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Abstract. Climate change assessment, especially model evaluation, needs to know complex refractive indices (CRI) of atmo-

spheric aerosols, separately for both fine and coarse modes. However, the widely used aerosol CRI obtained by the global

Aerosol Robotic Network (AERONET), correspond to total-column aerosol particles without separation for fine and coarse

modes. This paper establishes a method to separate CRIs of fine and coarse particles based on AERONET volume particle size

distribution (VPSD), aerosol optical depth (AOD) and absorbing AOD. The method consists of two steps. First a multimodal5

log-normal distribution that best approximates the AERONET VPSD is found. Then the fine and coarse mode CRIs are found

by iterative fitting of AERONET AODs to Mie calculations. Numerical experiment shows good performance for typical water-

soluble, biomass burning and dust aerosol types and the estimated uncertainties on the retrieved sub-mode CRIs are about 0.11

(real part) and 78% (imaginary part), respectively. One year measurements at AERONET Beijing site are processed and we

obtain CRIs of 1.48-0.010i (imaginary part at 440 nm is 0.012) for fine mode particles and 1.49-0.004i (imaginary part at 44010

nm is 0.007) for coarse mode particles, for the period of 2014-2015. Our results also suggest that both aerosol fine and coarse

mode CRIs have distinct seasonal characteristics, particularly CRIs of fine particles in winter season are significantly higher

than summer, due to possible anthropogenic influences.

1 Introduction

Complex Refractive Indices (CRI) of aerosols, describing scattering and absorption properties of atmospheric particulate mat-15

ters, are important parameters affecting calculation of short-wave radiative budget and aerosol climate effect. Improving the

knowledge on aerosol CRI is of great interests to decrease the uncertainties associated to aerosols in the climate change assess-

ment (Boucher et al., 2013). Since 20th century, direct measurement approaches of CRI of small particles have been developed

in the laboratory (e.g. Woo et al, 2013; Mogo et al., 2012; Marley et al., 2001; Patterson et al., 1977; Volz, 1973). As to

aerosol particles in the real atmosphere, many studies retrieved CRI of near ground surface aerosols (e.g. Kostenidou et al.,20

2007; Malloy et al., 2009; Dinar et al., 2006; McMurry et al., 2002), through in situ measurements of particle size distribution
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as well as scattering and absorption coefficients. Meanwhile, several remote sensing methods were developed to obtain CRI

of total-column atmospheric aerosols (e.g. Raut and Chazette, 2007; Li et al., 2006; Sinyuk et al., 2003; Dubovik and King,

2000; Kaufman et al., 2001, Wendisch and von Hoyningen-Huene, 1994; Nakajima et al., 1983). As Nakajima et al. (1983) and

Wendisch and von Hoyningen-Huene (1994) reported, the aerosol CRIs can be retrieved by using spectral aerosol optical depth

and diffusely scattered radiances. One of widely recognized CRI remote sensing approach is the statistically optimal estimation5

method based on Sun/sky-radiometer measurements (Dubovik and King, 2000), which has been successfully implemented in

the world-wide Aerosol Robotic Network (AERONET) (Holben et al., 1998, 2001). In addition, Li et al. (2006) further added

the polarized sky radiance measurements to the inversion algorithm in order to better constrain AERONET CRI retrievals. The

Lidar measurements are also used to obtain CRI of aerosols within planetary boundary layer (Raut and Chazette, 2007).

Although above-mentioned remote sensing methods retrieve CRI of total column aerosols, it still remains a big challenge to10

obtain CRI simultaneously for different modes (e.g. fine and coarse modes, respectively). CRI of fine and coarse modes may

differ significantly, due to different compositions and sources (Marley et al., 2001). For example, fine modes are mainly deter-

mined by anthropogenic emission or nucleation process, while coarse modes are dominated by natural sources of wind-blown

dust or sea salt (Willeke and Whitby, 1975). As to atmospheric models, e.g. the global three-dimensional chemical transport

model (GEOS-Chem) and the Community Multi-scale Air Quality model (CMAQ), aerosols radiative properties are simulated15

based on source emission inventories (i.e. fine and coarse sources separately), and thus knowledge on CRI of different aerosol

modes is essential to validate model performance for the assessment of aerosol climate effects. Only few studies (e.g. Xu et al.,

2015; Wu et al., 2015) attempted to retrieve CRI of both fine and coarse modes simultaneously from advanced remote sensing

measurements, e.g. multi-spectral polarized sky radiance. Meanwhile, most of AERONET sites provide official CRI products

without distinguishing fine and coarse modes. Considering the essential values of world-wide, long-term continuous and high20

quality AERONET CRI dataset, it is valuable to develop an approach to separate CRI for both fine and coarse modes, based

on directly AERONET official aerosol products, instead of developing an entire algorithm performing retrieval from radiance

level.

In this paper, we introduce a method to separate CRI of both fine and coarse modes from AERONET aerosol products (Sec-

tion 2). Section 3 presents the theoretical simulation and analyses and Section 4 focus on the results of 1-yr measurements in25

Beijing. The results are summarized in Section 5.

2 Method

The ground-based Sun/sky-radiometer is one of major instrument observing total column atmospheric aerosol properties. There

are several long-term Sun/sky-radiometer networks operated regionally or globally, e.g. AERONET (Holben et al., 1998, 2001)

and SKYNET (Hashimoto et al., 2012). Several inversion algorithms (e.g. King et al., 1978; Nakajima et al, 1996; Dubovik30

and King, 2000, 2006; Li et al., 2006) have been developed based on Sun/sky-radiometer to retrieve aerosol parameters, like

Aerosol Optical Depth (τ ), Single-Scattering Albedo, Absorbing Aerosol Optical Depth (τa), Volume Particle Size Distribution

(VPSD), real (n(λ)) and imaginary (k(λ)) parts of CRI corresponding to total-column atmospheric aerosols. Although VPSD
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are retrieved for a wide radius range (e.g. 0.05-15 µm) with multi-bins (e.g. 22) showing fine and coarse modes clearly, the n

and k parts of CRI are still commonly assumed constant for both fine and coarse modes. In practice, separation of CRI for both

fine and coarse modes depends on precisely breaking-down VPSD into individual modes and dealing with spectral variation

of CRI. Prior to these key steps, a framework to characterize AERONET aerosol products with both fine and coarse mode is

needed to establish.5

2.1 Aerosol characterization framework based on AERONET products

In order to separate CRI for different modes, we need to characterize AERONET aerosol products by two major assumptions:

(i) AERONET VPSD can be fitted by multi-peak Log-Normal Modes (LNM). We choose multi-modal log-normal distributions

to fit the AERONET retrieved VPSD by the following formula:

dV (r)
dlnr =

∑m
i=1

Ci√
2π|lnσi|

exp

[
− 1

2

(
lnr−lnri
lnσi

)2]
m= 1,2, ... (1)10

where dV/dlnr (in unit of µm3/µm2) is the volume particle size distribution, Ci
(
µm3/µm2

)
and ri (µm) and lnσi are

the volume modal concentration, median radius and standard deviation of lnri for each LNM mode, respectively. For most of

cases, AERONET VPSD can be separated by two LNMs (i.e. m= 2 in Eq. (1)) with fine and coarse modes corresponding to

small size and large size peak LNM, respectively. When m is larger than 2, all peaks with radius ri less than 1.0 µm can be

considered as belonging to the fine mode, and others belonging to the coarse mode. (ii) Fine and coarse modes have their own15

sub-CRIs, while real part (n) of sub-CRIs is spectrally independent, and imaginary part (k) of sub-CRIs have spectral variation

follows:

nf/c (λ) = nf/c λ= 440,675,870,1020nm (2)

kf/c (λ) =

kf/c,440 λ= 440nm

kf/c λ= 675,870,1020nm
(3)20

where λ denotes standard wavelength of AERONET products, f and c represent fine and coarse modes, respectively.

The above assumed spectral properties of sub-CRIs are useful to simplify subsequent procedure and it basically fits current

knowledge on aerosol properties. Fig.1 shows CRI of various aerosol components, including black carbon, dust, organics,

sulfate and aerosol water. Based on these data, CRI real parts (n) of aerosol components are quite constant from UV to near

infrared spectral region. Only Hematite, following Sokolik and Toon (1999), shows some spectral variation, but its content25

is usually very low in aerosols, e.g. less than 5% in mass (Schuster et al., 2015; Wagner et al., 2012; Lafon et al., 2004). In

contrast, CRI imaginary parts (k) of aerosol components show significant spectral variation, especially at short wavelengths

(e.g. 440 nm). Again, Hematite shows strongly higher absorption at 440 nm so that it can affect k value of entire aerosols

although with low concentration. In addition, the imaginary part of organics shows some spectral variation (e.g. a difference of

0.123 between 350 and 500 nm) while that of black carbon mixture also has a smaller spectral change, e.g. variation of about30

0.05 at short wavelength.
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Figure 1. Complex refractive indices (real part: a; imaginary part: b) reported in literatures. Abbr. BC (Black Carbon), OC (Organic Carbon),

SOA (Secondary Organic Carbon).

2.2 Size distribution breaking-down

Optical parameters (e.g. τ and τa) of aerosols are usually sensitive to the size distribution and less sensitive to the refractive

indices (Zhang et al., 2013; Gobbi et al., 2007). Therefore, the separation of aerosol VPSD is the basis for the next steps of

accurate estimation of sub-CRIs. The traditional size distribution breaking-down approaches, e.g. cutting off fine and coarse

modes from VPSD based on a fixed or dynamic particle radius, cannot naturally separate fine and coarse modes, especially the5

obtained sub-mode curve is not a complete log-normal function. Therefore, in this study, we separate the VPSD into complete

log-normal functions following the VPSD breaking-down method described in Cuesta et al., (2008). Firstly, we need to set the

initial guess values of ri, σi and Ci in Eq. (1). This is based on calculation of the second derivative of VPSD and follows the

Eq.4:

g (r) = −d2ν(r)
dr2

ri = g−1 (maxi (g (r))) i= 1,m

σi =

√
r+i
r−i

Ci = ν (ri)

(4)10

where, ν (instead of dV/dlnr) is AERONET VPSD, and r+i and r−i are the zero-crossing points of g(r) around ri in each

mode. Then, to obtain the optimized values of these three parameters (i.e. Ci, ri and σi) of each peak, an iterative procedure is
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performed by minimizing Chi-Square on VPSD (see Eq.5) using the NelderMead simplex algorithm (Nelder and Mead, 1965;

Lagarias et al., 1998).

χ2 =

22∑
j=1

(ν (rj)− νcalc (rj))
2

ν (rj)
(5)

where, ν and νcalc are dV/dlnr from AERONET products and re-calculated from the separated fine and coarse-mode param-

eters, respectively. And j is the bins of AERONET VPSD.5

2.3 Separating refractive indices for fine and coarse modes

According to the aerosol characterization framework in Section 2.1, the flowchart (Fig. 2) of the fine and coarse mode CRI

separation is as follows (based on the separated size distribution in Section 2.2):

a). Guesses of 6 output parameters (nf , kf,440, kc; nc, kc,440, kc). The initial guess values are set with AERONET prod-

uct values: nf = nAERONET (440 nm), kf,440 and kf = kAERONET (440 nm), nc = nAERONET (870 nm), kc,440 and kc =10

kAERONET (870 nm). Meanwhile, the boundary ranges of these parameters are set as: nf [1.33, 1.6], nc [1.33, 1.6], kf,440

[0.0, 0.5], kc,440 [0.0, 0.5], kf [0.0001, 0.5] and kc [0.0001, 0.5].

b). Calculating effective CRI corresponding to each VPSD bins. Here, based on the guessed CRIs of both fine and coarse

modes in the previous step, we employ an internal mixing approach, following volume average rule (Heller, 1965), to estimate

CRI of each particle radius bins:15

n(r) =
nfνf (r)+ncνc(r)
νf (r)+νc(r)

k (λ,r) =
kfνf (r)+kcνc(r)
νf (r)+νc(r)

(6)

These CRI of each bins can be used to improve the precision of calculation of aerosol optical parameters, employed by next

constrain steps.

c). Calculating aerosol optical parameters (τ for λ=440, 500, 675, 870, 1020 nm and τa for λ=440, 675, 870, 1020 nm, here

wavelengths correspond to AERONET product bands) with the use of the aerosol CRI and VPSD of step b), by Mie theory:20

τ (λ) =
∫
πr2Qex (λ,r,n(r)− ik (λ,r)) · dN(r)

dr · dr
τs (λ) =

∫
πr2Qsc (λ,r,n(r)− ik (λ,r)) · dN(r)

dr · dr
τa (λ) = τ (λ)− τs (λ)

(7)

where dN/dr represents the number size distribution in the atmospheric column which can be pbtained from VPSD, τs is the

scattering aerosol optical depth, λ is wavelength and r is particle radius. Qex and Qsc, represent the extinction and scattering

efficiency of single spherical particles, respectively.

d). Calculation of Jacobians of τ(λ) and τa(λ), by disturbing each sub-CRI parameters by 0.1% (∆), which is needed by the25

optimization algorithm in step e).

e). Find the optimal solution based on a Limited-memory optimization algorithm (BFGS: Broyden–Fletcher–Goldfarb–Shanno)

(Zhu et al., 1997) by constraining both τ(λ) and τa(λ) with AERONET products.
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f). Check if the convergence, (fi−fi+1)/max(fi+1,fi,1)< η · ε, is achieved. If so, output the separated sub-CRI parameters,

otherwise replace the initial guess with current solution and repeat steps b)-f). Here, f is the Chi-square kernel function, with

subscript i and i+1 representing iteration counts, η is a convergence control factor and ε is machine precision (typically setting

η = 10−4/ε).

Figure 2. The flowchart of fine and coarse modes CRI estimation scheme.

3 Numerical tests5

3.1 Typical aerosol model test

To test the CRI separation scheme, we employ three typical (i.e. water-soluble, biomass burning and dust) aerosol type models

(Table 1) in this paper. These aerosol type parameters are the same with Dubovik et al. (2000), except for supplementing

coarse mode nc and kc (1.53-0.008i) for all types and keeping original CRIs for only fine modes. Based on these microphysical

characters, τ and τa (table 1) and diffused sky radiance are calculated by Mie and radiative transfer code. Then, these sky10

radiance are inverted by AERONET inversion algorithm (Dubovik et al., 2000) to yield AERONET aerosol CRI products (n

and k), which will be used as the inputs of our estimation scheme.
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Table 1. Typical aerosol models (WS: Water-soluble, BB: Biomass burning, DU: Dust) and their sub-mode parameters.

Type

Fine and coarse mode parameters AOD & AAOD by Mie
Simulated AERONET products

by radiance inversion

r1 r2 σ1 σ2 C1/C2 nf kf nc kc

τ τa n k

(440/500/675/ (440/675/ (440/675/ (440/675/

870/1020 nm) 870/1020 nm) 870/1020 nm) 870/1020 nm)

WS 0.118 1.17 0.6 0.6 2 1.45 0.0035 1.53 0.008
0.50/0.41/0.25/ 0.02/0.01/ 1.45/1.45/ 0.0042/0.0039/

0.17/0.14 0.01/0.01 1.46/1.47 0.0045/0.0047

BB 0.132 4.5 0.4 0.6 4 1.52 0.025 1.53 0.008
0.50/0.39/0.21/ 0.06/0.03/ 1.52/1.51/ 0.0226/0.0199/

0.11/0.08 0.02/0.02 1.52/1.51 0.0214/0.0216

DU 0.1 3.4 0.6 0.8 0.066 1.53 0.008 1.53 0.008
0.50/0.46/0.40/ 0.09/0.07/ 1.54/1.51/ 0.0085/0.0073/

0.38/0.37 0.06/0.06 1.52/1.53 0.0089/0.0090

In the numerical test, the initial guess values (see Section 2.3) are set with the bi-modal combined VPSD and (n, k) of the

simulated AERONET product (Table 1), additionally with typical errors of AERONET products (i.e. 0.05 in n and 40% in

k) (Dubovik et al., 2000), in order to test the scheme tolerance on the initial guess biases. In Fig.3 we present the separated

sub-mode CRIs of three typical models and the breaking-down results of VPSD (Fig. 3). It can be seen that both real and

imaginary parts of fine and coarse modes are well separated. The maximum error of real part is 0.046 attached to nc of the5

biomass burning type, while error of imaginary part is 0.003 for kf,440 of the biomass burning. Uncertainty on nc can be

understood as that optical contribution of coarse mode is weak in the case of biomass burning type and thus difficult to be

retrieved. Meanwhile, as compensation, the imaginary part kf is also biased in this case. Moreover, from right column of Fig.

3 we can see that LNM breaking-down are perfectly achieved for each type with very small residuals (< 6.0× 10−5) which

guarantees the retrieval performance on sub-mode CRIs.10
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Figure 3. Estimation of complex refractive indices for both fine (left column) and coarse (middle column) modes of three aerosol types

(each row). True values are in circles and retrieved values are in cross symbols. The volume particle size distributions and corresponding

breaking-down results (right column) are also shown.

Fig. 4 shows the recovery of τ and τa (see step e) of Section 2.3) and comparison with true values listed in table 1. In

average, we find fairly good agreements for fitting the spectral τ and τa. The absolute τ error of 1.33× 10−2 at 440 nm in

dust type, is relatively larger than other wavelengths but still small enough considering that the AERONET AOD measurement

uncertainty is about 0.01-0.02. The maximum error on fitting τa is about 0.55×10−2 corresponding to biomass burning at 440
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nm. The largest root-mean-square-error (RMSE) of fitting τ appears in the dust type, corresponds to the underestimate of nf

and nc (Fig. 3). Similarly, the overestimated kf,440 and kf in the biomass burning type also leads to a relatively larger RMSE

(3.34× 10−3) on fitting τa.
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Figure 4. Recovery of spectral τ (left) and τa (right) for three aerosol types (thick line: true, thin line: recovered, corresponding to the

separated sub-mode CRIs in Fig.3).

3.2 Error estimation

In order to evaluate the overall performance of the estimation scheme, we perform numerical experiments to assess errors of5

output sub-mode CRI parameters related to: (i) uncertainties on τ . We set typical τ uncertainty (here, 0.01) of AERONET

products (Holben et al., 1998; Eck et al., 1999) for all τ bands; (ii) uncertainties on τa. Because τa of AERONET is obtained

by multiplying τ with single-scattering albedo (ω), we consider here ω uncertainty (0.03) of AERONET products (Dubovik

et al., 2000) and estimate the uncertainty of τa by error propagation; (iii) uncertainties on VPSD. We set 3 typical VPSD (22

bins) uncertainty (15%, 25% and 35% for the average of all bins) of AERONET products following Dubovik et al. (2000)10

corresponding to the inversion uncertainties on VPSD of water-soluble, biomass burning and dust aerosol type.

Table 2 presents retrieval errors of six sub-mode CRI parameters associated to three typical aerosol types. For the reason of

simplification, we only show the impacts of ∆τ = 0.01, ∆ω = −0.03 and positive error on VPSD, considering that biases

caused by input parameter uncertainties are usually symmetric around real values for such kind of retrieval algorithm (Li et

al.. 2006). For the influence of ∆τ = 0.01, it can be seen that retrieval errors are relatively small. The largest error caused by15

∆τ = 0.01 is on kf (dust type) which is 0.0023. As to the influence of ∆ω = −0.03, the retrieval errors increase, especially for

the imaginary parts, e.g. ∆kc = 0.0074 for water-soluble type. The errors caused by uncertainty in VPSD are quite different

for real and imaginary parts of CRI. The retrieval errors of nf and nc are larger than those of kf and kc, with the maximum

∆nf of 0.200 in the case of dust type. As a summary of Table 2, considering that it looks like that not all uncertainties reach

the maximum simultaneously, and based on error propagation theory, the total uncertainties on the retrieved sub-mode CRI20

parameters are estimated as ∆nf = 0.106, ∆kf = 50.6% (∆kf,440 = 75.4%); ∆nc = 0.111, ∆kc = 77.8% (∆kc,440 = 56.1%),

for the average of all typical aerosol types. Or more simplified, the expected errors of sub-mode CRI are ∆nf/c = 0.11 and
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Table 2. Typical uncertainties on the estimated complex refractive indices of fine (f ) and coarse (c) modes. Three error sources (on τ , τa and

VPSD, respectively) and three aerosol types (WS: water-soluble, BB: biomass burning, DU: dust) are considered.

Error sources Aerosol types
Fine mode Coarse mode

∆nf ∆kf,440 ∆kf ∆nc ∆kc,440 ∆kc

∆τ = 0.01

WS 0.010 0.0004 0.0003 0.006 0.0009 0.0008

BB 0.010 0.0001 0.0007 0.044 0.0016 0.0014

DU 0.026 0.0017 0.0023 0.020 0.0003 0.0002

∆ω = −0.03

(Proxy of ∆τa)

WS 0.001 0.0033 0.0001 0.037 0.0066 0.0074

BB 0.005 0.0073 0.0037 0.046 0.0011 0.0012

DU 0.008 0.0019 0.0018 0.044 0.0021 0.0026

∆VPSD =

15% WS 0.048 0.0007 0.0007 0.157 0.0032 0.0004

25% BB 0.066 0.0042 0.0045 0.060 0.0021 0.0021

35% DU 0.200 0.0072 0.0080 0.070 0.0024 0.0080

Total error estimation * 0.106 75.41% 50.62% 0.111 56.05% 77.76%

* Total error estimation =
√

x2
∆τ +x2

∆τa
+x2

∆V PSD where x represents the mean error of sub-CRIs from

three aerosol types.

∆kf/c(,440) = 78%, which are about 2 times larger than those of AERONET products of all-size CRI (i.e. ∆n= 0.04 and

∆k = 40%). This is acceptable and logical considering that we are separating mixed information and these uncertainties are

still acceptable for most of applications, e.g. validation of chemical models.

3.3 Discussion on the sensitivity

As shown in Section 3.1, retrieval performance on the fine and coarse modes can be different with respect to real and imaginary5

parts of CRI, e.g. for real part, ∆nf is significant less than ∆nc in the case of biomass burning aerosols. This suggests that the

natural properties of aerosol modes may affect the accuracy of sub-mode CRI estimation, and thus it is necessary to perform a

simple sensitivity study to further clarify the retrieval possibility and possible limitations, besides the numerical error estimation

in Section 3.2.

Firstly, we disturb the scheme outputs (e.g. aerosol sub-CRI parameters) by their expected errors (i.e. δn= 0.111 and δk =10

77.8%) as assessed in Section 3.2. Then, by utilizing three aerosol type (WS, BB and DU) models, we trace the effects of

these perturbations on the scheme constrain parameters, i.e. τ and τa. Finally, we compare these perturbation results (δτ/τ and

δτa/τa) with their corresponding sensitivity thresholds (e.g. measurement uncertainties), here δτ/τ = 2% and δτa/τa = 6%

for AERONET measurements. If the perturbation results are generally beyond the sensitivity thresholds, we can confirm that

the constraint parameters are sensitive to the scheme outputs. It should be mentioned that we employ simultaneously τ and15

τa as the constraints in our estimation scheme. In other words, this suggest that both τ and τa sensitivities contribute to the

convergence of the iterative scheme. Given only one information (τ or τa) is sensitive, it is still possible to constrain the scheme

10



give its sensitivity is strong enough.

As illustrated in Fig. 5, we find that τ is mainly sensitive to nf of the WS and BB types, and their sensitivity curves decrease

with the wavelength. Although the relatively low sensitivity to nf present in DU type, the δτ/τ is still higher than the sensitivity

threshold for this case. On the contrary, sensitivity of kf increases with wavelength, while much higher sensitivity of kf

embodied in τa. The sensitivities of nc of all three types are considerably low, e.g. the largest sensitivity on τa is less than5

3%. Meanwhile, τa is sensitive to both kc and kf components except for fine mode of dust type and coarse mode of biomass

burning type, with the maximum sensitivity of 43% (kf of biomass burning). The sensitivity of dust type shows a good

qualitative agreement with previous studies (Dubovik et al., 2000; Wendisch and von Hoyningen-huene, 1994).
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Figure 5. Sensitivity study on sub-mode CRI parameters (nf , kf(,440), nc, kc(,440)) to constrain parameters (τ and τa) based on three aerosol

types (WS: water-soluble, BB: biomass burning, DU: dust). Thick solid line shows the δτ/τ and thick dash line shows theδτa/τa. Thin solid

and dash line in figure represent the sensitive thresholds (uncertainty of 2% for τ and 6% for τa).
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4 Test with AERONET Data

The sub-mode CRI estimation scheme can be directly applied to AERONET products. As a realistic test, we chose 1-yr

AERONET measurements at Beijing, China, considering its complex aerosol sources and properties resulting from diversified

anthropogenic and natural activities. We utilize AERORNET lev 2.0 (data quality assured) data at Beijing CAMS site from

Apr. 2014 to Apr. 2015.5

The results show that the mean CRI of fine mode in Beijing is 1.48-0.010i (while imaginary part at 440 nm is 0.012) and that of

coarse mode is 1.49-0.004i (while imaginary part at 440 nm is 0.007). These values suggest that fine mode real part refractive

index (nf ) are slightly lower than that of coarse mode (nc), while fine mode imaginary part refractive index (kf ) are greatly

higher than that of coarse mode (kc) in Beijing. Moreover, both fine and coarse modes have larger imaginary parts at 440nm

than other wavelengths from 675 to 1020 nm. These results have similar trends as compared with Fig.1 and agree with Hand10

and Kreidenweis (2002).

For more details, the seasonal mean values of CRIs of fine and coarse modes in Beijing are shown in Fig.6. It can be found

that: (i) both nf and nc are the lowest in summer (Fig.6a) which agrees with the maximum humidity of summer in Beijing,

because higher aerosol water (n= 1.33) content tends to decrease real part of CRI. Meanwhile, we found that the discrepancy

between nf and nc also reaches the maximum in summer. Considering it is generally recognized that coarse particles are15

weakly hygroscopic, this discrepancy suggests that hygroscopicity of fine particles is significantly increased in summer under

high humidity condition. (ii) For all seasons, kc is quite constant (Fig.6b). This suggests that large size particulate components

are relatively stable in Beijing. In contrast, kf shows highly seasonal variation and winter value is about 3 times higher than

summer, which can be explained by the increase of carbonaceous component emissions during Beijing’s winter heating season

(Zhang, Jing et al., 2013). (iii) In Fig.6c, it can be seen that characteristics of kf and kc are similar with that of kf,440 and20

kc,440, except for the enlarged seasonal variation amplitude (especially for kc,440). Compared with Fig.1, we thought that this

might be caused by Hematite. As jointly seen with Fig.6b, kc,440 decreases significantly in summer which may suggest that the

decrease of Hematite is stronger in summer. This indicates some clues on the component changes of coarse particles, e.g. the

invaded dust (higher Hematite concentration) might be prohibited significantly in summer due to higher humidity and surface

roughness, while the local emission of large particles mainly consist of non-mineral components.25
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Figure 6. Seasonal mean of real part (a), imaginary part (b) and imaginary part at 440nm (c) of sub-mode aerosol refractive indices in Beijing

2014-2015. f and c denote fine and coarse mode respectively. Error bar shows the maximum and minimum of the monthly mean values.

In Fig.7, we illustrate the recovery of scheme input parameters (AERONET τ and τa). It can be seen that the maximum

averaged bias (relatively 10% and absolutely 0.029) occurs at 1020 nm. Meanwhile the maximum bias (relatively 11% and

absolutely 0.002) in τa is also attached to this longer wavelength. These biases are basically close to our expectation and

claimed uncertainties of AERONET products (τ and τa) and thus proves that our sub-mode CRI results are acceptable in the

meaning of optical closure.5
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better viewing.
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5 Conclusions

This paper establishes a scheme to estimate complex refractive indices of both aerosol fine and coarse modes for the total

column atmosphere. The input parameters of the scheme are the volume particle size distribution (VPSD), spectral aerosol op-

tical depth (τ ) and absorbing aerosol optical depth (τa) of AERONET aerosol products, while AERONET complex refractive

indices (CRI) products are used to generate the initial guesses. The retrieval outputs are aerosol CRIs separated for fine (nf ,5

kf,440, kf ) and coarse modes (nc, kc,440, kc) simultaneously. We present the VPSD breaking-down and sub-mode CRI iterative

inversion techniques as well as the error estimation and test with AERONET real measurements at Beijing site.

The numerical test with three aerosol types shows that sub-mode CRIs can be well retrieved theoretically with the maximum

errors less than about 0.046 (real) and 0.003 (imaginary). The total uncertainties on the retrieved CRIs by considering possible

input AERONET parameter errors together, are about ∆nf/c = 0.11 and ∆kf/c(,440) = 78%, respectively. Scheme test based10

on real measurements are performed in AERONET site in Beijing from 2014 to 2015. The results suggest a CRI of 1.48-0.010i

(kf,440 = 0.012) for fine mode particles and 1.49-0.004i (kc,440 = 0.007) for coarse mode aerosol particles. Retrieval results

also reveal that CRIs of both fine and coarse particles have distinct characteristic in summer versus other seasons, which is due

to difference of hygroscopic effects on fine and coarse particles, as revealed by separated CRI parameters. Meanwhile, results

suggest that CRIs of fine particles in winter season, especially the imaginary part, are significantly affected by anthropogenic15

activities, e.g. carbonaceous components from winter heating.

In the next studies, we will focus on the influence of non-sphericity on dust aerosols, which may help to decrease uncer-

tainties on CRIs of coarse mode particles. In addition, this method is not limited to AERONET remote sensing products and

also applicable to in situ measurements, e.g. the joint extinction, absorption and size distribution observation obtained from

measurements in real-time.20

Acknowledgements. This work was supported by National Natural Science Fund of China (No. 41601386, 91544219, 41671367) and the

Chinese Major Project of High Resolution Earth Observation System (30-Y20A39-9003-15/17).

14



References

Boucher, O., D. Randall, P. Artaxo, C. Bretherton, G. Feingold, P. Forster, V.-M. Kerminen, Y. Kondo, H. Liao, U. Lohmann, P. Rasch, S.K.

Satheesh, S. Sherwood, B. Stevens and X.Y. Zhang (2013), Clouds and Aerosols. In: Climate Change 2013: The Physical Science Basis.

Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D.

Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press,5

Cambridge, United Kingdom and New York, NY, USA.

Cuesta J., Flamant P.H., Flamant C. (2008), Synergetic technique combining elastic backscatter lidar data and sunphotometer AERONET

inversion for retrieval by layer of aerosol optical and microphysical properties, Appl. Optics., 47, 4598–4611.

Dinar E., Mentel T. F., Rudich Y. (2006), The density of humic acids and humic like substances (HULIS) from fresh and aged wood burning

and pollution aerosol particles. Atmospheric Chemistry and Physics, 6(12): 5213-5224.10

Dubovik O., Sinyuk A., Lapyonok T., Holben B. N., Mishchenko M., Yang P., Eck T. F., Volten H., Munoz O., Veihelmann B., van der Zande

W. J., Leon J. F., Sorokin M. and Slutsker I. (2006), Application of spheroid models to account for aerosol particle nonsphericity in remote

sensing of desert dust, Journal of Geophysical Research-Atmospheres, 111(D11), doi: 10.1029/2005JD006619.

Dubovik O. and King M. D. (2000), A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance

measurements. J. Geophys. Res. Atmos., 105, 20673–20696. Dubovik O., Smirnov A., Holben B.N., King M.D., Kaufman Y.J., Eck T.F.,15

Slutsker I. (2000), Accuracy assessments of aerosol optical properties retrieved from aerosol robotic network (AERONET) Sun and sky

radiance measurements, J. Geophys. Res. Atmos., 105, 9791–9806.

Eck T. F., Holben B. N., Reid J. S., Dubovik O., Smirnov A., O’Neill N. T., Slutsker I., Kinne S. (1999), Wavelength dependence of the

optical depth of biomass burning, urban, and desert dust aerosols, J Geophys Res Atmos, 104, 31333–31349.

Gillespie J. B. and Lindberg J. D. (1992), Ultraviolet and visible imaginary refractive-index of strongly absorbing atmospheric particulate20

matter, Appl. Opt., 31(12), 2112– 2115.

Gobbi, G. P., Kaufman, Y. J., Koren, I., and Eck, T. F. (2007), Classification of aerosol properties derived from AERONET direct sun data,

Atmospheric Chemistry and Physics, 7, 453–458.

Hale G. M., and Querry M. R. (1973), Optical-constants of water in 200 nm to 200 mm wavelength region, Appl. Opt., 12(3), 555–563.

Hand J. L. and Kreidenweis S. M. (2002), Anew method for retrieving particle refractive index and effective density from aerosol size25

distribution data, Aerosol Science and Technology, 36, 1012-1026.

Hashimoto M., Nakajima T., Dubovik O., Campanelli M., Che H., Khatri P., Takamura T., and Pandithurai G. (2012), Development of a new

data-processing method for SKYNET sky radiometer observations, Atmos. Meas. Tech., 5, 2723–2737.

Heller, W. (1965), Remarks on refractive index mixture rules, J. Phys. Chem.-Us., 69(4), 1123–1129, doi:10.1021/J100888a006.

Holben B. N. , Tanre D., Smirnov A., Eck T. F., Slutsker I., Abuhassan N., Newcomb W. W., Schafer J. S., Chatenet B., Lavenu F., Kaufman30

Y. J., Castle J. V., Setzer A., Markham B., Clark D., Frouin R., Halthore R., Karneli A., O’Neill N. T., Pietras C., Pinker R. T., Voss K.,

Zibordi G. (2001), An emerging ground-based aerosol climatology: aerosol optical depth from AERONET, J. Geophys. Res. Atmos., 106,

12067–12097.

Holben B. N., Eck T. F., Slutsker I., Tanre D., Buis J. P., Setzer A., Vermote E., Reagan J. A., Kaufman Y. J., Nakajima T., Lavenu F.,

Jankowiak I., Smirnov A. (1998), AERONET—a federated instrument network and data archive for aerosol characterization, Remote.35

Sens. Environ., 66, 1–16.

Janzen J. (1979), The refractive index of colloidal carbon, Journal of Colloid and Interface Science, 69:436–447.

15



Kaufman Y. J., Tanrè D., Dubovik O., Karnieli A., and Remer L. A. (2001), Absorption of sunlight by dust as inferred from satellite and

groundbased measurements, Geophys. Res. Lett., 28, 1479–1482.

King M. D., Byrne D. M., Herman B. M. and Reagan J. A. (1978), Aerosol Size Distributions Obtained by Inversion of Spectral Optical

Depth Measurements, Journal of the Atmospheric Sciences, 1978(11), 2153-2167.

Kirchstetter T. W., Novakov T., and Hobbs P. V. (2004), Evidence that the spectral dependence of light absorption by aerosols is affected by5

organic carbon, J. Geophys. Res., 109(D21), D21208, doi:10.1029/2004JD004999.

Kostenidou E., Pathak R. K., Pandis S. N. (2007), An algorithm for the calculation of secondary organic aerosol density combining AMS

and SMPS data, Aerosol Science and Technology, 41(11): 1002-1010.

Krekov G. M. (1992), Models of atmospheric aerosols in Aerosol Effects on Climate, edited by S. G. Jennings, pp. 9 –72, Univ. of Ariz.

Press, Tucson.10

Lafon S., Rajot J.-L., Alfaro S., and Gaudichet A. (2004), Quanlitification of iron oxides in desert aerosol, Atmos. Environ., 38, 1211-1218.

Lagarias J. C., Reeds J. A., Wright M. H., Wright P. E. (1998), Convergence properties of the Nelder–Mead simplex method in low dimen-

sions, SIAM J. Optim., 9(1), 112–147.

Li Z. Q., Goloub P., Devaux C., Gu X., Deuze J-L., Qiao Y., Zhao F. (2006), Retrieval of aerosol optical and physical properties from

ground-based spectral, multi-angular, and polarized sun-photometer measurements, Remote Sensing of Environment, 101, 519–533.15

Malloy Q. G. J., Nakao S., Qi L., Austin R., Stothers C., Hagino H. and Cocker III D. R. (2009), Real-time aerosol density determination

utilizing a modified scanning mobility particle sizer–aerosol particle mass analyzer system, Aerosol Science and Technology, 43(7), 673-

678.

Marley N. A., Gaffney J. S., Baird J. C., Blazer C. A., Drayton P. J., and Frederick J. E. (2001), An empirical method for the determination

of the complex refractive index of size-fractionated atmospheric aerosols for radiative transfer calculations, Aerosol Sci. Technol., 34,20

535–549.

McMurry P. H., Wang X., Park K., and Ehara K. (2002), The relationship between mass and mobility for atmospheric particles: a new

technique for measuring particle density, Aerosol Sci. Technol. 36:227–238.

Mogo S., Cachorro V. E., de Frutos A. M. (2012), In situ UV-VIS-NIR absorbing properties of atmospheric aerosol particles: estimates of the

imaginary refractive index and comparison with columnar values, Journal of Environmental Management, 111, 267-271. Nakayama T.,25

Sato K., Matsumi Y., Imamura T., Yamazaki A., and Uchiyama A. (2013), Wavelength and NOx dependence of complex refractive index

of SOAs generated from the photooxidation of toluene, Atmospheric Chemistry and Physics, 13, 531-545.

Nakayama T., Sato K., Matsumi Y., Imamura T., Yamazaki A., and Uchiyama A. (2012), Wavelength dependence of refractive index of

secondary organic aerosol generated during the ozonolysis and photooxidation of α-pinene, Sola, 8, 119-123.

Nakajima T., Tonna G., Rao R. Z., Boi P., Kaufman Y. and Holben B. (1996), Use of sky brightness measurements from ground for remote30

sensing of particulate polydispersions, Applied Optics, 35(15), 2672-2686.

Nakajima T., Tanaka M. and Yamauchi T. (1983), Retrieval of the optical properties of aerosols from aureole and extinction data, Applied

Optics, 22, 2951-2959.

Nelder J. A. and Mead R. (1965), A simplex method for function minimization, Comp. J., 7, 308-313, doi: 10.1093/comjnl/7.4.308.

Nilsson B. (1979), Meteorological influence on aerosol extinction in the 0.2–40-mm wavelength range, Appl. Opt., 18(20), 3457– 3473.35

Palmer K. F., and Williams D. (1975), Optical constants of sulfuric acid – Application to clouds of Venus, Appl. Opt., 14(1), 208– 219.

Patterson E. M., Gillete D. A., and Stockton B. H. (1977), Complex index of refraction between 300 and 700 nm for Saharan aerosol, J.

Geophys. Res., 82, 3153–3160.

16



Raut J.-C. and Chazette P. (2007), Retrieval of aerosol complex refractive index from a synergy between lidar, sunphotometer and in situ

measurements during LISAIR experiment, Atmos. Chem. Phys., 7, 2797–2815.

Schuster, G. L., Dubovik, O., and Arola, A. (2015), Remote sensing of soot carbon – Part 1: Distinguishing different absorbing aerosol

species, Atmos. Chem. Phys. Discuss., 15, 13607-13656, doi:10.5194/acpd-15-13607-2015.

Senftleben H., and Benedict E. (1917), Über die optischen Konstanten und die Strahlungsgesetze der Kohle, Annalen der Physik, 54, 65–78.5

Sinyuk A., Torres O., and Dubovik O. (2003), Combined use of satellite and surface observations to infer the imaginary part of refractive

index of Saharan dust, Geophys. Res. Lett., 30(2), 1081, doi:10.1029/2002GL016189.

Sokolik I. N., and Toon O. B. (1999), Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol

from UV to IR wavelengths, J. Geophys. Res., 104(D8), 9423– 9444.

Volz, F. E. (1973), Infrared optical constants of ammonium sulfate, Sahara dust, volcanic pumice, and fly ash, Appl. Opt., 12, 564-568.10

Wagner R., Ajtai T., Kandler K., Lieke K., Linke C., Muller T., Schnaiter M., and Vragel M. (2012), Complex refractive indices of Saharan

dust samples at visible and near UV wavelengths: a laboratory study, Atmos. Chem. Phys., 12, 2491-2512.

Wendisch M. and von Hoyningen-Huene W. (1994), Possibility of refractvie index determination of atmospheric aerosol particles by ground-

based solar extinction and scattering measurements, Atmospheric Environment, 28(5), 785-792.

Willeke K., Whitby K. T. (1975), Atmospheric aerosols: size distribution interpretation. J. Air. Pollut. Contr. Assoc., 25(5), 529–534.15

Woo C., You S., and Lee J. (2013), Determination of refractive index for absorbing spheres, Optik, 124, 5254– 5258.

Wu L.,Hasekamp O., van Diedenhoven B. and Cairns B. (2015), Aerosol retrieval from multiangle, multispectral photopolarimetric mea-

surements: importance of spectral range and angular resolution, Atmos. Meas. Tech., 8, 2625-2638.

Xu, X., Wang J., Zeng J., Spurr R., Liu X., Dubovik O., Li L., Li Z., Mishchenko M. I., Siniuk A., and Holben B.N. (2015), Retrieval of

aerosol microphysical properties from AERONET photo-polarimetric measurements: 2. A new research algorithm and case demonstration,20

J. Geophys. Res. Atmos., 120(14), 7079-7098, doi:10.1002/2015JD023113.

Zhang R., Jing J., Tao J., Hsu S.-C., Wang G., Cao J., Lee C. S. L., Zhu L., Chen Z., Zhao Y., and Shen Z. (2013), Chemical characterization

and source apportionment of PM2.5 in Beijing: seasonal perspective, Atmos. Chem. Phys., 13, 7053–7074.

Zhang Y., Li Z., Wang Y., Li K., Li D., Zhang Y. H., Wei P., Wang L., Lv Y. (2013), Improving accumulation mode fraction based on spectral

aerosol optical depth in Beijing. Spectroscopy and Spectral Analysis, 33, 2795–2802.25

Zhu C., Byrd R. H. and Nocedal J. (1997), L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained

optimization, ACM Transactions on Mathematical Software, 23(4), pp. 550 – 560.

17


