
Interactive	comment	on	“The	potential	of	satellite	spectro-imagery	for	monitoring	
CO2	emissions	from	large	cities”	by	Grégoire	Broquet	et	al.	

Answers	to	the	comments	from	anonymous	Referee	#3		

Reviewer:		

The	 authors	 report	 an	 observation	 simulation	 study	 of	 uncertainty	 reductions	 obtained	 using	

simulated	CarbonSat	observations	of	fossil	fuel	co2	emissions	from	the	Paris,	France	urban	area.	

In	 the	 absense	 of	 correlated	 (bias)	 errors,	 the	 authors	 estimate	 that	 a	 50%	 reduction	 in	

uncertainty	 relative	 to	 the	 assumed	 prior	 uncertainty	 is	 obtained.	 The	 authors	 also	 include	

detailed	estimates	of	the	effect	of	bias	errors.		

General	comments:		

The	 problem	 is	 reasonably	 well	 conceived,	 the	 methods	 are	 sufficient	 to	 provide	 useful	

information.	 The	 results	 are	 useful	 in	 showing	 that	 use	 of	 CarbonSat	 data	 in	 regional	 CO2	

inversions	would	 reduce	uncertainty	 in	urban	 fossil	 fuel	emissions.	The	paper	would	be	useful	

contribution	to	AMT	and	could	be	published	with	revisions.		

Authors:	

We	thank	 the	 referee	 for	 this	 review	and	 for	his	general	assessment	of	 the	paper.	Please	 find	

between	 his	 comments	 (“Reviewer”)	 our	 answers	 and	 indications	 of	 how	 we	 improved	 the	

manuscript	in	line	with	them	(“Authors”).		

Reviewer:		

That	 said,	 the	 paper	 covers	 a	 lot	 of	 material	 and	 lacks	 clarity	 in	 some	 of	 the	 figures	 and	

description.		

Authors:	

Regarding	the	extent	of	the	manuscript,	we	feel	that	a	critical	asset	of	our	study	flows	from	the	

various	 sensitivity	 tests	 that	have	been	conducted,	and	 from	the	series	of	messages	 that	 they	

bring	individually	or	altogether.	Therefore,	we	think	that	all	the	aspects	and	sensitivity	tests	that	

have	been	covered	are	important	and	that	it	was	critical	to	analyze	and	discuss	all	of	them	in	a	

single	paper	rather	than	to	fragment	them	between	different	publications.		

We	 have	 improved	 or	 added	 some	 figures	 and	 legends	 according	 to	 the	 following	 comments	

from	the	referee.		



Reviewer:		

In	particular,	authors	might	add	separate	figures	showing:	1)	the	predicted	fossil	and	NEE	signals	

within	the	modeling	domain	for	one	of	the	OSSE	configurations		

Authors:	

An	illustration	of	the	response	functions	to	hourly	emissions	from	Paris	and	to	hourly	NEE	in	the	

modeling	domain	(see	section	2.5.4)	and	of	their	aggregation	into	response	functions	for	6-hour	

emissions	and	NEE	is	now	provided	in	the	supplementary	material	(as	the	new	Figure	S4).	This	

figure	is	now	referred	to	in	section	2.5.4	and	in	section	3.1.	

Reviewer:		

2)	the	pattern	of	sampling	for	each	of	the	different	OSSE	configurations	(TH-CS,	TH-LS,	SIM-	CS	

from	Table	1.)		

Authors:	

The	 subfigures	 corresponding	 to	 TH-CS	 and	 TH-LS	 with	 and	 without	 perturbations	 associated	

with	 the	 measurement	 noise	 are	 now	 provided	 in	 the	 supplementary	 material	 (as	 the	 new	

Figure	S1)	and	referred	to	in	section	2.3.	

SIM-CS	is	illustrated	in	what	used	to	be	Figures	S1	and	S2	which	are	now	Figures	S2	and	S3,	and	

which	have	been	referred	to	by	section	2.3.	

We	agree	that	such	figures	help	understanding	section	2.	

Reviewer:		

The	 figures	 showing	model	 results	 need	 better	 captions	 that	 describe	 that	 each	 panel	 shows	

points	 representing	 results	 for	 each	 of	 the	 20	 model	 days	 included	 in	 the	 OSSE	 (assuming	 I	

understand	the	figures	correctly).		

Authors:	

The	 reviewer	understanding	 is	 correct,	 and	 this	 point	 has	been	 clarified	 in	 the	 legends	of	 the	

figures.	

Reviewer:		

The	 assumption	 of	 relatively	 weak	 positive	 NEE	 for	 the	 October	 period	 doesn’t	 allow	



consideration	of	other	 seasons.	 For	example,	 strong	NEE	uptake	 in	 the	growing	 season	would	

result	 in	 potentially	 uncertain	 drawdown	 in	 XCO2	 that	 could	 mask	 the	 fossil	 signal.	 This	

mentioned	and	potentially	estimated	numerically	to	provide	a	better	sense	of	the	seasonal	cycle	

in	CO2	sensing.		

Authors:	

This	 is	 very	difficult	 to	quantify	 (even	 in	 terms	of	order	of	magnitude)	without	 re-running	 the	

whole	 set	 of	 experiments	 with	 new	 NEE	 estimates.	 Our	 study	 shows	 some	 indices	 that	 the	

system	does	not	fully	separate	the	CO2	emission	plume	from	the	rest	of	the	XCO2	scene,	but	it	is	

difficult	 to	 anticipate	 how	 much	 this	 problem	 would	 impact	 the	 emission	 inversion	 if	 the	

amplitude	 of	 the	 NEE	 was	 much	 larger.	 We	 cannot	 extrapolate	 intuitively	 the	 low	 posterior	

correlations	 between	 uncertainties	 in	 the	 inverted	 NEE	 and	 uncertainties	 in	 the	 inverted	

emissions	obtained	in	October	to	another	month	and	then	convert	it	into	a	level	of	error	in	the	

emission	inversions	due	to	problems	of	separations	from	the	NEE	for	this	other	month.		

This	 topic	 was	 discussed	 in	 section	 2.9,	 before	 the	 correlations	 between	 the	 posterior	

uncertainties	in	the	NEE	and	the	emissions	were	analyzed,	and	briefly	reminded	in	section	5.	We	

have	now	extended	the	corresponding	text	in	section	5	to	better	address	this	specific	point.	

Reviewer:		

The	methods	 description	 of	 systematic	 biases	 is	 so	 terse	 as	 to	 be	 unclear	 how	 large	 are	 the	

resulting	 signal	 (ppm)	 biases.	 It	 would	 be	 helpful	 to	 have	 some	 additional	 figure	 or	 table	 to	

illustrate	this	before	launching	into	results.		

Authors:	

What	 used	 to	 be	 Figure	 S1,	 which	 is	 now	 Figure	 S2,	 provides	 an	 extensive	 illustration	 of	 the	

values	 taken	 by	 the	 systematic	 errors	 and	 of	 their	 spatial	 patterns.	 We	 have	 now	 added	 a	

practical	description	of	these	errors	in	section	2.8.3.	

Reviewer:		

Last,	 I	 have	 not	 assessed	 the	 accuracy	 of	 the	 bias	 simulations	 so	 cannot	 comment	 on	 those	

results.		

Authors:	

These	bias	 simulations	have	been	generated	and	presented	by	Buchwitz	et	al.	 (2013).	We	can	

only	 refer	 to	 this	publication	 for	 such	a	 concern	 (which	 is	 regularly	done	 in	our	paper).	A	 few	



words	have	been	added	to	say	it	more	explicitly.	

Reviewer:		

Specific	comments:		

abstract:	 The	 abstract	 should	 state	 the	 assumed	prior	model	 uncertainties	 (50%	on	 all	 fluxes)	

before	stating	the	uncertainty	reductions	provided	by	the	observations.		

Authors:	

We	have	included	this	information.	

Reviewer:		

page	7,	Eq	(1)	&	(2):	The	OSSE	is	estimating	scaling	factors	for	hourly	(in	a	band	of	6	hours)	fossil	

fuel	and	NEE	using	maps	of	XCO2	covering	 the	entire	model	domain.	This	effectively	assumes	

that	 prior	 modeled	 fluxes	 do	 not	 contain	 significant	 correlated	 spatial	 errors.	 This	 should	 be	

identified	as	a	limitation	of	the	study	and	perhaps	addressed	by	comparing	with	modeled	XCO2	

signals	obtained	from	a	different	prior	model	for	emission	(e.g.,	spatially	uniform	fluxes		

Authors:	

We	 do	 such	 an	 investigation	 with	 series	 of	 exp	 Bdist	 in	 sections	 2.8.2,	 4.1.1	 and	 4.3.	 The	

uncertainty	in	the	spatial	distribution	of	the	emissions	is	also	analyzed	through	the	experiments	

TH-sect	corresponding	to	section	3.3.	

Reviewer:		

or	a	different	flux	models	like	EDGAR,	GEIA,	etc.).		

Authors:	

This	topic	and	the	extent	to	which	we	have	investigated	it	were	already	discussed	in	section	5.	

We	 have	 now	 added	 some	 indications	 regarding	 the	 type	 of	 computations	 (the	 use	 of	

alternative	inventories	such	as	in	Staufer	et	al.	2016)	that	could	be	conducted	to	refine	such	an	

investigation	even	though	it	was	out	of	the	scope	of	this	paper	to	provide	a	precise	assessment	

of	the	impact	of	all	of	sources	of	uncertainties.	

Reviewer:		

page	11,	line	23:	What	is	the	justification	for	assuming	prior	uncertainties	for	all	fossil	fuel	and	



NEE	 sectors	 are	 equal	 to	 50%	 ?	 This	 seems	 a	 rather	weak	 constraint	 relative	 to	 uncertainties	

typically	assumed	for	fossil	fuel	emissions,	though	perhaps	not	so	far	off	for	NEE.		

Authors:	

This	was	discussed	in	section	5.	There	is	very	little	information	on	the	accuracy	of	city	emission	

inventories	at	the	hourly	temporal	scale.	Most	uncertainty	estimates	are	made	at	the	annual	or	

monthly	scales.	The	relative	uncertainties	for	the	hourly	time	scale	could	be	much	larger	since	

the	diurnal	cycle	is	unknown.	In	addition,	most	inventories	with	temporal	profiles	are	periodical	

with	 typical	diurnal	 cycles	 for	 typical	months,	while	weather	patterns	and	specific	events	may	

have	 a	 large	 impact	 on	 the	 instantaneous	 emissions.	 Lastly,	 for	 cities	 other	 than	 Paris	where	

there	 is	 a	 lack	of	 information	on	 the	 fossil	 fuel	 consumption,	 like	 in	developing	 countries,	 the	

uncertainty	may	be	much	larger.	This	discussion	has	been	extended	to	include	NEE	and	further	

strengthen	the	justification	for	the	fossil	fuel	emissions.		

Reviewer:		

Fig.	1:	The	figure	axes	or	caption	need	to	indicate	units	(degrees?)		

Authors:	

This	has	been	done.	
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Abstract. This study assesses the potential of 2 to 10 km resolution imagery of CO2 concentrations retrieved from the Short 

Wave Infra Red measurements of a space borne passive spectrometer for monitoring the spatially integrated emissions from 10 

the Paris area. Such imagery could be provided by missions similar to CarbonSat, which was studied as a candidate Earth 

Explorer 8 mission by the European Space Agency (ESA). This assessment is based on Observing System Simulation 

Experiments (OSSEs) with an atmospheric inversion approach at city scale. The inversion system solves for hourly city CO2 

emissions and natural fluxes, or for these fluxes per main anthropogenic sector or ecosystem, during the 6 hours before a 

given satellite overpass. These 6 hours correspond to the period during which emissions produce CO2 plumes that can be 15 

identified on the image from this overpass. The statistical framework of the inversion accounts for the existence of some 

prior knowledge with 50% uncertainty about on the hourly or sectorial emissions, and with ~25% uncertainty on the 6-hour 

mean emissions, from an inventory based on energy use and carbon fuel consumption statistics. The link between the hourly 

or sectorial emissions and the vertically-integrated column of CO2 observed by the satellite is simulated using a coupled flux 

and atmospheric transport model. This coupled model is built with the information on the spatial and temporal distribution of 20 

emissions from the emission inventory produced by the local air-quality agency (Airparif) and a 2 km horizontal resolution 

atmospheric transport model. Tests are conducted for different realistic simulations of the spatial coverage, resolution, 

precision and accuracy of the imagery from sun-synchronous polar-orbing missions, corresponding to the specifications of 

CarbonSat and Sentinel-5 or extrapolated from these specifications. First, OSSEs are conducted with a rather optimistic 

configuration in which the inversion system is perfectly informed about the statistics of the limited number of error sources. 25 

These OSSEs indicate that the image resolution has to be finer than 4 km to decrease the uncertainty in the 6-hour mean 

emissions by more than 50%. More complex experiments assess the impact of more realistic error estimates that current 

inversion methods do not properly account for, in particular the systematic measurement errors with spatially correlated 

patterns. These experiments highlight the difficulty to improve current knowledge on CO2 emissions for urban areas like 

Paris with CO2 observations from satellites, and call for more technological innovations in the remote sensing of vertically 30 

integrated columns of CO2 and in the inversion systems that exploit it. 
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1 Introduction 

Measurements of CO2 atmospheric concentrations have been used for decades to estimate CO2 natural surface fluxes at 

global to regional scales based on atmospheric transport modelling and statistical atmospheric inversion techniques (Peylin 

et al., 2013). There is now a growing political and scientific interest for the atmospheric monitoring of CO2 emissions from 

cities (Duren and Miller, 2012). It has encouraged the investigation of space borne imagery techniques for CO2 5 

concentrations at, typically, 2 to 10 km spatial resolution. The idea is that these techniques may have a high potential for 

characterizing the plumes of CO2 downwind large cities, which could be used to quantify the underlying emissions based on 

an atmospheric inversion approach. Examples of satellite CO2 imagery concepts are (i) the CarbonSat mission which was a 

candidate for ESA’s Earth Explorer 8 opportunity (Bovensmann et al., 2010; Buchwitz et al., 2013; Sierk et al., 2014), (ii) a 

project to measure CO2 with the European Sentinel-5 mission for which a preliminary study of feasibility was conducted but 10 

which was not retained (Chimot et al., 2012), (iii) a European satellite dedicated to CO2 anthropogenic emissions that is 

presently studied by ESA and the European Commission (Ciais et al, 2015) and (iv) the GeoCARB geostationary mission 

which has been selected as an Earth Venture Mission by NASA (O'Brien et al., 2016). The three first of these concepts rely 

on CO2 imagery from sun-synchronous and low earth orbit (LEO) satellites based on differential absorption measurements in 

the Short Wave Infra Red (SWIR). The SWIR instruments presently appear to be the most suitable for the monitoring of CO2 15 

surface fluxes, because of their sensitivity to CO2 concentrations in the planetary boundary layer, where the signal of these 

fluxes is the largest (Buchwitz et al., 2015). The proposed swath width of CarbonSat was on the order of 200-300 km with a 

~2 km horizontal resolution, whereas that of Sentinel-5 is much larger i.e. ~2000 km with a 7 km horizontal resolution. The 

swath has a direct impact on the revisit period. These missions cannot sample CO2 in cloudy areas, but, weather permitting, 

this revisit period is close to one day for Sentinel-5 and larger than a week for a CarbonSat-like system. These missions 20 

should be envisaged as part of constellations (Velazco et al., 2011) and of integrated observation frameworks including in 

situ networks. However, given the lack of concept regarding the potential synergy between different space missions and in 

situ networks for monitoring city emissions, there is a need to study the ability of each space mission to bring information on 

the emissions from individual cities as a stand alone observation system.  

There have been attempts to exploit the space borne measurements of vertically integrated columns of dry air mole fractions 25 

of CO2 (XCO2) based on SWIR instruments on-board SCIAMACHY or GOSAT for the large scale inverse modelling of 

CO2 natural fluxes (Buchwitz et al., 2015; Basu et al., 2013; Chevallier et al., 2014). These previous works demonstrate the 

large detrimental impacts of atmospheric transport model errors, underlying the inversion systems, and of the so-called 

systematic errors in the XCO2 retrievals. Conversely to the radiometric measurement noise, these systematic errors, which 

are connected to uncertainties in the atmospheric radiative transfer, have coherent spatial patterns consistent with variations 30 

in, e.g., surface albedo, atmospheric aerosols or thin clouds (Chevallier, 2015). The first releases of XCO2 data from SWIR 

measurements by OCO-2, which was put into orbit during summer 2014, still bear the signature from such systematic errors 
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(Eldering et al., 2017). Subsequently, routine estimates of CO2 natural fluxes from atmospheric inversion approaches are still 

based on the assimilation of the sole ground based in situ measurements (Peylin et al., 2013; Le Quere et al., 2015). 

The application of atmospheric inversions for the monitoring of CO2 emissions from cities is a recent research activity. 

Initial results are based on dedicated urban ground based atmospheric CO2 measurement networks (Breon et al., 2015; 

Lauvaux et al., 2013; Turnbull et al., 2015). There has been no attempt at using SCIAMACHY or GOSAT data at this scale 5 

due to the low resolution and precision of the SCIAMACHY data or to the scarcity of the sampling by GOSAT. Kort et al. 

(2012) discussed the possibility to track trends of CO2 emissions from large megacities based on the diagnostics of local 

enhancements of the GOSAT XCO2 data over these megacities, but they did not perform inversions of their emissions using 

these data. Janardanan et al. (2016) also studied local enhancements of the GOSAT XCO2 over cities. They compared it to 

CO2 high-resolution transport simulations and concluded that GOSAT data could be used to detect biases in the inventories 10 

of the emissions from large cities. However, none of these studies performed inversions of the city emissions using the 

GOSAT data.  

OCO-2 provides measurements from 8 across track pixels of ~1.3 km by ~1.3 km resolution. Due to such a high sampling 

density along the satellite overpass and to their relatively high theoretical precision, OCO-2 data may bring more insight into 

the XCO2 field nearby the cities than SCIAMACHY and GOSAT, especially when using the specific targeting mode of this 15 

mission (Crisp and Team, 2015). Hakkarainen et al. (2016) highlighted a significant correlation between the spatial 

anomalies in the OCO-2 data and the spatial distribution of the anthropogenic emissions, and in particular of the large urban 

areas. Furthermore, Nassar et al. (2017) and Schwandner et al. (2017) derived estimates of CO2 emissions from large point 

sources (some large power plants and a volcano) using OCO-2 observations, raising expectations these observations could 

also be used to estimate the emissions from dense cities. However, the relatively narrow swath of OCO-2 hinders a full view 20 

of urban emission plumes. Bovensmann et al. (2010), Krings et al. (2011) and Krings et al. (2016) raised optimism regarding 

the potential of XCO2 imagery for the monitoring of point sources such as power plants or cities. Rayner et al. (2014) and 

O'Brien et al. (2016) assessed the potential of the GeoCARB instrument which would provide co-located data of vertically 

integrated columns of dry air mole fractions of both CO2 and CO (XCO), which is co-emitted with CO2 by the fossil fuel 

combustion. Their conclusions were less optimistic regarding the potential of the sole imagery of XCO2, indicating that the 25 

XCO imagery should provide a better constraint for the estimate of CO2 anthropogenic point sources.  

The present study aims at analysing the potential of the XCO2 imagery from a sun-synchronous satellite with a SWIR 

radiometer like CarbonSat and Sentinel-5 for the monitoring of CO2 emissions from a megacity. It should also bring some 

characterization of the potential of the XCO2 imagery from a geostationary mission like GeoCARB. Efforts are put in place 

to ensure that this analysis is based on a realistic configuration of the emissions and atmospheric transport in and around an 30 

existing megacity, and on realistic estimates of the spatial coverage, of the random noise and of the systematic errors from 

the XCO2 imagery. It is based on a state-of-art atmospheric inversion methodology, which can be called “pixel-based” since 

it assimilates the XCO2 data corresponding to each pixel of the satellite image as independent observations.  
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The Paris urban area has ~11 million people and emits ~11-14 MtC.y-1 (Staufer et al., 2016, AIRPARIF 2013). It covers the 

Paris administrative city which has ~2 million people, and its urban surrounding which has ~9 million people. This urban 

area is chosen as a study case to benefit from the expertise and tools developed for the assimilation of in situ CO2 

measurements from the CO2-Megaparis and ICOS ground based networks (Breon et al., 2015). In particular, the inversions 

in the present study are based on a “bottom-up” knowledge of the CO2 emissions at 1 km / 1-hour resolution from the 5 

regional inventory established by the AIPARIF air-quality agency (AIRPARIF 2013), and on a 2 km resolution 

configuration of the CHIMERE atmospheric transport model driven by ECMWF meteorological analysis as in Breon et al. 

(2015) and Staufer et al. (2016). Furthermore, the Paris urban area is the most populated urban area of Europe and the Paris 

administrative city is the densest city of Europe. The emissions from this megacity (mainly from transport and heating) are 

high and concentrated over a relatively small area. Therefore, it should be a favourable case for the inversion of city 10 

emissions based on space-borne imagery. There is no other major city or area of CO2 emissions in its vicinity, which should 

help distinguishing the plume of Paris from that of other regional sources. Finally, the topography in the city and in its 

vicinity is relatively flat and the average wind speed in the region at 100 m above the ground level (magl) is ~7 ms-1 so that 

the plume of XCO2 out of the city should have a relatively simple structure and should be easy to model. By contrast, CO2 

plumes or domes of cities in environment with complex terrain, or affected by sea breezes in coastal areas (Perez-Landa et 15 

al., 2007) are more difficult to simulate. Consequently, the ability to monitor the emissions from the Paris urban area can be 

seen as a pre-requirement for the more general task of tracking the emissions from other megacities or smaller cities in 

Western Europe. 

Preliminary simulations and inversion experiments (using the modelling configuration described in section 2.5) 

demonstrated that, due to atmospheric diffusion, the signature of the emissions at a given time from the Paris urban area is 20 

negligible or hardly detectable in the XCO2 fields approximately 6 hours later. Consequently, an XCO2 image from a 

satellite cannot be exploited to infer direct information about the emissions earlier than ~6 hours before the satellite 

overpass. Therefore, this study focuses on the analysis of the potential of individual XCO2 images of the Paris area for 

inverting the emissions during the 6 hours before each satellite overpass, without trying to exploit successive overpasses 

together. In order to derive statistics that are representative of a wide range of observation conditions, different experiments 25 

are conducted for images taken on different days, i.e., with different meteorological conditions, different cloud cover and 

different occurrences of the satellite systematic errors. 

The study focuses on the ability to derive the average emissions from the city over the 6-hour periods before the satellite 

overpasses but also to solve for the temporal variations at hourly resolution during these periods or to solve for the 

distribution between the main sectors of activity, i.e., traffic, domestic and commercial heating and industrial combustion. 30 

This ability to solve for the sectorial distribution is quite equivalent to the ability to solve for some spatial distribution of the 

emissions since the emissions of each sector of activity have a different spatial distribution. 

The potential of the satellite imagery is assessed in terms of improvement of some statistical prior knowledge on the 

emissions. Using this statistical prior knowledge, some statistical knowledge on XCO2 derived from the space-borne 
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measurements, and the relationship between the emissions and XCO2 given by an atmospheric transport model for the Paris 

area, the atmospheric inversion follows the Bayesian theory to derive a new (“posterior”) statistical knowledge on the 

emissions with lower uncertainties than the prior. The improvement of the knowledge on the emissions enabled by the 

assimilation of the satellite data is thus quantified in terms of uncertainty reduction.  

Since the atmospheric measurement networks are generally sparse, traditional atmospheric inversion applications have used 5 

prior knowledge on the CO2 fluxes to decrease the uncertainties and gaps in the estimate of the fluxes based on the statistical 

assimilation of the data from these networks. Prior knowledge is generally based on “bottom-up” models or statistical 

inventories of the processes underlying the fluxes. At city-scale, and due to the swath of the satellite imagery, one expects 

that the inversion may derive good estimates of the emissions using this imagery only, or that such estimates could be used 

for the independent verification of the “bottom-up” inventories. Even though, strictly speaking, such a purely “top-down” 10 

approach is not investigated here, this study can still give insights on the potential for deriving the emissions based on space-

borne data only. 

The assessment of the uncertainty reduction due to the assimilation of the satellite imagery is based on different Observing 

System Simulation Experiment (OSSE) configurations, which account for the time, location, spatial resolution and error 

statistics of the XCO2 measurements associated with the satellite and instrumental configurations.  15 

Section 2 details the theoretical and practical inversion framework and the principles for the assessment of the potential of 

the satellite imagery as a function of its design. Section 3 analyses an ‘optimistic’ assessment of this potential based on a 

configuration ignoring sources of errors hardly accounted for by state-of-the-art inversion systems, such as biases in the 

observation operator or observation errors whose spatial correlations have complex patterns. Section 4 diagnoses the impact 

of such errors. The discussions and conclusions in section 5 confront the optimistic and pessimistic assessments in order to 20 

infer the robustness and extent of the conclusions that can be derived with state-of-the-art systems regarding the potential of 

XCO2 imagery. 

2 OSSE framework 

The flux uncertainty reduction due to the assimilation of satellite images is defined as the relative difference between the 

prior and posterior uncertainties in the fluxes. Its statistical characterization is double: the statistics of the posterior 25 

uncertainties are provided for a given day following the statistical nature of the inversion framework, but they are also 

sampled for different days i.e. different atmospheric transport conditions. 

For a given day, the atmospheric inversion derives a statistical estimate for a set of n input parameters ! = !!… .  !! ! of a 

linear coupled flux and atmospheric transport model ! → ! = ! ! +  !!"#$% that simulates the satellite image of XCO2 y . The 

coupled model is called observation operator hereafter. This derivation is based on the information brought by the 30 

measurements y o. The control parameters underlying the Paris emissions are the target quantities. Other control parameters 

correspond to sources of uncertainties in the observation operator that can be better handled if explicitly solved for, e.g., the 
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ecosystem fluxes in the region. The other sources of uncertainties and errors affecting the misfits between the model 

simulations and the measurements that are not controlled by the inversion should be accounted for as errors in the 

observation space that the inversion attempts at filtering out. In OSSEs, ignoring some of the sources of uncertainties both in 

the control space and in the observation space yields optimistic results. By controlling the hourly temporal variations or the 

sectorial distribution of the emissions, the system accounts for the impact of uncertainties in these distributions on the 5 

retrieval of 6-hour mean emissions before a satellite overpass. Table 1 summarizes the different options taken for the 

configuration of the OSSEs and Table 2 summarizes the different experiments based on various combinations of these 

options. 

2.1 Spatial domain 

The study is based on a regional atmospheric transport configuration with input CO2 conditions at the boundaries of its 10 

domain. The simulation domain is illustrated in figure 1. It is approximately centred over the Paris urban area and it 

encompasses a large part of Northern France. This domain is the same as that used in Breon et al. (2015). It is sufficiently 

large (~500 km × 500 km) so that the CO2 emitted within Paris at a given time does not exit the simulation domain within 6 

hours, at least with the wind conditions considered in this study. Therefore, in this study, the signature of the emissions from 

Paris in the XCO2 field becomes undetectable in the satellite images as a result of the atmospheric transport diffusion or by 15 

leaving the swath of a satellite. It does not become undetectable artificially by leaving the simulation domain, which would 

have biased the evaluation of large swath satellite configurations.  

2.2 Temporal framework 

The satellite observation is assumed to occur at 11:00 local time in the morning, in line with the CarbonSat mission 

requirements (ESA, 2015).  In the Paris area, local and UTC time, which is used hereafter, have a ~9 min 30 s difference, 20 

which is negligible. Therefore, the study focuses on the ability to retrieve information on the emissions between 5:00 and 

11:00 based on a satellite image acquired at 11:00.   

The results are investigated for 20 different days of October 2010, i.e., 20 different transport conditions and 20 different CO2 

domain boundary conditions. These 20 different days encompass a wide range of wind conditions that strongly influence the 

amplitude, shape and orientation of the XCO2 plume. They are called hereafter inversion days. In October, the ecosystem 25 

fluxes are rather weak which, in principle, should facilitate the separation between the atmospheric signatures of the natural 

fluxes and anthropogenic emissions and thus the estimate of the anthropogenic emissions from the XCO2 imagery. 

2.3 Observation space y  

In the following, we consider instruments with a very good point spread function, so that their measurements are 

representative of their horizontal sampling, and so that this horizontal sampling is fully characterized by the spatial 30 

resolution. The expression “centred on Paris” is used to indicate that an area is centred on the centre of Paris. 
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ESA (2015) presents two concepts for CarbonSat with 240 km and 185 km swaths, and identifies 240 km as a breakthrough 

requirement for the swath of the mission. Since it accounts for the design of the CarbonSat and Sentinel-5 missions, this 

study investigates three types of XCO2 spatial sampling in the Paris area (see Table 1).  

The “TH-CarbonSat” sampling (see figure S1) is a full sampling of a 150 km radius circle centred on Paris at 2 km 

resolution that ignores cloud cover. This theoretical sampling corresponds to an optimistic configuration of the CarbonSat 5 

mission with a 300 km swath and to an optimal satellite trajectory for the monitoring of the emissions of Paris. This 

sampling will be used for optimistic experiments only.  

The “TH-LargeSwath” sampling (see figure S1) is a full sampling of the whole simulation domain at 4 km, 6 km, 8 km or 10 

km resolution, which ignores cloud cover. This theoretical sampling simulates the acquisition by an instrument with a larger 

swath but a smaller spatial resolution than CarbonSat, such as the 7 km resolution instrument on-board Sentinel 5. This 10 

sampling will also be used for optimistic experiments only.  

The “SIM-CarbonSat” samplings (see figures S21 and S32) correspond to realistic simulations of the sampling of the Paris 

area by a 240 km swath instrument with 2 km resolution such as CarbonSat. accounting for cloud cover. They are extracted 

from simulations of CarbonSat sampling over the whole globe and for a full year by Buchwitz et al. (2013). Pillai et al. 

(2016) also used these simulations to model CarbonSat observations with 240 km and 500 km swaths. From these 15 

simulations, 69 CarbonSat passes in our modelling domain over the year provide at least 1 XCO2 data in the 100 km radius 

circle centred on Paris and are considered to be “over the Paris area”. 19 different cases are selected from these 69 passes for 

each of the 20 inversion days in October 2010. These are the 19 simulated passes over the Paris area that provide the best 

constraints on the emission inversion. This ranking follows the theoretical uncertainty reductions associated with the 

assimilation of the different sets of observations from the passes as detailed in sections 2.8.3 and 4.2. It depends on the 20 

number of 2 km × 2 km observations and on their position relative to the emission atmospheric plume, i.e., on the cloud 

cover and the swath position with respect to the Paris target associated with a pass over the Paris area. Section 4.2 will show 

that for any inversion day in October, and thus for any of the modelled emission plumes, the constraint on the emission 

inversion of the 20th best-simulated pass is rather weak. This explains why only 19 simulated passes are selected. The “SIM-

CarbonSat” samplings will be used in the less optimistic experiments only. By construction, the CarbonSat acquisitions that 25 

are tested for a given inversion day in October 2010 were simulated for other days of the year 2010 by Buchwitz et al. 

(2013). This is not identified as a significant issue, even though the atmospheric transport conditions of the inversion days 

could have some inconsistencies with the cloud cover underlying the simulation of these CarbonSat acquisitions.  

2.4 Control vector s  

Hereafter, the CO2 emissions from anthropogenic activities in the Paris area are denoted: Fossil Fuel (FF) fluxes whereas the 30 

natural fluxes in the simulation domain are identified as Net Ecosystem Exchange (NEE). The OSSEs investigate the ability 

of the satellite imagery to solve either for the hourly variations or for the sectorial distribution of the 6-hour emissions, and 

the uncertainties in the estimates of 6-hour mean emissions due to uncertainties in either these temporal or sectorial 
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distributions. Two configurations of the control vector are thus used for a given day: either a control vector solving for the 

hourly fluxes and the background concentration (see its definition below) with 13 parameters (6 for both hourly FF fluxes 

and hourly NEE and 1 for the background concentration): 

 ! = !!!! , !!!! ,… , !!"!! , !!!"" , !!!"" ,… , !!"!"" , ! ! (1) 

or a control vector solving for the 6-hour budgets of the FF CO2 emissions from transportation, residential combustion, 5 

commercial combustion and industrial combustion, and for the distribution of the 6-hour budgets of NEE per main Plant 

Functional Types (PFT: broadleaf forest, needle leaf forests, grasslands, croplands) with 9 parameters (4 for both the 

sectorial budgets of FF fluxes and the budgets of NEE per land cover type, and 1 for the background concentration): 

! = !!"#$%&'"(#()'$!! , !!"#.  !"#$%&'.!! , !!"##.  !"#$%&'.!! , !!"#$% !"#$%&.
!! , !!"#$%&'(!"" , !!"#$$%#&'!"" , !!""#$"%"&' !.

!"" , !!"#$%&'$( !.
!"" , ! !

    (2) 

In these formal definition of the control vector, !!!!  (first case) or !!! (second case) is a scaling factor for the total flux X 10 

(NEE or FF) between time hh and hh+1 hour (first case) or for sector / PFT Y between 5:00 and 11:00 (second case). 

Almost all of the Paris emissions are distributed among the four FF emission sectors considered in the second configuration 

of the control vector (see section 2.5.1). With both configurations, controlling scaling factors is equivalent to controlling the 

budget of the corresponding flux components. In practice, these control parameters are used to rescale the 1-hour and 2 km 

resolution FF and NEE fields corresponding to these components from the Airparif inventory and an ecosystem model (see 15 

below the description of the observation operator in section 2.5). The emission maps and the hourly budgets from the 

Airparif inventory vary in time at the hourly scale (see section 2.5.1). Therefore, if the inversion derives identical scaling 

factors for different hours, it would not lead to identical estimates of the emission budgets for these different hours. 

However, the variations of the hourly budgets from the Airparif inventory are sufficiently small to be ignored when 

comparing uncertainties in scaling factors for different hours in the following. b is the average XCO2 concentration in the 20 

simulation domain at the time of the satellite observation (11:00) due to the very large scale influence of CO2 fluxes outside 

the domain or before 5:00. Its inclusion in the control vector provides a simple account for uncertainties in these remote 

fluxes. It is thus called “background XCO2” throughout the text. The general notation ! = ! , ! ! is used for both control 

vectors. 

The analysis mainly focuses on results obtained for the control variables related to the Paris emissions which are the target 
25 

quantities. The control of the NEE could also bring some insights about the inversion of the natural fluxes using satellite data 

but this topic is out of the
 
scope of this paper and the experimental framework is not optimized for such analysis. 

2.5 The observation operator 

The linear observation operator ! → ! = ! ! +  !!"#$% combines three linear operators.  
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2.5.1 Spatial and temporal distribution of the fluxes 

The first operator is the rescaling of 2 km and 1-hour resolution fields of emissions from Paris and Northern France NEE to 

generate the fields of total fluxes f  in the domain: ! → ! = !!"#$"%&'( !. The emission and NEE fields are based on 

estimates from the Airparif inventory for the year 2008 and from simulations with the C-TESSEL vegetation carbon flux 

model at ECMWF (Boussetta et al., 2013). In order to fully describe the total fluxes in the domain, one must also account for 5 

the anthropogenic emissions outside the Paris area that are not covered by the Airparif inventory. However, the OSSEs 

ignore uncertainties in these emissions (see the corresponding discussion in section 2.9). In practice, since the equations in 

the OSSEs only solve for the propagation of uncertainties, this is equivalent to ignoring the emissions themselves. Therefore, 

we do not include these emissions in the observation operator and thus in the simulations used to illustrate the inversion 

problem in figures 1, S1 and S3.. Consequently, there is no term associated with these emissions in the equations used in this 10 

study and they are ignored in the analysis of the results.  

Breon et al. (2015) also used the Airparif inventory for the year 2008 and the C-TESSEL NEE simulations in their inversion 

framework. They provided some description and analysis of these products, which are not reminded here. For each inversion 

day in October 2010, we use the estimates from Airparif for the corresponding day in October 2008 and that from C-

TESSEL for the same day in October 2010. The inconsistency between the year of emission estimates and that of the 15 

transport simulation is not an issue for the OSSEs. 

The resolution of the Airparif inventory is 1 km in space and 1-hour in time, and the C-TESSEL NEE is provided at 

approximately 15 km and 3-hour resolution. These products are aggregated or interpolated at 2 km and 1-hour resolution, 

which is the input resolution of the transport model. The sectorial resolution of the Airparif inventory is much more detailed 

than that considered with the second configuration of the control vector, which rescales only four main aggregated sectors, 20 

representing together more than 95% of the total emissions. When using this second type of control vector, the NEE from C-

TESSEL is interpolated and then disaggregated in each 2 km × 2 km grid cell between the PFT components of the control 

vector. Since, we do not have access to estimates of the NEE per PFT by C-TESSEL, this disaggregation is based on the 

fractional coverage of each PFT per grid cell, derived from the land cover distribution of the Global Land Cover Facility 

(GLCF) 1 × 1 km resolution database from the University of Maryland (Hansen and Reed, 2000).  25 

2.5.2 Atmospheric transport 

The second operator is the atmospheric transport of CO2 in the study domain that yields the temporal and 3D spatial 

distribution of CO2 atmospheric mole fractions c : ! → ! = !!"#$%&'"! ! +  !!"#$%. This operator is based on the CHIMERE 

atmospheric transport model (Menut et al., 2013). The term c bound contains the signature of the domain boundary and initial 

(at 5:00) CO2 conditions, called hereafter “boundary conditions”. c bound is decomposed into ! 1,1… 1 !!
! and c fixed, where 30 

1,1… 1 !! has the length !!  corresponding to the 1D representation of the 3D CO2 concentrations space,  c fixed is not 



 10 

controlled by the inversion, and the vertical (see section 2.5.3) and horizontal integration of c fixed within the simulation 

domain at 11:00 is null, so that the vertical and horizontal integration of c bound at 11:00 yields b. 

The CHIMERE configuration used in this study is similar to that used in Breon et al. (2015), e.g. it has the same vertical 

discretization with 19 vertical levels from the surface up to 500 hPa (Ptop) and the same physical parameters. It has a 2 km 

horizontal resolution over the whole simulation domain. ECMWF operational analyses at nearly 15 km resolution are used to 5 

provide the meteorological forcing to CHIMERE. This meteorological forcing does not account for urban land surface 

influences. The impact of urban land surface parameters may be large on the simulation of in situ CO2 data within or close to 

the city (Breon et al., 2015). However, it may be less critical when considering the XCO2 plumes downwind the city. 

Furthermore, the objective here is to produce a realistic rather than a precise simulation of the XCO2 plumes from Paris. 

Therefore,but we may neglect them these parameters for the our OSSEs considered here.  10 

The CO2 mixing ratios at the lateral and top boundaries of the CHIMERE model and the initial conditions at 5:00 (i.e. c fixed) 

are imposed using outputs from a global LMDZ simulation at 3.75o (longitude) × 2.5o (latitude) resolution assimilating in situ 

CO2 data from a global ground based measurement network (Chevallier et al., 2010).  

2.5.3 Vertical integration of the CO2 column 

The third operator is the computation of XCO2 data y  for a given satellite observation sampling based on the 3D CO2 15 

concentrations at 11:00 in the CHIMERE domain, from the surface up to Ptop: !⟶ ! = !!"#$% !. Part of this computation 

includes the aggregation of the 2 km horizontal resolution CO2 fields at the chosen satellite image resolution. For the sake of 

simplicity and since we use synthetic data only, it is assumed that the satellite observation has a uniform vertical weighting 

function for each horizontal pixel of a given satellite space sampling (see above section 2.3). For a given horizontal pixel at 

latitude lat and longitude lon, XCO2 is thus computed from the average of the vertically distributed CO2 mole fractions: 20 

 !"#!(!"#, !"#) = !
!!"#$(!"#,!"#)

!"! !"#, !"#, ! !" + !"!!!"#$(!"#,!"#)
!!"# !!"# !!"#  (3)  

where p is the pressure and Psurf is the surface pressure. In this equation, a uniform concentration equal to the horizontal 

average of the top level mixing ratios in CHIMERE: !"! !!"#  is assumed to apply at all pressures lower than Ptop. This 

simple approximation is used since the surface fluxes in the simulation domain do not impact the concentration close to the 

top of the model within the simulation time. It ignores the signature of remote fluxes above 500 hPa and we implicitly 25 

assume that this signature will not significantly impact the inversion of the emissions from the Paris area. This equation also 

ignores the slant path of the columns that would be measured by a satellite within the model. Finally it ignores the potential 

impact of the water vapour content of the atmosphere on the vertical weighting function of the satellite measurements.  



 11 

2.5.4 Practical computation of the observation operator 

The observation operator ! → ! = ! ! +  !!"#$% can be rewritten 

! → ! = !!"#$% !!"#$%&'"! !!"#$"%&'( ! + ! 1,1… 1 !!
!  + !!"#$% where 1,1… 1 !!  has the length !! corresponding to the 

1D representation of the observation space. In order to apply the inversion equations analytically (see section 2.6 below), the 

M  matrix is built explicitly. For this, the !!"#$% !!"#$%&'"! !!"#$"%&'( matrix is built by computing each of its column m j 5 

through the application of the operator ! → ! = !!"#$% !!"#$%&'"! !!"#$"%&'( ! to unit vectors !! = 0… 0 1 0… 0 ! where 

only the jth control parameter corresponding to a flux scaling factor is set to 1 and others are set to 0. The small number of 

control parameters makes the number of simulations !! → !! = !!"#$% !!"#$%&'"! !!"#$"%&'( !! computationally affordable. 

The columns m j correspond to the response functions in terms of XCO2 to each of the Airparif or C-TESSEL flux 

component controlled by a scaling factor (see an illustration of these response functions in figure S4). The full observation 10 

operator matrix M  is obtained by adding the column 1,1… 1 !!
! to !!"#$% !!"#$%&'"! !!"#$"%&'( which corresponds to the 

homogeneous distribution in space of b, the background XCO2 at 11:00.  

2.6 Theoretical framework of the atmospheric inversion 

The theoretical framework of the inversion system used here in the OSSEs is the one traditionally used for atmospheric 

inversions. It is based on the Bayesian update of a statistical prior estimate of the control vector s , using statistical 15 

information from the assimilation of the measurements y o in the observation operator. The usual assumption is that the prior 

estimate has a Gaussian distribution N(s b,B) and that the distribution of the misfits between the simulated observations 

! ! +  !!"#$% and y o that are not due to errors in s, i.e. the so-called observation errors, which include atmospheric transport 

and representation errors, is unbiased, has a Gaussian distribution N(0,R), and is not correlated with the prior uncertainty. In 

that case, the Bayesian update of the estimate of s , called hereafter the posterior distribution, is a Gaussian distribution 20 

N(s a,A) with s a being the best estimate of the actual s  knowing s b and y o, and A  characterizing the uncertainty in this 

estimate. The problem simplifies into deriving (Tarantola, 2005): 

 ! = !!! +!!!!!! !!   (4)  

and  !! = !! + ! !! −! !! − !!"#$%  (5)  

by denoting  ! = ! !! !!! (6)  25 

The inversion system solves for these equations analytically based on the explicit computation of all matrices and vectors.  

Hereafter, we characterize the uncertainties by their standard deviations and correlations. The scores of “uncertainty” and 

“uncertainty reductions” that we give for a given scalar quantity, a single flux budget or parameter, refer to the standard 

deviation of the uncertainties σ in this scalar quantity, and to the relative difference between its prior and posterior values: 1- 
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σ a/σ b. An exception occurs when explicitly accounting for biases (see sections 2.8.2 and 2.8.3 below), in which case the 

scores of “uncertainty” and “uncertainty reductions” refer to the Root Mean Square (RMS) values of the uncertainties and to 

the relative difference between these prior and posterior RMS values. 

2.7 Prior uncertainty 

In all cases, our framework assumes that the prior uncertainty in individual scaling factors for the fluxes i.e. the relative 5 

uncertainty in the budget of the corresponding flux components from the observation operator is 50%, that there is no 

correlation between uncertainties in the different scaling factors and that the uncertainty in b is 10 ppm. B  can thus be 

written B=diag([0.52, 0.52…0.52,102 ppm2]T) denoting hereafter diag(v) for a diagonal matrix whose diagonal is defined 

by the terms in vector v . This results in a small inconsistency regarding the uncertainty in the total 6-hour mean emissions 

from Paris when controlling the hourly fluxes or the fluxes for the different sectors of activity: it is nearly equal to 22.4% or 10 

26% respectively, even though it also slightly depends on the days. Such a difference depending on the control vector also 

applies to the 6-hour mean NEE. These differences are negligible in the framework of the OSSEs considered here. The 

sensitivity of the results to the control vector configuration is mainly indicative of the impact of uncertainties in the temporal 

profile vs. the sectorial distribution of the emissions, and not of the impact of changes of the prior uncertainty in the 6-hour 

mean emissions. 15 

2.8 Observation errors and practical implementation of the OSSEs 

Tables 1 and 2 summarize the different configurations of the OSSEs. Different types of OSSEs are conducted with different 

levels of agreement between the statistics of the synthetic observation errors that are introduced in practice and the 

assumptions underlying the theoretical framework of the inversion system. 

2.8.1 Analytical computation of the posterior uncertainties when considering only a measurement noise that is 20 
perfectly accounted for by the inversion system 

In the first set of OSSEs, errors from the observation operator are ignored and the observation errors are limited to a 

Gaussian noise in the measurements. The standard deviation of this noise is perfectly consistent with the configuration of the 

R  matrix in the inversion system. In this case, the assumptions made through the set-up of the inversion system are exact, 

and the matrix A  obtained from the application of equation 4 is a perfect estimate of the uncertainties in the inverted fluxes. 25 

A  and its comparison to B , i.e., the analysis of the so-called uncertainty reduction due to the assimilation of the 

measurements, are the proper indicators of the satellite data potential. Since A  depends on B , R  and M  only, the building of 

synthetic data is unnecessary. The corresponding OSSEs will use the two first types of satellite spatial sampling described in 

section 2.3 only (TH-CarbonSat and TH-LargeSwath). A uniform value that does not vary in space or time for a given 

satellite configuration is used for the standard deviation of the measurement noise. This ignores that, in principle, the 30 

standard deviation of the measurement noise should vary significantly with the solar zenith angle, the surface albedo and the 
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atmospheric content. For TH-CarbonSat sampling, this uniform value is derived as a typical value from the simulations of 

CarbonSat random errors over the Paris area performed by Buchwitz et al. (2013). For the TH-LargeSwath sampling, the 

values are derived from the ESA Sentinel 5 study (Chimot et al. 2012) with two options corresponding to hypothetical 

instruments with one or two SWIR bands: the 2.0 µm and optionally the 1.6 µm absorption bands. R  is thus set-up as (er)2Id 

where er ranges from 1.1 ppm to 2.1 ppm depending on the satellite configuration (see Table 1) and Id is the identity matrix 5 

in the observation space.  

All inversions solving for the fluxes per sector of activity and per PFT will be conducted with this OSSE framework and 

with these assumptions regarding the observation errors. The other types of OSSEs and assumptions on the observations 

errors will be tested with the inversion of hourly emissions only. This choice is based on the analysis of the first set of 

OSSEs commented in sections 3.2 and 3.3. 10 

2.8.2 Analytical computation of the impact of biases from the observation operator 

In the second set of OSSEs, biases y bias from the observation operator and thus in the observation errors are introduced in 

addition to the measurement noise. They impact the difference !! −! !! − !!"#$%. Such biases cannot be accounted for by 

the theoretical framework of the inversion systems and generate a bias in the posterior estimate of the control vector equal 

to: 15 

 !!"#$ = ! !!"#$ (7)  

This bias will be computed along with A and both this bias and A will have to be compared to B in order to infer the potential 

of the satellite data assimilation. The second set of OSSEs will use the two first types of satellite spatial sampling only (TH-

CarbonSat and TH-LargeSwath) and the value for R=(er)2Id as defined above for the first set of OSSEs.  

Two types of biases in the observation operator will be investigated. The first type of bias is related to the spatial distribution 20 

of the emissions of Paris. The operator !!"#$"%&'( used by the inversion system could strongly differ from the actual 

distribution of the emissions !!"#$"%&'(
!"#$ . Assuming that this difference is a bias and not a random error, which makes sense 

given the relatively weak temporal variability of the spatial distribution of the emissions, one can easily demonstrate that this 

generates a bias in the estimate of the true control vector s true, which is given by  

 !!"#$ = ! !!"#$"%&'(
!"#$ −!!"#$"%&'(  !!"#$ (8)  25 

This does not yield any additional random posterior uncertainty compared to that characterized by the A covariance matrix 

derived from equation 4. We thus associate it with a bias in the observation errors: 

 !!"#$ =  !!"#$"%&'(
!"#$ −!!"#$"%&'(  !!"#$ (9)  
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In an extreme case where the spatial distribution of the emissions in the Paris area is fully ignored, one could distribute the 

emissions homogeneously over a disk whose radius would be approximately that of the Paris urban cover. The difference 

between the homogeneous distribution over a disk and the distribution from Airparif is used here to simulate a bias in an 

observation operator that would be built on rough information about the urban extent only.  

For the OSSEs investigating the impact of such a bias in the emission spatial distribution, two new observation operators 5 

have been computed by replacing the spatial distribution of the Paris emissions from Airparif by a homogeneous one over 

two different disks centred on Paris with 15 km and 45 km radius respectively (denoting !!"#$"%&'( = !!"
!"#$ and !!"

!"#$
 

respectively), but keeping the same hourly emission budgets as in Airparif. These two radiuses are defined so that the first 

disk is smaller than the Paris urban area while the second one encompasses all this area. The bias is computed with s true = 

!!"#$, !!"#$ ! where bLMDZ is set according to the average of the LMDZ simulation used to generate c fixed (see section 10 

2.5.2) and where !!"#$ = 1,1… 1 !!
!, i.e., assuming that the LMDZ provides the true background XCO2 and that Airparif 

has the true estimates of the hourly total emissions. This is relevant since this second type of OSSEs aims at deriving a 

qualitative assessment rather than a precise quantification of the impact of biases in the observation operator. 

Of note is the fact that this modification of the observation operator impacts, in practice, equation 4 and thus the theoretical 

posterior uncertainties. The A  matrices obtained with !!"
!"#$ and !!"

!"#$
 differ from that obtained with !!"#$"%&'( in the first 15 

set of OSSEs which relied on a perfect knowledge of the spatial distribution of the emissions. It is thus critical to analyse this 

change of the random posterior uncertainty. 

The second type of bias in the observation operator investigated in this study is connected to errors in the estimate of the 

CO2 boundary conditions, i.e., in the term !!"#$% = !!"#$% !!"#$% defined in section 2.5. The uncertainty in the boundary 

conditions would be traditionally considered as random in the usual mathematical framework of the inversions. Here, the 20 

average impact of the boundary conditions is implicitly assumed to bear random errors through the control of the 

background concentrations b and the definition of their prior uncertainties. However, the boundary conditions from a very 

large-scale simulation that misses the right structure of CO2 transported from large and heterogeneous sources and sinks 

close to the boundaries, e.g. the anthropogenic emissions in Belgium and in the Netherlands, can bear biases. Tests are 

conducted by assuming that the bias in c fixed is given by the transport with CHIMERE of the variations in space and time of 25 

the boundary conditions from the LMDZ simulation around their mean during the 6-hour simulation for a given day in 

October. y bias is given by the projection of this bias in the observation space through !!"#$%. Removing the mean ensures 

reasonable amplitude for the bias. It also ensures that we do not account twice for errors in the homogeneous background for 

XCO2, given that the prior uncertainties in b are already included in the inversion framework. 
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2.8.3 Monte Carlo sampling of the posterior uncertainties when introducing systematic measurement errors that have 
a non Gaussian distribution  

In the third set of OSSEs, the systematic measurement errors are introduced in addition to the random measurement noise 

but model errors from the observation operator are ignored. The spatial variations of the standard deviation of the 

measurement noise are also accounted for. The distribution of the systematic errors and thus that of the resulting observation 5 

errors {!!} is not considered to be Gaussian and it is biased. Such a distribution cannot be perfectly accounted for by the 

inversion system. The configuration of R  in the inversion system is adapted to fit as much as possible with the distribution of 

the observation errors given as input to the system. However, in this context, the posterior distribution of errors to the actual 

control parameters {!!!} does not follow the N(0,A) distribution. A Monte Carlo framework is thus set-up to sample {!!!} 

based on the sampling of {!!} and on an ensemble of applications, for each member of the sampling, of:  10 

 !!! = !!! + ! !! −! !!!  (10) 

This equation 10 is derived by removing the true control parameters in both sides of equation 5, and by denoting the prior 

distribution of errors to the actual control parameters {!!!}.  

The corresponding Monte Carlo experiments use only the most realistic spatial sampling of the satellite imagery 

corresponding to the CarbonSat configuration (SIM-CarbonSat) since they rely on the simulation of random and systematic 15 

errors for CarbonSat by Buchwitz et al. (2013). Figure S2 gives an illustration of the systematics errors in the Paris area, 

which are characterized by patterns of negative or positive errors whose amplitude exceeds 0.1 ppm over 50 to 100 km 

spatial scales. These simulations of random and systematic errors have been also been used by Pillai et al. (2016) to assess 

the potential of CarbonSat for monitoring city-scale CO2 emissions. Assessing their level of realism is out of the scope of 

this study and we refer to Buchwitz et al. (2013) for further details and interpretation.  20 

For a given inversion day, the different simulations of these errors for the different selected passes over the Paris area are 

used to generate the sampling of measurement errors. This follows the assumption that the statistics of these errors simulated 

for different days of the year 2010 all follow a single stationary distribution of the measurement error that can apply to any 

inversion day in October 2010. The OSSEs will thus also have to account for the statistical nature of the cloud cover and of 

the satellite position. Consequently, each member of the Monte Carlo ensemble has its own structure for y  and consistently 25 

for M , R  and K  so that the application of equation 10 is actually rewritten for the ith member of the ensemble: 

 !!! i = !!! i + ! i !! i −! i  !!! i  (11)  

for i ∈[1..N] where ! i = ! i  ! i ! ! i !!  and ! i = !!! +! i !! i !!! i !!
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Errors !!! i  are sampled from the normal distribution N(0,B). The statistics of the actual mean !!"#$%!"#$  and covariance A pract 

of the posterior errors !!! i  are computed to characterize the actual uncertainty reduction compared to B . !!"#$%!"#$  and A pract are 

called “practical” hereafter, in opposition with the theoretical estimates s bias and A  from equations 4 and 7. 

The derivation of the observation errors !! i  and of the corresponding ! i  matrix is based on the fact that the simulations of 

random and systematic errors provided by Buchwitz et al. (2013) can be interpreted as maps of the standard deviation !!! i  5 

of the random error !!! i  and values for the systematic errors !!! i . These maps also characterize the structure of y i . The 

maps of systematic errors for the 19 passes of CarbonSat over Paris with the highest number of cloud free pixels at less than 

100 km from the centre of Paris are given in figure S21 of the supplementary material. An example of the perturbations of 

the XCO2 images with such maps of random and systematic errors is given in figure S32. The error !! i  for a given 

ensemble member is thus built using one of such couple of maps for !!! i  and !!! i , as the sum of !!! i  and of a random 10 

sample !!! i  of the normal distribution N(0, diag(!!! i !)). As generally done for atmospheric inversion, the matrix ! i  is 

deliberately built as a diagonal matrix, and thus based on the assumption that there is no temporal or spatial correlation in the 

observation errors, to ensure that it is easily inverted in equation 4. It is derived as the sum of diag(!!! i !) + (es)2Id i  where 

Id i  is the identity matrix for the y i  space and es is fixed to a typical value for systematic errors equal to 0.3 ppm. This 0.3 

ppm value is based on a space and time RMS of the systematic errors over the Paris area in 2010. The addition of the term 15 

(es)2Id i  helps the inversion system to anticipate for the systematic errors. However, it cannot perfectly anticipate the 

structure of these errors due to its inability to account for non Gaussian and biased errors, and for spatial correlations of the 

errors. In particular, the complex spatial patterns in the systematic errors, e.g., their correlation to aerosol layers or to the 

variations in land cover, are a critical issue for the inversion. 

In this experimental protocol, the size of the Monte Carlo ensembles is limited by the number of selected maps of 20 

measurement errors from Buchwitz et al. (2013) i.e. to N=19 members for each inversion day. The theoretical uncertainty 

reduction for the 6-hour mean emission estimates for each ensemble member given by the comparison between ! i  and B is 

the criteria for the selection of the “19 best observation sampling” used in this ensemble for a given inversion day. The other 

observation samplings generally have very few data on the city emission plume (see section 4.2) while we apply the Monte 

Carlo framework to derive typical scores of uncertainty reduction for cases when the observation sampling can be assumed 25 

to be sufficient to support the emissions inversion. This is why we do not increase the size of the Monte Carlo ensemble by 

including some of these low observation samplings. However, this modest number of ensemble members can raise sampling 

errors (called hereafter Monte Carlo sampling errors) and the ensembles !!! i  and !!! i  may not fully converge towards 

N(0,B) and towards the practical statistics of the posterior uncertainty that are looked for.  

There is a need to evaluate the impact of these sampling errors and of the realistic simulation of the observation samplings 30 

that accounts for cloud cover and for a positioning of the satellite sub-tracks that is not necessarily located over the Paris 

area. In order to separate it from the impact of systematic errors, an ensemble of inversions is conducted as described above 

but ignoring systematic errors, i.e., by defining !! i  as equal to !!! i  and by deriving the matrix ! i  as diag(!!! i !). When 
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ignoring the systematic errors, the analysis of the theoretical uncertainty reductions from B  to the set of A i , in comparison 

to those obtained with the more theoretical (“TH”) sampling, should illustrate the specific impact of using realistic 

observation samplings, while the comparison between the set of A i  and A pract should help characterizing the impact of the 

Monte Carlo sampling errors. Furthermore, the results from the Monte Carlo experiments are analysed in terms of 

comparison of the practical posterior uncertainties, !!"#$%!"#$  and A pract, to practical prior uncertainties, !!"#$%!"#$"%#&' and B pract, 5 

which differ from 0 and B  due to the Monte Carlo sampling errors.  

2.8.4 Monte Carlo sampling of the posterior uncertainties when combining the different types of observation errors 

In the fourth set of OSSEs, the observation errors combine the biases in the observation operator and the non-Gaussian and 

biased distribution of the measurement errors considered in the second and third set of OSSEs. This, again, is only tested for 

the most realistic spatial sampling of the satellite imagery corresponding to the CarbonSat configuration (SIM-CarbonSat). 10 

Accounting for this combination of errors leads to a Monte Carlo ensemble approach solving for, for each ensemble 

member:   

 !!! i = !!! i + ! i !!"#$ i + !! i −! i  !!! i  (12) 

for i ∈[1..N] where ! i = ! i  ! i ! ! i !! and ! i = !!! +! i !! i !!! i !!
 

where all the terms are defined and derived similarly as in equation 11 except !!"#$ i  which is the resampling of the y bias 15 

term described for the second set of OSSEs on the y[i] structure. Here again, the practical estimates of the posterior 

uncertainties based on these ensembles need to be compared to the practical prior uncertainties obtained with the 

corresponding sampling of N(0,B).  

2.9 Potential sources of uncertainty that are ignored in the OSSE framework  

From the most optimistic set-up to the less optimistic one, the OSSE framework accounts for an increasing number of 20 

sources of uncertainty in addition to those directly controlled by the inversion, i.e., the temporal or sectorial distribution of 

the emissions and their 6-hour budget. The measurement errors are fully or partially accounted for in the set-up of R , and 

fully accounted for in the inputs of the less optimistic inversion experiments. We investigate the impact of uncertainties in 

the spatial distribution of the emissions, that of uncertainties in the temporal profiles of these emissions within the Paris area 

and that of uncertainties in the boundary conditions. The impact of uncertainties in the initial conditions is evaluated along 25 

with that of the lateral and top boundary conditions using a coarse resolution product, which will miss the fine scale patterns 

due to the Paris emissions before the 6-hour period of inversion. The fact that the satellite imagery is not sensitive to these 

emissions is not systematic. Therefore uncertainties in these emissions could sometimes have some impact, when the wind 

speed is particularly low, but it is expected to be negligible. 
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However, some major sources of uncertainties are ignored even in the less optimistic case, which prevents from considering 

this case as “fully pessimistic”. Above all, atmospheric transport modelling errors are ignored while it can easily generate 

large uncertainties. If forced with erroneous wind modelling, the simulation of the XCO2 plume from Paris can have wrong 

shape and location while the inversion strongly relies on these simulated shape and location to filter the XCO2 signal 

associated with the emissions of Paris from the images. Despite the rather smooth variations in space of the NEE, 5 

uncertainties in the spatial distribution of the NEE may perturb the results since the inversion relies on the patterns from the 

assumed distribution to separate it from the Paris emissions. Furthermore, this study uses a simulation of the NEE fluxes for 

October, when these fluxes are rather weak, which, in principle, should yield better results for the FF emissions than if 

leading the test in spring or summer when the amplitude of NEE during daytime is much larger. Besides, uncertainties in the 

anthropogenic emissions outside the Paris area but within the model domain could have a critical impact since sources, e.g., 10 

in North Eastern France can be high and their emission plumes could overlap that of the Paris area. Finally, the impact of the 

biased and non-Gaussian nature of uncertainties in the fluxes is not assessed. However, it is out of the scope of this study to 

address such a level of issues. 

3 Results with optimistic configurations of the OSSEs 

This section presents the results of the inversions when assuming that the theoretical set-up of the inversion system is fully 15 

consistent with the actual errors, i.e., the results from experiments “TH” (TH-2, TH-x-ns, THsect-2, THsect-x-ns with x =4, 

6, 8 or 10 and ns = 1 or 2) defined by table 2. 

3.1 Some preliminary insights from the model simulation of XCO2 

For each of the 20 inversion days in October 2010, simulations of the XCO2 field at 11:00 are generated with the observation 

operator described in section 2.5 and setting !! = 1,1… 1 !!
! and b=bLMDZ, i.e., by imposing the flux fields and the 20 

boundary conditions from Airparif, C-TESSEL and the LMDZ simulation without any rescaling or offset of these products. 

Figure 1 gives the corresponding image when sampling XCO2 over the full CHIMERE domain at 2 km resolution for one of 

the inversion days in October. 

The analysis of such images and of the response functions computed as described in section 2.5.4 (figure S4) shows that the 

typical signature of the Paris emissions in the XCO2 field at 11:00 is a plume whose amplitude is ~1 ppm and whose width is 25 

~40 km at a distance of ~150 km downwind from Paris. This amplitude is similar to the typical measurement random noise 

assumed for CarbonSat or for the optimistic configuration of the TH-LargeSwath sampling. The spatial gradients of XCO2 

that are generated by either the NEE or the boundary conditions have an amplitude that sometimes reaches the same order of 

magnitude. Stronger (weaker) wind speeds induce narrower, longer and less intense (wider, shorter and more intense) 

plumes. For strong wind speeds (above 16 ms-1 at 700 magl), the CO2 emitted between 5:00 and 6:00 can reach the domain 30 

boundaries before 11:00 and does not systematically have a signature in the domain at 11:00. Wind speeds in October 2010 
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and at 700 magl range quite uniformly between 1 and 17 ms-1, which is representative of the range of wind speeds for the full 

year. 

All these indications imply that the wind should be a critical driver of the performance of the inversion. In the following, the 

results from the experiments for the 20 different inversion days will thus be presented together as a function of the wind 

speed. This wind speed is characterized hereafter by its values at 700 magl over Paris, assuming that they are well 5 

representative of the transport within the mixing layer during the time window of interest. They are averaged in time over the 

period between the emission time and the CarbonSat overpass time when inverting hourly emissions, or over the hour before 

the CarbonSat overpass when inverting sectorial emissions. 

3.2 Posterior uncertainty when controlling hourly fluxes 

Figure 2 displays prior and posterior uncertainties from experiments TH-2 and TH-x-ns when inverting the hourly FF CO2 10 

emissions and the hourly NEE. This section first focuses on results from TH-2. Figure 2a indicates that, for the satellite 

configuration close to that of CarbonSat, larger wind speeds lead to smaller uncertainty reduction for the 6-hour mean FF 

emissions. This can be explained by the fact that, with stronger wind, the amplitude of the plume from the city emissions is 

smaller while the measurement error is independent from the wind speed. Therefore the signal from the emissions is filtered 

with a smaller signal to noise ratio and thus a higher uncertainty. 15 

However, figure 2a also indicates that, while the rule applies for hourly emissions when wind speeds are higher than ~6 ms-1, 

the uncertainty in hourly emissions increases with weaker wind speed for wind speeds that are smaller than ~6 ms-1. This is 

interpreted as the consequence of the overlap between the signatures of consecutive hourly emissions, and thus to the 

decrease of the potential of the inversion to separate these signatures, when the wind speed is low. This is demonstrated by 

figure 2b, which shows negative correlations between posterior uncertainties in consecutive hourly emissions, whose 20 

absolutes values increase when the wind speed decreases. If correlations in the prior uncertainty are all positive or null, 

which is the case here, negative correlations between posterior uncertainties in control variables arise when the signature of 

these control variables in the observation space are not perfectly separated by the inversion system. It reflects some aliasing 

in the corrections from the inversion with an overestimation of some variables balanced by an underestimation of other 

variables. The combination of larger standard deviations of the posterior uncertainties in control variables with more 25 

negative correlations between these posterior uncertainties indicates larger problems of separation. When the wind speed is 

high, the correlations between posterior uncertainties in hourly emissions are nearly null, potentially due to either/both the 

weak control of the hourly emissions or/and to the absence of overlapping between the signatures of consecutive emissions 

despite atmospheric diffusion. However, the uncertainty reduction for the hourly emissions becomes weaker for 0-4 ms-1 

wind speeds than for 4-7 ms-1 wind speeds. Therefore, the decrease of the negative correlations below -0.4 when the wind 30 

speed decreases below 4 ms-1 is primarily driven by the increasing difficulty of the inversion to separate a given 2-hour 

budget of emissions between the 2 corresponding hours rather than by the increase of the control of the hourly emissions. 
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This issue for solving for the temporal profile of the emissions at the hourly scale does not alter the ability to get a precise 

estimate for the overall budget of 6-hour emissions. 

The values obtained for the posterior uncertainty in figure 2a are often small compared to the prior uncertainty both for 6-

hour mean and hourly emissions. Indeed, for wind speeds smaller than 10 ms-1, the uncertainty reduction is nearly equal to or 

larger than 50% for the 6-hour mean emissions or for the emissions between 10:00 and 11:00. For wind speeds larger than 5 

10 ms-1, the uncertainty reduction is generally high for the emissions between 10:00 and 11:00 but that for the 6-hour mean 

emissions can be as low as 20%. The uncertainty reduction for the emissions between 9:00 and 10:00 ranges between 35% 

and 50%. It is significantly smaller (between 20 and 50% for wind speeds smaller than 7-8 ms-1, and less for larger wind 

speeds) and it has a stronger sensitivity to wind speed for the hourly emissions before 9:00. The signatures of these 

emissions have been far more diffused through atmospheric transport when observed at 11:00 than that of emissions just 10 

before the satellite overpass. This explains these results since atmospheric diffusion decreases the amplitude of these 

signatures and increases their overlap. It is shown by the values of correlations of the uncertainties in consecutive hourly 

emissions in figure 2b, which are generally more negative for earlier hours. The potential of the system for solving for the 

temporal profiles before 9:00 is thus rather weak. The uncertainty reduction for the emissions before 7:00 is generally null 

for wind speeds larger than 11 ms-1 due to the signature of the emissions exiting the TH-CarbonSat sampling area.  15 

Hereafter in the text and in the figures, the prior and posterior uncertainties in the fluxes are quantified in a relative way 

since the inversion system controls scaling factors for the flux estimates in the observation operator, from Airparif and C-

TESSEL. For simplification, we will speak about “relative prior and posterior uncertainties”, but one should thus keep in 

mind that these uncertainties are relative to the estimates of the fluxes in the observation operator, not to the prior or 

posterior estimates of the fluxes. The relative posterior uncertainty in 6-hour mean emissions ranges from 5% to 17% in 20 

experiment TH-2. This large spread of the results highlights the critical role played by wind speed in defining the potential of 

the assimilation of the satellite image for monitoring the Paris emissions.  

The correlations between the posterior uncertainties in NEE and FFCO2 emissions are nearly null (not shown). The rather 

high uncertainty reduction for the Paris FF emissions obtained with experiments TH-2 can thus be partly explained by the 

good separation between the signature of these emissions and that of the NEE despite the spatial overlapping of these 25 

signatures. However, the uncertainty reduction for NEE (not shown) is actually much smaller than for the FFCO2 emissions 

due to the lower amplitude of their signature (in October). The problem of separating between FFCO2 emissions and NEE 

may thus be eased by the choice of conducting experiments in October when the NEE and thus the prior uncertainty in NEE 

is relatively small. Higher negative correlations between posterior uncertainties in b and FFCO2 emissions (not shown) can 

be explained by the larger amplitude of prior uncertainties in b than in the NEE. It does not prevent the system from getting 30 

a large uncertainty reduction for FF emissions. But a significant part of the posterior uncertainty in FF emissions can be 

connected to the uncertainties in fluxes outside the model spatial domain or temporal window that are characterized by prior 

uncertainties in b. 
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Results when using coarser resolution but wider swath sampling for the XCO2 observation (experiments TH-x-ns; see the 

results for TH-4-2 in figure 2c) show a behaviour that is similar to that obtained with TH-2. The uncertainty reduction is 

smaller than for TH-2 except when considering hourly emissions before 8:00, since the signature of these emissions is often 

visible in the full satellite field-of-view (FOV) in TH-x-ns while it is partially or fully outside the satellite spatial sampling in 

TH-2 (see the comparison between figure 2a and figure 2d). The skill in decreasing the uncertainty for hourly emissions after 5 

8:00 or for wind speeds smaller than 10 ms-1 is strongly limited by the observation of XCO2 at a resolution of 4 km or more 

with a precision of 1.2 ppm or poorer compared to that when observing XCO2 at 2 km resolution with a precision of 1.1 

ppm. A similar limitation occurs for the reduction of the uncertainty in 6-hour mean emissions.  

Figure 2d illustrates the dependence of the uncertainty reduction for 6-hour mean emissions to the changes in the satellite 

measurement configuration, and mainly to the changes in the spatial resolution and precision of the observation. The relative 10 

differences of the scores of uncertainty reduction from experiments TH-x-ns compared to the ones from TH-2 are influenced 

by the wind speed. In particular, for high wind speeds, the uncertainty reduction is slightly larger for TH-4-2 than for TH-2 

since the former gets the signature of the emissions before 8:00. However, for wind speeds smaller than 12 ms-1, the use of a 

larger swath for the observation does not impact the mean results significantly, and the uncertainty reduction is 

approximately decreased by half when dividing the spatial resolution by two or when multiplying the measurement noise by 15 

two. Consequently, even if considering results for the lowest wind speeds only, in order to expect a 50% uncertainty 

reduction in the 6-hour mean emissions, one should not use an imagery with a resolution ≥ 6 km and a measurement error 

close to 2 ppm or poorer. 

3.3 Posterior uncertainty when controlling the fluxes per sector and land cover type 

The results of the inversions when controlling the budget of the fluxes per sector of anthropogenic activity or per land cover 20 

type are detailed below for experiment THsect-2. As when controlling the hourly variations of the emissions (see section 

3.2), the results from experiments THsect-x-ns are qualitatively similar but with higher standard deviations of the posterior 

uncertainties than in THsect-2. 

The results for the 6-hour mean FFCO2 emissions or NEE are very similar to what was seen when controlling the hourly 

variations of the emissions (see section 3.2). Accounting for uncertainties in the temporal profiles or in the distribution per 25 

type of underlying processes does not modify the ability to get the full budget of the 6-hour fluxes. In particular, it does not 

significantly modify the ability to separate the signature from the FFCO2 emissions and that of the NEE or that of b. 

However, the reduction of uncertainty for the individual sectors of emissions shown in figure 3a is rather weak. The strong 

negative correlations between the uncertainties in the different sectors of FF CO2 emissions in figure 3b confirm that the 

system hardly separates the total budget of the emissions between the different sectors due to the overlapping of their 30 

signatures in the XCO2 field. This is particularly true when considering the highest emissions sectors i.e. transport and 

residential combustion. The spatial and temporal distribution of the different sectors of emissions cannot prevent such an 

overlapping since all sectors are distributed all over the Paris urban area. 
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The uncertainty reductions hardly exceed 25% for a given sector of emission. The best results are not obtained for the most 

emitting sector (road transport and residential combustion) but for the sector whose spatial distribution differs the most to 

that of the other sectors, i.e., industrial combustion. They can reach 50% for low wind speed but such a value is not 

representative of the uncertainty reductions obtained for wind speeds smaller than 10 ms-1, which rather range between 13% 

and 30%.  5 

Overall, these results indicate that, without additional information, the XCO2 satellite imagery cannot distinguish between 

the various CO2 emitting sectors of the Paris area, but that the uncertainty in the sectorial distribution of the emissions does 

not impact the skill for monitoring the total emissions. Therefore, in the following, we do not analyse the impact of 

additional sources of uncertainties when controlling this sectorial distribution of the emissions but only when controlling 

their temporal profile. 10 

4 Results with less optimistic configurations of the OSSEs 

4.1 Impact of biases in the observation operator 

4.1.1 Biases in the spatial distribution of the Paris emissions 

The biases in the posterior estimate of the scaling factors for the emissions of Paris due to the biases in the spatial 

distribution of the emissions are illustrated for representative cases of the Bdist-2-r and Bdist-x-ns-r set of OSSEs: Bdist-2-15 

15 in figure 4a, Bdist-2-45 in figure 4c and Bdist-8-2-45 in figure 4e. For these cases, the spatial distribution of the 

emissions is described in the observation operator as a homogeneous distribution in a disk (“15” and “45” referring to the 

radius of the disk, in km), while the true distribution is assigned to be that of the Airparif inventory. Figures 4b, 4d and 4f 

show the corresponding updates of the posterior uncertainties due to the change of observation operator. 

The biases for Bdist-2-15 are negative. They can reach very high negative values: -20% to -40% for the 6-hour mean 20 

emissions, below -50% for the hourly emissions. They are generally below -15% for both hourly and 6-hour mean emissions. 

The root sum square of such biases and of the random posterior uncertainties shown in figure 4b can be considered as the 

total uncertainties in the emissions. Since the biases are higher in terms of absolute value than the prior uncertainties, they 

imply an increase rather than a decrease of the total uncertainties from the inversion. These biases are smaller but still very 

large for high wind speeds.  25 

The biases for Bdist-2-45 are qualitatively and quantitatively very different from that for Bdist-2-15. They are systematically 

positive for the 6-hour mean emissions and positive most of the time for the hourly emissions, but they can also be negative. 

The amplitude of the biases decreases with higher wind speeds. The values are smaller than for Bdist-2-15 and do not 

exceed, in terms of absolute values, 15% for the 6-hour mean emissions. They hardly exceed 20% for the hourly emissions. 

However, the reduction of the random component of the uncertainty in hourly emissions is generally much lower for Bdist-30 

2-45 than for Bdist-2-15. The scores of uncertainty reduction obtained with TH-2 are between those for Bdist-2-15 and those 
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for Bdist-2-45 and all these experiments show the same qualitative dependency of the results to the wind speed or to the time 

of the hourly emission considered. 

The negative biases with Bdist-2-15 can be explained by the fact that the response functions computed by the inversion 

system have a smaller extent and a larger amplitude than the “true” emission signatures in this OSSE since the spatial extent 

of the emissions of Paris in the observation operator is smaller than the actual one. In the extent of the response function of 5 

the city emissions modelled with the observation operator, !!"#$"%&'(
!"#$ −!!"#$"%&'( !!"#$ is thus generally negative and it 

converts into a negative bias in the control vector of the city emissions. A practical interpretation of this is that the system 

uses only one part of the observed plume of XCO2 to compute the budget of XCO2 due to the emissions from Paris, and thus 

the budget of these emissions, which negatively biases the results. Conversely, in experiment Bdist-2-45, the modelled 

extent of the Paris emissions is larger and has smaller amplitude than the actual one. The response function to the modelled 10 

emissions fully covers the actual plume of XCO2 from the Paris area. Therefore the inversion system does not miss any 

portion of the observed XCO2 plume when computing the budget of XCO2 due to the emissions from Paris. This explains 

why the resulting bias in the emission budget is relatively small. Still, the term !!"#$"%&'(
!"#$ −!!"#$"%&'( !!"#$ is generally 

positive within the area of the actual plume and generally negative in the area of the modelled plume that is not covered by 

the actual plume and the inversion is likely mostly driven by the core of the plume where the NEE signature is, in relative, 15 

smaller. This may explain that the bias is positive. 

The use of a spatial extent of the emissions that is larger in the observation operator than in the truth implies that the 

inversion system assimilates more measurement noise in the area covered by the emission response functions and has issues 

with a larger overlapping of the signatures of the FFCO2 and of the NEE. This explains the higher posterior uncertainties 

obtained with Bdist-2-45 or TH-2 than with TH-2 or Bdist-2-15 respectively. Assuming a larger area for the FFCO2 20 

emissions in the observation operator also results in having a larger overlapping of the different response functions to hourly 

emissions, which hampers the uncertainty reduction for hourly emissions. This can explain that the sensitivity to the changes 

of the spatial distribution of the emissions in the observation operator is weaker for the posterior uncertainty in 6-hour mean 

emissions than for the posterior uncertainty in hourly emissions.  

Consequently, using an upper bound for the extent of the emission distribution when this distribution is poorly known 25 

appears to be a conservative decision for the inversion. It avoids taking the risk of missing some parts of the urban area with 

significant emissions, which would bias the estimates. However, there is therefore a compromise to find between this need to 

avoid biases and the need for keeping a high uncertainty reduction, which requires not spreading the emissions too much in 

the observation operator. 

The biases obtained with Bdist-8-2-45 (figure 4d) are far smaller than those obtained with Bdist-2-45, while, as already 30 

analysed in section 3.2, the posterior random uncertainties from Bdist-8-2-45 (figure 4e) are much larger than those obtained 

with Bdist-2-45. This is due to the fact that the corrections applied by the inversion system to the prior estimate of the 

control parameters when using a lower resolution and noisier imagery (i.e. less and noisier observations) are smaller. This 
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translates into the computation of a “smaller” gain K , which yields smaller uncertainty reduction but also a smaller 

sensitivity to biases in the observation error. Results from other Bdist-x-ns-r experiments follow the behaviour analysed here 

and in section 3.2, i.e., they show that larger r, larger x or smaller ns lead to smaller uncertainty reduction but smaller biases. 

These results indicate the need for having good knowledge on the spatial extent of the Paris urban emissions before 

assimilating the satellite imagery, but that knowledge of their distribution within the emitting area need not be precise. This 5 

corroborates the results analysed in section 3.3 regarding the weak sensitivity of the inversion to the spatial or sectorial 

distribution of the emissions within the Paris emitting area. Of note is that this conclusion may be driven by the specificities 

of Paris in terms of spatial extent and distribution of the emissions.  

4.1.2 Biases in the boundary conditions 

The biases on the estimates of FFCO2 emissions from Paris due to the biases on the transport model CO2 boundary 10 

conditions that are described in section 2.8.2 are analysed with experiments Bbc-2 (figure 5a) and Bbc-x-ns; only the results 

for experiments Bbc-2 and Bbc-8-2 are shown. The biases in both 6-hour mean or hourly emissions can be very high (up to 

+/-60%) and are generally comprised between ±10% for Bbc-2. There is no clear correlation of the biases with the wind 

speed even though the gain K  of the inversion is smaller for high wind speeds. The impact of biases in the boundary 

conditions depends on the spatial structure of their signature in the observation space. The largest biases in the posterior 15 

emissions are obtained when the spatial structures of these signatures overlap with the XCO2 plume from Paris. As when 

comparing Bdist-x-ns-r experiments to Bdist-2-r experiments in section 4.1.1 and, again, because when using a lower 

resolution and noisier imagery the corrections and thus the sensitivity to biases in the observation errors are smaller, the 

biases obtained with Bbc-x-ns experiments are smaller than but highly correlated to that obtained with experiment Bbc-2. 

4.2 Impact of the use of a realistic distribution of measurement sampling and errors 20 

The following focuses on the third and fourth sets of OSSEs. They are based on Monte Carlo frameworks using realistic 

CarbonSat-like samplings of XCO2 which account for cloud cover and a realistic simulation of the satellite FOV, and using a 

realistic simulation of both the standard deviation of the measurement noise and of the systematic measurement errors. The 

MC-2 experiment (figures 6, 7a and 7b) assesses the impact of the limitation of the observation sampling due to cloud cover 

and instrument FOV, of the Monte Carlo sampling errors, and, to a lesser extent, of the use of realistic simulations of the 25 

measurement noise. Through its comparison to the MC-2 experiment, the MCsyst-2 experiment assesses the impact of the 

systematic errors (figures 7c and d).  

Figure 6 shows the theoretical uncertainty reduction for the 6-hour mean emissions in MC-2 inversions obtained with the 1st, 

5th, 10th, 15th, 19th and 25th best observation sampling provided by the simulation of Buchwitz et al. (2013) for each inversion 

day (see section 2.8.3). The best observation sampling corresponds to a full coverage of the area within a distance of 100 km 30 

from the centre of Paris (figure S21) and within an even longer distance in the direction of the emission plume, which 

depends on the inversion day. This explains why, for a given inversion day, this best observation sampling yields a 
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theoretical uncertainty reduction in experiment MC-2 that is comparable to that of the experiment TH-2 (figure 2) with an 

optimistic sampling of the area over a 150 km distance from the centre of Paris without cloud cover (TH-CarbonSat). 

Therefore, in a general way, figure 6 illustrates the strong impact of the cloud cover and of the limitations associated with 

realistic instrument FOV through the rapid decline of the theoretical uncertainty reductions between the use of the best 

observation sampling and that of the following ones. In particular, this figure illustrates the fact that, for the inversion days 5 

when the wind speed is above 5 ms-1, the theoretical uncertainty reduction when using the 19th best observation sampling is 

systematically lower than 30%. It is even lower than 20% in most cases. This is generally twice as low as the uncertainty 

reduction obtained with the 5th to 10th best observation samplings. The uncertainty reduction rapidly decreases to nearly null 

values when using the 20th and following “best” observation samplings. This reveals that the large majority of the 

observation samplings simulated throughout the year 2010 brings a weak theoretical constraint on the emission inversions. 10 

Even though they do not correspond to the 19 best samplings of any inversion day, the 19 sampling cases of fFigure S21 

illustrate how the spatial coverage of the Paris area by the images decreases due to cloud cover and to shifts of the satellite 

FOV away from the centre of Paris. This figure shows that only 18 samplings provide observations for more than 15% of the 

area within a 100 km distance from the centre of Paris. The cloud cover removes 35% to 70% of the potential data in the 

satellite field of view near Paris for half of the samplings shown in this figure.  15 

The mathematical framework of the MC-2 and MCsyst-2 experiments is such that, statistically, the limitation of the 

observation samplings does not bias the practical inversion estimates by itself. However, the Monte Carlo estimations are 

based on ensembles of 19 members only, which can generate significant Monte Carlo sampling errors. In particular, the 

mean of these ensembles can be significantly different from zero. The Monte Carlo sampling errors and biases in the 

posterior ensembles can be influenced by the specific coupling of the different simulations of cloud cover with the different 20 

samples of the prior uncertainty and of the measurement noise when building the Monte Carlo ensembles. Figure 7a shows 

that these biases hardly exceed +/-5% for both the prior and posterior estimates of the 6-hour mean emissions. Posterior 

biases in the 6-hour mean emissions are not significantly larger than prior biases even though they bear additional biases 

from the subsampling in the observation space. However these biases can sometimes exceed +/-15% for posterior estimates 

of the hourly emissions.  25 

The impact of Monte Carlo sampling errors for the random uncertainty reduction is characterized by the differences, in 

experiment MC-2, between the practical uncertainty reduction (figure 7b) and the theoretical uncertainty reduction for the 

individual spatial samplings used in this ensemble experiment (figure 6). The practical estimates of the uncertainty reduction 

for 6-hour mean fluxes have a negative correlation to the wind speed as the theoretical uncertainty reduction. Ranging from -

4% to 70%, they tend to correspond to the theoretical uncertainty reductions when using the 10th out of 19 best spatial 30 

samplings, which range from 10% to 70%. This indicates that the Monte Carlo sampling error has a limited impact on the 

practical computation of the random uncertainty reduction. Therefore, the Monte Carlo framework appears to be appropriate 

for exploring the impact of systematic errors. However, some specific values of the practical uncertainty reduction for the 6-

hour mean emissions, e.g. 60% for a wind of ~8 ms-1 or the negative value for a wind of ~17 ms-1 (figure 7b), reveal 
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significant Monte Carlo sampling errors. The impact of the Monte Carlo sampling errors are even more highlighted by the 

significant number of negative practical uncertainty reductions for hourly emissions (figure 7b) while, in theory, given the 

statistics of errors in experiment MC-2 and the assumption that they are perfectly accounted for by the inversion system, the 

uncertainty should be decreased by the assimilation of satellite data.  

The impact of the systematic errors is given by the direct comparison of figures 7c and 7d to figures 7a and 7b respectively. 5 

There is a significant impact of the systematic errors in the posterior biases for both the 6-hour and 1-hour mean emissions 

(figures 7a and c). While posterior biases in 6-hour mean emissions ranged quite evenly between �5% in MC-2 such as the 

prior biases, the posterior biases are shifted towards -5% in MCsyst-2. Similarly, while posterior biases in hourly emissions 

are generally comprised between �10% in MC-2, their spread is larger and shifted to negative values and they often reach -

20% in MCsyst-2. The shift towards negative values can be explained by the fact that the systematic errors as modelled by 10 

Buchwitz et al. (2013) are biased negatively in the Paris area. This shift between the practical biases from MC-2 and 

MCsyst-2 indicates that systematic errors could typically generate 3-4% biases in the 6-hour mean emissions. The biases for 

the posterior estimates of the emissions between 10:00 and 11:00 in MCsyst-2 are nearly systematically negative, unlike that 

for other hourly emissions. There is a single positive value while other values are comprised between -5% and -20%. This is 

due to the urban albedo in the Paris area, which generates specific systematic errors over this area, i.e. where the signature of 15 

the emissions between 10:00 and 11:00 stand at the time of the satellite overpass.  

The uncertainty reductions shown in figure 7d are much smaller than those shown in figure 7b. The random uncertainty 

reductions for 6-hour mean emissions drop from 55%-70% to ~55% for low (< 3 ms-1) wind speeds and from 15%-60% to 

5%-35% for 3 to 15 ms-1 wind speeds. The number of negative uncertainty reductions for hourly emissions is not necessarily 

larger in MCsyst-2 than in MC-2, but the practical uncertainty reductions for hourly emissions are also strongly decreased 20 

when accounting for the systematic errors, due to the fact that the distribution of these errors is not Gaussian. The 

combination between the limited practical random uncertainty reductions and the biases due to systematic errors in 

experiment MCsyst-2 sometimes implies an increase of the total uncertainties because of the inversion, and in a general way 

a strong decrease of the total uncertainty reductions compared to results in experiment MC-2.  

4.3 Combination of operator biases and of realistic measurement sampling and errors    25 

Figure 8 illustrates the impact of combining the two types of operator biases analysed in section 4.1 and the realistic cloud 

cover, observation sampling and random and systematic measurement errors in the Monte Carlo experiment ALL-2. The test 

is conducted with the use of !!"
!"#$ in the observation operator while the observations are generated using the distribution of 

the emissions from Airparif. There is no test using !!"
!"#$ in the observation operator but the analysis in section 4.1.1 

indicates that such a test would lead to a much larger combination of posterior biases and random uncertainties.    30 

Due to the Monte Carlo framework where the cloud cover and satellite FOV vary from one ensemble member to the other 

one, the impact of biases in the spatial distribution of the emissions or in the model CO2 boundary conditions of the 
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observation operator is “randomized” in the sense that it varies from one member of the ensemble to the other one. 

Consequently, adding these biases in ALL-2 compared to MCsyst-2 both increases the biases to very large values in the 

posterior estimates of the emissions (compare figure 8a and 7c) and dramatically degrades the random uncertainty reductions 

down to large negative values. A part of this decrease should also be attributed to the decrease of the random uncertainty 

reductions when using !!"
!"#$ instead of the maps from the Airparif inventory in the observation operator (see section 4.1.1) 5 

but such a decrease is relatively small compared to that seen between experiments MCsyst-2 and ALL-2. In experiment 

ALL-2, accounting for the biases and random uncertainties, the total uncertainties in the posterior estimates of the emissions 

are generally larger than the total prior uncertainties. 

5 Discussion and conclusions 

This study investigates the potential of satellite XCO2 spectro-imagery for the atmospheric inversion of the FFCO2 emissions 10 

from a megacity. More precisely, it investigates the potential of 2 to 10 km resolution XCO2 spectro-imagery from sun-

synchronous missions based on SWIR absorption measurements. Examples of plans for such missions are the CarbonSat 

mission, which was a candidate to ESA’s Earth Explorer 8 opportunity, and the European mission currently studied by ESA 

and the European Commission in the context of an increasing political interest for a space borne monitoring of the CO2 

anthropogenic emissions (Ciais et al, 2015). However, it also gives some general insights on the potential of SWIR spectro-15 

imagery from other types of CO2 missions e.g. the GeoCARB geostationary mission, which has been selected as an Earth 

Venture Mission by NASA. The study focuses on a relatively easy test case: the monitoring of the emissions from the Paris 

urban area, whose annual budget is approximately 11-14 MtC.y-1. The assessment of the imagery potential is based on an 

analytical inversion system and on an OSSE framework developed specifically for this study. They incorporate different 

levels of assumptions, from the traditional and rather optimistic assumptions underlying atmospheric inversion activities to 20 

less idealistic ones. The potential of the imagery is quantified in terms of reduction of uncertainty in the emission estimate, 

i.e. the relative difference between the uncertainty in the flux prior knowledge exploited by the inversion and that in the 

inverted (posterior) estimate of the emissions. 

An image of the XCO2 plume from the Paris urban area at a given time does not bear a significant signature of the Paris 

emissions more than 6 hours before. Since, the CarbonSat mission was expected to overfly the Paris area in the morning 25 

around 11:00 local time, the inversion framework consists in retrieving the emissions between 5:00 and 11:00 based on an 

image at 11:00 for a given day. The wind conditions influence the shape and amplitude of the XCO2 plume from Paris, and 

thus the imagery potential, which is higher when the emitted CO2 signal is larger. The inversions are thus conducted for 20 

different days of October 2010, which are representative of the range of wind conditions in the Paris area throughout the 

year, and the sensitivity of the results to the wind speed is analysed. 30 

The realistic simulation of the CarbonSat sampling accounting for cloud cover from Buchwitz et al. (2013) indicates that 

there should be typically 20 days per year during which the satellite could deliver “appropriate” images that could be used to 



 28 

provide a significant theoretical uncertainty reduction on the emission estimates. Satellites with far larger swath (typically 

2000 km for Sentinel-5 instead of ~240 km for CarbonSat) and geostationary missions like GeoCARB should provide 

“appropriate” images at a higher frequency than CarbonSat. Furthermore, the present study does not analyse the potential 

information brought by the combination of multiple views by the frequent revisit from a given satellite or through the 

combination of the data from different missions, and it focuses on the potential of individual satellite overpasses. 5 

Nevertheless, the low number of “appropriate” acquisitions from CarbonSat within one year reminds that a large fraction of 

the days during the year are inappropriate to satellite observation of Paris in the SWIR as a result of cloud cover. This, and 

the fact that the satellite imagery does not bring direct information on the emissions earlier than ~6 hours before the overpass 

demonstrate that the satellite SWIR measurement based CO2 observation alone cannot provide a valid estimate of the daily 

to annual emissions. In particular, the satellite imagery from a sun-synchronous satellite does not bring direct information on 10 

afternoon and night-time emissions if the satellite overpass is around noon. Geostationary SWIR measurements, e.g., with 

the GeoCARB mission, can fill a large part of this gap in the diurnal cycle of the emissions by potentially providing SWIR 

data in the morning and in the afternoon and several measurements over a given urban area per day. However, they cannot 

cover a significant part of the night. Ancillary information such as ground based measurements, other types of satellite 

measurements or accurate “bottom-up” knowledge of the temporal profiles from the inventories are required for such 15 

purpose. Obtaining such information for a large number of diverse cities may be challenging. Without ancillary information, 

the satellite CO2 spectro-imagery alone may still be useful to monitor trends. This perspective is particularly interesting 

when the trends of the monitored emissions, i.e., the morning emissions in the case of close-to-noon imagery, are 

representative of the whole diurnal cycle.  

The potential and limitations of different levels of image resolution and precision for monitoring the 6-hour emissions before 20 

the satellite overpass are investigated with the rather optimistic configuration of the inversions. In this case, the only sources 

of errors that are accounted for are uncertainties in the 6-hour mean budgets of the emissions from Paris and of the NEE in 

Northern France, uncertainties in the hourly or sectorial/per ecosystem distribution of the emissions from Paris and NEE, 

uncertainties in the XCO2 background and satellite measurement noise. Further, the limitation of the observation sampling 

due to cloud cover or to the fact that the satellite swath is not centred over Paris are ignored. These experiments reveal that 25 

one should not use an imagery with a resolution ≥ 6 km and a measurement error close to or larger than 2 ppm if targeting a 

50% uncertainty reduction in the 6-hour mean emissions from a ~22% relative uncertainty in the prior knowledge on these 

emissions. When using an imagery with a 2 to 4 km resolution and a 1.1 to 1.2 ppm precision, a 5% to 10% precision on the 

estimates of the 6-hour mean emission can be reached for favourable atmospheric conditions, i.e. when the wind speed in the 

boundary layer is less than 9 ms-1. However, the uncertainty reduction would not be better than 25% if wind speeds > 15 ms-30 
1, even with a 2 km resolution and a 1.1 ppm precision for the measurements. The advantage of using coarser resolution but 

larger swath imagery for increasing the frequency of revisit over a given city is not investigated in this study, which focuses 

on the potential of a mission for days when an image is available. Multi-day inversion frameworks would be required to find 

the best compromise between the resolution and swath of the imagery. 
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The optimistic experiments also indicate that the imagery could provide information on the temporal profile of the 

emissions, even though the corresponding estimates of uncertainty reductions for hourly emissions are significantly smaller 

than those for the 6-hour mean emissions. Conversely, the OSSEs indicate a poor ability to solve for the sectorial distribution 

of the emissions of Paris, and likely their spatial distribution within a known extent. Because of atmospheric diffusion, the 

differences between the spatial structures of the various sectorial emissions are not large enough to allow for the distinction 5 

of their signatures in the XCO2 images. While the residential and traffic sectors are spread throughout the Paris urban area, 

the commercial and industrial sectors are more localized, which explains why the uncertainty reduction is slightly higher for 

these sectors. The lack of ability for monitoring the sectorial distribution of the emission is thus likely strongly related to the 

specificities of the spatial distribution of the emissions in Paris, which are dominated by diffuse and spatially mixed sources. 

Less optimistic experiments are then conducted. They investigate the impact of the uncertainties in the spatial extent of the 10 

emissions of Paris, and in the XCO2 patterns induced by fluxes outside the Northern France modelling domain or before 

5:00, i.e., by CO2 initial, lateral and top boundary conditions in the transport model. They also investigate the impact of the 

limitation of the observation sampling due to cloud cover and to the distance between Paris and the satellite sub-track. 

Finally, they investigate the impact of the systematic measurement errors due to current uncertainties in the radiative transfer 

modelling underlying the conversion of SWIR measurements into XCO2 data. Biases in the knowledge of the spatial extent 15 

of the emissions are shown to be responsible for large negative biases in the inverted emissions if the assumed distribution 

covers an area smaller than the actual emission area. The Paris urban area is thus not seen as a “point source” whose size 

would be negligible even if the results from the sectorial inversions indicated that the inversion is weakly sensitive to the 

distribution of the emissions within the emission area. Spreading the virtual emissions over a large area that necessarily fully 

covers the actual emission area is a conservative solution for avoiding large negative biases but it implies smaller uncertainty 20 

reductions than when using the proper spatial extension. Biases in the transport model CO2 boundary conditions that bear the 

signature of remote fluxes or of fluxes before 5:00 can yield very large biases in the inverted emissions. Finally, when 

accounting for a realistic observation sampling hampered by cloud cover and systematic errors, the experiments indicate 

significant biases in the inverted emissions, and moderate random uncertainty reduction compared to the idealistic 

experiments. The quantitative validity of these last results, derived using a Monte Carlo approach, is limited by the Monte 25 

Carlo sampling errors associated with the small ensembles used for the computations. They nevertheless indicate that, for 

many meteorological and atmospheric conditions, the inversion based on the satellite imagery would hardly improve the 

prior knowledge on the emissions.  

The very last experiments combining all these sources of errors show the worst results with posterior estimates bearing 

larger uncertainties than the prior ones. One may argue that these OSSEs use pessimistic assumptions regarding the 30 

uncertainties in the spatial distribution of the emissions and in the model boundary conditions. They nevertheless strengthen 

the conclusion that monitoring the emissions from the Paris urban area with the coupling between state of the art inversion 

systems and XCO2 observation capabilities is a difficult challenge. It will be even more difficult for cities with smaller 

emissions than Paris, which is the case of nearly all cities in Europe, and for cities that have other major cities or large 
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combustion plants in their vicinity. The complementary study by Pillai et al. (2016) assessed the potential of CarbonSat for 

monitoring the CO2 emissions of Berlin. The annual emission budget in Berlin is similar to that in Paris, even though Berlin 

is less populated, since this city bears much larger power plant emissions. Pillai et al. (2016) used the same simulations of 

CarbonSat data sampling and errors from Buchwitz et al. (2013) as here, but different theoretical frameworks both for the 

statistical characterization of the errors and the inversions, and different configurations for the modelling and the sources of 5 

errors. However, they found results for the mean emissions corresponding to a plume seen during an overpass that are quite 

similar to those here with 5-20% random posterior uncertainties depending on the meteorological conditions when ignoring 

systematic errors in the data and errors in the modelling system, and with high impacts of the systematic errors and of biases 

in the modelling system. 

Based on our results, both the monitoring of the city emissions based on good prior knowledge which is investigated here, 10 

and the fully independent verification of an inventory of these emissions using a satellite XCO2 imagery appear as long term 

objectives rather than already mature techniques. This general conclusion is derived based on computations that use both 

optimistic and pessimistic assumptions. Section 2.9 lists a number of sources of errors that have been ignored in this study, 

in particular atmospheric transport modelling errors. Present pixel-based inversion techniques strongly rely on the position 

and extent of the city XCO2 plume simulated with atmospheric transport models. They assume that transport errors consist in 15 

random and unbiased noise with rather simple spatial correlation structures at the image pixel level. In practice, as a 

consequence of errors in the wind speed and direction, the simulation of the XCO2 plume position and structure can be 

poorly related to the actual ones. Large transitory wind direction errors could even lead to situations when the inversion 

system would not “see” the XCO2 excess due to the city emissions, in which case the pixel-based assimilation technique 

would yield quasi null emission estimates. An inversion procedure that would control simultaneously both transport 20 

parameters and CO2 emissions within a coupled meteorological-CO2 transport model (Kang et al., 2011) may partially solve 

these issues. However, due to the complexity of such an approach, it has hardly been investigated in the inverse modelling 

community, and the result would likely bear significant residual transport errors. The atmospheric transport errors may thus 

degrade the scores of uncertainty reduction obtained in this study. 

Another issue quite ignored in this study is the strong correlation between the CO2 and aerosol plumes from the Paris urban 25 

area, and thus between the signal that the inversions aim at filtering from the XCO2 images and a strong source of systematic 

errors in these images (O’Brien et al., 2016). This could result in high biases in the emission estimates. The simulations of 

systematic errors by Buchwitz et al. (2013) use a relatively low-resolution aerosol product, which misses the fine scale 

patterns of the aerosol plumes from Paris. This explains why we do not attempt at imposing the resulting maps of systematic 

errors in the Paris area to consistent CO2 transport conditions, and, in particular, why we use days that are different for the 30 

simulation of the systematic errors and for the simulation of the CO2 transport (see section 2.3).   

The NEE during spring and summer that is far larger than in October, and the uncertainties in the anthropogenic emissions 

outside the Paris area have also been identified in section 2.9 as other sources of errors that would degrade these scores of 

uncertainty reduction.. In particular, during spring and summer,  the separation between the signature in the XCO2 images of 
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the emissions from Paris and of the NEE may not be as good as in October (see section 3.2). Therefore, a significant part of 

the large uncertainties in the ecosystem uptake during the growing season could impact the inversion of the emissions from 

Paris. That and the lower level of emissions during spring and summer than during fall and winter (due to the decrease of 

emissions associated with heating) imply that the skills of the inversion could be lower during these seasons.  

Conversely, some other components of the experimental framework could be viewed as pessimistic. The way we quantified 5 

the impact of uncertainties in the spatial distribution of the emissions and in the transport model CO2 initial, lateral and top 

boundary conditions may be seen as extreme (see section 2.8.2). Indeed, it is treated as a bias that is fully ignored by the 

inversion. The inversion approach generally use a random representation for all types of errors, including the transport errors 

due to wrong meteorological forcing, even though it could be abusive when these errors relate to processes that seem quite 

deterministic at the considered timescales. This explains why the cloud cover has been taken as a random parameter of the 10 

observation vector in this study. This also explains why systematic errors, which can depend on atmospheric transient 

properties such as aerosol load, have been considered as random errors. In theory, one could also take this statistical point of 

view for the errors in the observation operator that have been investigated here i.e. in the spatial distribution of the emissions 

and in the boundary conditions. Then, the configuration of the observation error in the inversion system could have been 

inflated to anticipate for these errors. Still, the complex spatial correlations of the errors from the spatial distribution of the 15 

emissions and from the boundary conditions would have hardly been modelled in the inversion system. Therefore, the bias 

computation in this study can be seen as a qualitative rather than quantitative assessment of the sensitivity to such sources of 

errors.  

It would also seem pessimistic to assume that uncertainties in the emissions spatial distribution could be such that the best 

knowledge on this distribution would be a homogeneous distribution over a disk. High resolution satellite imagery of the 20 

urban land cover in the visible spectrum from other Earth observation missions should provide at low cost a finer 

representation of the city, at least in terms of spatial extent, but also regarding the location of power plants, road networks, 

and industrial, commercial or housing areas. The quantitative impact of uncertainties in the spatial distribution of the 

emissions could thus be quite smaller than that shown in this study. It does not alter the conclusions regarding the need for a 

conservative mapping of the emissions in the observation operator over an area that is identical or larger than the actual area 25 

of emissions. A more precise assessment of the impact of uncertainties in the spatial distribution of the emissions was out of 

the scope of this study. It could rely on the use of relatively independent high-resolution inventories for the city emissions 

whose difference could be assumed to be representative of the uncertainties in the emissions spatial distribution (Staufer et 

al., 2016).  

As for most inversion studies, a critical parameter of the experiments that is not objectively defined is the prior uncertainty 30 

covariance matrix. Only one configuration of this matrix has been tested in this study with a 50% uncertainty in the hourly 

emissions or sectorial budgets of the emissions between 5:00 and 11:00, and, similarly, a 50% uncertainty in the hourly NEE 

or in the budgets of NEE per PFT between 5:00 and 11:00. Even though the prior uncertainty in the NEE is relatively high, 
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our results indicate that it does not impact significantly the inversion of the emissions from Paris, and thus that its 

configuration  should not represent a significant issue. 

In contrast, the configuration of the prior uncertainty in the emissions It could sound rather optimistic for the inversion, since 

lower prior uncertainties would give lower potential to the inversion for uncertainty reduction and since 50% is a rather high 

uncertainty for hourly emissions or for the wide sectors analysed in this study, at least for cities like Paris whose emissions 5 

have been regularly inventoried. In general, uncertainties in existing “bottom-up” inventories at city scale are extremely 

difficult to define, but the order of magnitude for the emissions in cities in Europe should be known approximately even 

when considering hourly emissions or budgets for the transport, residential, commercial and industrial sectors. However, 

inventories with temporal variations generally rely on periodical temporal profiles, e.g., with typical diurnal cycles for 

typical months, so that they can miss strong variations in the actual hourly emissions. Furthermore, such a prior uncertainty 10 

could be too low for cities where there is a critical lack of data on the fossil fuel consumption, e.g., in developing countries..  

Furthermore, tThe discussion regarding the correlations between prior uncertainties in the different hourly or sectorial 

emissions is even more difficult, and the resulting ~22% to 26% uncertainties in 6-hour mean emissions is debatable. Indeed, 

if a significant fraction of the uncertainty in the emissions derives from the uncertainty in emissions factors used to build the 

inventories, a large positive correlation is expected between the uncertainties in the various hourly emission estimates. As 15 

indicated above, cCurrent inventories provide estimates for average conditions and do not represent transient conditions 

either related to natural (e.g. cold spell) or human (e.g. holiday, socio-economic events) causes that may apply to several 

hours in a row. Therefore, large temporal correlations of the uncertainties in hourly emissions or large correlations between 

uncertainties in sectorial budgets are expected if a significant fraction of these uncertainties are linked to such transient 

conditions. However, the usual representation of temporal correlations for prior uncertainties in natural fluxes that uses 20 

positive correlations decreasing with increasing time lags are not well suited to anthropogenic emissions, which have 

complex cycles at daily, weekly and annual scales and a large variability. Note that the existence of negative correlations 

between prior uncertainties in hourly or sectorial emissions can also be expected when the hourly and sectorial emissions of 

the inventories are estimated from the disaggregation of an annual budget. This somewhat justifies that our configuration of 

the prior uncertainties ignores the correlations between the uncertainties in hourly or sectorial emissions. 25 

Assuming positive correlations would lead to higher uncertainty reductions both because it would increase the prior 

uncertainty in the 6-hour mean emissions and because it would enable extrapolating the information obtained about 

emissions just before the satellite overpass to earlier emissions. It would also support the assumption that the satellite 

imagery could bear “indirect” information about the emissions earlier than 6-hour before the satellite overpass. From that 

point of view, the experiments in this study can be seen as pessimistic.  30 

Choosing the Airparif inventory and the CHIMERE transport model as, respectively, the true emissions and transport in the 

Paris area can bias the diagnostics in this study. Both products are quite diffuse. The Airparif inventory uses typical 

periodical temporal profiles of the emissions that are homogeneous in space for a given emission sector, and that ignores 

transient events over short term periods, which leads to smooth maps, especially for the traffic emissions. The CHIMERE 
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model is an Eulerian model and, as such, is subject to numerical diffusion. This may be viewed as a limitation for separating 

different hourly or sectorial components of the emissions, and the overestimation of the spread of the emissions in Airparif 

could yield smaller scores of random uncertainty reduction than if having the actual distribution of the emissions (see section 

4.1.1). However, as long as the observation operators in the inversion systems need to rely on such products, any major 

discrepancies between such products and the actual distribution of the emissions or transport would result in additional 5 

sources of errors during the inversion. Furthermore, the Airparif inventory provides the best knowledge on the spatial and 

temporal distribution of the CO2 emissions at high resolution within the Paris urban area, and all current inventories that 

provide temporal variations at the hourly resolution use combinations of typical temporal cycles. 

The observation operator for Paris could not rely on a better estimate of the emission distribution than the Airparif inventory, 

unless investing in the convolution of this inventory with precise statistics of the spatial and time variations of the 10 

anthropogenic activities (e.g. precise hourly traffic counting) and, to our knowledge, such a product is not available in any 

city presently.   

The sensitivity of the inversion to the biases in the transport model CO2 boundary conditions, the negative correlations 

between the posterior uncertainties in FFCO2 emissions and in the XCO2 background b, and the impact of systematic errors 

demonstrate a rather weak ability of the pixel-based and Gaussian inversion framework to separate the emission plume of 15 

Paris from the signatures of other sources or from errors with spatial structures. However, these signatures sometimes seem 

easy to distinguish from the emission plume of Paris “by eye” (see figure S32). It is particularly true when considering the 

uncertainty in b. Actually, as discussed in this study, the negative correlations in posterior uncertainties, which characterize 

such a problem of separation, arise as soon as there is some overlapping between the signatures of the different control 

parameters. Image processing techniques with pattern recognition could help avoiding such an issue. 20 

Non-Gaussian approaches and account for correlations in the observation errors have already been used in atmospheric 

inversions but it generally still relies on simple assumptions. New inversion techniques, potentially based on image data 

assimilation (Corpetti et al., 2009) could thus help better assimilate XCO2 images. The combination of XCO2 measurements 

with other types of data may critically improve the inversion technique and its potential. There are high uncertainties and 

temporal variability in the ratios of emission factors between CO2 and co-emitted species like CO, NOx, COVs and aerosols. 25 

However, the joint assimilation of such co-emitted species and CO2 data may help constrain the inversion of CO2 

anthropogenic emissions, especially if these data are jointly measured (Rayner et al., 2014). The potential of the spaceborne 

XCO2 imagery could also be increased by its integration within an observation system with constellation of satellites, ground 

based networks and airborne instruments. A decrease of the systematic errors associated with the retrieval of XCO2 data 

from SWIR absorption measurements through an improvement of the inverse radiative transfer models (Buchwitz et al., 30 

2015) would be critical for increasing the potential of the satellite XCO2 imagery. But in parallel, the improvement of 

inversion techniques would thus also be needed to increase the potential of such a satellite observation for monitoring the 

city emissions. 
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Type of setting Option Description 

Control vector Hourly fluxes  ! = !!!! , !!!! , !!!! , !!!! , !!!! , !!"!! , !!!"" , !!!"" , !!!"" , !!!"" , !!!"" , !!"!"" , ! ! 

Flux types ! = !!"#$%&'"(#()'$!! , !!"#.  !"#$%&'.!! , !!"##.  !"#$%&'.!! , !!"#$% !"#$%&.
!!   

        !!"#$%&'(!"" , !!"#$$%#&'!"" , !!""#$"%"&' !.
!"" , !!"#$%&'$( !.

!"" , ! !
 

Observation 

sampling 

TH-CarbonSat Sampling of the 150 km radius circle centred on Paris at 2 km resolution 

TH-LargeSwath Sampling of the full CHIMERE domain at x km resolution where x=4,6,8 or 10 

SIM-CarbonSat Sampling from the simulations by Buchwitz et al. (2013) using a 240 km swath 

Biases in the 

observation 

operator 

Emission map Using !!"#$"%&'( = !!!"#$  instead of !!"#$"%&'(
!"#$  where r = 15 or 45 (in km) 

BC Bias in the Boundary Conditions 

Theoretical 

(system) 

measurement 

error 

CS 1.1 ppm random noise (1 sigma) 

Sent5-1 SWIR 2.1 ppm random noise (1 sigma) 

Sent5-2 SWIR 1.2 ppm random noise (1 sigma) 

CS space varying Simulation of random errors by Buchwitz et al. (2013)  

CS incl syst error Random noise (1 sigma): Root Sum Square of 0.3 ppm and of the simulation of 

random errors by Buchwitz et al. (2013) 

Practical (actual) 

measurement 

error  

Theoretical Consistent with the configuration of the inversion system  

Ensemble  Sampling from the simulation of random errors by Buchwitz et al. (2013) 

Ensemble incl 

syst error 

Sampling from the simulation of random and systematic errors by Buchwitz et al. 

(2013) 

Relevant 

diagnostic of the 

posterior 

uncertainty 

Theoretical A Analysis of the posterior uncertainty covariance matrix A  diagnosed by the 

inversion system (equation 4) 

Theoretical A 

and bias 

Analysis of the posterior uncertainty covariance matrix A  diagnosed by the 

inversion system (equation 4) and of the posterior bias sbias from equation 7 

Practical A and 

bias 

Analysis of the mean and covariance of the sampling of the posterior uncertainty 

from the Monte Carlo inversion experiments 

Table 1. The different options for the configuration of the OSSEs. 
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Name  

 

Control 

vector 

Observation 

sampling 

Biases in the 

observation 

operator 

Theoretical 

(system) 

measurement 

error 

Practical 

(actual) 

measurement 

error 

Relevant 

diagnostic of 

the posterior 

uncertainty 

TH-2 Hourly 

fluxes 

TH-CarbonSat None CS Theoretical Theoretical A 

TH-x-ns (*) 

 

Hourly 

fluxes 

TH-LargeSwath 

at x km res 

None Sent5-ns SWIR Theoretical Theoretical A 

THsect-2 Flux 

types 

TH-CarbonSat None CS Theoretical Theoretical A 

THsect-x-ns (*) Flux 

types 

TH-LargeSwath 

at x km res 

None Sent5-ns SWIR Theoretical Theoretical A 

Bdist-2-r (*) Hourly 

fluxes 

TH-CarbonSat Emission map: 

!!!"#$ 

CS Theoretical Theoretical A 

and bias 

Bdist-x-ns-r (*) Hourly 

fluxes 

TH-LargeSwath 

at x km res 

Emission map: 

!!!"#$ 

Sent5-ns SWIR Theoretical Theoretical A 

and bias 

Bbc-2 Hourly 

fluxes 

TH-CarbonSat BC CS Theoretical Theoretical A 

and bias 

Bbc-x-ns (*) Hourly 

fluxes 

TH-LargeSwath 

at x km res 

BC Sent5-ns SWIR Theoretical Theoretical A 

and bias 

MC-2 Hourly 

fluxes 

SIM-CarbonSat None CS space varying Ensemble  Practical A and 

bias 

MCsyst-2 Hourly 

fluxes 

SIM-CarbonSat None CS incl syst error Ensemble incl 

syst error 

Practical A and 

bias 

ALL-2 Hourly 

fluxes 

SIM-CarbonSat Emission map: 

!!"
!"#$ and BC 

CS incl syst error Ensemble incl 

syst error 

Practical A and 

bias 

Table 2. The different OSSEs conducted in the study and their configuration, sorting the group of experiments from the most 
optimistic to the less optimistic ones. (*): rows associated with ensembles of experiments with x designating 4,6,8 or 10, ns=1 or 2 
and r=15 or 45. Other notations are defined by Table 1. 
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Figure 1. Simulation of XCO2 (in ppm) over the CHIMERE domain used in this study, on October 7th 2010 at 11:00 and at 2 km 
resolution using the operator described in section 2.5, the flux budgets given by Airparif and C-TESSEL and the model initial and 
boundary conditions given by the global LMDZ simulation. The Paris urban area approximately fits within the white circle 
located at the origin (East) of the plume in the middle of the domain. Most of the emissions of Paris are concentrated close to the 5 
centre of the urban area which corresponds to the administrative city of Paris. The longitudes and latitudes of the domain are 
indicated in degrees East and North. 
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Figure 2. Prior and posterior uncertainties in the FF CO2 emissions when controlling the hourly fluxes with the optimistic 
configurations of the OSSEs: results from the 20 inversion days of the TH-2 (a,b) and TH-x-ns (c,d) experiments given as a 
function of the average wind speed over Paris at 700 magl (over the 6-hour duration of the simulation). Prior vs. posterior 5 
uncertainties in 1-hour mean (dashed black line vs. color dots) and 6-hour mean (dotted black segments vs. full black segments) 
emissions in TH-2 (a) and TH-4-2 (c). Correlations between prior (black lines) or posterior (color dots) uncertainties in 2 
consecutive 1-hour mean emissions in TH-2 (b). Prior (black line) and posterior uncertainties (color dots) in 6-hour mean 
emissions in TH-2, TH-4-2, TH-4-1, TH-6-2, TH-6-1 and TH-8-2 (whose posterior uncertainties are given -in red, orange, light 
green, purple, blue, and dark green respectively) (d). Uncertainties are given in % of the emission budget given by Airparif. The 10 
colors of the dots for a given inversion day are given as a function of the hour of the corresponding 1-hour emissions in (a,b,c) or 
as a function of the observation configuration in (d). 
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Figure 3. Prior and posterior uncertainties in the FF CO2 emissions when controlling the fluxes per type of process 
(Res=Residential combustion; Ind=industrial combustion; Tra=transportation; Com=commercial combustion) with the optimistic 
configurations of the OSSEs: results from the 20 inversion days of the THsect-2 experiment given as a function of the average 
wind speed over Paris at 700 magl (over the 6-hour duration of the simulation). Prior vs. posterior uncertainties in sectoral 5 
(dashed black line vs. color dots) and total (dotted black segments vs. full black segments) 6-hour budgets of the emissions (a). 
Correlations between prior (black lines) or posterior (color dots) uncertainties in the emissions for two different sectors (b). The 
colors of the dots for a given inversion day are given as a function of the hour of the corresponding 1-hour emissions. 
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Figure 4. Prior and posterior biases and uncertainties in the FF CO2 emissions when controlling the hourly fluxes with biases in 
the spatial distribution of the emissions: results from the 20 inversion days of the Bdist-2-15 (a-b), Bdist-2-45 (c-d) and Bdist8-2-45 5 
(e-f) experiments given as a function of the average wind speed over Paris at 700 magl (over the 6-hour duration of the simulation). 
Prior vs. posterior biases in 1-hour mean (dashed black line vs. color dots) and 6-hour mean (dashed black line vs. full black 
segments) emissions (a,c,e). Prior vs. posterior uncertainties in 1-hour mean (dashed black line vs. color dots) and 6-hour mean 
(dotted black segments vs. full black segments) emissions (b,d,f). The colors of the dots for a given inversion day are given as a 
function of the hour of the corresponding 1-hour emissions. 10 
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Figure 5. Biases in the FF CO2 emissions when controlling the hourly fluxes with biases in the boundary conditions: results from 
the 20 inversion days of the Bbc-2 (a) and Bbc-8-2 (b) experiments given as a function of the average wind speed over Paris at 700 
magl (over the 6-hour duration of the simulation). Prior vs. posterior biases in 1-hour mean (dashed black line vs. color dots) and 
6-hour mean (dashed black line vs. full black segments) emissions. The colors of the dots for a given inversion day are given as a 5 
function of the hour of the corresponding 1-hour emissions. 

 

 
Figure 6. Theoretical uncertainty reduction for the 6-hour mean emissions in the MC-2 experiments when using the 1st (red), 5th 
(orange), 10th (light green), 15th (purple), 19th (blue) and 25th (dark green) best observation sampling provided by the simulation of 10 
Buchwitz et al. (2013). The results from the 20 inversion days are given as a function of the average wind speed over Paris at 700 
magl (over the 6-hour duration of the simulation). 
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Figure 7. Prior and posterior biases and uncertainty reduction in the FF CO2 emissions given by the statistics on the Monte Carlo 
ensembles of inverted emissions in the MC-2 (a,b) and MC-syst-2 (c,d) experiments with the simulation of the observation 
sampling and errors (including systematic errors in c,d) by Buchwitz et al. (2013). The results from the 20 inversion days are given 5 
as a function of the average wind speed over Paris at 700 magl (over the 6-hour duration of the simulation). Posterior biases in 1-
hour mean emissions (color dots) and prior vs posterior biases in 6-hour mean emissions (dotted black segments vs. full black 
segments) (a,c). Practical uncertainty reduction in 1-hour mean (color dots) and 6-hour mean (full black segments) emissions (b,d). 
The colors of the dots for a given inversion day are given as a function of the hour of the corresponding 1-hour emissions. 

 10 
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Figure 8.  Prior and posterior biases and uncertainty reduction in the FF CO2 emissions given by the statistics on the Monte Carlo 
ensembles of inverted emissions in the ALL-2 experiment with the simulation of the observation sampling and errors (including 
systematic errors) by Buchwitz et al. (2013) and operator biases. Same legends as for the subfigures of figure 7.  

  5 
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Figure S1. Simulation of XCO2 (in ppm) as seen from space over the CHIMERE domain used in this study, on October 7th 2010 at 
11:00 and using the operator described in section 2.5, the flux budgets given by Airparif and C-TESSEL and the model initial and 5 
boundary conditions given the global LMDZ simulation. a) Simulation at 2 km resolution with the sampling corresponding to TH-
CarbonSat ignoring the observation errors. b) Perturbation of (a) using a 1.1 ppm noise (i.e., the CS theoretical measurement 
error). c) Simulation at 4 km resolution corresponding to the 4 km resolution TH-LargeSwath sampling ignoring the observation 
errors. d) Perturbation of (c) using a 1.2 ppm noise (i.e., the Sent5-2 SWIR theoretical measurement error). e) Perturbation of (c) 
using a 2.1 ppm noise (i.e., the Sent5-1 SWIR theoretical measurement error). c) Simulation at 8 km resolution corresponding to 10 
the 8 km resolution TH-LargeSwath sampling ignoring the observation errors. The longitudes and latitudes of the domain are 
indicated in degrees East and North. 
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Figure S2. The 19 240 km-swath passes over the Paris area which provide the most observations within a distance of 100 km from 
the centre of Paris out of 1-year of simulation of the CarbonSat sampling over the globe by Buchwitz et al. (2013) and the 
associated systematic errors. The 100 km radius circle centred on Paris is drawn in black. These passes approximately correspond 
to the 19 “SIM-CarbonSat” best observation samplings for a given inversion day that are defined based on scores of theoretical 5 
uncertainty reductions. Numbers provided on the top left of each subfigure: percentage of the area within a distance of 100 km 
from the centre of Paris sampled by the cloud free pixels (top) and percentage of the area within the satellite swath and within a 
distance of 100 km from the centre of Paris sampled by the cloud free pixels (bottom). 
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Figure S3. Simulation of XCO2 (in ppm) as seen from space over the CHIMERE domain used in this study, on October 7th 2010 at 
11:00 and at 2 km resolution using the operator described in section 2.5, the flux budgets given by Airparif and C-TESSEL and 
the model initial and boundary conditions given the global LMDZ simulation. a) Simulation ignoring the limitation of the satellite 5 
field of view, the cloud cover and the observation errors (same as figure 1). b) Sampling of (a) corresponding to the second 
observation sampling of CarbonSat simulated by Buchwitz et al. (2013) shown in figure S2. c) Perturbation of (b) using a map of 
samples of the random errors corresponding to this observation sampling in the simulation by Buchwitz et al. (2013). d) 
Perturbation of (c) using the map of systematic errors corresponding to this observation sampling in the simulation by Buchwitz et 
al. (2013). The longitudes and latitudes of the domain are indicated in degrees East and North. 10 
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Figure S4. Simulation of the XCO2 response functions of different flux components (in ppm) as seen from space over the 
CHIMERE domain used in this study, on October 7th 2010 at 11:00 and at 2 km resolution using the operator described in section 
2.5, the computations described in section 2.5.4, and the flux budgets given by Airparif or C-TESSEL. a) Response function for the 5 
emissions from Paris between 7:00 and 8:00. a) Response function for the emissions from Paris between 5:00 and 11:00 (i.e., sum 
of the response functions for the hourly emissions from Paris between 5:00 and 11:00). c) Response function for the NEE between 
7:00 and 8:00. d) Response function for the NEE between 5:00 and 11:00 (i.e., sum of the response functions for the hourly NEE 
between 5:00 and 11:00). The longitudes and latitudes of the domain are indicated in degrees East and North. 
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