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Abstract. In this paper we show how multiple data sets, including observations and models, can be combined using the “three

cornered hat” (3CH) method to estimate vertical profiles of the errors of each system. Using data from 2007, we estimate the

error variances of radio occultation, radiosondes, ERA-Interim, and GFS model data sets at four radiosonde locations in the

tropics and subtropics. A key assumption is the neglect of error covariances among the different data sets, and we examine the

consequences of this assumption on the resulting error estimates. Our results show that different combinations of the four data5

sets yield similar relative and specific humidity, temperature, and refractivity error variance profiles at the four stations, and

these estimates are consistent with previous estimates where available. These results thus indicate that the correlations of the

errors among all data sets are small and the 3CH method yields realistic error variance profiles. The estimated error variances

of the ERA-Interim data set are smallest, a reasonable result considering the excellent model and data assimilation system and

assimilation of high-quality observations. For the four locations studied, RO has smaller error variances than radiosondes, in10

agreement with previous studies.

1 Introduction

Estimating the error characteristics of any observational system or model is important for many reasons. Not only are these

errors of scientific interest, they are important for data assimilation systems and numerical weather prediction. In many modern

data assimilation schemes, observations of a given type are weighted proportionally to the inverse of their error variance (e.g.15

Desroziers and Ivanov, 2001).

Kuo et al. (2004) and Chen et al. (2011) used the difference between radio occultation (RO) observations and short-range

model forecasts to estimate the error of the RO observations, using the concept of apparent or perceived errors, defined by

XAE = XRO −Xfcst (1)

where XAE is the apparent error of the RO observation and XRO and Xfcst are the RO observations and model forecast values,20

respectively.

The error variance σ2
a of the apparent error is given by

σ2
a =

1

n

∑
X2

AE (2)
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where n is the number of samples of observed and modeled RO at the same location and time.

The relationship between the apparent error variance σ2
a, the observational error variance σ2

o , and the forecast error variance

σ2
f is given by:

σ2
a = σ2

o +σ2
f − 2COVerr(XRO,Xfcst) (3)

where the COVerr term is the error covariance between the observations and the forecasts. If the error variance of the forecast5

σ2
f is estimated independently, the observational error variance can be estimated from the apparent error variance, under the

assumption that the observational errors are uncorrelated with the forecast errors (in which case the COVerr term in Eq. (3) is

zero).

σ2
a = σ2

o +σ2
f (4)

We note that the apparent errors are the same as the (O – B) (observation minus background) or innovations as used in data10

assimilation methods and studies (Chen et al., 2011).

As discussed by Kuo et al. (2004) and Chen et al. (2011), the forecast error variance can be estimated by two alternative

methods, the NMC method (Parrish and Derber, 1992) or the Hollingsworth and Lönnberg (1986) method. Kuo et al. (2004)

used both methods to estimate the observational errors of RO refractivity using the NCEP AVN model. Chen et al. (2011) used

the NMC method and Weather and Research Forecast Model (WRF) to estimate the forecast error variance and then the RO15

refractivity error variance.

In this paper, we estimate the error variances of multiple data sets using the “three-cornered hat” (3CH) method (Gray

and Allan, 1974). Unlike the apparent error method, this method does not require independent estimates of the error variance

of a forecast; it uses the differences between combinations of three data sets. The 3CH method is described in Appendix A

along with the closely related “triple co-location method” (Stoffelen, 1998). The data sets may be either different model or20

observational data and estimates of the error variances of all the data sets are computed by the method. We compare three

observational data sets (two versions of RO retrievals and radiosondes (RS)) and two model data sets at four locations in the

tropics and subtropics to estimate the error variances of all five data sets. We find that the results are consistent with each other

and with previous error estimates, where available.

2 Discussion of data sets25

We use five data sets from an entire year (2007) in this study. Rieckh et al. (2018) extensively studied the properties of these

data sets and their daily variability over 2007 in the tropical and sub-tropical western Pacific. They are described in more detail

there, but are summarized briefly here for convenience.

We chose 2007 for the year of our study because the number of COSMIC (Constellation Observing System for Meteorology,

Ionosphere and Climate) RO observations was near a maximum at this time. Because the primary interest in Rieckh et al. (2018)30

was the evaluation of water vapor observations and model analyses in challenging tropical and subtropical environments, we
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chose one RS station in the deep tropics and three Japanese stations in the subtropics. Because of our focus on water vapor, we

carry out the analysis from 1000 to 200 hPa.

2.1 ERA-Interim

The ERA-Interim (hereafter ERA) reanalysis is a global model reanalysis produced by the European Centre for Medium-

Range Weather Forecasts (ECMWF) (Dee et al., 2011). Information about the current status of ERA-Interim production,5

availability of data online, and near-real-time updates of various climate indicators derived from ERA-Interim data can be

found at https://www.ecmwf.int/en/research/climate-reanalysis/reanalysis-datasets/era-interim.

We use the ERA analysis product, which assimilates both RS and RO data for the entire year of 2007; hence some correlation

of model, RS, and RO errors is likely. However, there are many other observations going into the ERA reanalysis and model

correlations with any one observational data set are likely to be small.10

2.2 NCEP Global Forecast System (GFS)

The Global Forecast System (GFS) is a forecast model produced by the National Centers for Environmental Prediction (NCEP).

Data are available for download through the NOAA National Operational Model Archive and Distribution System (NO-

MADS). Forecast products and more information on GFS are available at https://www.ncdc.noaa.gov/data-access/model-data/

model-datasets/global-forcast-system-gfs.15

The GFS assimilated RS observations for the entire year 2007, but began assimilating RO data on 1 May, 2007, along

with many other changes to the model and analysis system (Cucurull and Derber, 2008; Kleist et al., 2009). Thus the GFS

and RS and RO errors are also likely correlated to some degree. However, we computed vertical profiles of the correlation

coefficients for RO and GFS refractivity, temperature, specific humidity, and relative humidity in the two months before and

after May 1, 2007 when the GFS started assimilating RO data and found little differences, so the error correlations between20

RO and GFS are likely small.

2.3 Radio occultation observations

The RO observations used in this study are re-processed data obtained from the UCAR COSMIC Data Analysis and Archive

Center (CDAAC). Two methods for estimating the temperature and water vapor from the RO refractivity are used. In the direct

method, the GFS temperature is used in the Smith and Weintraub (1953) equation25

N = 77.6
p

T
+ 3.73 · 105

e

T 2
(5)

to compute water vapor pressure e from the observed refractivity N and GFS temperature T .

A one-dimensional variational (1D-VAR) method is also used to estimate T and e from N . The 1D-VAR method uses an

a-priori state of the atmosphere (background profile) and an observed RO N profile to minimize a quadratic cost function. At

CDAAC, an ERA-Interim profile is used as background, which is interpolated to the time and location of the RO observation30

3
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(accounting for tangent point drift during the occultation). The humidity retrieval allows an error for both T and e, but only a

very small error for bending angle/refractivity. Specific humidity q is then computed from the derived e.

2.4 Radiosonde observations

RS data from Guam and three Japanese stations are used in this comparison. The RS data are given on nine main pressure

levels between 1000 hPa and 200 hPa, plus additional levels if atmospheric conditions are variable. The four stations use the5

following sensors: Guam: VIZ/Sippican B2; Ishigakijima: Meisei; Minamidaitojima: Vaisala RS92; and Naze: Meisei. They

are launched twice daily in the hour before noon and midnight, UTC.

Guam is located in the deep tropics at 13.7◦N 144.8◦E. Ishigahijima (hereafter called Ishi), Minamidaitojima (hereafter

called Mina), and Naze are located relatively close together in the western Pacific subtropics south of Japan and northeast of

Taiwan:10

Naze: Naze/Funchatoge (Kagoshima) 28.4◦N 129.4◦W

Mina: Minami-daitojima (Okinawa) 25.6◦N 131.5◦W

Ishi: Ishigakijima (Okinawa) 24.2◦N 124.5◦W

2.5 Co-location of the data sets

The locations of the four radiosonde stations are chosen for the comparisons. We use RO observations that are located within15

600 km and 3 hours of the radiosonde launches. CDAAC provides GFS and ERA profiles that are already linearly interpolated

in space and time to the RO location and time. These interpolated profiles, along with the RO observations, were corrected

for their time and spatial differences from the radiosonde data using a model correction algorithm (described in Gilpin et al.,

2018). Thus the effect of spatial and temporal differences among the data sets is expected to be minor.

The refractivity for the radiosonde and model data is computed from Eq. (5) using the pressure, temperature, and water vapor20

from these data. Normalized differences are computed for all combinations of the data sets (RO–ERA, RO–GFS, GFS–ERA,

RS–ERA, RS–GFS, RS–RO), where RO is either the RO-Direct or the RO 1D-VAR data. The ERA annual mean for 2007 at

each RS station is used to normalize the differences in the data sets associated with that station. We consider the differences

among all data sets for four variables: refractivity (N ), temperature (T ), specific humidity (q), and relative humidity (RH).

2.6 Number of samples25

The number of samples is limited by the number of RO observations that are within the co-location criteria of three hours and

600 km. Figure 1 shows the number of data samples per pressure level that meet these criteria during 2007 at Mina (the numbers

at Ishi and Naze are similar) and Guam. The sharp cut-off on the top of the profiles is due to limited RS data availability at

high altitudes. The smooth transition to lower numbers at the bottom results from a decrease in the number of RO observations

with lower altitudes in the mid and lower troposphere. The number of samples at the Japanese stations is a maximum of30

approximately 900 at 300 hPa. The number decreases to about 100 at 950 hPa. At Guam, the number ranges from a maximum
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Figure 1. Number of co-located measurements for (a) Mina and (b) Guam. These are also the sample numbers in the calculations of the

estimated error variances for the data sets. When using the RO 1D-VAR, the number of co-locations is slightly higher than for the RO-Direct

throughout the profile due to the way the 1D-VAR is computed.

of about 500 at 200 hPa to about 50 at 950 hPa. Thus the effect of the limited sample size will be greatest for the Japanese

stations above 300 hPa and for all four stations below 900 hPa where the sample size is less than 500.

2.7 Mean ERA profiles for 2007 and example of profiles and normalized difference profiles

Before showing the statistical comparisons of the normalized differences between the data sets and their estimated errors, we

present the mean ERA profiles of q, RH, T and N at Mina and Guam for the year 2007 (Fig. 2). The standard deviations are5

shown by the shading around each mean profile. As shown by Fig. 2, the water vapor (especially relative humidity) shows the

greatest variability over the year. The variability in specific humidity, temperature, and refractivity is greater at Mina, which is

located in the subtropics, than Guam, which is located in the deep tropics.

We next present a single example of soundings from the five data sets, to illustrate how the profiles of the normalized

differences of the variables (which we use in all the following calculations) compare to the actual profiles. Figure 3 illustrates10

the q, RH, T , and N profiles from 13 January 2007 at approximately 00 GMT and Fig. 4 illustrates the corresponding profiles

of the normalized differences of the variables from ERA, for example (q−qERA)/q̄, where q̄ is the 2007 mean ERA value of q.

A comparison of Figs. 3 and 4 shows that the normalized difference profiles highlight the similarities and differences of the

five data sets better than the actual profiles, especially in the upper troposphere. The magnitudes of the normalized differences

are the same order of magnitude at all levels, whereas the differences in the actual profiles can vary by more than an order of15

magnitude from the lower to the upper troposphere. Figure 4 shows that typical percentage differences between data sets are

∼50 % for q and RH, 0.5 % for T , and 5 % for N .
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Figure 2. The mean ERA profiles over 2007 at Guam and Mina of specific humidity q (a), relative humidity RH (b), temperature T (c), and

refractivity N (d). The standard deviations about the mean profiles are indicated by the shading.

3 Derivation of error variances

In this section we summarize the derivation of the equations relating the error variances and covariances among the data sets.

The complete derivation and a discussion of the limitations is given in Appendix A.

The error variance of a variable X (e.g. q, RH, T or N ) is defined as

VARerr(X) =
1

n

∑
(X−True)2 =

1

n

∑
X2

err (6)5

where True is the true (but unknown) value of X and the summation is over n samples.

As shown in Appendix A, we can derive three different linearly independent equations for estimating the error variance

of any data set, assuming that the error covariances among all the data sets are negligible compared to the differences in the

observed mean square (MS) differences between the data sets. The three complete (and exact) linearly independent solutions

for estimating the error variance of RO are10

2VARerr(RO) =MS(RO – ERA) + MS(RO – GFS) – MS(GFS – ERA)]

+ 2[COVerr(RO, ERA) + COVerr(RO, GFS)−COVerr(GFS, ERA)]
(7)
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Figure 3. Profiles of specific humidity (a), relative humidity (b), temperature (c) and refractivity (d) for the five data sets for 13 January, 2007

at 00:23 UTC.

2VARerr(RO) =MS(RO – ERA) + MS(RO – RS) – MS(RS – ERA)]

+ 2[COVerr(RO, ERA) + COVerr(RO, RS)−COVerr(RS, ERA)]
(8)

2VARerr(RO) =MS(RO – GFS) + MS(RO – RS) – MS(RS – GFS)]

+ 2[COVerr(RO, GFS) + COVerr(RO, RS)−COVerr(RS, GFS)]
(9)

where RO (or ERA, GFS, RS) corresponds to the value of X as estimated by RO (or ERA, GFS, RS) and MS denotes the mean5

square difference between the values from two data sets (e.g. RO – ERA).

We use Eq. (7)–(9) to provide three independent estimates of VARerr(RO) by neglecting the COVerr terms in each equation.

The assumption that the error covariances are small compared to the difference in variances between the data sets is similar to

the assumption used in the apparent error method that the errors of the observations and model forecasts are uncorrelated. In

general the COVerr terms are not zero; thus we will examine the validity of this assumption by checking whether the various10

estimates of the error variances from the three equations are consistent with each other and reasonable compared to other

independent studies that estimate error variances in other ways. In a related paper (Rieckh and Anthes, 2018) we examine the

effect of various degrees of error correlations between two of the three data sets using an error model.
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Figure 4. Same as Fig. 3 except for normalized differences from ERA.

The same procedure can be used to derive three equations for estimating the error variances for the other three data sets, RS,

ERA, and GFS (equations not shown here).

So for each of the five data sets, RO Direct and RO 1D-VAR, RS, ERA, and GFS, there are three independent ways to

estimate their respective error variances. This is the “three cornered hat” method described in Appendix A. We note that it is

possible that the estimated error variances from any of the three equations are negative because of the neglect of the COVerr5

terms and the small sample size, especially above 300 hPa for the Japanese stations and below 800 hPa for all four stations

(Fig. 1).

4 Comparison with previous studies for RO refractivity

We first compute the estimated error variance for RO refractivity using GFS and ERA data for comparison with the Kuo et al.

(2004) and Chen et al. (2011) estimates of RO error variance to illustrate the 3CH method. In an analogy to the apparent error10

Eq. (4), with RO being the observation and ERA being the forecast

MS(RO – ERA) = VARerr(RO) + VARerr(ERA) (10)

which is Eq. (A2) in Appendix A with neglect of the COVerr terms. We compute MS(RO – ERA) from the RO and ERA data

sets (analogous to the apparent error variance σ2
a in Eq. (4)) and plot its square root as the black line in Fig. 5. Then we estimate
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Figure 5. Standard deviations of the apparent error STD(RO – ERA) (black line), estimated RO error STD(RO – True) computed from

Eq. (7) (blue line) and ERA error STD(ERA – True) (pink line) for refractivity at a) Guam, b) Ishi, c) Mina, and d) Naze.

VARerr(RO) using Eq. (7) and the data sets (RO – GFS) and (GFS – ERA), along with the apparent error MS(RO – ERA),

neglecting the COVerr terms.

The square root of VARerr(RO) gives the standard deviation (STD) (Fig. 5, blue curve). Finally, the ERA error variance

(analogous to the forecast error) is obtained by subtracting VARerr(RO) from MS(RO – ERA) using Eq. (10) above (pink line

in Fig. 5). The gap in the computed ERA error STD in Fig. 5a occurs due to negative estimated error variance values, which can5

result from having a limited sample size, neglecting error covariance terms during computation, and having an error variance

that is already close to zero (as is the case for ERA).

The results shown in Fig. 5 are quite similar to those from Kuo et al. (2004, Fig. 13) and Chen et al. (2011, Fig. 3d) who

used different models and different data sets. The STD of normalized RO refractivity errors are a maximum of between 2.0

and 2.5 % near the surface, decreasing to about 0.5 % at 10 km. These similarities give credibility to both methods.10

5 Calculation of the error variance terms using the multiple data sets

This section shows the estimated error variances for N , q, T , and RH at one of the four stations (Mina) for the five data sets

and summarizes the results for the other three stations (Naze, Ishi and Guam).
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Figure 6. Estimated error variances (% squared) of specific humidity at Mina: a) RO, b) RS, c) GFS, and d) ERA.

5.1 Results for Mina

The following plots show the estimated error variances computed from Eq. (7), (8), or (9). Two RO data sets (Direct and 1D-

VAR) are considered one at a time using the other three data sets. Thus we have two sets of error estimates for each data set:

one using the RO-Direct with RS, ERA, and GFS, and one using the RO 1D-VAR with RS, ERA, and GFS. In the following

plots, darker colors correspond to the three results using the RO 1D-VAR and lighter colors correspond to the three results5

using the RO-Direct.

Figure 6 shows the results for specific humidity. Error variances are shown rather than STD because they are easier to

interpret using the three equations used to derive them and because the STD are undefined for the occasional negative estimated

error variance. Figure 6a shows the q error variance profiles for the two RO data sets (Direct and 1D-VAR). The direct method

(use of GFS temperature in Eq. (5)) shows a steady increase of error variance with height, from about 100 %2 (STD ∼10 %)10

at 950 hPa to 800 %2 (STD ∼28 %) at 500 hPa and 2000 %2 (STD ∼45 %) at 300 hPa. This is expected since the refractivity

contains little information on water vapor above about 400 hPa and we are using an independent estimate of temperature, with

no constraints on the water vapor retrieval. The q error variance profile for RO using the 1D-VAR method is similar to that of

the direct method below 500 hPa, but reaches a maximum at about 500 hPa of about 500 %2 (STD ∼22 %) and then decreases

toward zero at 200 hPa. The 1D-VAR method uses the ERA-Interim fields as background and thus constrains the water vapor15

profile retrieval at high altitudes. It is notable that the three equations used to estimate the error variance profiles agree closely
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Figure 7. Estimated error variances (% squared) of relative humidity at Mina: a) RO, b) RS, c) GFS, and d) ERA.

and the difference among the three estimates is much smaller than the differences in the mean profiles using the two RO

retrieval methods.

The RS specific humidity error variance profiles at Mina (Fig. 6b) show a similar behavior as the RO-Direct, with a steady

increase with height, exceeding 2000 %2 (STD of ∼45 %) at 400 hPa. The STD of the RS are slightly larger than the two RO

estimates below 600 hPa. The error variance estimates using the RO-Direct (orange) and RO 1D-VAR (red) are similar.5

The error variance profiles from the two model sets (Figs. 6c, d) are quite different. The GFS error variance is less than

the RO-Direct and RS error variances at all levels, and also less than the RO 1D-VAR error variance except above 300 hPa.

Although there is more scatter, especially in the upper troposphere, the ERA profiles are different from all the other data sets

in that they show only a small increase of error variance with height, from near zero at the surface to up to a mean of about

100 %2 (STD ∼10 %) at 200 hPa.10

Figure 7 shows the estimated error variances of relative humidity. As with specific humidity, there is consistency among the

estimates for the different data sets. The general behavior of the RH error variance profiles is similar to that for q, as might

be expected because the percentage variability of water vapor is greater than that of temperature at this subtropical location.

Again, the estimated error variances of the RO derived RH are less than those of the RS in the lower troposphere. The GFS error

variances are smaller than the RO and RS variances, except for the RO 1D-VAR profile above 300 hPa, which is constrained15
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Figure 8. Estimated error variances (% squared) of temperature at Mina: a) RO, b) RS, c) GFS, and d) ERA.

by the ERA observations in the upper troposphere. The ERA error variances are significantly smaller than the other data sets,

averaging between 50 and 200 %2 (STD 7–14 %) throughout the troposphere.

Figure 8 shows the estimated error variances of temperature. Because the RO-Direct retrieval uses the exact GFS temperature,

the results for the direct retrieval (light blue) using the (RO, GFS, ERA) and (RO, RS and GFS) are not meaningful in Fig. 8a

(they are identically zero). The result from Eq. (8) (RO, ERA and RS), given by the dashed light blue line in Fig. 8a is valid,5

but in reality, this is an estimate of the GFS T error variance, and it is in fact very similar to the profiles in Fig. 8c.

The RO 1D-VAR results for temperature from all three equations give somewhat larger results (Fig. 8, dark blue profiles).

The estimated error variance profiles oscillate between 0.1 and 0.3 %2 (STD 0.3 to 0.55 %). For a temperature of 300 K, these

correspond to 0.9 to 1.65 K.

The RS temperature error variances (Fig. 8b) vary between 0.05 and 0.15 %2 (STD 0.2 to 0.4 % or 0.6 to 1.2 K for T=300 K).10

The GFS temperature error variances are a little lower, averaging around 0.05 to 0.10 %2 (STD 0.2 to 0.3 %), while the ERA

estimated temperature error variances average close to zero (Fig. 8d).

Figure 9 shows the estimates of the normalized refractivity errors for the five data sets. There is more spread in the refractivity

estimates compared to those of the other variables, especially in the lower troposphere where the estimates vary between about

4 and 9 %2 (STD 2 to 3 %) for the two RO variances. Recall that the RO-Direct N are the observed RO N as provided by15

CDAAC while the RO 1D-VAR N are modified based on the background (ERA) N . The average of the N error variances
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Figure 9. Estimated error variances (% squared) of refractivity at Mina: a) RO, b) RS, c) GFS, and d) ERA.

for the radiosondes (Fig. 9b) shows a maximum of ∼10 %2 (STD ∼3.2 %) around 900 hPa. The GFS error variance profiles

show a maximum around 750 hPa of ∼8 %2 (STD ∼2.8 %). The ERA profiles show the smallest errors, with a maximum in the

lower troposphere of an average of ∼2 %2 (STD ∼1.4 %). All data sets show a decrease of error variance to less than 0.5 %2

(STD<0.7 %) at 400 hPa. The reason for the large scatter in estimates of N below about 800 hPa may be related to errors in N

caused by super-refraction in the lower troposphere, which occurs often in the tropics and subtropics. Super-refraction causes5

a negative N bias, which may lead to larger error covariances in this layer. The smaller number of RO samples below 800 hPa

(Fig. 1) may also be a factor.

Figure 10 shows the mean of the three estimates of the error variances of the five data sets for q, RH, T , and N at Mina.

The standard deviation1 about these means is shown by the shaded areas. These figures show clearly the significant differences

among the error variance estimates of the five data sets. In Fig. 10a, the error variance for specific humidity is greatest for the10

radiosonde (red and orange profiles) and least for the ERA profiles. As discussed earlier, the mean of the RO 1D-VAR retrieval

reaches a maximum at about 550 hPa and then decreases back toward zero as it becomes constrained by the background profile

at high levels. Figures 10b–d show the mean profiles of error variance for relative humidity, temperature and refractivity. The

relative humidity profiles are similar to the specific humidity profiles. The ERA errors are the smallest, followed by GFS,

the RO and finally the radiosondes. The temperature error variance profiles show that the ERA errors are very close to zero15

1σ =
(

1
n−1

∑n=3
n=1 (xn − x̄)2

)1/2
where xn denote the three error variance estimates
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Figure 10. Mean of the three estimates of error variance plots for q, RH, T and N using RO-Direct and RO 1D-VAR for each data set at

Mina. The standard deviation about the mean is indicated by shaded areas. (a) specific humidity; (b) relative humidity; (c) temperature; and

(d) refractivity. RO (blue), radiosonde (red), GFS (gray), and ERA (purple).

throughout the entire troposphere. The GFS profiles (gray) and the RS profiles (red and orange) show relatively constant values

with height of approximately 0.05 %2 and 0.1%2 respectively (corresponding to temperature errors of 0.7 K and 0.9 K at 300 K,

respectively). The RO shows an oscillating error variance profile ranging between 0.1 and 0.3 %2 (0.9 K and 1.6 K at 300 K).

Finally, the refractivity profiles show the greatest variability, but the mean profiles are still quite distinct. ERA again shows the

lowest errors, followed by GFS, RO, and RS.5

It is difficult to find previous results for RS temperature and specific humidity error variances. However, previous studies

comparing RO with RS and models indicate that our estimates are reasonable and consistent with these studies. Ho et al. (2017)

found STD between RO and RS pairs for many RS types of about 1.5 K in the 200–20 hPa layer, where RO temperatures are

most accurate (Table 2 in Ho et al. (2017)). This value corresponds to the apparent error between RS and RO, which is

larger than the RS error. The estimated RS temperature error variances from 200–100 hPa in Fig. 10c is about 0.15 %2, which10

corresponds to a STD of 0.39 % or 0.9 K for a mean temperature of 230 K. Ladstädter et al. (2015) compared high-quality

The GCOS (Global Climate Observing System) Reference Upper-Air Network (GRUAN) RS to RO globally and for a tropical

station (Nauru) and subtropical station (Tateno, Japan) from 2002 to 2013. They found temperature STD of about 0.5 K for
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Table 1. Normalized differences of zonal mean RO and ERA specific humidity in the tropics for cloudy conditions (computed from data in

Vergados et al., 2014)

Pressure (hPa) VAR (%2) STD (%)

925 320 17.8

850 460 21.4

700 1260 35.5

500 2760 53.5

400 4220 65.0

300 5625 75.0

Nauru and 0.5 to 0.8 K at Tateno averaged over the layer 800 to 300 hPa. For specific humidity, they found STD between RO

and RS of about 10 % increasing to about 40 % in the upper troposphere. In our calculations for Guam and the three subtropical

Japanese stations our estimates for STD of q are similar (Fig. 10a; and Appendix B Fig. B1), ranging from about 10 % at

900 hPa to 45 % at 300 hPa.

Ho et al. (2010) compared COSMIC RO observations to ECMWF analyses and several types of radiosondes for the period5

August–November, 2006. They found mean specific humidity STD of RO–ECMWF of ∼0.5 g kg−1 and RO–RS (Meisei) of

∼0.9 g kg−1. From their plots of the vertical profiles of the STD, these numbers are typical for the layer 800–500 hPa, which,

given the normalization values from the four RS stations in our study (Fig. 3) of about 9 g kg−1 at 800 hPa and 2 g kg−1 at

500 hPa, correspond to STD (VAR) values of ∼6 % (36 %2) at 800 hPa and 25 % (625 %2) at 500 hPa for ECMWF and ∼10 %

(100 %2) at 800 hPa and 45 % (2025 %2) at 500 hPa for Meisei RS. These values are similar to the estimates of the RS analysis10

for the Japanese stations shown in Fig. B1 of Appendix B.

Vergados et al. (2014) compared RO-derived observations of specific humidity with radiosondes and ERA-Interim under

cloudy conditions in the tropics for August–October 2006. They used the direct method for computing specific humidity from

the RO refractivity using the ERA-Interim temperatures. Their differences between zonal means of normalized RO and ERA-

Interim observations of q are presented in Table 1 (we computed the normalized differences from their data in Table 3 for the15

tropics):

The VAR values in Table 1 correspond to apparent errors, where RO and ERA correspond to the observation and forecast

variables respectively (Eq. (10)). As expected, they are larger than the estimated error variances for RO-Direct shown in Fig. 6a

because the apparent errors are always larger than the observation errors as shown in Eq. (4). This comparison indicates that

the estimates of true errors in Fig. 6a are reasonable.20

5.2 Summary of results at Naze, Ishi and Guam

The mean and STD error profiles for Naze, Ishi, and Guam corresponding to the above results for Mina are presented in

Appendix B. Here we summarize the main similarities and differences between the error variance estimates for these stations
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compared to those for Mina. In general, we find similar magnitudes and shapes of the profiles of the estimated error variances

of the five data sets for all four variables (q, RH, T , and N ).

The estimated error profiles are especially similar for the three Japanese stations. This close similarity may be due primarily

to the fact that the three locations are relatively close together and two of the three use the same type of radiosonde (Meisei).

The results from Guam are also similar in general magnitudes and shapes of the profiles to those from the three Japanese5

stations, but there are somewhat greater differences in some of the profiles (e.g. GFS q, RH, and N ; and RS N ). These

differences are likely due to the different location and the use of a different radiosonde type at Guam (VIZ/Sippican B2). The

neglected error covariance terms are also likely different between the three Japanese stations, which are located in a data-rich

region, and Guam, which is located in a data-sparse region. Thus the model errors are less likely to be highly correlated with a

single observational system in the former than in the latter, where single observations may affect the models more significantly.10

6 Summary and discussion

We used the “three cornered hat” (3CH) method to estimate vertical profiles of error variances of different observation and

model data sets by computing the differences among the data sets at four fixed locations. We computed estimated error variances

of four variables (specific humidity q, relative humidity RH, temperature T , and refractivity N ) for five data sets (ERA, GFS,

radiosondes (RS), radio occultation (RO) 1D-VAR, and RO-Direct) at four different locations in the tropics and subtropics15

for the year 2007. The stations are Guam, Ishigakijima, Minamidaitojima, and Naze. The latter three stations are on Japanese

islands and are located quite close together (a few hundred kilometers apart). We computed vertical profiles of estimated error

variances for normalized differences from the 2007 ERA mean values of q, RH, T and N at the four stations using three

linearly independent equations (Eq. (7)–(9)) neglecting all error covariance terms. Ideally, with a very large sample of data

pairs and zero correlation of errors among the different data sets, all three equations would produce identical results. However,20

a finite data set and non-zero error correlations among the data sets lead to three different estimates, as shown by Rieckh and

Anthes (2018). The differences among the three estimates is a measure of these effects.

Although the neglect of the covariance terms affects the results to a noticeable degree in some of the estimated profiles, there

is strong evidence that there is valid information in the estimated error profiles that rises above the noise caused by the neglect

of the covariance terms and the limited data sample. This evidence is summarized as follows:25

1. There is generally good agreement in the three estimated error profiles of the four variables for each of the five data

sets at all four locations. It is unlikely that this agreement would occur by chance if the neglected error covariance terms

were large enough to invalidate the results, because they would have to somehow combine or cancel in each of the three

equations to give the observed similar results.

2. There are large differences in the overall structure (shape and magnitude) of the average vertical profiles of estimated30

error variances for the five data sets (Fig. 10). These differences are significantly larger than the standard deviation from

the three independent equations used to compute the error variances.
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3. The variability, or spread among the error estimates, is similar at most height levels for specific humidity, relative humid-

ity, and temperature. If the error covariance terms were significant, they would almost certainly vary with height, giving

different agreement in estimated error profiles with height. For example, we know that RO temperature and refractivity

are most accurate in the upper troposphere and least accurate in the lower troposphere and that the weight given to RO in

the models’ data assimilation varies significantly with height, being largest in the upper troposphere and smallest in the5

lower troposphere. Thus one would expect the RO-ERA and RO-GFS error covariance terms to vary significantly with

height. Also, the RS errors as well as the ERA and GFS model errors vary with height. It is therefore unlikely that all of

the neglected error covariance terms are the same at all heights.

4. The general structure and magnitudes of the estimated error variance profiles are similar at the four locations. However,

there are some small differences among the profiles at the four locations. In general, the differences among the three10

estimates (indicated by the STD about the mean), which are a measure of the effect of the neglected covariance terms as

well as limited sample size, are smallest for Ishi, Naze, and Mina and largest for Guam. Since the three Japanese stations

are close together, this suggests that there is a difference in the error variance of the RS observations at the Japanese RS

observations compared to the Guam RS observations. There may also be small differences in the model errors over the

Japanese stations, which are located in a data-rich area compared to Guam, which is located in a data-sparse region. The15

largest variability and largest error estimates occur at Guam, which uses a radiosonde that is thought to have large water

vapor biases due to sensor malfunctions (H. Vömel, personal communication, 2017).

5. The magnitudes of the estimated RO refractivity error variances are supported by previous published studies, including

Kuo et al. (2004) and Chen et al. (2011).

6. The estimated errors are smallest for the ERA-Interim model data set, which is a reasonable result since ERA uses an20

excellent model and data assimilation system that assimilates many independent, quality checked observations. In fact,

Vergados et al. (2015) state “ERA-Interim is one of the most advanced global atmospheric models simulating the state

of the atmosphere with accuracy similar to what is theoretically possible (Simmons and Hollingsworth, 2002) using a

4D-Var method (Simmons et al., 2005).”

7. Our results show, in general, that the RO observations have smaller errors than the radiosonde errors, in agreement with25

previous studies.

Code availability. Code will be made available by the author upon request.

Data availability. Data can be made available from authors upon request.
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Appendix A: Derivation of estimates of error variances using four data sets and the N-cornered hat method

A1 Description of three-cornered hat method

In this appendix we summarize the “three-cornered hat” (3CH) method (Gray and Allan, 1974) for estimating error variances

from three data sets. Gray and Allan (1974) developed the method to estimate the absolute frequency stability of an ensemble

of N clocks by forming all (N-1)(N-2)/2 triads under the assumption that the clock errors are uncorrelated. Each of the triads5

are three-cornered hat (3CH) estimates. Riley (2003) provides a summary of the 3CH method.

Variations and enhancements of the 3CH method have been applied to many diverse geophysical data sets. The 3CH method

has been used to estimate the stability of GNSS clocks using the measured frequencies from multiple clocks (Ekstrom and Kop-

pang, 2006; Griggs et al., 2014, 2015; Luna et al., 2017). Valty et al. (2013) used the 3CH method to estimate the geophysical

load deformation computed from GRACE satellites, GPS vertical displacement measurements, and global general circulation10

(GCM) models. O’Carroll et al. (2008) compared three types of systems to measure sea-surface temperatures: two different

radiometers and in situ observations from buoys. They discuss the assumption of the neglect of error correlations among the

three data sets, the effect of representativeness errors, and the interpretation of “Truth”, the true value of the variable being

measured.

Closely related to the 3CH method is the triple co-location (TC) method, which was introduced by Stoffelen (1998), and15

has been widely used since in oceanography and hydrometeorology (e.g. Su et al., 2014; Gruber et al., 2016). It has been used

to estimate the error variances of triplets of observation types to measure a diverse set of geophysical properties, including

wave heights, sea surface temperatures, precipitation, surface winds over the ocean, leaf-area index products, and soil moisture.

Stoffelen (1998) estimated the error variances of in-situ measurements, ERS scatterometer winds, and NCEP (National Centers

for Environmental Prediction) forecast model wind speeds. Later, Vogelzang et al. (2011) compared four sets of scatterometer20

winds from ASCAT and SeaWinds with buoy measurements and ECMWF model forecasts of surface winds over the oceans

to estimate the error variances and standard deviations of the different data sets and their combinations. Fang et al. (2012)

estimated the uncertainties in three different estimates of Leaf Area Index (LAI) products. McColl et al. (2014) extended the

method by deriving a performance metric of the measurement system to the unknown truth, and applied the extended method to

wind estimates from NWP, scatterometer and buoy wind estimates. Roebeling et al. (2012) used the triple co-location method to25

estimate the errors associated with three ways of estimating precipitation: the Spinning Enhanced Visible and Infrared Imager

(SEVERI), weather radars, and ground-based precipitation rain gauges. They concluded that the method provides useful error

estimates of these systems.

The major assumption in the 3CH and TC methods is that the errors of the three systems are uncorrelated. Correlations

between any or all of the three measurement systems will reduce the accuracy of the error estimates. Other factors that can30

reduce the accuracy of the error estimates include widely different errors associated with the three systems or a small sample

size. These factors can lead to negative estimates of error variances, especially when the estimates are close to zero (Gray and

Allan, 1974; Riley, 2003). All three of these factors potentially affect the 3CH estimates in this paper, but the general agreement
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of the three linearly independent equations for estimating the error variances of each variable suggests that the estimates are

still reasonably valid and contain useful information.

A2 Derivation of 3CH equations

n this section we summarize the derivation of the 3CH method as applied to four meteorological data sets, RO, RS, GFS and

ERA. The error variance of a variable X (e.g. temperature, specific humidity, relative humidity, refractivity) is defined as5

VARerr(X) =
1

n

∑
(X−True)2 =

1

n

∑
X2

err (A1)

where True is the true but unknown value of X and the summation is over n samples. Let RO correspond to the value of X as

estimated by RO, ERA correspond to the value of X as estimated by ERA, and similarly for GFS and RS. We then have

MS(RO – ERA) = VARerr(RO) + VARerr(ERA)−COVerr(RO, ERA) (A2)

where MS(RO – ERA) is the mean square difference between RO and ERA and the last term is the error covariance between10

RO and ERA.

In the estimation of the error variances for the four data sets, we assume that the RO errors and ERA errors are uncorrelated,

so the error covariance term in Eq. (A2) is zero, or in practice, negligibly small compared to the other terms). However, to show

the complete (and exact) equations, we retain them here in the six equations involving the different pairs of data sets.

MS(RO – GFS) = VARerr(RO) + VARerr(GFS) – 2 COVerr(RO, GFS) (A3)15

MS(GFS – ERA) = VARerr(GFS) + VARerr(ERA) – 2 COVerr(GFS, ERA) (A4)

MS(RO – RS) = VARerr(RO) + VARerr(RS) – 2 COVerr(RO, RS) (A5)

MS(RS – ERA) = VARerr(RS) + VARerr(ERA) – 2 COVerr(RS, ERA) (A6)

MS(RS – GFS) = VARerr(RS) + VARerr(GFS) – 2 COVerr(RS, GFS) (A7)

It is possible to use these six equations to get three different, linearly independent estimates of the four unknowns error20

variances for RO, RS, ERA, and GFS. For RO, these three VARerr equations are:

2VARerr(RO) =MS(RO – ERA) + MS(RO – GFS) – MS(GFS – ERA)]

+ 2[COVerr(RO, ERA) + COVerr(RO, GFS)−COVerr(GFS, ERA)]
(A8)

2VARerr(RO) =MS(RO – ERA) + MS(RO – RS) – MS(RS – ERA)]

+ 2[COVerr(RO, ERA) + COVerr(RO, RS)−COVerr(RS, ERA)]
(A9)

25

2VARerr(RO) =MS(RO – GFS) + MS(RO – RS) – MS(RS – GFS)]

+ 2[COVerr(RO, GFS) + COVerr(RO, RS)−COVerr(RS, GFS)]
(A10)
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O’Carroll et al. (2008) present these equations for a system of three observation types (their Eq. (1)).

As noted by an anonymous reviewer, it is possible to derive infinitely many linearly dependent equations by combining

Eqs. (A8)–(A10) in different ways by forming combinations of the form M1×Eq. (A8)+M2×Eq. (A9)+M3×Eq. (A10) where

M1, M2 and, M3 are any numbers except those for which M1+M2+M3=0. We did not pursue this possibility in this paper, but

instead used the three linearly independent equations only in our estimates of error variances.5

If all the neglected COVerr terms were in fact identically zero and the sample size was very large (much larger than our

sample size), all three estimates of the error variances would be the same. The fact that they give different solutions is because

the neglected COVerr terms are in reality not zero, and hence their neglect affects the three approximate equations in different

ways to give three different solutions. The relatively small sample size n also contributes to the differences in the three solutions,

which are a measure of these effects.10

We also note that the error estimates contain any representativeness errors caused by the different data sets representing

different scales of atmospheric structure (O’Carroll et al., 2008). Representativeness errors can occur because of different

horizontal or vertical resolutions or footprints of the data sets.

A3 Brief comparison of 3CH method and triple co-location method

While it is not the intent of this paper to do a thorough comparison of the 3CH and triple co-location (TC) methods, which are15

introduced above, in response to a reviewer’s comment we compared the two methods on a subset of our data sets. The main

difference between the 3CH and TC method is that the TC method corrects for additive and multiplicative biases among the

three data sets, as discussed by Stoffelen (1998), Vogelzang et al. (2011), and others. The TC method calibrates two of the data

sets against the third, eliminating biases among the three data sets. As shown below, the TC method gave results very similar

to the 3CH method for our data sets.20

In our application of the TC method we use the following combinations of data sets: (ERA, RO and RS), (ERA, RO and

GFS), and (ERA, GFS, RS). For the RO we use two RO retrievals, the Direct and 1D-VAR (see Sect. 2.3). The RO, RS and

GFS data sets are all calibrated using ERA as the calibration reference, using the following calibration factors. For example,

the calibrated RO and RS (designated by ROcal and RScal respectively) using ERA as the reference are, following Stoffelen

(1998) and Vogelzang et al. (2011):25

ROcal =
RO− bRO

aRO

RScal =
RS− bRS

aRS

where the additive bias terms are

bRO = M(RO – ERA)

bRS = M(RS – ERA)30
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and the multiplicative bias terms are

aRO =
M(RO · RS)

M(RS · ERA)

aRS =
M(RO · RS)

M(RO · ERA)

and M denotes the mean value over the data sets.

The results of the specific humidity error variance estimates for ROcal and RScal compared to RO and RS are shown in5

Fig. A1 and the estimates for ERAcal and GFScal compared to ERA and GFS are shown in Fig. A2. The left panels show the

results from the TC method (calibrated data) and the right panels show the results using the 3CH method (uncalibrated data).

The close similarity of the results indicates that the biases do not significantly affect the 3CH estimates, in agreement with the

results from the error model study in Rieckh and Anthes (2018).

Figure A1. Estimated RO and RS error variances for specific humidity at Minamidaitojima (Japan) using calibrated data as in the TC method

(left) and the uncalibrated data as in the 3CH method (right). For the TC method, the RO, RS, and GFS data sets are calibrated with respect

to ERA as the reference data set. The following combinations of the 4 data sets are used: (ERA, RO, RS), (ERA, RO, GFS), and (ERA, GFS,

RS).
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Figure A2. Estimated ERA and GFS specific error variances for ERA at Minamidaitojima (Japan) using the triple co-location (TC) method

(left) and the three-cornered hat (THC) method (right). For the TC method, the RO, RS and GFS data sets are calibrated with respect to ERA.

The following combinations of the 4 data sets are used: (ERA, RO, RS), (ERA, RO, GFS), and (ERA, GFS, RS).
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Appendix B: Mean and standard deviations of three independent error estimates of q, RH, T , and N using RO Direct

and RO 1D-VAR at Guam, Ishi, Mina and Naze

Figure B1. Mean and standard deviations (shading) of the three estimates of normalized specific humidity using RO Direct and RO 1D-VAR

at (a) Guam, (b) Ishi, (c) Mina and (d) Naze.
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Figure B2. Mean and standard deviations (shading) of the three estimates of normalized relative humidity using RO Direct and RO 1D-VAR

at (a) Guam, (b) Ishi, (c) Mina and (d) Naze.
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Figure B3. Mean and standard deviations (shading) of the three estimates of normalized temperature using RO Direct and RO 1D-VAR at

(a) Guam, (b) Ishi, (c) Mina and (d) Naze.
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Figure B4. Mean and standard deviations (shading) of the three estimates of normalized refractivity using RO Direct and RO 1D-VAR at (a)

Guam, (b) Ishi, (c) Mina and (d) Naze.
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