1 Table S1. Concentrations (μ g/L) of external liquid standards and certified accuracy check

2 standard.

	Cl	NO ₃ ⁻	SO4 ²⁻	Na ⁺	$\mathrm{NH_4}^+$	\mathbf{K}^+	Mg^{2+}	Ca ²⁺
Level 1	3.28	2.15	2.07	0.42	2.06	0.35	0.21	0.24
Level 2	6.55	4.31	4.15	0.84	4.12	0.70	0.42	0.47
Level 3	16.39	10.77	10.37	2.09	10.30	1.74	1.05	1.19
Level 4	32.78	21.54	20.75	4.18	20.60	3.49	2.10	2.37
Level 5	65.55	43.07	41.50	8.36	41.20	6.98	4.20	4.74
Level 6	163.87	107.68	103.74	20.90	103.01	17.44	10.48	11.86
Level 7	327.74	215.36	207.48	41.80	206.02	34.88	20.95	23.72
Level 8	655.48	430.72	414.96	83.59	412.04	69.75	41.91	47.43
Check std	25.00	25.00	25.00	15.00	15.00	25.00	20.00	20.00

- _

22 Table S2. Peak areas of internal standard LiBr as integrated by MARGA tool and Chromeleon

23	over different external standard levels.

	MAR	GA tool	Chromeleon		Differe	Difference %		Average difference %	
	Br⁻ area	Li ⁺ area	Br⁻ area	Li ⁺ area	Br⁻	Li ⁺	Br⁻	Li^+	
level 1	207.86	437.51	174.78	374.34	19	17	18	17	
	214.16	444.26	183.06	382.26	17	16			
	209.94	449.25	178.38	379.98	18	18			
level 2	208.63	448.56	175.68	381.90	19	17	17	16	
	207.29	446.07	177.42	381.18	17	17			
	207.36	439.45	179.16	388.08	16	13			
level 3	205.33	456.92	175.44	391.56	17	17	17	16	
	206.85	439.84	176.10	378.06	17	16			
	207.14	450.44	174.90	387.60	18	16			
level 4	209.18	443.28	178.68	381.96	17	16	17	17	
	206.42	450.00	177.00	382.26	17	18			
	206.28	465.22	176.82	397.14	17	17			
level 5	207.80	452.03	177.72	388.74	17	16	17	16	
	208.56	444.99	178.86	383.70	17	16			
	204.07	442.72	174.30	383.28	17	16			
level 6	207.06	447.54	177.42	386.40	17	16	17	15	
	207.88	440.05	178.08	384.30	17	15			
	206.26	444.83	177.06	388.56	16	14			
level 7	212.62	432.12	181.14	381.30	17	13	17	13	
	205.94	442.50	176.64	389.88	17	13			
	207.03	448.96	177.78	398.40	16	13			
level 8	207.31	428.00	177.96	388.92	16	10	16	11	
	208.51	426.98	182.04	383.40	15	11			
	206.86	435.68	177.18	390.36	17	12			

35 Table S3. Percentage of data points invalidated due to misidentification and misintegration by

36	MARGA tool	during field	intensive.	Total #	indicates	number of	of obser	vations	included	in the
----	------------	--------------	------------	---------	-----------	-----------	----------	---------	----------	--------

37	comparison between the MARGA tool and Chromeleon.							
	NO ₃	SO4 ²⁻	${ m NH_4}^+$	HNO ₃	S			

		NO_3^-	SO_4^{2-}	$\mathrm{NH_4^+}$	HNO_3	SO_2	NH_3
	% Invalid	3.5	0.2	0.5	6.2	0.1	0.8
	Total #	1271	1271	1300	1305	1305	1302
38							

Figure S1. Chromatograms integrated by MARGA tool; top figure shows integration option of
"drop perpendicular" applied to Li⁺, Na⁺ and NH4⁺ peaks; while the bottom figure shows option
"valley to valley" applied to a parallel chromatogram (note MARGA tool shows a dot
representing peak start or end point; from left to right, the peaks shown are Li⁺, Na⁺, NH4⁺ and

 K⁺).

57 Figure S2. Chromatogram integrated by MARGA tool showing NH_{4^+} peak misidentified as Na^+

- 58 (from left to right, the peaks shown are Li^+ and NH_4^+).

- ---

Figure S3. Chromatogram integrated by MARGA tool showing misidentification of NH₄⁺ and

 Na^+ peaks together as a single $NH4^+$ peak (note MARGA tool shows a dot representing peak start

or end point; from left to right, the peaks shown are Li^+ , Na^+ and NH_4^+).

. .

92 Figure S4. Chromatogram integrated by MARGA tool showing NO_3^- peak not integrated or

- -

same hour by sample box 2 in which both SO_4^{2-} and NO_3^{-} peaks were identified and integrated

(from left to right, the peaks shown are Br^- , NO_3^- and SO_4^{2-}).

Figure S6. Comparison of NO₃⁻ and SO₄²⁻ during field intensive as reported by MARGA tool and

Chromeleon for concentration regions lower than $1.0 \,\mu g/m^3$. Data misintegrated by the MARGA

- tool were excluded from this comparison (SB: sample box, lines 1.3:1 and 1:1 are shown as guide).

Figure S7. Corresponding back trajectories (arrival at 500AGL, backwards for 168hrs) of 3 spike
 peaks (±1hr) of observed SO₂ concentrations.

145 Figure S8. SO₂ Emission inventory map covering mid and eastern US from point sources 2011.