

Response to Anonymous Referee #1

Review McLagan et al. This paper reports on work towards development of a passive sampler for gaseous Hg. The paper reports on tests to determine the impact of meteorological parameters on the sampler. They found that RH did not affect the sampling rate and it increased slightly with wind speed. They also assess the utility of reusing Radiello sampler housings. In general I do not think this paper is of sufficient quality and novelty to be considered for publication in AMT.

Response: The reviewer provides no evidence to support an assessment of insufficient quality or novelty. In our manuscript we describe tests on the effects of wind speed, temperature and relative humidity on the sampling rate of a previously published passive air sampler (PAS) for gaseous Hg (McLagan et al. 2016a). Quantifying the sampling rate variability caused by meteorological conditions is a critical step in validating any PAS. This work had not been previously done for this sampler, and we feel we have approached this with utmost rigor. Given AMT's mandate of "*validation of measurement instruments*" and "*advances in...measurement techniques for constituents...of the earth's atmosphere*", we feel strongly that this contribution fits well within the scope of this journal.

I do not really understand the part of the sentence that starts with "with" just does not make sense so I would eliminate.

Response: We do not know what the reviewer is referring to in this comment. There are two sentences in the entire manuscript that start with the word "with" (pg. 9, line 199 and pg. 12, line 278) and both are grammatically correct. In case the reviewer is referring to line 278, we rephrased the sentence to read: "**When the protective shield is in place the SR was approximately 10% lower than without the protective shield for the yellow Radiello®.**"

Also is the resolution of this sampler sufficient for collecting meaningful data around the globe given the limited variability in concentrations outside of contaminated areas?

Response: The replicate precision of this sampler is $2\pm1\%$ relative standard deviation (McLagan et al. 2016a). Whether this is sufficient "resolution" for discerning the relatively small concentration differences of gaseous mercury "outside of contaminated areas" depends to a large degree on the extent to which the sampling rate is variable between different deployments. In other words, the work described in the submission is a necessary step towards establishing whether the sampler has the requisite level of accuracy and precision to monitor background levels of gaseous Hg. Our study shows that the effect of wind speed, temperature and relative humidity on the sampling rate is small and quantifiable. While this is necessary, it is not yet sufficient to establish the smallest concentration difference the sampler is able to detect. This will require the determination and comparison of sampling rates in the field at sites that vary widely in terms of meteorology. Such work is currently ongoing.

Pg 6 Methods section It appears they had no simultaneous replication and the experiment seems quite crude there is no n and just looking at parallel wind speed is not sufficient.

Response: We measured the sampling rate of the PAS with the white Radiello at eight different wind speeds (wind still, 1, 1.5, 2, 3, 4, 5, 6 m/s) and those for the yellow Radiello at three wind speeds (windstill, 3, 6 m/s). Each of these measurements was triplicated, for a total of 33 individual sampling rate determinations. The high n in our study is apparent from Figure 1. We believe that this is a sampling design that compares very favorably with any that had been adopted in previous studies examining the relationship between wind speed and sampling rate in PASs. The following statement (in red) has been added to line 126 on pg 6 to increase clarity:

“...the distance between 126 PASs and fan (see Fig. S1 and Fig. S2). **For each wind speed triplicate PASs were deployed.**”

We do not report the average and standard deviation of the replicated measurements at different wind speeds, because it is impossible to **exactly** replicate exposure of PAS to wind in a sampling design (Zhang et al. 2012) that relies on individual electrical fans for each individual deployment (Lines 126-131 pg 6). Instead, we quantified the wind speeds at the front of the protective shield or diffusive housing of EACH individual sampler and used those individual data in the regressions displayed in Figure 1. The uncertainty of the sampling rate–wind speed relationships can be determined from the standard error of the slope of these relationships, which have been added to the revised manuscript.

Possibly the reviewer’s reference to “parallel wind speed” not being sufficient, is meant to suggest that we should have also investigated the influence of the angle of wind incidence on the sampling rate. While this issue has not been investigated previously for any PAS for gaseous mercury or any PAS relying on the Radiello diffusive barrier, it has been studied in PAS for organic contaminants (May et al. 2011, Zhang et al. 2013, Gong et al. 2017). Because none of these PAS used a diffusive barrier, they are more susceptible to wind effects than our sampling design. Considering that our sampler design includes both a windshield and a diffusive barrier, we felt it not necessary to also include experiments with variable angles of wind incidence. However, that could be the subject of future experiments.

The temperature range tested is extremely low as is the relative humidity. Also, the temperature and relative humidity reported in the methods is not consistent with the abstract.

Response: The temperatures in our experiments ranged from -15 °C to +35 °C. This is not “extremely low” and covers the range of most average temperatures found on Earth. The relative humidity in our experiments ranged between 44 and 80 %. This was the maximum range achievable at the Biotron climate control chambers; increasing or decreasing relative humidity further while keeping temperature at 20 °C was not possible. While there are locations where relative humidity can be outside this range it does cover the mean range of relative humidity over land, 70-80% (Dai, 2006). We further note that the range of temperatures and relative humidity tested compares very favorably with those in other studies on the influence of meteorological conditions on the sampling rates of mercury passive samplers (Guo et al. 2014, Skov et al. 2007, Gustin et al. 2011, Brumbaugh et al. 2000).

The temperature and relative humidity ranges are not reported differently in the abstract, methods, or discussion, but to clarify the temperature range in the abstract (Line 18 pg 2) has been rewritten as: “**-15 to +35 °C**”

Also the caption of Table 1 has been updated to: “Table 1: Combinations of temperature and relative humidity during the eight experiments performed in climate-controlled chambers. **The three relative humidity treatments were 44, 60, and 80% while the temperature was held constant at 20 °C. All treatments were used for the temperature experiments.**”

Pg 7 I do not really understand what they mean by replicated 5 times. Were 5 samplers deployed or was one sampler deployed in the center of the chamber or are there 5 chambers with the exact same conditions?

Response: The sentence on line 149 pg 7 has been updated to the following: “**Each treatment included five replicates, all deployed in the same chamber over the same time period.**”

Pg 9 line 268 needs a reference and R2 should be r2 and there should be a p value and n

Response: The sentence does require a reference to the initial calibration study. It has been updated in the manuscript for clarification purposes as follows: “The addition of the windshield to the white Radiello® (configuration 1), which is the current method used for outdoor deployments with this PAS (McLagan et al., 2016a), reduced the effect of wind speed on the SR, particularly at higher wind speeds.”

R^2 has been changed to r^2 and $n = 44$ has been added, and p -value for the exponentially transformed data (since we cannot run a significance test on untransformed log data; this p – value has been added to the Figure). r^2 , n and p -values have also been added to the other wind relationships (line 262, line 278)

P 14 line 337 self-citation in not appropriate here and in multiple other places in the paper. i.e. pg. 18 line 419

Response: We disagree and believe that citations to our earlier papers are appropriate, both in these two instances and elsewhere in the manuscript. On lines 337 and 419 we cite our earlier review paper (McLagan et al. 2016a), in which we discuss (i) the two different ways in which temperature can affect the sampling rate of a PAS, and (ii) the two conflicting design criteria affecting the sampling rate of a PAS.

Pg 16 line 373 porosity of sampler housings has been demonstrated to be impacted by acid cleaning. How many times were the samplers subjected to these treatments?

Response: The following statement has been added to the manuscript at the end of line 436 pg 18: “**Additionally, Gustin et al., (2011) suggested the porosity of high density poly-ethylene diffusive barriers can be affected by cleaning with HCl. While in this study we used HNO₃ for cleaning purposes, the possibility of porosity changes caused by acid cleaning is further incentive to clean previously used Radiellos® with soap rather than acid or heat-acid.**”

The Radiellos were cleaned once for each method following the description in the methods (i.e. acid baths were for 6 hours). The following has been added to line 169 pg 7: “...water rinse and sonication and air drying). **All Radiellos in each cleaning treatment were cleaned once according to the aforementioned methods.**”

Sampling rates should be compared to those in other papers

Response: The relationships and uncertainty of these relationships have been compared to other samplers throughout the paper (e.g. Lines 265-267, Lines 280-281, Lines 290-293, lines 352-358). The actual SRs determined in this study in the various experiments were frequently compared to the SR of the original calibration study by McLagan et al., (2016a). In that study the calibrated rates were compared to the SRs of other studies, especially that of Skov et al, (2007) which is physically the most similar sampler to that of our own.

We did observe one comparison that was not included in the manuscript and lines 329-330 have been updated as follows: “Relative humidity, tested at 44, 60, and 80% and a stable temperature of 20 °C, had no significant effect on SR ($p = 0.080$; see Fig. S5), **which is similar to**

Guo et al., (2014) who also observed no effect from relative humidity on the SR of their PAS that uses the same sulphur-impregnated activated carbon sorbent.”

Response to Anonymous Referee #2

The manuscript by McLagan et al. presents interesting new data to assess performance of a novel passive method for gaseous mercury determination. This is currently a very important field of research and it may have beneficial applications in different environmental contexts all over the world, finding a large international audience.

Particularly worthy is the pursuit of the authors to adopt cost-effective procedures (i.e. Radiellos reuse) measuring their impact on the analytical quality of data. Indeed, it is essential for a passive sampling method to be low cost for being effective in pollution surveys with high spatial resolution and for supporting air quality management.

The paper by McLagan et al. is well written. The title is clear and informative; the abstract concisely reports well the rationale and the main results of the paper. Also, the introduction is correctly conceived with a logical and continuous development of the different points leading to the statement of the aim of the research. The result and discussion section is well organized and the data, although coming from multiple experiments of different design, are presented intelligibly through few figures (3).

Response: We thank the reviewer for their positive feedback.

However, there is room to improve caption of figure 1 (lines 283-289). It may be difficult for readers to get out of the symbols used which are of similar shape and color. Please check correspondence of colors and shapes of symbols in the figure with those reported in the legend in parentheses in the caption. In my opinion, the fact that similar colors are used for the relationships (reported irrespectively of the deployment length) of each configuration and the color symbols used for different deployment periods (weeks) may be confusing.

Response: We have removed the different colours for different deployment times.

At line 270 a r^2 of 0.66 is reported in apparent incoherence with those two r^2 reported in the figure 1 for the configuration 2.

Response: Thank you for picking up this discrepancy. The r^2 in text has been updated to 0.83 to match the value in the figure.

The Authors in this latter case should explain better in the text the difference of calculations. In the same sentence it is stated that “SR is most sensitive to wind speed between 0 and 1 m s⁻¹” (lines 270-271) which may not be the same meaning of the previous sentence at the line 265 “The SR was most sensitive at lower wind speed”. Although the latter sentence is understandable, it could be improved to make it clearer to the readers.

Response: We have clarified this sentence by adding the following in parenthesis to line 265: “The SR was most sensitive at lower wind speed (*typically < 1 m s⁻¹*)”.

I have no remarks on analytical quality of data as the analyses have been carried through sound methodologies and reliable instrumentations (i.e. USEPA method; Leco Instrument) under verified quality control measures (i.e. SRMs, monitoring of analytical precision and recovery). Experiments seem to me well conceived and correctly implemented.

In the research Authors showed that the tested passive sampler provided very precise data for gaseous mercury which were little affected by variability of temperature over a large interval, reflecting different potential conditions of deployment in the field. More importantly it came up the robustness of data that can be obtained by the configuration for outdoor deployments (yellow Radiello® with windshield) which resulted very little affected by wind conditions. The potential reusability of radiello for multiple deployment cycles without detriment of the analytical performances, as tested in this research, is a key feature in the cost management of this passive sampler.

In my opinion, the manuscript provide novel information, well reported, which is essential to support a new methodology that is meeting actual needs for monitoring of gaseous mercury. This allow me to recommend the manuscript by McLagan et al. for publication in Atmospheric Measurement Techniques.

Response: Again we thank the reviewer for the support of the manuscript.

References:

Brumbaugh, W.G., Petty, J.D., May, T.W., Huckins, J.N., A passive integrative sampler for mercury vapor in air and neutral mercury species in water. Chemosphere: Global Change Science, 2, 1-9, 2000

Dai, A., Recent climatology, variability, and trends in global surface humidity. *Journal of Climate*, 19, 3589–3606, 2006

Gong, P., Wang, X., Liu, X., and Wania, F., Field calibration of XAD-based passive air sampler on the Tibetan Plateau: wind influence and configuration improvement. *Environmental Science and Technology*, 51, 5642–5649, 2017

Gustin, M. S., Lyman, S. N., Kilner, P., and Prestbo, E., Development of a passive sampler for gaseous mercury. *Atmospheric Environment*, 45, 5805-5812, 2011.

May, A. A., Ashman, P., Huang, J., Dhaniyala, S., and Holsen, T. M., Evaluation of the polyurethane foam (PUF) disk passive air sampler. Computational modeling and experimental measurements. *Atmospheric Environment*, 45, 4354-4359, 2011

McLagan, D. S., Mitchell, C. P. J., Huang, H., Lei, Y. D., Cole, A. S., Steffen, A., Hung, H., and Wania, F., A High-Precision Passive Air Sampler for Gaseous Mercury. *Environmental Science and Technology Letters*, 3, 24-29, 2016a.

McLagan, D. S., Mazur, M. E. E., Mitchell, C. P. J., and Wania, F., Passive air sampling of gaseous elemental mercury: a critical review. *Atmospheric Chemistry and Physics*, 16, 3061-3076, 2016b.

Skov, H., Sorensen, B. T., Landis, M. S., Johnson, M. S., Sacco, P., Goodsite, M. E., Lohse, C., and Christiansen, K. S., Performance of a new diffusive sampler for Hg0 determination in the troposphere. *Environmental Chemistry*, 4, 75-80, 2007.

Zhang, X., Brown, T. N., Ansari, A., Yeun, B., Kitaoka, K., Kondo, A., Lei, Y. D., and Wania, F., Effect of wind on the chemical uptake kinetics of a passive air sampler. *Environmental Science and Technology*, 47, 7868-7875, 2013.

1 **The effects of meteorological parameters and**
2 **diffusive barrier reuse on the sampling rate of**
3 **a passive air sampler for gaseous mercury**

4

5 David S. McLagan,¹ Carl P. J. Mitchell,¹ Haiyong Huang,¹ Batual Abdul Hussain,¹ Ying Duan Lei,¹
6 Frank Wania^{1,*}

7

8 ¹ Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065
9 Military Trail, M1C 1A4, Toronto, Ontario, Canada

10

11 * Corresponding Author – email: frank.wania@utoronto.ca; phone: +1 416-287-7225

12 **ABSTRACT**

13 Passive air sampling of gaseous mercury (Hg) requires a high level of accuracy to discriminate
14 small differences in atmospheric concentrations. Meteorological parameters have the potential
15 to decrease this accuracy by impacting the sampling rate (*SR*), i.e., the volume of air that is
16 effectively stripped of gaseous mercury per unit of time. We measured the *SR* of a recently
17 calibrated passive air sampler for gaseous Hg in the laboratory under varying wind speeds
18 (wind-still to 6 m s⁻¹), temperatures (-15 to +35 °C), and relative humidities (44 to 80 %). While
19 relative humidity has no impact on *SR*, *SR* increases slightly with both wind speed (0.003 m³
20 day⁻¹ increase in *SR* or 2.5 % of the previously calibrated *SR* for every m s⁻¹ increase for wind
21 speeds > 1 m s⁻¹, typical of outdoor deployments) and temperature (0.001 m³ day⁻¹ increase in
22 *SR* or 0.7 % for every 1 °C increase). The temperature dependence can be fully explained by the
23 effect of temperature on the molecular diffusivity of gaseous mercury in air. Although these
24 effects are relatively small, accuracy can be improved by adjusting *SRs* using measured or
25 estimated temperature and wind speed data at or near sampling sites. We also assessed the
26 possibility of reusing Radiello® diffusive barriers previously used in the passive air samplers. The
27 mean rate of gaseous Hg uptake was not significantly different between new and previously
28 used diffusive barriers in both lab and outdoor deployments, irrespective of the applied
29 cleaning procedure. No memory effect from Radiellos® previously deployed in a high Hg
30 atmosphere was observed. However, a loss in replicate precision for the dirtiest Radiellos® in
31 the indoor experiment suggests that cleaning is advisable prior to reuse.

32 **KEYWORDS**

33 Passive air sampling, Hg, atmosphere, calibration, green chemistry

Frank Wania 2017-7-7 9:04

Deleted: -

Frank Wania 2017-7-7 9:04

Deleted: -

Frank Wania 2017-7-7 9:04

Deleted: -

37 **1. INTRODUCTION**

38 Fine spatial resolution measurements of atmospheric contaminants are difficult and expensive,
39 especially at remote locations and in developing countries. By allowing for simultaneous, cost-
40 effective measurements at a multitude of sites, passive air samplers (PASs) are useful,
41 complementary monitoring tools in atmospheric science. PASs can be deployed in high
42 numbers, at sites away from sources of electricity, and in locations where the costs and logistics
43 of active sampler deployments can be prohibitive (McLagan et al., 2016a). In order for a PAS to
44 yield volumetric air concentration data, a sampling rate (*SR*), i.e., the volume of air that is
45 effectively stripped of the contaminant of concern per unit of time, needs to be derived. This is
46 done either in calibration experiments that deploy the PAS concurrently with reliable active
47 sampling techniques or theoretically based on an understanding of the processes controlling
48 mass transfer from atmosphere to PAS sorbent (Armitage et al., 2013; Gustin et al., 2011; Skov
49 et al., 2007). Any uncertainty and bias in the *SR* is directly propagated to the volumetric air
50 concentration derived from a PAS. Accordingly, a reliable PAS requires that the impact of
51 various factors influencing the *SR* is, in order of preference, either eliminated, minimized or
52 quantifiable and predictable.

53 A common conceptual model of uptake in PASs assumes a stagnant air layer or air-side
54 boundary layer (ASBL) around the sorbent, through which contaminant transfer occurs solely by
55 molecular diffusion (McLagan et al., 2016a; Shoeib and Harner, 2002). Wind decreases the
56 thickness of the ASBL which in turn increases the *SR* (Bartkow et al., 2005; Moeckel et al., 2009;
57 Pennequin-Cardinal et al., 2005). Diffusive barriers aim to reduce the influence of wind by
58 standardizing the molecular diffusion distance to the sorbent and thereby ensuring that the
59 diffusive component of contaminant transfer is the rate limiting step (Huang et al., 2014;
60 Lozano et al., 2009; McLagan et al., 2016a). For PASs with diffusive barriers the ASBL is shifted
61 from the outside of the sorbent to the outside of the diffusive barrier (McLagan et al., 2016b).
62 While a diffusive barrier thus reduces the relative contribution of the ASBL to the overall
63 diffusion distance, it cannot entirely mitigate *SR* variability caused by wind (Pennequin-Cardinal
64 et al., 2005; Plaisance et al., 2002; Skov et al., 2007). Protective shields around the sorbent or

65 diffusive barrier are often employed to further reduce the influence of wind by reducing the
66 face velocities at these surfaces. However, like diffusive barriers, they too are not likely to
67 completely eliminate the influence of wind on the thickness of the ASBL (Huang et al., 2014).

68 Temperature has the potential to affect *SR* in two ways: (i) changing the rate of gas phase
69 diffusion of the contaminant due to the temperature dependence of molecular diffusion
70 coefficients (Armitage et al., 2013; Huang et al., 2014; Lozano et al., 2009); and (ii) shifting the
71 partitioning equilibria between the sorbent and the gas phase (Armitage et al., 2013; Lozano et
72 al., 2009; McLagan et al., 2016a). Relative humidity (RH) may affect *SRs* by influencing the
73 sorptive properties of certain sorbents for target analytes (Huang et al., 2014). Other factors
74 that may affect the sorption of contaminants to PAS sorbents include passivation of sorbents
75 (interfering compounds blocking sorbent uptake sites or stripping analytes through reaction)
76 (Brown et al., 2012; Gustin et al., 2011), degradation of the sorbent over time (Brown et al.,
77 2011; McLagan et al., 2016a), and uptake of the contaminant to the sampler housing or
78 diffusive barrier (Gustin et al., 2011; Huang et al., 2014; McLagan et al., 2016a).

79 Mercury is a persistent, bioaccumulative, and toxic contaminant of global concern that has
80 come under greater international scrutiny with the adoption of the Minamata Convention
81 (UNEP, 2013). A key stipulation under Article 19 of the convention “Research, Development and
82 Monitoring” is the requirement of participating parties to improve current monitoring networks
83 (UNEP, 2013). A PAS for measuring atmospheric Hg could play an important role in this context,
84 if it can be shown to be suitable for monitoring long-term background concentrations,
85 concentration gradients in and around Hg sources, and personal exposure levels (McLagan et
86 al., 2016a). Gaseous elemental Hg (GEM) is generally the dominant form of atmospheric Hg
87 (typically making up >95 %), due to its high atmospheric residence time of ~1 year (Driscoll et
88 al., 2013; Pirrone et al., 2010; Selin, 2009), especially at sites remote from combustion sources
89 (McLagan et al., 2016a; Peterson et al., 2009; Rutter et al., 2009). The long atmospheric
90 residence time of GEM results in fairly uniform background concentrations within each
91 hemisphere, with much of the global atmosphere having levels within <25 % of the hemispheric
92 average (Gustin et al., 2011). PASs capable of discriminating such small concentration variability

93 require high accuracy and precision, i.e. SRs need to be well characterized and repeatable.
94 Existing PASs for gaseous mercury have struggled to achieve the accuracy and precision
95 necessary for background monitoring due to inadequate detection limits or highly variable SRs
96 (Huang et al., 2014; McLagan et al., 2016a).

97 We recently introduced a PAS for gaseous Hg with a precision based uncertainty of $2 \pm 1\%$ that
98 uses an activated carbon sorbent and a Radiello® diffusive barrier (McLagan et al., 2016b).
99 While it is believed that the sampler takes up predominantly GEM, we cannot rule out the
100 possibility for gaseous oxidized Hg to also pass through the diffusive barrier (McLagan et al.,
101 2016b). We therefore use the term gaseous Hg to define the target analyte. An earlier
102 calibration of this PAS at one outdoor location yielded a SR of $0.121 \text{ m}^3 \text{ day}^{-1}$ (McLagan et al.,
103 2016b). Here we report on a series of laboratory experiments that quantified the effect of wind
104 speed, temperature, and RH on the SR of that sampler. We additionally explored the possibility
105 of reusing the Radiello® diffusive barrier in multiple deployments in order to further reduce the
106 costs associated with the sampler's use. During deployment, the inside of the Radiello® can
107 become covered in sorbent dust. It is also possible that atmospheric components, e.g.
108 atmospheric particulate matter and oxidants, sorb to or react with the diffusive barrier during
109 deployment. Thus, in addition to meteorological impacts on the PAS's SR, we also explored the
110 effect of prior use and cleaning of the diffusive barrier on the uptake of Hg in the PAS.

111 **2. METHODS**

112 **2.1 Sampler Design**

113 The sampler consists of a porous stainless steel mesh cylinder, filled with $\sim 0.7 \text{ g}$ of sulphur-
114 impregnated activated carbon sorbent (HGR-AC; Calgon Carbon Corp.), which is inserted into a
115 Radiello® radial diffusive body (Sigma Aldrich), which itself is placed inside a polyethylene-
116 terephthalate protective jar. During deployments the opening of the jar, covered with a
117 polypropylene (PP) mesh screen, is facing down. After sampling the jar is sealed tightly with a
118 PP cap, PTFE tape wrapped around seal, and placed in double resealable plastic bags for
119 transport and storage. McLagan et al. (2016b) provide more detail on the PAS design.

Frank Wania 2017-7-7 9:04

Deleted: and

121 **2.2 Study Design**

122 **2.2.1 WIND.** PAS in four different configurations were exposed to different wind conditions in
123 the laboratory at the University of Toronto Scarborough: (1) regular, white Radiello® with
124 windshield, (2) white Radiello® without windshield, (3) thick-walled, less porous, yellow
125 Radiello® with windshield, and (4) yellow Radiello® without windshield. Adopting the
126 experimental setup of Zhang et al. (2013), electronic fans (Delta Electronics Inc., model number:
127 BFC1212B) were employed to generate wind for each individual sampler. The angle of wind
128 incidence was always 90°, i.e. we simulated wind that is blowing parallel to the surface. Wind
129 speeds of 1, 1.5, 2, 3, 4, 5, and 6 m s⁻¹ were achieved by manipulating the distance between
130 PASs and fan (see Fig. S1 and Fig. S2). For each wind speed triplicate PASs were deployed. Wind
131 speeds for each individual PAS were measured every 5 seconds with a hot-wire
132 Anemometer/Thermometer (Traceable®, VWR International) for five minutes before and five
133 minutes after each deployment. As such, average wind speeds of individual samplers within
134 each wind speed treatment varied slightly (Fig. 1). “Wind-still” experiments without fans were
135 performed for comparison (with wind speed assumed to be 0.05 m s⁻¹).

136 While experiments with white Radiellos (configuration 1 and 2) generally lasted one week,
137 additional experiments lasting two, three, and four weeks were performed at selected wind
138 speeds (3 and 6 m s⁻¹). Experiments with yellow Radiellos (configurations 3 and 4) lasted two
139 weeks (the lower SR of yellow Radiello® requires longer deployment times to reach detection
140 limits) and were only performed at wind speeds of 3 and 6 m s⁻¹, as well as without fans.
141 Additionally, a 3 months uptake experiment under wind-still conditions was performed in order
142 to obtain a precise SR of the PAS with a white Radiello deployed indoors with a protective
143 shield. Eighteen samplers were deployed at the same time and triplicates were removed after
144 15, 28, 46, 56, 70 and 84 days. The earlier indoor calibration experiment described in McLagan
145 et al. (2016b) had been performed without a windshield.

146 Temperature and RH, monitored before, after, and periodically during each individual
147 experiment, ranged from ±21.9 to +24.2 °C and from 32 – 53 %. While there was some variation

Frank Wania 2017-7-7 9:04
Deleted: -

149 in the gaseous Hg concentration as recorded by the Tekran 2537A between deployments, the
150 average concentration across all wind experiments was $1.9 \pm 0.3 \text{ ng m}^{-3}$.

151 2.2.2 *TEMPERATURE & RELATIVE HUMIDITY*. The regular PAS configuration (configuration 1)
152 was exposed to eight different combinations of temperature and RH (Table 1) for two weeks
153 periods in climate controlled walk-in chambers located at the Biotron Facility of Western
154 University in London, Ontario. Each treatment included five replicates, all deployed in the same
155 chamber over the same time period. Samplers were attached to metal shelving units near the
156 centre of the chambers where a continuous flow of air from the outflow of the climate control
157 units of $1.1 - 2.3 \text{ m s}^{-1}$ was observed using the hot-wire Anemometer over a two minute period
158 at the completion of each experiment. The average actively measured gaseous Hg
159 concentration across all temperature and RH experiments was $2.2 \pm 0.9 \text{ ng m}^{-3}$.

Frank Wania 2017-7-7 9:04

Deleted: Each experiment was replicated five times.

160 **Table 1:** Table 1: Combinations of temperature and relative humidity during the eight experiments
161 performed in climate-controlled chambers. The three relative humidity treatments were 44, 60, and
162 80 % while the temperature was held constant at 20 °C. All treatments were used for the temperature
163 experiments.

Temp (°C)	-15.0 ± 0.1	5.0 ± 0.0	12.5 ± 0.1	19.9 ± 0.0	20.0 ± 0.1	20.0 ± 0.1	27.5 ± 0.0	35.0 ± 0.0
RH (%)	68 ± 1	77 ± 1	76 ± 2	44 ± 5	60 ± 1	80 ± 0	60 ± 1	45 ± 3

164 2.2.3 *RADIETTO® REUSE*. The potential impacts of sorbent dust accumulation or atmospheric
165 contamination during prolonged deployment periods on sampling rates and therefore on the
166 ability to reuse the Radietto® diffusive barriers are unknown. Currently, new diffusive barriers
167 are used for each deployment. In this experiment, previously used Radietlos® were redeployed
168 after different cleaning procedures were applied. Six cleaning treatments were applied: *new*
169 (unused Radietlos®), *uncleaned* (unaltered after previous deployments), *physical* (physical
170 agitation with funnel brushes and compressed air blow down), *soap* (Citranox® detergent,
171 cleaning brushes, and deionized water, compressed air blow down, deionized water rinse and
172 sonication and air drying), *acid* (six hour soak in 20 % HNO₃ bath, deionized water rinse,
173 compressed air blow down, deionized water rinse and sonication and air drying), and *heat-acid*
174 (six hour soak in 20 % HNO₃ bath at 40 °C, deionized water rinse, compressed air blow down,

177 deionized water rinse and sonication and air drying). All Radiellos® in each cleaning treatment
178 were cleaned once according to the aforementioned methods. Prior to cleaning, diffusive
179 bodies were categorized based on the extent of visible dust coating using a 5-point scale (0 –
180 new, 1 – very low, 2 – low, 3 – moderate, 4 – high, and 5 – very high). To the extent this was
181 possible with a limited stock of previously deployed Radiellos®, we evenly distributed Radiellos®
182 of variable dust coating among the treatments (see Table S2 for details). We also tested
183 Radiellos® previously deployed in contaminated environments with very high gaseous Hg
184 concentrations (~100 – 10000 ng m⁻³) to assess whether such deployments led to a memory
185 effect whereby sorbed Hg is released from the diffusive body during subsequent uses. All
186 samplers from this *memory* treatment contained moderate dust coating and were not cleaned.

Frank Wania 2017-7-7 9:04

Deleted:

187 Five replicate samplers for each of the 7 treatments were deployed for a period of two weeks in
188 a laboratory with slightly elevated Hg concentrations (previously measured as ~5-10 ng m⁻³) at
189 the University of Toronto Scarborough. Additionally, five different replicate samplers for each
190 of the three treatments *new*, *uncleaned*, and *soap* were exposed for 34 days outdoors on the
191 campus of the University of Toronto Scarborough (43.78714 °N, 79.19049 °W). In this case, all
192 previously used Radiellos® were heavily dust coated (category 4 or 5, see Table S3 for details).
193 In both the indoor and outdoor experiment all samplers were deployed concurrently.
194 Therefore, no active gaseous Hg measurements were necessary and the mass of sorbed Hg
195 could be directly compared and was used in data analysis.

Frank Wania 2017-7-7 9:04

Deleted: S2

196 2.2.4 ACTIVE GASEOUS MERCURY MEASUREMENTS. A Tekran 2537A (Tekran Instruments Corp.)
197 was used to measure the gaseous Hg concentrations at 5 min intervals throughout all wind,
198 temperature and RH experiments. A sampling inlet that combined a 2 m Teflon tube connected
199 to a 0.2 µm PTFE filter was used (detailed setup is given in: (Cole and Steffen, 2010; Steffen et
200 al., 2008)). Auto-calibrations were made using the internal Hg permeation unit every 25 hrs and
201 these were verified through manual injections from a Tekran 2505 Mercury Vapor Primary
202 Calibration Unit (Tekran Instruments Corp.) before and after each set of experiments. Quality
203 control and assurance of the Tekran 2537A data sets followed the Environment Canada
204 Research Data Management and Quality Control system (Steffen et al., 2012).

208 2.2.5 SAMPLING RATE CALCULATION. *SRs* ($\text{m}^3 \text{ day}^{-1}$) were calculated using:

209
$$SR = \frac{m}{(C t)} \quad (1)$$

210 where m is the mass of sorbed mercury (ng), C is the concentration of gaseous Hg measured by
211 the Tekran 2537A (ng m^{-3}), and t is the deployment time of the PAS (days). With the exception
212 of the 3-months experiment, the *SRs* were derived from single point calibrations using Eq. (1).
213 *SRs* derived from a single deployment have a higher uncertainty than *SRs* derived from
214 experiments involving multiple simultaneous deployments of variable length, such as those
215 described in McLagan et al. (2016b). This uncertainty is further increased when deployment
216 times are short and gaseous Hg concentrations are low, as m will be closer to quantification
217 limits. To nevertheless constrain the uncertainties from the experiments described here, we
218 performed a high number of replications. In the wind experiments, true replication was not
219 possible, as wind speed varied slightly between each deployment. While they cannot be called
220 replicates, we performed a very large number of individual experiments, which allowed for the
221 derivation of a robust relationship between *SR* and wind speed. Additionally, the variable length
222 of the experiments at selected wind speeds not only added to the number of data points, but
223 also allowed us to assess if there was any effect of deployment time on *SR*.

224 **2.3 Analyses**

225 Total Hg (THg) in the activated carbon sorbent was quantified using thermal combustion,
226 amalgamation, and atomic absorption spectroscopy in oxygen (O_2) carrier gas (USEPA Method
227 7473) using an AMA254 (Leco Instruments Ltd.) (USEPA, 2007). Because the sorbent in a PAS
228 cannot be assumed to take up Hg homogeneously, the entire carbon from each PAS was
229 analyzed in two aliquots of up to 0.45 g each. In order to increase the lifetime of AMA254
230 catalyst tubes while processing samples with high sulphur content, catalyst tubes were
231 amended with 5 g of sodium carbonate (Na_2CO_3) and ~~~0.15 g of Na_2CO_3~~ was added directly to
232 each sample boat (McLagan et al., [2017](#)). Samples were dried for 30 seconds at 200 °C and
233 thermally decomposed at 750 °C for 330 seconds, while gaseous elemental Hg was trapped on
234 the gold amalgamator. After combustion the system was purged for 60 seconds to ensure all

Frank Wania 2017-7-7 9:04

Deleted: ~

Frank Wania 2017-7-7 9:04

Deleted: submitted

237 pyrolysis gases were removed from the catalyst. Throughout the analysis the catalyst was
238 heated to 550 °C. After purging, the amalgamator was heated to 900 °C for 12 seconds to
239 release the trapped Hg into the cuvette where absorption at 253.65 nm was measured by dual
240 detector cells for both low and high absolute amounts of Hg.

241 The instrument was calibrated by adding varying amounts of Hg liquid standard for AAS (1000 ±
242 5 mg l⁻¹; in 10 % w/w HCl; Inorganic Ventures) to ~~≈~~0.22 g of clean (unexposed) HGR-AC. ~~≈~~0.15 g
243 of Na₂CO₃ was added on top of the liquid standard and HGR-AC. In all experiments absolute
244 amounts of Hg were less than 20 ng and the high cell was therefore not required for
245 quantification. The low cell calibration included standards of 0, 0.1, 0.25, 0.5, 1, 2.5, 5, 10, 15,
246 and 20 ng of Hg (uncertainty in autopipette is 1 ± 0.004 ng) fitted with a quadratic relationship.

247 2.4 Quality Assurance and Control

248 Both analytical and field blanks were included in all experiments. Analytical blanks represented
249 analyses of clean HGR-AC with mean concentration of 0.3 ± 0.2 ng g⁻¹ of HGR-AC (n=14). Field
250 blanks, taken both at the start and end of each experiment, were taken to the site, opened,
251 deployed, and then immediately taken down, sealed with PTFE tape and stored for analysis in
252 double resealable plastic bags. The mean field blank concentration for the wind experiments
253 (n=7), the temperature/RH experiments (n=5), and the Radiello® reuse experiments (n=4) were
254 0.5 ± 0.2 ng g⁻¹, 0.58 ± 0.15 ng g⁻¹ and 0.38 ± 0.08 ng g⁻¹ of HGR-AC, respectively. All results are
255 blank adjusted by subtracting the mean field blank concentration for each experiment
256 multiplied by the mass of HGR-AC in that sample from the sorbed Hg in each sample.

257 Analytical precision was monitored throughout the experiments (approximately every 10-15
258 instrumental runs) by analyzing 5 or 10 ng Hg liquid Standards for AAS added to ~~≈~~0.22 g of HGR-
259 AC. Recoveries for precision testing were 100.1 ± 1.6 (n=62), 100.0 ± 1.3 (n=24), and 100.0 ± 1.3
260 (n=21) % for the wind, temperature/RH, and reuse experiments, respectively. Recovery was
261 monitored throughout the experiments (approximately every 10-15 runs) by analyzing a high
262 sulphur, bituminous coal standard reference material, NIST 2685c (S = 5 wt %; National Institute
263 of Standards and Technology), or our own in-house reference material, RM-HGR-AC1

Frank Wania 2017-7-7 9:04

Deleted: ~

Frank Wania 2017-7-7 9:04

Deleted: ~

Frank Wania 2017-7-7 9:04

Deleted: linear

Frank Wania 2017-7-7 9:04

Deleted: .

Frank Wania 2017-7-7 9:04

Deleted: ~

269 (powdered HGR-AC loaded with Hg by exposure to air for four months then homogenized; 23.1
270 $\pm 0.8 \text{ ng g}^{-1}$ based on 198 analytical runs). Recoveries of NIST 2685c were 101 ± 3 (n=35), $102 \pm$
271 3 (n=14), and 99 ± 4 (n=10) % for the wind, temperature/RH, and reuse experiments,
272 respectively. Recoveries of RM-HGR-AC1 were 98 ± 3 (n=43), 97 ± 2 (n=13), and 96 ± 2 (n=10) %
273 for the wind, temperature/RH, and reuse experiments, respectively. All statistical tests were
274 either performed by hand or using R v3.3.2 (R Foundation for Statistical Computing).

275 **3. RESULTS AND DISCUSSION**

276 **3.1 Wind**

277 The effect of wind speed on *SR* varied considerably across the four tested PAS configurations
278 (Fig. 1). The greatest effect was observed for white Radiello® without windshield (configuration
279 2), which is a configuration that is unlikely to be used in practice. ($r^2 = 0.91$; $p < 0.001$; $n = 44$).
280 The positive linear relationship across the tested wind speed range (wind still to 6 m s^{-1}) had a
281 slope indicative of a $0.022 \text{ m}^3 \text{ day}^{-1}$ (or 18 % of the calibrated SR) increase in *SR* for every 1 m s^{-1}
282 increase in wind speed (Fig. 1). Previous investigators, using the white Radiello® (without
283 protective shield) to monitor varying atmospheric contaminants, fitted logarithmic (Pennequin-
284 Cardinal et al., 2005; Plaisance, 2011; Skov et al., 2007) or quadratic (Plaisance et al., 2004)
285 relationships to data describing the effect of wind speed on *SR*. The *SR* was most sensitive at lower
286 wind speed (typically $< 1 \text{ m s}^{-1}$). However, due to the limited number or range of measured wind
287 speeds, or high data uncertainty, a linear relationship fits some of these data equally well
288 (McLagan et al., 2016a).

Frank Wania 2017-7-7 9:04

Deleted: . A

289 The addition of the windshield (configuration 1), which is the current method of practice
290 (McLagan et al., 2016a), reduced the effect of wind speed on the *SR*, particularly at higher wind
291 speeds. The best fit of the data was a logarithmic relationship (linear fit: $r^2 = 0.83$; $p < 0.001$ for
292 exponentially transformed data; $n = 52$) in which *SR* was most sensitive to wind speed between
293 0 and 1 m s^{-1} (Fig. 1). While average wind speeds of less than 1 m s^{-1} are common for indoor
294 deployments, outdoors average wind speeds typically exceed 1 m s^{-1} (98.3 % of data from $0^\circ 10'$
295 resolution global data set of monthly averaged wind speeds at 10 m above ground level

Frank Wania 2017-7-7 9:04

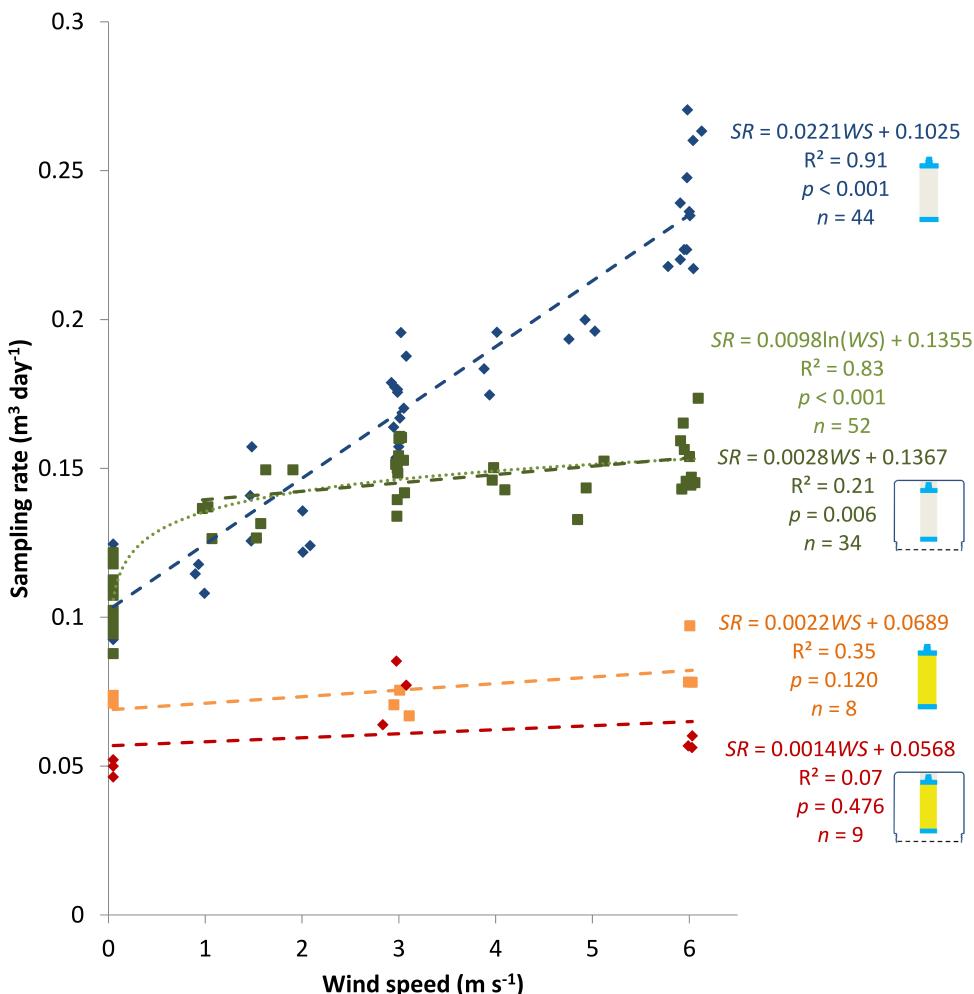
Deleted: ,

Frank Wania 2017-7-7 9:04

Deleted: $R^2 = 0.66$

300 between 1961 and 1990 (New et al., 2002)). When we consider only the data $>1 \text{ m s}^{-1}$ we
301 observe a slight, but significant, positive linear relationship between *SR* and wind speed ($r^2 =$
302 $0.21; p = 0.006; n = 34$) corresponding to a $0.003 \text{ m}^3 \text{ day}^{-1}$ (or 2.5 % or the previously calibrated
303 *SR*) increase in *SR* for every m s^{-1} increase in wind speed (Fig. 1). Neither configuration with the
304 thicker, yellow Radiello® led to a significant effect ($p > 0.05$) of wind speed on *SR* (Fig. 1). When
305 the protective shield is in place the *SR* was approximately 10 % lower than without the
306 protective shield for the yellow Radiello®. Plaisance (2011) also noted a negligible effect of wind
307 speed on *SR* using a yellow Radiello® PAS without any protective shield when monitoring
308 benzene.

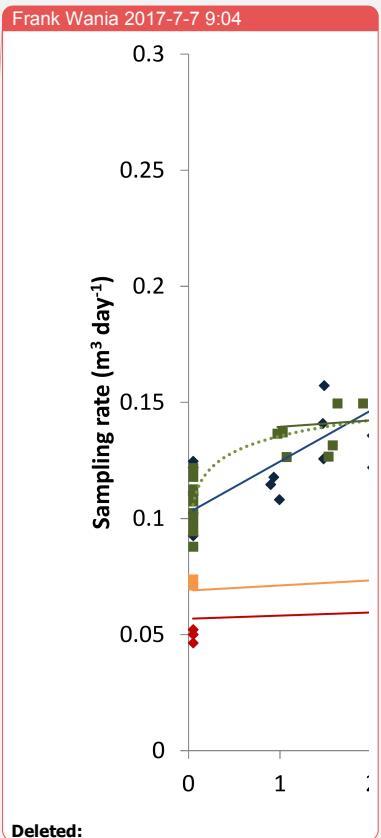
Frank Wania 2017-7-7 9:04


Deleted: $p =$

Frank Wania 2017-7-7 9:04

Deleted: With

Frank Wania 2017-7-7 9:04


Deleted: .

312

313 **Figure 1:** The effect of wind speed on the sampling rate of four different configurations of a passive air
 314 sampler for gaseous mercury. Configuration 1: White Radiello®, with protective shield (■);
 315 Configuration 2: White Radiello®, without protective shield (□); Configuration 3: Yellow Radiello®,
 316 with protective shield (■); Configuration 4: White Radiello®, without protective shield (□). Standard
 317 error of slope and y-intercept are give in Table S1.

318 The importance of a diffusive barrier is illustrated by the very strong effect of wind speed on
 319 the SR of another PAS for gaseous Hg that also utilizes an activated carbon sorbent, but has no
 320 diffusive barrier: the SR increased by $0.126 \text{ m}^3 \text{ day}^{-1}$ (or 97% of the calibrated SR) for every m s^{-1}

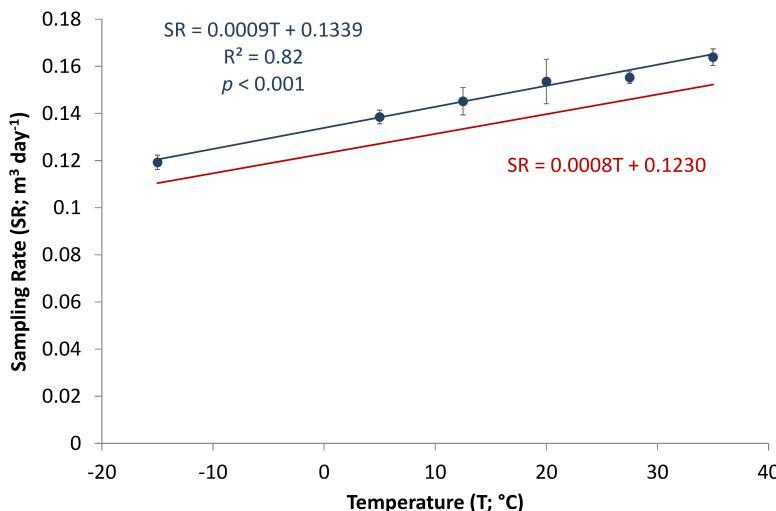
Frank Wania 2017-7-7 9:04
 Deleted: (1 week: ■, 2 week: ■, 3 week: ■, and 4 week: ■ deployments);
 Frank Wania 2017-7-7 9:04
 Deleted: (1 week: ♦, 2 week: ♦, 3 week: ♦, and 4 week: ♦ deployments);
 Frank Wania 2017-7-7 9:04
 Deleted: Sampling rate, wind speed relationships are based on all data for each configuration irrespective of deployment length

329 ¹ increase in wind speed (Guo et al., 2014; Zhang et al., 2012). This information and the results
330 here demonstrate the merit of employing both diffusive barriers and protective shield in
331 reducing the effect of wind speed on *SR*. The diffusive path length of the PAS has three
332 components: (1) the ASBL, (2) the diffusive barrier (adjusted for the porosity of the diffusive
333 barrier), and (3) the internal airspace of the Radiello® (McLagan et al., 2016b). Employing a
334 thicker, less porous diffusive barrier (yellow Radiello®) increases the diffusive path length of the
335 diffusive barrier component, in turn reducing the *SR*. By reducing turbulence on the outside of
336 the diffusive barrier, the protective shield essentially increases the thickness of the ASBL
337 (McLagan et al., 2016b), leading to a reduction in *SR*.

338 Because the samplers were not exposed to exactly the same wind speeds, it is not possible to
339 construct uptake curves from the experiments with variable deployment length. It is, however,
340 possible to test whether the measured *SRs* depend on the length of the single point
341 calibrations. The relationship between deployment length and *SR* was not significant ($p > 0.05$),
342 irrespective of the applied wind speed (wind-still, $\sim 3 \text{ m s}^{-1}$, and $\sim 6 \text{ m s}^{-1}$) or configuration (1 and
343 2); see Fig. S3 for details. This confirms that the *SRs* derived from short one-week deployments
344 were neither biased high or low.

345 The 3-month uptake experiment under wind-still conditions produced a *SR* of $0.106 \pm 0.009 \text{ m}^3$
346 day^{-1} when calculated as the average of single point calibrations (see Fig. S4 for uptake curve).
347 The slope of the regression of m against C^*t (McLagan et al., 2016b; Restrepo et al., 2015) gave
348 a very similar *SR* of $0.109 \pm 0.009 \text{ m}^3 \text{ day}^{-1}$. Because the latter method is thought to give a
349 slightly more reliable *SR* (McLagan et al., 2016b; Restrepo et al., 2015), we suggest to use this
350 *SR* for indoor deployments of the PAS using the white Radiello and a windshield (configuration
351 1). This *SR* is 9.9 % lower than the *SR* obtained in an earlier outdoor calibration study, despite
352 the higher temperature ($\sim 23^\circ\text{C}$) indoors than outdoors (mean temperature across all
353 deployments: 7.6°C). Additionally, the replicate precision of samplers from this uptake
354 experiment for the wind-still data with the protective shield ($11 \pm 8\%$) was significantly poorer
355 ($p < 0.001$) than in the outdoor calibration study with the same sampler setup ($2 \pm 1.3\%$; mean
356 wind speed 1.89 m s^{-1}) (McLagan et al., 2016b). Both the lower *SR* and the greater uncertainty

357 of the *SR* are consistent with the effect of wind observed for this configuration (green markers
358 in Fig. 1): At the low wind speeds of indoor deployments ($< 1 \text{ m s}^{-1}$), the *SR* is expected to be
359 both lower and more sensitive to changes in wind speed. Although, conditions for this
360 experiment were labelled “wind-still”, in reality any activity within the laboratory (movement of
361 lab personnel, opening and closing of doors, etc.) will result in small variations in wind speeds
362 around the PAS within the range where the *SR* is most sensitive to such variations (Zhang et al.,
363 2013).


364 **3.2 Temperature and relative humidity**

365 Relative humidity, tested at 44, 60, and 80 % and a stable temperature of 20 °C, had no
366 significant effect on *SR* ($p = 0.080$; see Fig. S5). Relative humidity, tested at 44, 60, and 80 % and
367 a stable temperature of 20 °C, had no significant effect on SR ($r^2 = 0.11$; $p = 0.080$; $n = 13$; see
368 Fig. S5), which is similar to Guo et al., (2014) who also observed no effect from relative humidity
369 on the SR of their PAS that uses the same sulphur-impregnated activated carbon sorbent. It is
370 therefore appropriate to analyze the effect of temperature on *SR* despite small variations in RH
371 at different temperature levels. We observed a significant, positive, linear relationship between
372 *SR* and temperature ($r^2 = 0.82$; $p < 0.001$; $n = 36$; Fig. 2) corresponding to a $0.001 \text{ m}^3 \text{ day}^{-1}$
373 increase in *SR* for every 1 °C increase in temperature (or 0.7 % of the calibrated *SR*). This
374 relationship remained linear across the tested range from -15 to 35 °C.

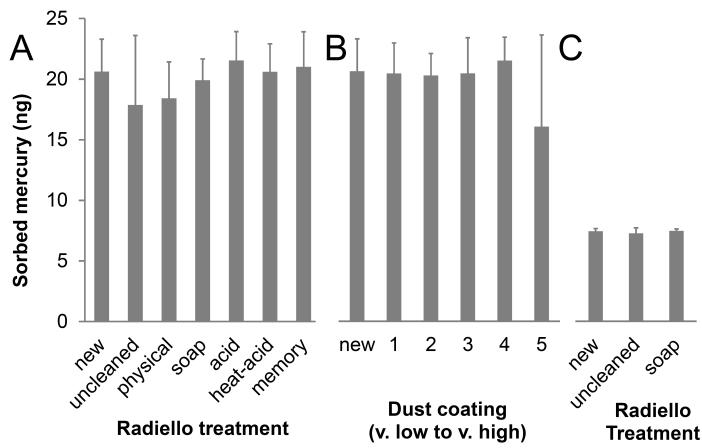
375 Temperature can affect the *SR* because of its impact on (i) the partitioning equilibrium between
376 the sorbent and the gas phase and (ii) the diffusion coefficient (McLagan et al., 2016a;
377 Pennequin-Cardinal et al., 2005). The uptake capacity of the HGR-AC for gaseous Hg is
378 extremely high and we suspect that any change in the sorption equilibrium caused by changing
379 temperatures should have a negligible effect on the *SR*. The increase in diffusivity caused by an
380 increase in temperature is easily quantified. Fig. 2 also displays *SR* as a function of temperatures
381 predicted with a previously described model based on Fick’s first law of diffusion (McLagan et
382 al., 2016b). While the predicted *SRs* are ~8 % lower than the measured ones, the slope of the
383 relationship between *SR* and temperature is the same (no significant difference, z-score test, p

Frank Wania 2017-7-7 9:04
Deleted: S5).

385 = 0.427), confirming that the effect of temperature on the diffusivity of gaseous Hg is sufficient
386 to explain the observed temperature dependence of the SR.

388 **Figure 2: The effect of temperature on the sampling rate of a passive air sampler for gaseous mercury**
389 **as determined experimentally (blue) and as calculated using the diffusion model (red) by McLagan et**
390 **al. (2016b). The measured and calculated temperature dependence, given by the slopes of the**
391 **relationships, are not significantly different.**

392 Earlier studies on PAS for gaseous Hg did not observe an effect of temperature on SR. Guo et al.
393 (2014) found no significant effect of temperature on the SR of their activated carbon-based PAS
394 between -10 and +35 °C. Similarly, there was no effect of temperature on the SR of a PAS using
395 a solid gold sorbent and a white Radiello® diffusive body (Skov et al., 2007). In neither case,
396 however, was the precision of the measurement sufficient to detect the small dependence of
397 SR on temperature caused by the effect of temperature on diffusivity. Such a small temperature
398 effect can only be detected in a highly precise sampler.


Frank Wania 2017-7-7 9:04
Deleted:

399 **3.3 Radiello® reuse**

400 In the Radiello® reuse experiment conducted indoors, no significant difference in the amount of
401 sorbed Hg was observed between *new*, *uncleaned*, or any of the cleaned Radiellos® (ANOVA, p
402 = 0.467; Fig. 3(A)). Similarly, when we ignore the effect of cleaning, no significant difference in

404 the sorbed amount of Hg was observed between Radiellos® with different degrees of dust
 405 coatings, including the new Radiellos® (ANOVA, $p = 0.841$; Fig. 3(B)). The cleaning treatments
 406 also did not differ in terms of the observed variances (Levene's Test, $p = 0.307$). However, the
 407 amount of Hg taken up in Radiellos® with the most dust (category 5) had a significantly higher
 408 variance than all other treatments ($p = 0.004$, Levene's Test with Tukey's Honest Significant
 409 Difference post hoc test). Although the differences between all Radiello® treatments in the
 410 indoor Radiello® reusability experiments are small, the significantly higher variability observed
 411 for Radiellos® with the highest dust coating suggests some form of cleaning would be better in
 412 maintaining the high level of precision of this PAS. Effect size, using Cohen's d value (see S5),
 413 was then applied to examine differences in treatments without the use of traditional binary
 414 hypotheses testing (See Table [S4](#)). In comparison to new Radiellos® *soap, acid, and heat-acid*
 415 were the most effective treatments. While there was no significant difference in means
 416 (ANOVA; $p = 0.548$) or variances (Levene's; $p = 0.221$) for the outdoor experiment testing *new,*
 417 *uncleaned, and soap* Radiellos®, effect size analysis (see S5) confirmed that *soap* cleaning is an
 418 effective method in preparing used Radiellos® for redeployment (Fig. 4(C)).

Frank Wania 2017-7-7 9:04
 Deleted: S3

419
 420 **Figure 3: Mean sorbed mercury for differing Radiello® cleaning treatments and at varying degrees of**
 421 **HGR-AC dust coating inside the Radiello® (Panel B) from indoor experiment. Cleaning treatments and**
 422 **degree of dust coating is described in Sect. 2.2.3. Panel A also includes the memory effect treatment,**
 423 **which were uncleanned Radiellos® from deployments in a high concentration environment. Panel C**

425 presents the mean sorbed mercury for differing Radiello® cleaning treatments from outdoor
426 experiment.

427 Uptake of Hg in uncleaned Radiellos® previously deployed in gaseous Hg concentrations 2 – 4
428 orders of magnitude higher than the other Radiellos® (*memory* treatment) was also not
429 significantly different from any of the other treatments in terms of mean (ANOVA: $p = 0.499$) or
430 variance (Levene's: $p = 0.307$; Fig. 3(A)). This implies that very little Hg was sorbed to the
431 Radiello® and re-released during the subsequent deployment and that gaseous Hg has little
432 affinity for the porous high-density polyethylene diffusive membrane of the Radiello®.

433 4. RECOMMENDATIONS AND CONCLUSIONS

434 While the *SR* of the PAS in its standard configuration (white Radiello® with protective shield)
435 was found to depend on both wind speed and temperature, the effects are both small and
436 predictable. The accuracy of volumetric air concentrations derived from the PAS can be
437 improved by applying adjustment factors to the *SR*, especially for deployments at or close to
438 background gaseous Hg concentrations. The *SR* of the standard configuration PAS (white
439 Radiello® with shield) deployed outdoors of $0.121 \text{ m}^3 \text{ day}^{-1}$ was obtained for a mean wind
440 speed of 1.89 m s^{-1} and a mean temperature of 7.6°C .¹⁵ We recommend to use the increments
441 from Fig. 1 and Fig. 2, i.e. $0.003 \text{ m}^3 \text{ day}^{-1}$ increase in *SR* for every m s^{-1} increase in wind speed
442 and $0.001 \text{ m}^3 \text{ day}^{-1}$ increase in *SR* for every 1°C increase in temperature to adjust the *SR* of
443 $0.121 \text{ m}^3 \text{ day}^{-1}$ to the average temperature and wind speed of each PAS deployment (See S6 for
444 *SR* adjustment equation and sample calculation).

445 The experiments here predict a *SR* of $0.142 \text{ m}^3 \text{ day}^{-1}$ for an average wind speed of 1.89 m s^{-1}
446 (Fig. 1) and a *SR* of $0.141 \text{ m}^3 \text{ day}^{-1}$ for an average temperature of 7.6°C (Fig. 2). Both these
447 values are greater than the *SR* of $0.121 \text{ m}^3 \text{ day}^{-1}$ from the calibration study (McLagan et al.,
448 2016b). While we presently do not know the reason for this discrepancy, it may be related to
449 the relatively short deployment periods used in the present experiments. As mentioned above,
450 short deployment at background concentrations yield a *SR* with a higher uncertainty. Also,
451 McLagan et al. (2016b) observed that *SR* for PAS deployed outdoors for less than 1-2 months
452 were higher than the *SR* derived for the entire one-year sampling period. Despite this slight

453 discrepancy, we note that the y-intercepts of the relationships reported here (the magnitude of
454 the *SR*) are less important than their slopes (i.e. the temperature and wind speed adjustment
455 factors). An ongoing study measuring the uptake of gaseous Hg in PAS deployed at several
456 locations with widely different temperature and wind speed conditions will help refine both the
457 *SR* applicable to outdoor deployments and the validity of the laboratory derived adjustment
458 factors for temperature and wind speed reported here.

459 When designing a PAS, there is a need to strike a balance between maximizing the *SR* and
460 minimizing the variability in the *SR* caused by factors such as wind speed, objectives that are
461 contradictory in nature (McLagan et al., 2016a). Although using a thicker, yellow Radiello® with
462 or without a protective shield are the methods least affected by wind, the *SR* for these methods
463 is approximately half that of the white Radiello® with a shield. A lower *SR* translates to lower
464 amounts of sorbed Hg, which means that longer deployments are required to reach method
465 quantification limits (MQL). The PAS configuration with white Radiello® and windshield needs
466 to be exposed to typical background concentrations of gaseous Hg ($\sim 1.5 - 2 \text{ ng m}^{-3}$) for
467 approximately one week to reach levels above MQL (McLagan et al., 2016b). A PAS with yellow
468 Radiello would presumably require deployments twice as long. For either configuration, longer
469 deployments of a month or more are likely to yield greater accuracy. Given the possibility of
470 adjusting the *SR* for the slight effect caused by wind speeds above 1 m s^{-1} and the shorter
471 minimum deployment times, we recommend the PAS configuration with a shielded white
472 Radiello for most outdoor deployments. Nonetheless, there may be long deployments under
473 highly variable winds that warrant the use of the yellow Radiello®. A full long-term calibration
474 study outdoors would be advisable prior to using this configuration.

475 Finally, our results suggest that previously deployed Radiello® are indeed reusable as long as
476 the Radiellos® are cleaned between deployments. Because the different cleaning methods were
477 generally equally effective, we recommend the use of the *soap* method because of its overall
478 ease and health, safety and waste benefits over using acids (Anastas and Warner, 1998).

479 [Additionally, Gustin et al., \(2011\) suggested the porosity of high density poly-ethylene diffusive
480 barriers can be affected by cleaning with HCl. While in this study we used HNO3 for cleaning](#)

481 purposes, the possibility of porosity changes caused by acid cleaning is further incentive to
482 clean previously used Radiello[®] with soap rather than acid or heat-acid treatments.

483 **Data Availability**

484 Data can be found in the paper, the SI, or via communication with the corresponding author.

485 **Competing Interests**

486 The authors declare that they have no conflicts of interest.

487 **Acknowledgements**

488 We acknowledge funding from Strategic Project Grant #463265-14 by the Natural Sciences and
489 Engineering Research Council of Canada (NSERC) and an NSERC Alexander Graham Bell Canada
490 Graduate Scholarship. We thank S. Steffen of Environment and Climate Change Canada for the
491 loan of the Tekran instrument and B. Branfireun, S. Bartlett, C. Hamilton, and A. Craig from
492 Western University for providing access to the BIOTRON facility.

493 **References**

494 Anastas, P. T., and Warner, J. C.: Green chemistry: Theory and practice, Oxford University Press,
495 New York, USA, 152 pp., 1998.

496 Armitage, J. M., Hayward, S. J., and Wania, F.: Modeling the uptake of neutral organic chemicals
497 on XAD passive air samplers under variable temperatures, external wind speeds and ambient
498 air concentrations (PAS-SIM), Enviro. Sci. Technol., 47, 13546-13554, 2013.

499 Bartkow, M. E., Booij, K., Kennedy, K. E., Müller, J. F., and Hawker, D. W.: Passive air sampling
500 theory for semivolatile organic compounds, Chemosphere, 60, 170-176,
501 <http://dx.doi.org/10.1016/j.chemosphere.2004.12.033>, 2005.

502 Brown, R. J. C., Kumar, Y., Brown, A. S., and Kim, K.-H.: Memory effects on adsorption tubes for
503 mercury vapor measurement in ambient air: elucidation, quantification, and strategies for
504 mitigation of analytical bias, Environ. Sci. Technol., 45, 7812-7818, 2011.

- 505 Brown, R. J. C., Burdon, M. K., Brown, A. S., and Kim, K.-H.: Assessment of pumped mercury
506 vapour adsorption tubes as passive samplers using a micro-exposure chamber, *J. Environ.*
507 *Monitor.*, 14, 2456-2463, 10.1039/C2EM30101F, 2012.
- 508 Cole, A. S., and Steffen, A.: Trends in long-term gaseous mercury observations in the Arctic and
509 effects of temperature and other atmospheric conditions, *Atmos. Chem. Phys.*, 10, 4661-4672,
510 10.5194/acp-10-4661-2010, 2010.
- 511 Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., and Pirrone, N.: Mercury as a global
512 pollutant: sources, pathways, and effects, *Environ. Sci. Technol.*, 47, 4967-4983, 2013.
- 513 Guo, H., Lin, H., Zhang, W., Deng, C., Wang, H., Zhang, Q., Shen, Y., and Wang, X.: Influence of
514 meteorological factors on the atmospheric mercury measurement by a novel passive sampler,
515 *Atmos. Environ.*, 97, 310-315, 2014.
- 516 Gustin, M. S., Lyman, S. N., Kilner, P., and Prestbo, E.: Development of a passive sampler for
517 gaseous mercury, *Atmos. Environ.*, 45, 5805-5812,
518 <http://dx.doi.org/10.1016/j.atmosenv.2011.07.014>, 2011.
- 519 Huang, J., Lyman, S. N., Hartman, J. S., and Gustin, M. S.: A review of passive sampling systems
520 for ambient air mercury measurements, *Environ. Sci. Process. Impacts*, 16, 374-392, 2014.
- 521 Lozano, A., Usero, J., Vanderlinden, E., Raez, J., Contreras, J., and Navarrete, B.: Air quality
522 monitoring network design to control nitrogen dioxide and ozone, applied in Malaga, Spain,
523 *Microchem. J.*, 93, 164-172, <http://dx.doi.org/10.1016/j.microc.2009.06.005>, 2009.
- 524 McLagan, D. S., Mazur, M. E. E., Mitchell, C. P. J., and Wania, F.: Passive air sampling of gaseous
525 elemental mercury: a critical review, *Atmos. Chem. Phys.*, 16, 3061-3076, 10.5194/acp-16-3061-
526 2016, 2016a.
- 527 McLagan, D. S., Mitchell, C. P. J., Huang, H., Lei, Y. D., Cole, A. S., Steffen, A., Hung, H., and
528 Wania, F.: A High-Precision Passive Air Sampler for Gaseous Mercury, *Environ. Sci. Technol.*
529 *Lett.*, 3, 24-29, 10.1021/acs.estlett.5b00319, 2016b.

- 530 McLagan, D. S., Huang, H., Lei, Y. D., Wania, F., and Mitchell, C. P. J.: Prevention of catalyst
531 poisoning in automated atomic absorption spectroscopy instruments for analysis of total
532 mercury samples with high sulphur content, *Spectrochim. Acta B*, **133**, 60-62, 2017.
- 533 Moeckel, C., Harner, T., Nizzetto, L., Strandberg, B., Lindroth, A., and Jones, K. C.: Use of
534 depuration compounds in passive air samplers: Results from active sampling-supported field
535 deployment, potential uses, and recommendations, *Environ. Sci. Technol.*, **43**, 3227-3232, 2009.
- 536 New, M., Lister, D., Hulme, M., and Makin, I.: A high-resolution data set of surface climate over
537 global land areas, *Climate research*, **21**, 1-25. URL of data:
538 <https://crudata.uea.ac.uk/cru/data/hrg/tmc/>, 2002.
- 539 Pennequin-Cardinal, A., Plaisance, H., Locoge, N., Ramalho, O., Kirchner, S., and Galloo, J.-C.:
540 Performances of the Radiello® diffusive sampler for BTEX measurements: Influence of
541 environmental conditions and determination of modelled sampling rates, *Atmos. Environ.*, **39**,
542 2535-2544, <http://dx.doi.org/10.1016/j.atmosenv.2004.12.035>, 2005.
- 543 Peterson, C., Gustin, M., and Lyman, S.: Atmospheric mercury concentrations and speciation
544 measured from 2004 to 2007 in Reno, Nevada, USA, *Atmos. Environ.*, **43**, 4646-4654,
545 <http://dx.doi.org/10.1016/j.atmosenv.2009.04.053>, 2009.
- 546 Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R., Friedli, H., Leaner, J., Mason, R., Mukherjee,
547 A., Stracher, G., and Streets, D.: Global mercury emissions to the atmosphere from
548 anthropogenic and natural sources, *Atmos. Chem. Phys.*, **10**, 5951-5964, 2010.
- 549 Plaisance, H., Sagnier, I., Saison, J., Galloo, J., and Guillermo, R.: Performances and application
550 of a passive sampling method for the simultaneous determination of nitrogen dioxide and
551 sulfur dioxide in ambient air, *Environ. Monitor. Assess.*, **79**, 301-315, 2002.
- 552 Plaisance, H., Piechocki-Minguy, A., Garcia-Fouque, S., and Galloo, J. C.: Influence of
553 meteorological factors on the NO₂ measurements by passive diffusion tube, *Atmos. Environ.*,
554 **38**, 573-580, <http://dx.doi.org/10.1016/j.atmosenv.2003.09.073>, 2004.

Frank Wania 2017-7-7 9:04

Deleted: Submitted to:

- 556 Plaisance, H.: The effect of the wind velocity on the uptake rates of various diffusive samplers,
557 International Journal of Environmental Analytical Chemistry, 91, 1341-1352,
558 10.1080/03067311003782625, 2011.
- 559 Restrepo, A. R., Hayward, S. J., Armitage, J. M., and Wania, F.: Evaluating the PAS-SIM model
560 using a passive air sampler calibration study for pesticides, Environ. Sci. Process. Impacts, 17,
561 1228-1237, 2015.
- 562 Rutter, A. P., Snyder, D. C., Stone, E. A., Schauer, J. J., Gonzalez-Abraham, R., Molina, L. T.,
563 Márquez, C., Cárdenas, B., and de Foy, B.: In situ measurements of speciated atmospheric
564 mercury and the identification of source regions in the Mexico City Metropolitan Area, Atmos.
565 Chem. Phys., 9, 207-220, 10.5194/acp-9-207-2009, 2009.
- 566 Selin, N. E.: Global biogeochemical cycling of mercury: a review, Annu. Rev. Env. Resour., 34, 43-
567 63, doi:10.1146/annurev.environ.051308.084314, 2009.
- 568 Shoeib, M., and Harner, T.: Characterization and comparison of three passive air samplers for
569 persistent organic pollutants, Environ. Sci. Technol., 36, 4142-4151, 2002.
- 570 Skov, H., Sørensen, B. T., Landis, M. S., Johnson, M. S., Sacco, P., Goodsite, M. E., Lohse, C., and
571 Christiansen, K. S.: Performance of a new diffusive sampler for Hg0 determination in the
572 troposphere, Environ. Chem., 4, 75-80, <http://dx.doi.org/10.1071/EN06082>, 2007.
- 573 Steffen, A., Douglas, T., Amyot, M., Ariya, P., Aspmo, K., Berg, T., Bottenheim, J., Brooks, S.,
574 Cobbett, F., Dastoor, A., Dommergue, A., Ebinghaus, R., Ferrari, C., Gardfeldt, K., Goodsite, M.
575 E., Lean, D., Poulain, A. J., Scherz, C., Skov, H., Sommar, J., and Temme, C.: A synthesis of
576 atmospheric mercury depletion event chemistry in the atmosphere and snow, Atmos. Chem.
577 Phys., 8, 1445-1482, 10.5194/acp-8-1445-2008, 2008.
- 578 Steffen, A., Scherz, T., Olson, M., Gay, D., and Blanchard, P.: A comparison of data quality
579 control protocols for atmospheric mercury speciation measurements, J. Environ. Monitor., 14,
580 752-765, 2012.
- 581 UNEP: Minamata Convention on Mercury: Text and Annexes, United Nations Environmental
582 Programme, Geneva, Switzerland, 67, 2013.

583 USEPA: Method 7473: Mercury in solids and solutions by thermal decomposition,
584 amalgamation, and atomic absorption spectrophotometry, United States Environmental
585 Protection Agency, Washington, 17, 2007.

586 Zhang, W., Tong, Y., Hu, D., Ou, L., and Wang, X.: Characterization of atmospheric mercury
587 concentrations along an urban–rural gradient using a newly developed passive sampler, *Atmos.*
588 *Environ.*, 47, 26–32, <http://dx.doi.org/10.1016/j.atmosenv.2011.11.046>, 2012.

589 Zhang, X., Brown, T. N., Ansari, A., Yeun, B., Kitaoka, K., Kondo, A., Lei, Y. D., and Wania, F.:
590 Effect of wind on the chemical uptake kinetics of a passive air sampler, *Environ. Sci. Technol.*,
591 47, 7868–7875, 2013.