Supplemental Information

Figure S1. Map of sampling sites (Scale is 1:5000). (Map data ©2016 Google Imagery ©2016, DigitalGlobe, Sanborn, U.S. Geological Survey, USDA Farm Service Agency.)

Figure S2. (a) OP^{WS-DTT} (N=9) and (b) OP^{Total-DTT} (N=9) comparisons for PM samples collected simultaneously at GT using two HiVol sampler. Regression analysis was done by orthogonal regression. The dotted line is 1:1.

Figure S3. 30-minute sonication vs. 2.5-hour shaking comparison for OP^{WS-DTT} measurements (N=7). Regression analysis was done by orthogonal regression. The dotted line is 1:1.

Figure S4. The relative OP^{DTT} response (the ratio of OP^{DTT} extracted by methanol-containing solvent to OP^{DTT} extracted by DI only) to adding small amount of methanol into extraction solvent.

Figure S5. 30-minute sonication vs. 2.5-hour shaking comparison for $OP^{Total-DTT-3}$ measurements (N=9). Regression analysis was done by orthogonal regression. The dotted line is 1:1.

Figure S6. Graphical assessment of data normality.

N=31 for correlations between OP^{DTT}, N=29 for correlations between OP^{DTT} and PM components.

**p<0.01. *p<0.05. Correlation not statistically significant is without superscript.

Note: r>0.70 are bold.

Note: r>0.70 are bold.

RS					V	Vater-solub	le				Total				W	ater-insolul	ole	
		OC	EC	DTT	к	Mn	Fe	Cu	DTT	К	Mn	Fe	Cu	DTT	К	Mn	Fe	Cu
	EC	0.75**	1															
	DTT	0.83**	0.79**	1														
Wator	к	0.86**	0.68**	0.67**	1													
vvater-	Mn	0.79**	0.63**	0.43*	0.56**	1												
soluble	Fe	0.8**	0.8**	0.88**	0.66**	0.45*	1											
	Cu	0.64**	0.78**	0.54**	0.77**	0.36	0.63**	1										
	DTT	0.71**	0.68**	0.56**	0.6**	0.56**	0.49*	0.55**	1									
	к	0.88**	0.71**	0.69**	0.9**	0.65**	0.72**	0.51*	0.67**	1								
Total	Mn	0.86**	0.69**	0.48*	0.53**	0.95**	0.56**	0.56**	0.66**	0.61**	1							
	Fe	0.79**	0.75**	0.57**	0.55**	0.72**	0.72**	0.71**	0.66**	0.6**	0.9**	1						
	Cu	0.66**	0.72**	0.4	0.78**	0.65**	0.56**	0.93**	0.72**	0.57**	0.79**	0.84**	1					
	DTT	-0.34	-0.37	-0.51**	-0.47*	-0.37	-0.40*	-0.40*	0.84**	-0.43*	0.31	-0.39*	0.43*	1				
Mator	к	0.6**	0.47*	0.37	0.4	0.56**	0.73**	0.28	0.47*	0.7**	0.63**	0.62**	0.24*	-0.27	1			
water-	Mn	0.77**	0.72**	0.42*	0.44*	0.81**	0.62**	0.65**	0.67**	0.49*	0.95**	0.96**	0.82**	0.31	0.57**	1		
insoluble	Fe	0.74**	0.71**	0.47*	0.49*	0.71**	0.66**	0.7**	0.66**	0.54**	0.9**	0.998**	0.84**	-0.36	0.59**	0.97**	1	
	Cu	0.67**	0.73**	0.25	0.79**	0.65**	0.56**	0.92**	0.73**	0.59**	0.79**	0.84**	0.9996**	0.44*	0.14	0.82**	0.84**	1

**p<0.01. *p<0.05. Correlation not statistically significant is without superscript.

GT					V	Vater-solub	le				Total			Water-insoluble				
N=35		OC	EC	DTT	к	Mn	Fe	Cu	DTT	К	Mn	Fe	Cu	DTT	К	Mn	Fe	Cu
	EC	0.83**	1															
	DTT	0.79**	0.84**	1														
Mator	к	0.6**	0.88**	0.63**	1													
water-	Mn	0.86**	0.7**	0.46*	0.54**	1												
soluble	Fe	0.8**	0.82**	0.49*	0.62**	0.82**	1											
	Cu	0.7**	0.78**	0.77**	0.71**	0.72**	0.64**	1										
	DTT	0.66**	0.78**	0.71**	0.82**	0.69**	0.48*	0.76**	1									
	к	0.67**	0.84**	0.53**	0.82**	0.7**	0.59**	0.52**	0.69**	1								
Total	Mn	0.67**	0.66**	0.43*	0.51**	0.94**	0.61**	0.65**	0.73**	0.7**	1							
	Fe	0.53**	0.58**	0.36	0.51**	0.86**	0.6**	0.62**	0.71**	0.56**	0.97**	1						
	Cu	0.72**	0.78**	0.78**	0.62**	0.87**	0.54**	0.97**	0.78**	0.7**	0.88**	0.84**	1					
	DTT	0.44*	0.48**	-0.23	0.55**	0.57**	0.26	0.38	0.87**	0.50*	0.66**	0.63**	0.56**	1				
Matan	к	0.6**	0.6**	0.42*	0.61**	0.76**	0.54**	0.3	0.66**	0.94**	0.74**	0.69**	0.61**	0.50*	1			
Water-	Mn	0.43*	0.66**	0.31	0.37	0.79**	0.64**	0.43*	0.62**	0.62**	0.96**	0.95**	0.75**	0.59**	0.7**	1		
insoluble	Fe	0.49*	0.57**	0.35*	0.49*	0.86**	0.57**	0.59**	0.7**	0.55**	0.96**	0.9995**	0.84**	0.64**	0.69**	0.95**	1	
	Cu	0.72**	0.78**	0.78**	0.61**	0.88**	0.54**	0.97**	0.78**	0.7**	0.89**	0.85**	0.9999**	0.56**	0.63**	0.76**	0.84**	1

Figure S1. Correlation matrix for the various metals and OP^{DTT} obtained by method 3

1 401		/iii uliu OI		1111/111)					
Eilten		GT			RS	RS			
Filter	OPWS-DTT	Op ^{Total-DTT}	OP^{WS-DTT}	ODWS-DTT	Op ^{Total-DTT}	OP^{WS-DTT}			
type	OF	OF	$OP^{Total-DTT}$	OF	OF	$OP^{Total-DTT}$			
Quartz	0.20 ± 0.04	0.32 ± 0.06	$65 \pm 10\%$	0.21 ± 0.03	0.34 ± 0.05	62 <u>+</u> 12%			
Quartz	N=35	N=35	N=35	N=32	N=33	N=32			
Toflon	0.13 ± 0.03	0.21 ± 0.04	65 <u>+</u> 14%	0.18 ± 0.02	0.31 ± 0.04	58 <u>+</u> 10%			
Terion	N=23	N=23	N=23	N=24	N=24	N=24			

Table S2. OP^{WS-DTT}/m³ and OP^{Total-DTT}/m³ (nmol/min/m³)

Table S3. The OP variance on Teflon versus quartz filters assessed by the F-test in ANOVA.

	F	$F_{critical}$ for $\alpha = 0.05$
GT-OP ^{WS-DTT}	2.082	4.013
RS-OP ^{WS-DTT}	0.499	4.020
GT-OP ^{Total-DTT}	2.084	4.013
RS-OP ^{Total-DTT}	0.159	4.016

*Null hypothesis assumes that there is no significant difference between Teflon and quartz filters. * $F < F_{critical}$ when the null hypothesis is true with significance level of 0.05.

	Water-s	oluble	To	otal
	GT	RS	GT	RS
$V_{\rm max}/m^3$	57.49±28.08	69.79±26.56	92.54±56.05	95.97±31.63
K, IIg/III	N=28	N=29	N=28	N=28
$M_{\rm m}$ $n_{\rm c}/m^3$	1.40 ± 0.85	3.32±1.20	2.73±1.64	7.02±2.21
Ivin, ng/m	N=29	N=29	N=29	N=29
E_{2} ng/m^{3}	13.94 ± 5.04	33.25±11.36	136.69±70.72	414.41±116.54
re, ng/m	N=29	N=29	N=29	N=29
C_{μ} ng/m ³	18.17±7.27	22.03±8.29	35.23±18.40	37.20±15.94
Cu, lig/ili	N=28	N=28	N=29	N=29
$OC u a/m^3$	-	-	2.19±0.90	2.92 ± 0.82
OC, μg/m			N=33	N=31
$EC u a/m^3$	-	-	0.54 ± 0.22	1.68 ± 0.41
EC, μg/m			N=32	N=31

 Table S4. Summary of concentrations of measured PM components.

Table S5. Coefficients of divergence (CODs) for the paired GT-RS site.

		Qua	Teflon filters			
	EC	OC	OP ^{WS-DTT}	OP ^{Total-DTT}	OP ^{WS-DTT}	OP ^{Total-DTT}
Coefficients of divergence (CODs)	0.52	0.18	0.06	0.08	0.19	0.23