The neglected error covariance terms are also likely different between the three Japanese stations, which

are located in a data-rich region, and Guam, which is located in a data-sparse region. Thus the model errors are less likely to

be highly correlated with a single observational system in the former than in the latter, where single observations may affect15

the models more significantly.

6 Summary and discussion

We used the “three cornered hat”
:::::
(3CH)

:
method to estimate vertical profiles of error variances of different observation and

model data sets by computing the differences among the data sets at four fixed locations. We computed estimated error variances

of four variables (specific humidity q
:
q, relative humidity RH, temperature T and refractivity N

::
T ,

::::
and

:::::::::
refractivity

:::
N ) for five20

data sets (ERA, GFS, radiosondes (RS), RO-Direct and RO
::::
radio

::::::::::
occultation

::::
(RO)

:
1D-VAR,

::::
and

:::::::::
RO-Direct) at four different

locations in the tropics and subtropics for the year 2007. The stations are Guam, Ishigakijima, Minamidaitojima, and Naze.

The latter three stations are on Japanese islands and are located quite close together (a few hundred km
:::::::::
kilometers

:
apart).

We computed vertical profiles of estimated error variances for normalized differences from the 2007 ERA mean values of

q
:
q, RH, T and N

:
T

::::
and

::
N

:
at the four stations using three linearly independent equations (Eq. (7)–(9)) neglecting all error25

covariance terms(COV). Ideally, with a very large sample of data pairs and zero correlation of errors among the different data

sets, all three equations would produce identical results. A
::::::::
However,

:
a
:
finite data set and , more importantly, non-zero error

correlations among the data sets , lead to three different estimates,
::
as

::::::
shown

:::
by

::::::::::::::::::::::
Rieckh and Anthes (2018) . The differences

among the three estimates is a measure of these effects.

Although the neglect of the covariance terms affects the results to a noticeable degree in some of the estimated profiles, there30

is strong evidence that there is valid information in the estimated error profiles that rises above the noise caused by the neglect

of the covariance terms and the limited data sample. This evidence is summarized as follows:

17



1. There is generally good agreement in the three estimated error profiles of the four variables for each of the five data

sets at all four locations. It is unlikely that this agreement would occur by chance if the neglected error covariance terms

were large enough to invalidate the results, because they would have to somehow combine or cancel in each of the three

equations to give the observed similar results.

2. There are large differences in the overall structure (shape and magnitude) of the average vertical profiles of estimated5

error variances for the five data sets (Figure
::::
Fig. 10). These differences are significantly larger than the standard deviation

of the differences among the three methods of estimating
:::
from

:::
the

:::::
three

::::::::::
independent

::::::::
equations

::::
used

::
to

::::::::
compute the error

variances.

3. The vertical variability, or scatter
:::::
spread

:
among the error estimates

:
, is similar at most height levels for specific humidity,

relative humidity,
:
and temperature. If the error covariance terms were significant, they would almost certainly vary with10

height, giving different agreement in estimated error profiles with height. For example, we know that RO is
::::::::::
temperature

:::
and

:::::::::
refractivity

:::
are

:
most accurate in the upper troposphere and least accurate in the lower troposphere . Also,

:::
and

::::
that

the weight given
:
to

:
RO in the models’ data assimilation varies significantly with height, being largest in the upper

troposphere and smallest in the lower troposphere. Thus one would expect the RO-ERA and RO-GFS error covariance

terms to vary significantly with height. Also, the RS errors as well as the ERA and GFS model errors vary with height.15

It is therefore unlikely that all of the neglected error covariance terms are the same at all heights.

4. The general structure and magnitudes of the estimated error variance profiles are similar at the four locations. However,

there are some small differences among the profiles at the four locations. In general, the vertical variability or scatter,

which is
:::::::::
differences

::::::
among

:::
the

::::
three

::::::::
estimates

:::::::::
(indicated

::
by

:::
the

::::
STD

:::::
about

:::
the

::::::
mean),

:::::
which

:::
are

:
a measure of the effect

of the neglected covariance terms as well as limited sample size, is
::
are

:
smallest for Ishi, Naze

:
, and Mina and largest for20

Guam. Since the three Japanese stations are close together, this suggests that there is a difference in the error variance of

the RS observations at these locations
:::
the

:::::::
Japanese

:::
RS

:::::::::::
observations

::::::::
compared

::
to

:::
the

::::::
Guam

:::
RS

::::::::::
observations. There may

also be small differences in the model errors over the Japanese stations, which are located in a data-rich area compared to

Guam, which is located in a data-sparse region. The largest variability and largest error estimates occur at Guam,
:
which

uses a different radiosonde , which
:::::::::
radiosonde

:::
that

:
is thought to have large dry and wet water vapor biases due to sensor25

malfunctions (H. Vömel, personal communication, 2017).

5. The magnitudes of the estimated RO
:::::::::
refractivity error variances are supported by previous published studies, including

Kuo et al. (2004) and Chen et al. (2011).

6. The estimated error profiles
:::::
errors are smallest for the ERA-Interim model data set, which is a reasonable result since

ERA uses an excellent model and data assimilation system , using
:::
that

:::::::::
assimilates

:
many independent, quality checked ob-30

servations. In fact, Vergados et al. (2015) state “ERA-Interim is one of the most advanced global atmospheric models sim-

ulating the state of the atmosphere with accuracy similar to what is theoretically possible (Simmons and Hollingsworth,

2002) using a 4D-Var method (Simmons et al., 2005).”
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7. Our results show, in general, that the RO observations have smaller errors than the radiosonde errors, in agreement with

previous studies.

Code availability. Code will be made available by the author upon request.

Data availability. Data can be made available from authors upon request.

Appendix A: Derivation of estimates of error variances using four data sets and the N -cornered
:::::::::
N-cornered

:
hat5

method

A1
::::::::::
Description

::
of
::::::::::::::
three-cornered

:::
hat

:::::::
method

In this appendix we summarize the “N -cornered hat”
:::::::::::
three-cornered

::::
hat”

::::::
(3CH) method (Gray and Allan, 1974) for estimating

error variances from N data sets. Variations and enhancements of the method have been applied to many diverse geophysical

data sets, and for three data setsit is called the “three-cornered hat” method (Wriley, 2003) or “triple collocation method”10

(Stoffelen, 1998) . Gray and Allan (1974) developed the method to estimate the absolute frequency stability of an ensemble of

N
::
N clocks by forming all (N -1)(N -2

::::::::
N-1)(N-2)/2 triads under the assumption that the clock errors are uncorrelated. Each of

the triads are the three-cornered hat (THC
::::
3CH) estimates. W.J. Wriley (2003)

::::::::::
Riley (2003) provides a summary of the TCH

methodand its history:
::::
3CH

:::::::
method.

:

The THC
::::::::
Variations

::::
and

::::::::::::
enhancements

::
of

:::
the

:::::
3CH

::::::
method

::::
have

:::::
been

::::::
applied

:::
to

:::::
many

::::::
diverse

::::::::::
geophysical

::::
data

::::
sets.

::::
The15

::::
3CH method has been used to estimate the stability of GNSS clocks using the measured frequencies from multiple clocks

(Ekstrom and Koppang, 2006; Griggs et al., 2014, 2015; Luna et al., 2017). Valty et al. (2013) used the TCH
::::
3CH

:
method

to estimate the geophysical load deformation computed from GRACE satellites, GPS vertical displacement measurements,

and global general circulation (GCM) models.
:::::::::::::::::::::::::::
O’Carroll et al. (2008) compared

::::
three

:::::
types

::
of

:::::::
systems

::
to

:::::::
measure

::::::::::
sea-surface

:::::::::::
temperatures:

::::
two

:::::::
different

::::::::::
radiometers

::::
and

::
in

:::
situ

:::::::::::
observations

:::::
from

::::::
buoys.

::::
They

:::::::
discuss

:::
the

::::::::::
assumption

::
of

:::
the

::::::
neglect

:::
of20

::::
error

::::::::::
correlations

::::::
among

:::
the

:::::
three

:::
data

::::
sets,

::::
the

:::::
effect

::
of

:::::::::::::::
representativeness

::::::
errors,

:::
and

:::
the

::::::::::::
interpretation

::
of

:::::::
“Truth”,

:::
the

::::
true

::::
value

::
of

:::
the

:::::::
variable

:::::
being

:::::::::
measured.

The “triple collocation method”
::::::
Closely

::::::
related

::
to

:::
the

:::::
3CH

::::::
method

::
is
:::
the

:::::
triple

::::::::::
co-location

::::
(TC)

::::::::
method,

:::::
which

:
was in-

troduced by Stoffelen (1998), and has been widely used since in oceanography and hydrometeorology (e.g. Su et al., 2014;

Gruber et al., 2016). It has been used to estimate the error variances of triplets of observation types to measure a diverse25

set of geophysical properties, including wave heights, sea surface temperatures, precipitation, surface winds over the ocean,

leaf-area index products, and soil moisture. For example, Stoffelen (1998) estimated the error variances of in-situ measure-

ments, ERS scatterometer winds, and NCEP (National Centers for Environmental Prediction) forecast model wind speeds.

Later, Vogelzang et al. (2011b)
::::::::::::::::::::
Vogelzang et al. (2011a) compared four sets of scatterometer winds from ASCAT and Sea-
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Winds with buoy measurements and ECMWF model forecasts of surface winds over the oceans to estimate the error variances

and standard deviations of the different data sets and their combinations. Fang et al. (2012) used Stoffelen’s (1998) method

to estimate
:::::::
estimated

:
the uncertainties in three different estimates of Leaf Area Index (LAI) products. McColl et al. (2014)

:::::::::::::::::
McColl et al. (2014) extended the method by deriving a performance metric of the measurement system to the unknown truth,

and applied the extended method to wind estimates from NWP, scatterometer and buoy wind estimates.5

O’Carroll et al. (2008) compared three types of systems to measure sea-surface temperatures: two different radiometers and

in situ observations from buoys. They discuss the assumption of the neglect of error correlations among the three data sets and

the effect of representativeness errors. Roebeling et al. (2012) used the triple collocation
:::::::::
co-location method to estimate the

errors associated with three ways of estimating precipitation: the Spinning Enhanced Visible and Infrared Imager (SEVERI),

weather radars, and ground-based precipitation rain gauges. They concluded that the method provides useful error estimates of10

these systems.

The major assumption in the above
::::
3CH

:::
and

:::
TC

:
methods is that the errors of the three systems are uncorrelated. Correla-

tions between any or all of the three measurement systems will reduce the accuracy of the error estimates. Other factors that

can reduce the accuracy of the error estimates include widely different errors associated with the three systems or a small

sample size. These factors can lead to negative estimates of error variances, especially when the estimates are close to zero15

::::::::::::::::::::::::::::::
(Gray and Allan, 1974; Riley, 2003) . All three of these factors potentially affect our estimations here

::
the

::::
3CH

::::::::
estimates

::
in
::::
this

::::
paper, but the general agreement of the three methods

::::::
linearly

:::::::::::
independent

::::::::
equations

::
for

:::::::::
estimating

:::
the

:::::
error

:::::::
variances

:::
of

::::
each

::::::
variable

:
suggests that the estimations

::::::::
estimates are still reasonably valid and contain useful information.

In this appendix

A2
::::::::::
Derivation

::
of

::::
3CH

:::::::::
equations20

:
n
:::
this

::::::
section

:
we summarize the derivation of the N-Cornered hat

::::
3CH

:
method as applied to four meteorological data sets, RO,

RS, GFS and ERA. The error variance of a variable X (e.g. temperature, specific humidity, relative humidity, refractivity) is

defined as VAR(X)=
∑

(X-Xt)2/N where Xt

VARerr(X) =
1

n

∑
(X−True)2 =

1

n

∑
X2

err
:::::::::::::::::::::::::::::::::::::

(A1)

:::::
where

::::
True

:
is the true (but unknown )

::
but

::::::::
unknown

:
value of X and the summation is over N

:
n
:
samples. Let RO correspond to25

XRO or the value of X as estimated by RO, ERA correspond to XERA or the value of X as estimated by ERA, True correspond

to the true (but unknown) value of X, and similarly for GFS and RS(radiosondes). We then have

MS(RO – ERA) = VAR(RO) + VAR(ERA) – 2 COV(RO, ERA)MS(RO – ERA) =
:::::::::::::: ::::

VARerr(
:: :::

RO)+
::::::

VARerr(
:: ::::

ERA)−
::::::

COVerr(
:: :::

RO,
:::::
ERA)

(A2)

where MS(RO – ERA) is the mean square difference between RO and ERA and the last term is the error covariance between

RO and ERA.30
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In our
:::
the estimation of the various error variances

::::
error

::::::::
variances

:::
for

:::
the

::::
four

::::
data

:::
sets, we assume that the RO errors and

ERA errors are uncorrelated, so the error covariance term in Eq. (A2) is zero, or in practice, negligibly small compared to the

other terms). However, to show the complete (and exact) equations, we retain them here for the six error variance
::
in

:::
the

:::
six

equations involving the different pair
::::
pairs of data sets

:
.

MS(RO – GFS) = VAR(RO) + VAR(GFS) – 2 COV(RO, GFS)
::::::
MS(RO

::
–

:::::
GFS)

:
=
:::::::::::
VARerr(RO)

:
+
::::::::::::
VARerr(GFS)

:
–
::
2
::::::::::
COVerr(RO,

:::::
GFS)

(A3)

5

MS(GFS – ERA) = VAR(GFS) + VAR(ERA) – 2 COV(GFS, ERA)
:::::::
MS(GFS

::
–

:::::
ERA)

::
=

:::::::::::
VARerr(GFS)

::
+

::::::::::::
VARerr(ERA)

:
–
::
2

:::::::::::
COVerr(GFS,

:::::
ERA)

(A4)

MS(RO – RS) = VAR(RO) + VAR(RS) – 2 COV(RO, RS)
::::::
MS(RO

::
–

:::
RS)

::
=
:::::::::::
VARerr(RO)

:
+
::::::::::
VARerr(RS)

::
–
:
2
:::::::::::
COVerr(RO,

::::
RS)

(A5)

MS(RS – ERA) = VAR(RS) + VAR(ERA) – 2 COV(RS, ERA)
::::::
MS(RS

::
–

:::::
ERA)

:
=
:::::::::::
VARerr(RS)

:
+
::::::::::::
VARerr(ERA)

::
–

:
2
::::::::::
COVerr(RS,

::::::
ERA)

(A6)

MS(RS – GFS) = VAR(RS) + VAR(GFS) – 2 COV(RS, GFS)
::::::
MS(RS

::
–

::::
GFS)

::
=
::::::::::
VARerr(RS)

::
+

:::::::::::
VARerr(GFS)

::
–
:
2
:::::::::::
COVerr(RS,

:::::
GFS)

(A7)

It is possible to use these six equations to get six different
::::
three

::::::::
different,

:::::::
linearly

::::::::::
independent

:
estimates of the four unknowns10

VAR(RO), VAR(ERA), VAR(GFS) and VAR(RS). For example, the full six equations for computing VAR(RO) are:
::::
error

::::::::
variances

::
for

::::
RO,

:::
RS,

:::::
ERA,

::::
and

:::::
GFS.

:::
For

:::
RO,

:::::
these

:::::
three

::::::
VARerr::::::::

equations
::::
are:

2VAR(RO) =
::::
VARerr(

:: :::
RO) =

::
MS(RO – ERA) + MS(RO – GFS) – MS(GFS – ERA)]

+ 2 COV(RO, ERA) + COV(RO, GFS) – COV(GFS, ERA)2
:

[
::::
COVerr(

:: :::
RO,

:::::
ERA)+

::::::
COVerr(

:: :::
RO,

::::
GFS)−

::::::
COVerr(

:: ::::
GFS,

:::::
ERA)

]
(A8)

2VAR(RO) =
::::
VARerr(

:: :::
RO) =

::
MS(RO – ERA) + MS(RO – RS) – MS(RS – ERA)]

+ 2 COV(RO, ERA) + COV(RO, RS) – COV(RS, ERA)2
:

[
::::
COVerr(

:: :::
RO,

:::::
ERA)+

::::::
COVerr(

:: :::
RO,

:::
RS)−

::::::
COVerr(

:: :::
RS,

::::
ERA)

]
(A9)15

2VAR(RO) =
::::
VARerr(

:: :::
RO) =

::
MS(RO – GFS) + MS(RO – RS) – MS(RS – GFS)]

+ 2 COV(RO, GFS) + COV(RO, RS) – COV(RS, GFS)2
:

[
::::
COVerr(

:: :::
RO,

::::
GFS)+

::::::
COVerr(

:: :::
RO,

:::
RS)−

::::::
COVerr(

:: :::
RS,

::::
GFS)

]
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(A10)

O’Carroll et al. (2008) present these equations for a system of three observation types (their Eq. (1)). Additionally, VAR(ERA),

VAR(GFS), and VAR(RS) can be computed separately from different combinations of

::
As

:::::
noted

:::
by

:::
an

::::::::::
anonymous

::::::::
reviewer,

:
it
::

is
::::::::

possible
::
to

::::::
derive

::::::::
infinitely

:::::
many

::::::
linearly

:::::::::
dependent

:::::::::
equations

::
by

::::::::::
combining

Eqs. (1
::
A8)–(6), and these values can be substituted into Eqs. (1), (2), and (4) to compute the remaining three estimates of5

VAR(RO):

VAR(RO) = MS(RO – ERA) + 2 COV(RO, ERA) – VAR(ERA) (10)

VAR(RO) = MS(RO – GFS) + 2 COV(RO, GFS) – VAR(GFS) (11)
10

VAR(RO) = MS(RO – RS) + 2 COV(RO, RS) – VAR(RS) (12)

where VAR(ERA) is computed from Eqs
::::
A10)

::
in

:::::::
different

:::::
ways

::
by

:::::::
forming

:::::::::::
combinations

::
of

:::
the

:::::
form

:::::::
M1×Eq. (1), (2) and (3)

VAR(ERA) = 1/2[MS(GFS – ERA) + MS(RS – GFS) – MS(RS – GFS)]

+ COV(GFS, ERA) + COV(RS, ERA) – COV(RS, GFS)
(13)

VAR(GFS)is computed from Eqs
::::::::::
A8)+M2×Eq. (1), (4) and (5)

VAR(GFS) = 1/2[MS(GFS – ERA) + MS(RS – GFS) – MS(RS – ERA)]

+ COV(GFS, ERA) + COV(RS, GFS) – COV(RS, ERA)
(14)15

and VAR(RS)is computed for Eqs
:::::::::::
A9)+M3×Eq. (2), (4)

::::
A10)

::::::
where

:::
M1,

:::
M2::::

and, and (6)

VAR(RS) = 1/2[MS(RS – ERA) + MS(RS – GFS) – MS(GFS – ERA)]

+ COV(RS, ERA) + COV(RS, GFS) – COV(GFS, ERA)
(15)

The same procedure can be used to derive six equations for estimating the error variances for the other three data sets, RS,

ERA, and GFS (not shown).

So for each of the data sets RO, RS, ERA, and GFS, there are six different ways to estimate the respective error variances.20

The first three of these equations are linearly independent ; these are the three triads in the Gray and Allan (1974) N-cornered

hat method, and the other three are linearly dependent, but are different ways of combining the observed data sets to estimate

the error covariances
:::
M3 :::

are
:::
any

::::::::
numbers

::::::
except

:::::
those

:::
for

:::::
which

::::::::::::::
M1+M2+M3=0.

:::
We

:::
did

:::
not

::::::
pursue

::::
this

:::::::::
possibility

::
in

::::
this

:::::
paper,

:::
but

::::::
instead

::::
used

:::
the

:::::
three

::::::
linearly

:::::::::::
independent

::::::::
equations

::::
only

::
in

:::
our

::::::::
estimates

::
of

::::
error

::::::::
variances.

If all the neglected error COV
::::::
COVerr terms were in fact identically zero , the set of observations in the pairs (RO,ERA),25

(RO,GFS), (GFS,ERA), (RO,RS), (RS,ERA) and (RS,GFS) are the same (they are in our case), and the sample size was very

large (much larger than our sample size), all six
::::
three estimates of the error variances would be the same. The fact that they
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give different solutions is because the neglected COVterms in are in realty
::err :::::

terms
:::
are

::
in

::::::
reality not zero, and hence their

neglect affects the six
::::
three

:
approximate equations in different ways to give six

::::
three

:
different solutions. The relatively small

sample size N
:
n also contributes to the differences in the six

::::
three solutions, which are a measure of these effects.

Figures ??–?? compare the mean of the estimated standard deviations of the errors (computed from the square root of the

estimated error variances) associated with RO 1D-VAR, RS, ERA and GFS for specific humidity, relative humidity, temperature5

and refractivity computed from the six equations (left) and three equations (right) for Guam and Mina
:::
We

:::
also

::::
note

::::
that

::
the

:::::
error

:::::::
estimates

:::::::
contain

:::
any

::::::::::::::::
representativeness

:::::
errors

::::::
caused

:::
by

:::
the

:::::::
different

::::
data

::::
sets

::::::::::
representing

::::::::
different

:::::
scales

::
of

:::::::::::
atmospheric

:::::::
structure

::::::::::::::::::::
(O’Carroll et al., 2008) .

::::::::::::::::
Representativeness

:::::
errors

:::
can

:::::
occur

:::::::
because

::
of

:::::::
different

:::::::::
horizontal

::
or

::::::
vertical

::::::::::
resolutions

::
or

::::::::
footprints

::
of

:::
the

::::
data

:::
sets.

Mean of six and three error estimates of normalized specific humidity at Guam (top) and Mina (bottom). The standard10

deviation about the means is shown by the shading.

Mean of six and three error estimates of normalized relative humidity at Guam (top) and Mina (bottom). The standard

deviation about the means is shown by the shading.

Mean of six and three error estimates of normalized temperature at Guam (top) and Mina (bottom). The standard deviation

about the means is shown by the shading.15

Mean of six and three error estimates of normalized refractivity at Guam (top) and Mina (bottom). The standard deviation

about the means is shown by the shading.

There is generally good agreement among all the estimated error profiles of the four variables for each of the data sets at

all four locations. The mean profiles are quite similar, but the scatter (STD) is smaller for the three independent solutions. It

is unlikely that this agreement would occur by chance if the neglected error covariance terms were large enough to invalidate20

the results, because they would have to somehow combine or cancel in each of the three equations to give the observed similar

results

A3
:::::
Brief

::::::::::
comparison

::
of

:::::
3CH

:::::::
method

::::
and

:::::
triple

::::::::::
co-location

:::::::
method

:::::
While

:
it
::
is
:::
not

:::
the

:::::
intent

:::
of

:::
this

:::::
paper

::
to

::
do

::
a
:::::::
thorough

::::::::::
comparison

::
of

:::
the

:::::
3CH

:::
and

:::::
triple

:::::::::
co-location

:::::
(TC)

:::::::
methods,

::::::
which

:::
are

:::::::::
introduced

:::::
above,

::
in
::::::::

response
::
to

::
a

::::::::
reviewer’s

::::::::
comment

:::
we

:::::::::
compared

:::
the

:::
two

::::::::
methods

::
on

::
a

:::::
subset

::
of

::::
our

::::
data

:::
sets. The error25

covariance terms include error correlations between RO and ERA
:::
The

:::::
main

:::::::::
difference

:::::::
between

:::
the

::::
3CH

::::
and

:::
TC

:::::::
method

::
is

:::
that

:::
the

:::
TC

::::::
method

:::::::
corrects

:::
for

:::::::
additive

:::
and

::::::::::::
multiplicative

:::::
biases

::::::
among

:::
the

:::::
three

:::
data

::::
sets,

::
as
:::::::::
discussed

::
by

:::::::::::::::
Stoffelen (1998) ,

:::::::::::::::::::::
Vogelzang et al. (2011a) ,

:::
and

::::::
others.

:::
The

:::
TC

:::::::
method

::::::::
calibrates

:::
two

::
of

:::
the

::::
data

:::
sets

::::::
against

:::
the

:::::
third,

::::::::::
eliminating

:::::
biases

::::::
among

::
the

:::::
three

::::
data

::::
sets.

::
As

::::::
shown

::::::
below,

:::
the

:::
TC

::::::
method

:::::
gave

:::::
results

::::
very

::::::
similar

::
to
:::
the

:::::
3CH

::::::
method

:::
for

:::
our

::::
data

::::
sets.

::
In

:::
our

:::::::::
application

:::
of

:::
the

:::
TC

:::::::
method

:::
we

:::
use

:::
the

::::::::
following

::::::::::::
combinations

::
of

::::
data

::::
sets:

::::::
(ERA,

:::
RO

::::
and

::::
RS),

::::::
(ERA,

:
RO and30

GFSGFS and ERA RO and
:
),

:::
and

::::::
(ERA,

::::
GFS,

::::
RS).

:::
For

:::
the

:::
RO

:::
we

:::
use

:::
two

::::
RO

::::::::
retrievals,

:::
the

:::::
Direct

:::
and

::::::::
1D-VAR

:::
(see

:::::
Sect.

::::
2.3).

:::
The

::::
RO,

:::
RS

:::
and

::::
GFS

::::
data

:::
sets

:::
are

:::
all

::::::::
calibrated

:::::
using

::::
ERA

::
as

:::
the

:::::::::
calibration

:::::::::
reference,

::::
using

:::
the

::::::::
following

:::::::::
calibration

:::::::
factors.

:::
For

:::::::
example,

:::
the

:::::::::
calibrated

:::
RO

:::
and

:::
RS

::::::::::
(designated

:::
by

:::::
ROcal:::

and
:
RSRS and ERA RS and GFS
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These combine in different ways in the six equations; the neglected terms in each equation are : COV(RO, ERA) + COV(RO,

GFS) – COV(GFS, ERA) COV(RO, ERA) + COV(RO, RS) – COV(RS, ERA) COV(RO, GFS) + COV(RO, RS) – COV(RS,

GFS) 2 COV(RO, ERA) – COV(GFS, ERA) + COV(RS, ERA) – COV(RS, GFS) 2 COV(RO, GFS) – COV(GFS, ERA) +

COV(RS, GFS) – COV(RS, ERA) 2 COV(RO, RS) – COV(RS, ERA) + COV(RS, GFS) – COV(GFS, ERA)
::cal:::::::::::

respectively)

::::
using

:::::
ERA

::
as

::::
the

::::::::
reference

:::
are,

:::::::::
following

:::::::::::::::::
Stoffelen (1998) and

:::::::::::::::::::::
Vogelzang et al. (2011a) :5

ROcal =
RO− bRO

aRO
:::::::::::::::::::::

RScal =
RS− bRS

aRS
::::::::::::::::::::

:::::
where

:::
the

:::::::
additive

:::
bias

:::::
terms

:::
are

:

bRO = M(RO – ERA)
:::::::::::::::::::::::

bRS = M(RS – ERA)
::::::::::::::::::::::

10

:::
and

:::
the

:::::::::::
multiplicative

::::
bias

:::::
terms

:::
are

aRO =
M(RO · RS)

M(RS · ERA)
:::::::::::::::::::::::

aRS =
M(RO · RS)

M(RO · ERA)
:::::::::::::::::::::::

:::
and

::
M

:::::::
denotes

:::
the

:::::
mean

::::
value

::::
over

:::
the

::::
data

::::
sets.

:

Since in all cases the results are similar, these six combinations must be approximately the same and most likely smaller15

that the terms involving the mean squares of the difference between the various data sets used to compute the estimates
:::
The

:::::
results

::
of

:::
the

:::::::
specific

::::::::
humidity

::::
error

:::::::
variance

::::::::
estimates

:::
for

:::::
ROcal:::

and
:::::
RScal:::::::::

compared
::
to

:::
RO

:::
and

:::
RS

:::
are

::::::
shown

::
in

:::
Fig.

:::
A1

::::
and

::
the

::::::::
estimates

:::
for

:::::::
ERAcal:::

and
:::::::
GFScal ::::::::

compared
::
to

:::::
ERA

:::
and

::::
GFS

:::
are

::::::
shown

::
in

::::
Fig.

:::
A2.

::::
The

:::
left

::::::
panels

:::::
show

:::
the

:::::
results

:::::
from

::
the

::::
TC

::::::
method

:::::::::
(calibrated

:::::
data)

::::
and

:::
the

::::
right

::::::
panels

:::::
show

:::
the

::::::
results

:::::
using

:::
the

::::
3CH

:::::::
method

:::::::::::
(uncalibrated

:::::
data).

::::
The

:::::
close

::::::::
similarity

::
of

:::
the

::::::
results

::::::::
indicates

:::
that

:::
the

::::::
biases

:::
do

:::
not

::::::::::
significantly

:::::
affect

:::
the

:::::
3CH

::::::::
estimates,

:::
in

:::::::::
agreement

::::
with

:::
the

::::::
results20

::::
from

:::
the

::::
error

::::::
model

:::::
study

::
in

::::::::::::::::::::::
Rieckh and Anthes (2018) .
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Figure A1.
:::::::

Estimated
:::
RO

:::
and

::
RS

::::
error

:::::::
variances

:::
for

::::::
specific

::::::
humidity

::
at
:::::::::::::
Minamidaitojima

::::::
(Japan)

::::
using

::::::::
calibrated

:::
data

::
as

::
in

::
the

:::
TC

::::::
method

::::
(left)

:::
and

::
the

::::::::::
uncalibrated

:::
data

::
as

::
in

:::
the

::::
3CH

:::::
method

::::::
(right).

:::
For

:::
the

::
TC

:::::::
method,

::
the

::::
RO,

:::
RS,

:::
and

::::
GFS

:::
data

:::
sets

:::
are

:::::::
calibrated

::::
with

::::::
respect

:
to
::::
ERA

::
as
:::
the

:::::::
reference

:::
data

:::
set.

::::
The

:::::::
following

::::::::::
combinations

::
of

:::
the

:
4
:::
data

:::
sets

:::
are

::::
used:

:::::
(ERA,

::::
RO,

:::
RS),

:::::
(ERA,

::::
RO,

::::
GFS),

:::
and

::::::
(ERA,

::::
GFS,

:::
RS).
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Figure A2.
:::::::
Estimated

::::
ERA

:::
and

::::
GFS

::::::
specific

::::
error

:::::::
variances

::
for

:::::
ERA

:
at
:::::::::::::
Minamidaitojima

::::::
(Japan)

::::
using

:::
the

::::
triple

:::::::::
co-location

::::
(TC)

::::::
method

::::
(left)

:::
and

::
the

:::::::::::
three-cornered

:::
hat

:::::
(THC)

::::::
method

:::::
(right).

:::
For

:::
the

::
TC

:::::::
method,

::
the

:::
RO,

:::
RS

:::
and

::::
GFS

:::
data

:::
sets

:::
are

:::::::
calibrated

::::
with

:::::
respect

::
to
:::::
ERA.

:::
The

:::::::
following

::::::::::
combinations

::
of
:::
the

:
4
::::
data

:::
sets

:::
are

::::
used:

:::::
(ERA,

:::
RO,

::::
RS),

:::::
(ERA,

:::
RO,

:::::
GFS),

:::
and

:::::
(ERA,

:::::
GFS,

:::
RS).
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Appendix B: Mean and standard deviations of three independent error estimates of q
:
q, RH, T

:
T , and N

::
N using RO

Direct and RO 1D-VAR at Guam, Ishi, Mina and Naze

Figure B1. Mean and standard deviations (shading) of the three estimates of normalized specific humidity using RO Direct and RO 1D-VAR

at (a) Guam, (b) Ishi, (c) Mina and (d) Naze.
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Figure B2. Mean and standard deviations (shading) of the three estimates of normalized specific
::::::
relative humidity using RO Direct and RO

1D-VAR at (a) Guam, (b) Ishi, (c) Mina and (d) Naze.
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Figure B3. Mean and standard deviations (shading) of the three estimates of normalized specific humidity
::::::::
temperature

:
using RO Direct and

RO 1D-VAR at (a) Guam, (b) Ishi, (c) Mina and (d) Naze.
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Figure B4. Mean and standard deviations (shading) of the three estimates of normalized specific humidity
::::::::
refractivity

:
using RO Direct and

RO 1D-VAR at (a) Guam, (b) Ishi, (c) Mina and (d) Naze.
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