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Abstract. In this paper we show how multiple data sets,
including observations and models, can be combined using
the “three cornered hat” (3CH) method to estimate verti-
cal profiles of the errors of each system. Using data from
2007, we estimate the error variances of radio occultation,5

radiosondes, ERA-Interim, and GFS model data sets at four
radiosonde locations in the tropics and subtropics. A key as-
sumption is the neglect of error covariances among the dif-
ferent data sets, and we examine the consequences of this as-
sumption on the resulting error estimates. Our results show10

that different combinations of the four data sets yield simi-
lar relative and specific humidity, temperature, and refractiv-
ity error variance profiles at the four stations, and these esti-
mates are consistent with previous estimates where available.
These results thus indicate that the correlations of the errors15

among all data sets are small and the 3CH method yields re-
alistic error variance profiles. The estimated error variances
of the ERA-Interim data set are smallest, a reasonable result
considering the excellent model and data assimilation sys-
tem and assimilation of high-quality observations. For the20

four locations studied, RO has smaller error variances than
radiosondes, in agreement with previous studies. Part of the
larger error variance of the radiosondes is associated with
representativeness differences because radiosondes are point
measurements while the other data sets represent horizontal25

averages over scales of ∼100 km.

1 Introduction

Estimating the error characteristics of any observational sys-
tem or model is important for many reasons. Not only are
these errors of scientific interest, they are important for data30

assimilation systems and numerical weather prediction. In

many modern data assimilation schemes, observations of a
given type are weighted proportionally to the inverse of their
error variance (e.g. Desroziers and Ivanov, 2001).

Kuo et al. (2004) and Chen et al. (2011) used the difference 35

between radio occultation (RO) observations and short-range
model forecasts to estimate the error of the RO observations,
using the concept of apparent or perceived errors, defined by

XAE = XRO −Xfcst (1) 40

where XAE is the apparent error of the RO observation and
XRO and Xfcst are the RO observations and model forecast
values, respectively.

The error variance σ2
a of the apparent error is given by

σ2
a =

1

n

∑
X2

AE (2) 45

where n is the number of samples of observed and modeled
RO at the same location and time.

The relationship between the apparent error variance σ2
a,

the observational error variance σ2
o , and the forecast error

variance σ2
f is given by: 50

σ2
a = σ2

o +σ2
f − 2COVerr(XRO,Xfcst) (3)

where the COVerr term is the error covariance between the
observations and the forecasts. If the error variance of the
forecast σ2

f is estimated independently, the observational er-
ror variance can be estimated from the apparent error vari- 55

ance, under the assumption that the observational errors
are uncorrelated with the forecast errors (in which case the
COVerr term in Eq. (3) is zero).

σ2
a = σ2

o +σ2
f (4)
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We note that the apparent errors are the same as the (O –
B) (observation minus background) or innovations as used in
data assimilation methods and studies (Chen et al., 2011).

As discussed by Kuo et al. (2004) and Chen et al. (2011),
the forecast error variance can be estimated by two alterna-5

tive methods, the NMC method (Parrish and Derber, 1992) or
the Hollingsworth and Lönnberg (1986) method. Kuo et al.
(2004) used both methods to estimate the observational er-
rors of RO refractivity using the NCEP AVN model. They
found that the estimated radiosonde (RS) observations had10

larger errors than the RO observations, due in part to repre-
sentativeness errors of the RS, which provide in situ point
measurements whereas the model data were larger-scale hor-
izontal averages similar to those of the RO data. Chen et al.
(2011) used the NMC method and Weather and Research15

Forecast Model (WRF) to estimate the forecast error vari-
ance and then the RO refractivity error variance.

In this paper, we estimate the error variances of multiple
data sets using the “three-cornered hat” (3CH) method (Gray
and Allan, 1974). Unlike the apparent error method, this20

method does not require independent estimates of the error
variance of a forecast; it uses the differences between com-
binations of three data sets. The 3CH method is described in
Appendix A along with the closely related “triple collocation
method” (Stoffelen, 1998). The data sets may be either dif-25

ferent model or observational data and estimates of the error
variances of all the data sets are computed by the method.
We compare three observational data sets (two versions of
RO retrievals and radiosondes) and two model data sets at
four locations in the tropics and subtropics to estimate the er-30

ror variances of all five data sets. We find that the results are
consistent with each other and with previous error estimates,
where available.

2 Discussion of data sets

We use five data sets from an entire year (2007) in this study.35

Rieckh et al. (2018) extensively studied the properties of
these data sets and their daily variability over 2007 in the
tropical and sub-tropical western Pacific. They are described
in more detail there, but are summarized briefly here for con-
venience.40

We chose 2007 for the year of our study because the num-
ber of COSMIC (Constellation Observing System for Mete-
orology, Ionosphere and Climate) RO observations was near
a maximum at this time. Because the primary interest in
Rieckh et al. (2018) was the evaluation of water vapor obser-45

vations and model analyses in challenging tropical and sub-
tropical environments, we chose one RS station in the deep
tropics and three Japanese stations in the subtropics. Because
of our focus on water vapor, we carry out the analysis from
1000 to 200 hPa.50

2.1 ERA-Interim

The ERA-Interim (hereafter ERA) reanalysis is a global
model reanalysis produced by the European Centre for
Medium-Range Weather Forecasts (ECMWF) (Dee et al.,
2011). Information about the current status of ERA-Interim 55

production, availability of data online, and near-real-time
updates of various climate indicators derived from ERA-
Interim data can be found at https://www.ecmwf.int/en/
research/climate-reanalysis/reanalysis-datasets/era-interim.

We use the ERA analysis product, which assimilates both 60

RS and RO data for the entire year of 2007; hence some cor-
relation of model, RS, and RO errors is likely. However, there
are many other observations going into the ERA reanalysis
and model correlations with any one observational data set
are likely to be small. 65

2.2 NCEP Global Forecast System (GFS)

The Global Forecast System (GFS) is a forecast model pro-
duced by the National Centers for Environmental Prediction
(NCEP). Data are available for download through the NOAA
National Operational Model Archive and Distribution Sys- 70

tem (NOMADS). Forecast products and more information on
GFS are available at https://www.ncdc.noaa.gov/data-access/
model-data/model-datasets/global-forcast-system-gfs.

The GFS assimilated RS observations for the entire year
2007, but began assimilating RO data on 1 May, 2007, along 75

with many other changes to the model and analysis system
(Cucurull and Derber, 2008; Kleist et al., 2009). Thus the
GFS and RS and RO errors are also likely correlated to some
degree. However, we computed vertical profiles of the corre-
lation coefficients for RO and GFS refractivity, temperature, 80

specific humidity, and relative humidity in the two months
before and after May 1, 2007 when the GFS started assimi-
lating RO data and found little differences, so the error cor-
relations between RO and GFS are likely small.

2.3 Radio occultation observations 85

The RO observations used in this study are re-processed
data obtained from the UCAR COSMIC Data Analysis and
Archive Center (CDAAC). Two methods for estimating the
temperature and water vapor from the RO refractivity are
used. In the direct method, the GFS temperature is used in 90

the Smith and Weintraub (1953) equation

N = 77.6
p

T
+ 3.73 · 105

e

T 2
(5)

to compute water vapor pressure e from the observed refrac-
tivity N and GFS temperature T .

A one-dimensional variational (1D-VAR) method is also 95

used to estimate T and e from N . The 1D-VAR method uses
an a-priori state of the atmosphere (background profile) and
an observed RO N profile to minimize a quadratic cost func-
tion. At CDAAC, an ERA-Interim profile is used as back-

https://www.ecmwf.int/en/research/climate-reanalysis/reanalysis-datasets/era-interim
https://www.ecmwf.int/en/research/climate-reanalysis/reanalysis-datasets/era-interim
https://www.ecmwf.int/en/research/climate-reanalysis/reanalysis-datasets/era-interim
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
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ground, which is interpolated to the time and location of the
RO observation (accounting for tangent point drift during
the occultation). The humidity retrieval allows an error for
both T and e, but only a very small error for bending an-
gle/refractivity. Specific humidity q is then computed from5

the derived e.

2.4 Radiosonde observations

RS data from Guam and three Japanese stations are used in
this comparison. The RS data are given on nine main pres-
sure levels between 1000 hPa and 200 hPa, plus additional10

levels if atmospheric conditions are variable. The four sta-
tions use the following sensors: Guam: VIZ/Sippican B2;
Ishigakijima: Meisei; Minamidaitojima: Vaisala RS92; and
Naze: Meisei. They are launched twice daily in the hour be-
fore noon and midnight, UTC.15

Guam is located in the deep tropics at 13.7◦N 144.8◦E.
Ishigahijima (hereafter called Ishi), Minamidaitojima (here-
after called Mina), and Naze are located relatively close to-
gether in the western Pacific subtropics south of Japan and
northeast of Taiwan:20

Naze: Naze/Funchatoge (Kagoshima) 28.4◦N 129.4◦W

Mina: Minami-daitojima (Okinawa) 25.6◦N 131.5◦W

Ishi: Ishigakijima (Okinawa) 24.2◦N 124.5◦W

2.5 Co-location of the data sets

The locations of the four radiosonde stations are chosen25

for the comparisons. We use RO observations that are lo-
cated within 600 km and 3 hours of the radiosonde launches.
CDAAC provides GFS and ERA profiles that are already lin-
early interpolated in space and time to the RO location and
time. These interpolated profiles, along with the RO obser-30

vations, were corrected for their time and spatial differences
from the radiosonde data using a model correction algorithm
(described in Gilpin et al., 2018). Thus the effect of spatial
and temporal differences among the data sets is expected to
be minor.35

The refractivity for the radiosonde and model data is com-
puted from Eq. (5) using the pressure, temperature, and water
vapor from these data. Normalized differences are computed
for all combinations of the data sets (RO–ERA, RO–GFS,
GFS–ERA, RS–ERA, RS–GFS, RS–RO), where RO is ei-40

ther the RO-Direct or the RO 1D-VAR data. The ERA annual
mean for 2007 at each RS station is used to normalize the dif-
ferences in the data sets associated with that station. We con-
sider the differences among all data sets for four variables:
refractivity (N ), temperature (T ), specific humidity (q), and45

relative humidity (RH).

2.6 Number of samples

The number of samples is limited by the number of RO ob-
servations that are within the co-location criteria of 3 hours

and 600 km. Figure 1 shows the number of data samples 50

per pressure level that meet these criteria during 2007 at
Mina (the numbers at Ishi and Naze are similar) and Guam.
The sharp cut-off on the top of the profiles is due to lim-
ited RS data availability at high altitudes. The smooth transi-
tion to lower numbers at the bottom results from a decrease 55

in the number of RO observations with lower altitudes in
the mid and lower troposphere. The number of samples at
the Japanese stations is a maximum of approximately 900 at
300 hPa. The number decreases to about 100 at 950 hPa. At
Guam, the number ranges from a maximum of about 500 at 60

200 hPa to about 50 at 950 hPa. Thus the effect of the limited
sample size will be greatest for the Japanese stations above
300 hPa and for all four stations below 900 hPa where the
sample size is less than 500.

2.7 Mean ERA profiles for 2007 and example of 65

profiles and normalized difference profiles

Before showing the statistical comparisons of the normalized
differences between the data sets and their estimated errors,
we present the mean ERA profiles of q, RH, T and N at
Mina and Guam for the year 2007 (Fig. 2). The standard de- 70

viations are shown by the shading around each mean pro-
file. As shown by Fig. 2, the water vapor (especially relative
humidity) shows the greatest variability over the year. The
variability in specific humidity, temperature, and refractivity
is greater at Mina, which is located in the subtropics, than 75

Guam, which is located in the deep tropics.
We next present a single example of soundings from the

five data sets, to illustrate how the profiles of the normalized
differences of the variables (which we use in all the follow-
ing calculations) compare to the actual profiles. Figure 3 il- 80

lustrates the q, RH, T , and N profiles from 13 January 2007
at approximately 00 GMT and Fig. 4 illustrates the corre-
sponding profiles of the normalized differences of the vari-
ables from ERA, for example (q− qERA)/q̄, where q̄ is the
2007 mean ERA value of q. 85

A comparison of Figs. 3 and 4 shows that the normalized
difference profiles highlight the similarities and differences
of the five data sets better than the actual profiles, especially
in the upper troposphere. The magnitudes of the normalized
differences are the same order of magnitude at all levels, 90

whereas the differences in the actual profiles can vary by
more than an order of magnitude from the lower to the upper
troposphere. Figure 4 shows that typical percentage differ-
ences between data sets are ∼50 % for q and RH, 0.5 % for
T , and 5 % for N . 95

2.8 Representativeness errors

As in the apparent error method, the 3CH error estimates
include representatives errors. Since four of the five data
sets considered here are representative of horizontal averages
with a length scale of ∼100 km, while the RS data are point 100
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Figure 1. Number of co-located measurements for (a) Mina and (b) Guam. These are also the sample numbers in the calculations of the
estimated error variances for the data sets. When using the RO 1D-VAR, the number of co-locations is slightly higher than for the RO-Direct
throughout the profile due to the way the 1D-VAR is computed.

Figure 2. The mean ERA profiles over 2007 at Guam and Mina of specific humidity q (a), relative humidity RH (b), temperature T (c), and
refractivity N (d). The standard deviations about the mean profiles are indicated by the shading.

measurements, the differences between the RS and other
data sets include a significant “representativeness” compo-
nent (Kitchen, 1989). O’Carroll et al. (2008) discuss the im-
portance of representativeness errors and how they relate to
the concept of “truth” that is used in the 3CH method.5

3 Derivation of error variances

In this section we summarize the derivation of the equations
relating the error variances and covariances among the data

sets. The complete derivation and a discussion of the limita-
tions is given in Appendix A. 10

The error variance of a variable X (e.g. q, RH, T or N ) is
defined as

VARerr(X) =
1

n

∑
(X−True)2 =

1

n

∑
X2

err (6)

where True is the true (but unknown) value of X and the sum-
mation is over n samples. 15

As shown in Appendix A, we can derive three different lin-
early independent equations for estimating the error variance
of any data set, assuming that the error covariances among
all the data sets are negligible compared to the differences in
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Figure 3. Profiles of specific humidity (a), relative humidity (b), temperature (c) and refractivity (d) for the five data sets for 13 January, 2007
at 00:23 UTC.

Figure 4. Same as Fig. 3 except for normalized differences from ERA.

the observed mean square (MS) differences between the data
sets. The three complete (and exact) linearly independent so-

lutions for estimating the error variance of RO are

VARerr(RO) =1/2MS(RO–ERA) + 1/2MS(RO–GFS)

− 1/2MS(GFS–ERA) + COVerr(RO, ERA)

+ COVerr(RO, GFS)−COVerr(GFS, ERA)

(7)
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VARerr(RO) =1/2MS(RO–ERA) + 1/2MS(RO–RS)

− 1/2MS(RS–ERA) + COVerr(RO, ERA)

+ COVerr(RO, RS)−COVerr(RS, ERA)

(8)

VARerr(RO) =1/2MS(RO–GFS) + 1/2MS(RO–RS)

− 1/2MS(RS–GFS) + COVerr(RO, GFS)

+ COVerr(RO, RS)−COVerr(RS, GFS)

(9)

where RO (or ERA, GFS, RS) corresponds to the value of5

X as estimated by RO (or ERA, GFS, RS) and MS denotes
the mean square difference between the values from two data
sets (e.g. RO – ERA).

We use Eq. (7)–(9) to provide three independent estimates
of VARerr(RO) by neglecting the COVerr terms in each equa-10

tion. The assumption that the error covariances are small
compared to the difference in variances between the data sets
is similar to the assumption used in the apparent error method
that the errors of the observations and model forecasts are
uncorrelated. In general the COVerr terms are not zero; thus15

we will examine the validity of this assumption by check-
ing whether the various estimates of the error variances from
the three equations are consistent with each other and rea-
sonable compared to other independent studies that estimate
error variances in other ways. In a related paper (Rieckh and20

Anthes, 2018) we examine the effect of various degrees of
error correlations between two of the three data sets using
simulated data sets with known errors.

The same procedure can be used to derive three equations
for estimating the error variances for the other three data sets,25

RS, ERA, and GFS (equations not shown here).
So for each of the five data sets, RO Direct and RO 1D-

VAR, RS, ERA, and GFS, there are three independent ways
to estimate their respective error variances. This is the “three
cornered hat” method described in Appendix A. We note that30

it is possible that the estimated error variances from any of
the three equations are negative because of the neglect of the
COVerr terms and the small sample size, especially above
300 hPa for the Japanese stations and below 800 hPa for all
four stations (Fig. 1).35

4 Comparison with previous studies for RO refractivity

We first compute the estimated error variance for RO refrac-
tivity using GFS and ERA data for comparison with the Kuo
et al. (2004) and Chen et al. (2011) estimates of RO error
variance to illustrate the 3CH method. In an analogy to the40

apparent error Eq. (4), with RO being the observation and
ERA being the forecast

MS(RO – ERA) = VARerr(RO) + VARerr(ERA) (10)

which is Eq. (A2) in Appendix A with neglect of the COVerr

terms. We compute MS(RO – ERA) from the RO and ERA45

data sets (analogous to the apparent error variance σ2
a in

Eq. (4)) and plot its square root as the black line in Fig. 5.
Then we estimate VARerr(RO) using Eq. (7) and the data
sets (RO – GFS) and (GFS – ERA), along with the apparent
error MS(RO – ERA), neglecting the COVerr terms. 50

The square root of VARerr(RO) gives the standard devia-
tion (STD) (Fig. 5, blue curve). Finally, the ERA error vari-
ance (analogous to the forecast error) is obtained by subtract-
ing VARerr(RO) from MS(RO – ERA) using Eq. (10) above
(pink line in Fig. 5). The gap in the computed ERA error 55

STD in Fig. 5a occurs due to negative estimated error vari-
ance values, which can result from having a limited sample
size, neglecting error covariance terms during computation,
and having an error variance that is already close to zero (as
is the case for ERA). 60

The results shown in Fig. 5 are quite similar to those from
Kuo et al. (2004, Fig. 13) and Chen et al. (2011, Fig. 3d) who
used different models and different data sets. The STD of
normalized RO refractivity errors are a maximum of between
2.0 and 2.5 % near the surface, decreasing to about 0.5 % at 65

10 km. These similarities give credibility to both methods.

5 Calculation of the error variance terms using the
multiple data sets

This section shows the estimated error variances for N , q, T ,
and RH at one of the four stations (Mina) for the five data 70

sets and summarizes the results for the other three stations
(Naze, Ishi and Guam).

5.1 Results for Mina

The following plots show the estimated error variances com-
puted from Eq. (7), (8), or (9). Two RO data sets (Direct and 75

1D-VAR) are considered one at a time using the other three
data sets. Thus we have two sets of error estimates for each
data set: one using the RO-Direct with RS, ERA, and GFS,
and one using the RO 1D-VAR with RS, ERA, and GFS. In
the following plots, darker colors correspond to the three re- 80

sults using the RO 1D-VAR and lighter colors correspond to
the three results using the RO-Direct.

Figure 6 shows the results for specific humidity. Error vari-
ances are shown rather than STD because they are easier to
interpret using the three equations used to derive them and 85

because the STD are undefined for the occasional negative
estimated error variance. Figure 6a shows the q error vari-
ance profiles for the two RO data sets (Direct and 1D-VAR).
The direct method (use of GFS temperature in Eq. (5)) shows
a steady increase of error variance with height, from about 90

100 %2 (STD ∼10 %) at 950 hPa to 800 %2 (STD ∼28 %)
at 500 hPa and 2000 %2 (STD ∼45 %) at 300 hPa. This is
expected since the refractivity contains little information on
water vapor above about 400 hPa and we are using an inde-
pendent estimate of temperature, with no constraints on the 95
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Figure 5. Standard deviations of the apparent error STD(RO – ERA) (black line), estimated RO error STD(RO – True) computed from
Eq. (7) (blue line) and ERA error STD(ERA – True) (pink line) for refractivity at a) Guam, b) Ishi, c) Mina, and d) Naze.

Figure 6. Estimated error variances (% squared) of specific humidity at Mina: a) RO, b) RS, c) GFS, and d) ERA.

water vapor retrieval. The q error variance profile for RO us-
ing the 1D-VAR method is similar to that of the direct method

below 500 hPa, but reaches a maximum at about 500 hPa of
about 500 %2 (STD ∼22 %) and then decreases toward zero
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at 200 hPa. The 1D-VAR method uses the ERA-Interim fields
as background and thus constrains the water vapor profile
retrieval at high altitudes. It is notable that the three equa-
tions used to estimate the error variance profiles agree closely
and the difference among the three estimates is much smaller5

than the differences in the mean profiles using the two RO
retrieval methods.

The RS specific humidity error variance profiles at Mina
(Fig. 6b) show a similar behavior as the RO-Direct, with
a steady increase with height, exceeding 2000 %2 (STD of10

∼45 %) at 400 hPa. The STD of the RS are slightly larger
than the two RO estimates below 600 hPa. The larger error
variance of RS compared to RO is consistent with the results
from Kuo et al. (2004), and is due in part to the RS represen-
tativeness differences. The error variance estimates using the15

RO-Direct (orange) and RO 1D-VAR (red) are similar.
The error variance profiles from the two model sets

(Figs. 6c, d) are quite different. The GFS error variance is
less than the RO-Direct and RS error variances at all lev-
els, and also less than the RO 1D-VAR error variance except20

above 300 hPa. Although there is more scatter, especially in
the upper troposphere, the ERA profiles are different from all
the other data sets in that they show only a small increase of
error variance with height, from near zero at the surface to up
to a mean of about 100 %2 (STD ∼10 %) at 200 hPa.25

Figure 7 shows the estimated error variances of relative hu-
midity. As with specific humidity, there is consistency among
the estimates for the different data sets. The general behav-
ior of the RH error variance profiles is similar to that for q,
as might be expected because the percentage variability of30

water vapor is greater than that of temperature at this sub-
tropical location. Again, the estimated error variances of the
RO derived RH are less than those of the RS in the lower tro-
posphere. The GFS error variances are smaller than the RO
and RS variances, except for the RO 1D-VAR profile above35

300 hPa, which is constrained by the ERA observations in
the upper troposphere. The ERA error variances are signifi-
cantly smaller than the other data sets, averaging between 50
and 200 %2 (STD 7–14 %) throughout the troposphere.

Figure 8 shows the estimated error variances of temper-40

ature. Because the RO-Direct retrieval uses the exact GFS
temperature, the results for the direct retrieval (light blue)
using the (RO, GFS, ERA) and (RO, RS and GFS) are not
meaningful in Fig. 8a (they are identically zero). The result
from Eq. (8) (RO, ERA and RS), given by the dashed light45

blue line in Fig. 8a is valid, but in reality, this is an estimate
of the GFS T error variance, and it is in fact very similar to
the profiles in Fig. 8c.

The RO 1D-VAR results for temperature from all three
equations give somewhat larger results (Fig. 8, dark blue pro-50

files). The estimated error variance profiles oscillate between
0.1 and 0.3 %2 (STD 0.3 to 0.55 %). For a temperature of
300 K, these correspond to 0.9 to 1.65 K.

The RS temperature error variances (Fig. 8b) vary be-
tween 0.05 and 0.15 %2 (STD 0.2 to 0.4 % or 0.6 to 1.2 K for55

T=300 K). The GFS temperature error variances are a little
lower, averaging around 0.05 to 0.10 %2 (STD 0.2 to 0.3 %),
while the ERA estimated temperature error variances average
close to zero (Fig. 8d).

Figure 9 shows the estimates of the normalized refractivity 60

errors for the five data sets. There is more spread in the re-
fractivity estimates compared to those of the other variables,
especially in the lower troposphere where the estimates vary
between about 4 and 9 %2 (STD 2 to 3 %) for the two RO
variances. Recall that the RO-Direct N are the observed RO 65

N as provided by CDAAC while the RO 1D-VAR N are
modified based on the background (ERA) N . The average
of the N error variances for the radiosondes (Fig. 9b) shows
a maximum of ∼10 %2 (STD ∼3.2 %) around 900 hPa. The
GFS error variance profiles show a maximum around 750 hPa 70

of ∼8 %2 (STD ∼2.8 %). The ERA profiles show the small-
est errors, with a maximum in the lower troposphere of an
average of ∼2 %2 (STD ∼1.4 %). All data sets show a de-
crease of error variance to less than 0.5 %2 (STD<0.7 %) at
400 hPa. The reason for the large scatter in estimates of N 75

below about 800 hPa may be related to errors in N caused by
super-refraction in the lower troposphere, which occurs often
in the tropics and subtropics. Super-refraction causes a neg-
ative N bias, which may lead to larger error covariances in
this layer. The smaller number of RO samples below 800 hPa 80

(Fig. 1) may also be a factor.
Figure 10 shows the mean of the three estimates of the

error variances of the five data sets for q, RH, T , and N at
Mina. The standard deviation1 about these means is shown
by the shaded areas. These figures show clearly the signif- 85

icant differences among the error variance estimates of the
five data sets. In Fig. 10a, the error variance for specific hu-
midity is greatest for the radiosonde (red and orange pro-
files) and least for the ERA profiles. As discussed earlier,
the mean of the RO 1D-VAR retrieval reaches a maximum 90

at about 550 hPa and then decreases back toward zero as it
becomes constrained by the background profile at high lev-
els. Figures 10b–d show the mean profiles of error variance
for relative humidity, temperature and refractivity. The rela-
tive humidity profiles are similar to the specific humidity pro- 95

files. The ERA errors are the smallest, followed by GFS, the
RO and finally the radiosondes. The temperature error vari-
ance profiles show that the ERA errors are very close to zero
throughout the entire troposphere. The GFS profiles (gray)
and the RS profiles (red and orange) show relatively constant 100

values with height of approximately 0.05 %2 and 0.1%2 re-
spectively (corresponding to temperature errors of 0.7 K and
0.9 K at 300 K, respectively). The RO shows an oscillating
error variance profile ranging between 0.1 and 0.3 %2 (0.9 K
and 1.6 K at 300 K). Finally, the refractivity profiles show the 105

greatest variability, but the mean profiles are still quite dis-

1σ =
(

1
n−1

∑n=3
n=1 (xn − x̄)2

)1/2
where xn denote the three er-

ror variance estimates
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Figure 7. Estimated error variances (% squared) of relative humidity at Mina: a) RO, b) RS, c) GFS, and d) ERA.

Figure 8. Estimated error variances (% squared) of temperature at Mina: a) RO, b) RS, c) GFS, and d) ERA.

tinct. ERA again shows the lowest errors, followed by GFS,
RO, and RS.

It is difficult to find previous results for RS tempera-
ture and specific humidity error variances. However, previ-
ous studies comparing RO with RS and models indicate that 5
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Figure 9. Estimated error variances (% squared) of refractivity at Mina: a) RO, b) RS, c) GFS, and d) ERA.

Figure 10. Mean of the three estimates of error variance plots for q, RH, T and N using RO-Direct and RO 1D-VAR for each data set at
Mina. The standard deviation about the mean is indicated by shaded areas. (a) specific humidity; (b) relative humidity; (c) temperature; and
(d) refractivity. RO (blue), radiosonde (red), GFS (gray), and ERA (purple).
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our estimates are reasonable and consistent with these stud-
ies. Ho et al. (2017) found STD between RO and RS pairs
for many RS types of about 1.5 K in the 200–20 hPa layer,
where RO temperatures are most accurate (Table 2 in Ho
et al. (2017)). This value corresponds to the apparent er-5

ror between RS and RO, which is larger than the RS er-
ror. The estimated RS temperature error variances from 200–
100 hPa in Fig. 10c is about 0.15 %2, which corresponds to
a STD of 0.39 % or 0.9 K for a mean temperature of 230 K.
Ladstädter et al. (2015) compared high-quality The GCOS10

(Global Climate Observing System) Reference Upper-Air
Network (GRUAN) RS to RO globally and for a tropical
station (Nauru) and subtropical station (Tateno, Japan) from
2002 to 2013. They found temperature STD of about 0.5 K
for Nauru and 0.5 to 0.8 K at Tateno averaged over the layer15

800 to 300 hPa. For specific humidity, they found STD be-
tween RO and RS of about 10 % increasing to about 40 % in
the upper troposphere. In our calculations for Guam and the
three subtropical Japanese stations our estimates for STD of
q are similar (Fig. 10a; and Appendix B Fig. B1), ranging20

from about 10 % at 900 hPa to 45 % at 300 hPa.
Ho et al. (2010) compared COSMIC RO observations to

ECMWF analyses and several types of radiosondes for the
period August–November, 2006. They found mean specific
humidity STD of RO–ECMWF of ∼0.5 g kg−1 and RO–RS25

(Meisei) of ∼0.9 g kg−1. From their plots of the vertical pro-
files of the STD, these numbers are typical for the layer
800–500 hPa, which, given the normalization values from the
four RS stations in our study (Fig. 3) of about 9 g kg−1 at
800 hPa and 2 g kg−1 at 500 hPa, correspond to STD (VAR)30

values of ∼6 % (36 %2) at 800 hPa and 25 % (625 %2) at
500 hPa for ECMWF and ∼10 % (100 %2) at 800 hPa and
45 % (2025 %2) at 500 hPa for Meisei RS. These values are
similar to the estimates of the RS analysis for the Japanese
stations shown in Fig. B1 of Appendix B.35

Vergados et al. (2014) compared RO-derived observations
of specific humidity with radiosondes and ERA-Interim un-
der cloudy conditions in the tropics for August–October
2006. They used the direct method for computing specific hu-
midity from the RO refractivity using the ERA-Interim tem-40

peratures. Their differences between zonal means of normal-
ized RO and ERA-Interim observations of q are presented in
Table 1 (we computed the normalized differences from their
data in Table 3 for the tropics):

The VAR values in Table 1 correspond to apparent er-45

rors, where RO and ERA correspond to the observation
and forecast variables respectively (Eq. (10)). As expected,
they are larger than the estimated error variances for RO-
Direct shown in Fig. 6a because the apparent errors are al-
ways larger than the observation errors as shown in Eq. (4).50

This comparison indicates that the estimates of true errors in
Fig. 6a are reasonable.

5.2 Summary of results at Naze, Ishi and Guam

The mean and STD error profiles for Naze, Ishi, and Guam
corresponding to the above results for Mina are presented in 55

Appendix B. Here we summarize the main similarities and
differences between the error variance estimates for these sta-
tions compared to those for Mina. In general, we find similar
magnitudes and shapes of the profiles of the estimated error
variances of the five data sets for all four variables (q, RH, T , 60

and N ).
The estimated error profiles are especially similar for the

three Japanese stations. This close similarity may be due pri-
marily to the fact that the three locations are relatively close
together and two of the three use the same type of radiosonde 65

(Meisei).
The results from Guam are also similar in general mag-

nitudes and shapes of the profiles to those from the three
Japanese stations, but there are somewhat greater differences
in some of the profiles (e.g. GFS q, RH, and N ; and RS 70

N ). These differences are likely due to the different loca-
tion and the use of a different radiosonde type at Guam
(VIZ/Sippican B2). The neglected error covariance terms
are also likely different between the three Japanese stations,
which are located in a data-rich region, and Guam, which is 75

located in a data-sparse region. Thus the model errors are less
likely to be highly correlated with a single observational sys-
tem in the former than in the latter, where single observations
may affect the models more significantly.

6 Summary and discussion 80

We used the “three cornered hat” (3CH) method to estimate
vertical profiles of error variances of different observation
and model data sets by computing the differences among the
data sets at four fixed locations. We computed estimated error
variances of four variables (specific humidity q, relative hu- 85

midity RH, temperature T , and refractivity N ) for five data
sets (ERA, GFS, radiosondes (RS), radio occultation (RO)
1D-VAR, and RO-Direct) at four different locations in the
tropics and subtropics for the year 2007. The stations are
Guam, Ishigakijima, Minamidaitojima, and Naze. The latter 90

three stations are on Japanese islands and are located quite
close together (a few hundred kilometers apart). We com-
puted vertical profiles of estimated error variances for nor-
malized differences from the 2007 ERA mean values of q,
RH, T and N at the four stations using three linearly inde- 95

pendent equations (Eq. (7)–(9)) neglecting all error covari-
ance terms. Ideally, with a very large sample of data pairs and
zero correlation of errors among the different data sets, all
three equations would produce identical results. However, a
finite data set and non-zero error correlations among the data 100

sets lead to three different estimates, as shown by Rieckh and
Anthes (2018). The differences among the three estimates is
a measure of these effects.
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Table 1. Normalized differences of zonal mean RO and ERA specific humidity in the tropics for cloudy conditions (computed from data in
Vergados et al., 2014)

Pressure (hPa) VAR (%2) STD (%)
925 320 17.8
850 460 21.4
700 1260 35.5
500 2760 53.5
400 4220 65.0
300 5625 75.0

Although the neglect of the covariance terms affects the
results to a noticeable degree in some of the estimated pro-
files, there is strong evidence that there is valid information in
the estimated error profiles that rises above the noise caused
by the neglect of the covariance terms and the limited data5

sample. This evidence is summarized as follows:

1. There is generally good agreement in the three esti-
mated error profiles of the four variables for each of
the five data sets at all four locations. It is unlikely that
this agreement would occur by chance if the neglected10

error covariance terms were large enough to invalidate
the results, because they would have to somehow com-
bine or cancel in each of the three equations to give the
observed similar results.

2. There are large differences in the overall structure15

(shape and magnitude) of the average vertical profiles of
estimated error variances for the five data sets (Fig. 10).
These differences are significantly larger than the stan-
dard deviation from the three independent equations
used to compute the error variances.20

3. The variability, or spread among the error estimates, is
similar at most height levels for specific humidity, rel-
ative humidity, and temperature. If the error covariance
terms were significant, they would almost certainly vary
with height, giving different agreement in estimated er-25

ror profiles with height. For example, we know that RO
temperature and refractivity are most accurate in the
upper troposphere and least accurate in the lower tro-
posphere and that the weight given to RO in the mod-
els’ data assimilation varies significantly with height,30

being largest in the upper troposphere and smallest in
the lower troposphere. Thus one would expect the RO-
ERA and RO-GFS error covariance terms to vary sig-
nificantly with height. Also, the RS errors as well as the
ERA and GFS model errors vary with height. It is there-35

fore unlikely that all of the neglected error covariance
terms are the same at all heights.

4. The general structure and magnitudes of the estimated
error variance profiles are similar at the four locations.
However, there are some small differences among the40

profiles at the four locations. In general, the differences
among the three estimates (indicated by the STD about
the mean), which are a measure of the effect of the ne-
glected covariance terms as well as limited sample size,
are smallest for Ishi, Naze, and Mina and largest for 45

Guam. Since the three Japanese stations are close to-
gether, this suggests that there is a difference in the er-
ror variance of the RS observations at the Japanese RS
observations compared to the Guam RS observations.
There may also be small differences in the model er- 50

rors over the Japanese stations, which are located in a
data-rich area compared to Guam, which is located in
a data-sparse region. The largest variability and largest
error estimates occur at Guam, which uses a radiosonde
that is thought to have large water vapor biases due to 55

sensor malfunctions (H. Vömel, personal communica-
tion, 2017).

5. The magnitudes of the estimated RO refractivity error
variances are supported by previous published studies,
including Kuo et al. (2004) and Chen et al. (2011). 60

6. The estimated errors are smallest for the ERA-Interim
model data set, which is a reasonable result since ERA
uses an excellent model and data assimilation system
that assimilates many independent, quality checked ob-
servations. In fact, Vergados et al. (2015) state “ERA- 65

Interim is one of the most advanced global atmospheric
models simulating the state of the atmosphere with ac-
curacy similar to what is theoretically possible (Sim-
mons and Hollingsworth, 2002) using a 4D-Var method
(Simmons et al., 2005).” 70

7. Our results show, in general, that the RO observations
have smaller errors than the radiosonde errors, in agree-
ment with previous studies. This difference is in part
due to representativeness errors associated with the RS,
which are point measurements while the other data sets 75

are representative of horizontal averages with a length
scale of ∼100 km.

Code availability. Code will be made available by the author upon
request.
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Data availability. Data can be made available from authors upon
request.

Appendix A: Derivation of estimates of error variances
using four data sets and the N-cornered hat method

A1 Description of three-cornered hat method5

In this appendix we summarize the “three-cornered hat”
(3CH) method (Gray and Allan, 1974) for estimating error
variances from three data sets. Gray and Allan (1974) devel-
oped the method to estimate the absolute frequency stability
of an ensemble of N clocks by forming all (N-1)(N-2)/2 tri-10

ads under the assumption that the clock errors are uncorre-
lated. Each of the triads are three-cornered hat (3CH) esti-
mates. Riley (2003) provides a summary of the 3CH method.

Variations and enhancements of the 3CH method have
been applied to many diverse geophysical data sets. The15

3CH method has been used to estimate the stability of GNSS
clocks using the measured frequencies from multiple clocks
(Ekstrom and Koppang, 2006; Griggs et al., 2014, 2015;
Luna et al., 2017). Valty et al. (2013) used the 3CH method
to estimate the geophysical load deformation computed from20

GRACE satellites, GPS vertical displacement measurements,
and global general circulation (GCM) models. O’Carroll
et al. (2008) compared three types of systems to measure
sea-surface temperatures: two different radiometers and in
situ observations from buoys. They discuss the assumption25

of the neglect of error correlations among the three data sets,
the effect of representativeness errors, and the interpretation
of “Truth”, the true value of the variable being measured.

Closely related to the 3CH method is the triple colloca-
tion (TC) method, which was introduced by Stoffelen (1998),30

and has been widely used since in oceanography and hy-
drometeorology (e.g. Su et al., 2014; Gruber et al., 2016).
It has been used to estimate the error variances of triplets
of observation types to measure a diverse set of geophysical
properties, including wave heights, sea surface temperatures,35

precipitation, surface winds over the ocean, leaf-area index
products, and soil moisture. Stoffelen (1998) estimated the
error variances of in-situ measurements, ERS scatterometer
winds, and NCEP (National Centers for Environmental Pre-
diction) forecast model wind speeds. Later, Vogelzang et al.40

(2011) compared four sets of scatterometer winds from AS-
CAT and SeaWinds with buoy measurements and ECMWF
model forecasts of surface winds over the oceans to estimate
the error variances and standard deviations of the different
data sets and their combinations. Stoffelen (1998) and Vo-45

gelzang et al. (2011) calibrate their data sets using an er-
ror model, and show how the error estimates may account
for a partial correlation of representativeness errors between
two data sets if independent information about this correla-
tion is known. Fang et al. (2012) estimated the uncertainties50

in three different estimates of Leaf Area Index (LAI) prod-

ucts. McColl et al. (2014) extended the method by deriving
a performance metric of the measurement system to the un-
known truth, and applied the extended method to wind es-
timates from NWP, scatterometer and buoy wind estimates. 55

Roebeling et al. (2012) used the triple collocation method to
estimate the errors associated with three ways of estimating
precipitation: the Spinning Enhanced Visible and Infrared
Imager (SEVERI), weather radars, and ground-based precip-
itation rain gauges. They concluded that the method provides 60

useful error estimates of these systems.
The major assumption in the 3CH and TC methods is that

the unknown errors of the three systems are uncorrelated.
Correlations between any or all of the three measurement
systems will reduce the accuracy of the error estimates. Other 65

factors that can reduce the accuracy of the error estimates in-
clude widely different errors associated with the three sys-
tems or a small sample size. These factors can lead to neg-
ative estimates of error variances, especially when the esti-
mates are close to zero (Gray and Allan, 1974; Riley, 2003). 70

All three of these factors potentially affect the 3CH estimates
in this paper, but the general agreement of the three linearly
independent equations for estimating the error variances of
each variable suggests that the estimates are still reasonably
valid and contain useful information. 75

A2 Derivation of 3CH equations

In this section we summarize the derivation of the 3CH
method as applied to four meteorological data sets, RO, RS,
GFS and ERA. The error variance of a variable X (e.g. tem-
perature, specific humidity, relative humidity, refractivity) is 80

defined as

VARerr(X) =
1

n

∑
(X−True)2 =

1

n

∑
X2

err (A1)

where True is the true but unknown value of X and the sum-
mation is over n samples. Let RO correspond to the value of
X as estimated by RO, ERA correspond to the value of X as 85

estimated by ERA, and similarly for GFS and RS. We then
have

MS(RO–ERA) =VARerr(RO) + VARerr(ERA)

−COVerr(RO, ERA)
(A2)

where MS(RO – ERA) is the mean square difference between
RO and ERA and the last term is the error covariance be- 90

tween RO and ERA.
In the estimation of the error variances for the four data

sets, we assume that the RO errors and ERA errors are un-
correlated, so the error covariance term in Eq. (A2) is zero,
or in practice, negligibly small compared to the other terms). 95

However, to show the complete (and exact) equations, we
retain them here in the six equations involving the different
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pairs of data sets.

MS(GFS–ERA) =VARerr(GFS) + VARerr(ERA)
− 2 COVerr(GFS, ERA) (A3)

MS(RS–ERA) =VARerr(RS) + VARerr(ERA)
− 2 COVerr(RS, ERA) (A4)

MS(RO–GFS) =VARerr(RO) + VARerr(GFS)5

− 2 COVerr(RO, GFS) (A5)
MS(RS–GFS) =VARerr(RS) + VARerr(GFS)

− 2 COVerr(RS, GFS) (A6)
MS(RO–RS) =VARerr(RO) + VARerr(RS)

− 2 COVerr(RO, RS) (A7)10

O’Carroll et al. (2008) present these equations for a system
of three observation types (their Eq. (1)).

As noted by an anonymous reviewer, it is possible to derive
infinitely many linearly dependent equations by combining
Eqs. (A8)–(A10) in different ways by forming combinations15

of the form M1×Eq. (A8)+M2×Eq. (A9)+M3×Eq. (A10)
where M1, M2 and, M3 are any numbers except those for
which M1+M2+M3=0. We did not pursue this possibility in
this paper, but instead used the three linearly independent
equations only in our estimates of error variances.20

If all the neglected COVerr terms were in fact identically
zero and the sample size was very large (much larger than our
sample size), all three estimates of the error variances would
be the same. The fact that they give different solutions is be-
cause the neglected COVerr terms are in reality not zero, and25

hence their neglect affects the three approximate equations in
different ways to give three different solutions. The relatively
small sample size n also contributes to the differences in the
three solutions, which are a measure of these effects.

We also note that the error estimates contain any represen-30

tativeness errors caused by the different data sets represent-
ing different scales of atmospheric structure (O’Carroll et al.,
2008). Representativeness errors can occur because of differ-
ent horizontal or vertical resolutions or footprints of the data
sets. 35

A3 Brief comparison of 3CH method and triple
collocation method

While it is not the intent of this paper to do a thorough
comparison of the 3CH and triple collocation (TC) meth-
ods, which are introduced above, in response to a reviewer’s 40

comment we compared the two methods on a subset of our
data sets. A difference between the 3CH and TC method is
that the TC method corrects for additive and multiplicative
biases among the three data sets, as discussed by Stoffelen
(1998), Vogelzang et al. (2011), and others. The TC method 45

calibrates two of the data sets against the third, eliminating
biases among the three data sets. This calibration uses an er-
ror model of the form Xi = a ·True+ b+ ei where a and b
stand for the “trend” and “bias” calibration coefficients and

ei are random errors (Vogelzang et al., 2011). As shown be- 50

low, calibrating our data sets according to this model gave
results very similar to results using our uncalibrated data sets.

In our application of the TC method we use the follow-
ing combinations of data sets: (ERA, RO and RS), (ERA,
RO and GFS), and (ERA, GFS, RS). For the RO we use two 55

RO retrievals, the Direct and 1D-VAR (see Sect. 2.3). The
RO, RS and GFS data sets are all calibrated using ERA as
the calibration reference, using the following calibration fac-
tors. For example, the calibrated RO and RS (designated by
ROcal and RScal respectively) using ERA as the reference 60

are, following Stoffelen (1998), Vogelzang et al. (2011), and
Roebeling et al. (2012):

ROcal =
RO− bRO

aRO

RScal =
RS− bRS

aRS

where the additive bias terms are 65

bRO = M(RO – ERA)
bRS = M(RS – ERA)

and the multiplicative bias terms are

aRO =
M(RO · RS)

M(RS · ERA)

aRS =
M(RO · RS)

M(RO · ERA)
70

and M denotes the mean value over the data sets.
The results of the specific humidity error variance esti-

mates for ROcal and RScal compared to RO and RS are
shown in Fig. A1 and the estimates for ERAcal and GFScal

compared to ERA and GFS are shown in Fig. A2. The left 75

panels show the results from the TC method (calibrated data)
and the right panels show the results using the 3CH method
(uncalibrated data). The close similarity of the results indi-
cates that the biases do not significantly affect the 3CH es-
timates, in agreement with the results from the error model
study in Rieckh and Anthes (2018).
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Figure A1. Estimated RO and RS error variances for specific humidity at Minamidaitojima (Japan) using calibrated data as in the TC method
(left) and the uncalibrated data as in the 3CH method (right). For the TC method, the RO, RS, and GFS data sets are calibrated with respect
to ERA as the reference data set. The following combinations of the 4 data sets are used: (ERA, RO, RS), (ERA, RO, GFS), and (ERA, GFS,
RS).

Figure A2. Estimated ERA and GFS specific error variances for ERA at Minamidaitojima (Japan) using calibrated data as in the TC method
(left) and the uncalibrated data as in 3CH method (right). For the TC method, the RO, RS and GFS data sets are calibrated with respect to
ERA. The following combinations of the 4 data sets are used: (ERA, RO, RS), (ERA, RO, GFS), and (ERA, GFS, RS).
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Appendix B: Mean and standard deviations of three5

independent error estimates of q, RH, T , and N using
RO Direct and RO 1D-VAR at Guam, Ishi, Mina and
Naze
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Figure B1. Mean and standard deviations (shading) of the three estimates of normalized specific humidity using RO Direct and RO 1D-VAR
at (a) Guam, (b) Ishi, (c) Mina and (d) Naze.

Figure B2. Mean and standard deviations (shading) of the three estimates of normalized relative humidity using RO Direct and RO 1D-VAR
at (a) Guam, (b) Ishi, (c) Mina and (d) Naze.
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Figure B3. Mean and standard deviations (shading) of the three estimates of normalized temperature using RO Direct and RO 1D-VAR at
(a) Guam, (b) Ishi, (c) Mina and (d) Naze.

Figure B4. Mean and standard deviations (shading) of the three estimates of normalized refractivity using RO Direct and RO 1D-VAR at (a)
Guam, (b) Ishi, (c) Mina and (d) Naze.
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