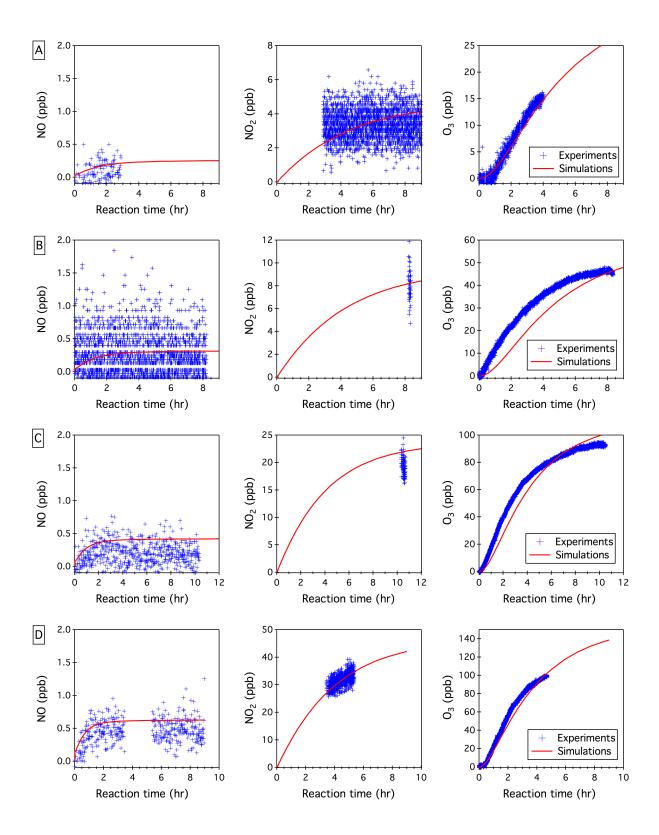
## A Steady State Continuous Flow Chamber for the Study of Daytime and Nighttime Chemistry under Atmospherically Relevant NO levels


Xuan Zhang <sup>1\*</sup>, John Ortega <sup>1\*</sup>, Yuanlong Huang <sup>2</sup>, Stephen Shertz <sup>1</sup>, Geoffrey S. Tyndall <sup>1</sup>, and John J. Orlando <sup>1</sup>

Correspondence to: Xuan Zhang (xuanz@ucar.edu)

<sup>&</sup>lt;sup>1</sup> Atmospheric Chemistry Observation & Modeling Laboratory (ACOM), National Center for Atmospheric Research (NCAR), Boulder, CO, USA

<sup>&</sup>lt;sup>2</sup> Department of Environmental Science and Engineering, California Institute of Technology, Pasadena, CA, USA

<sup>\*</sup> Authors contributed equally to this work.



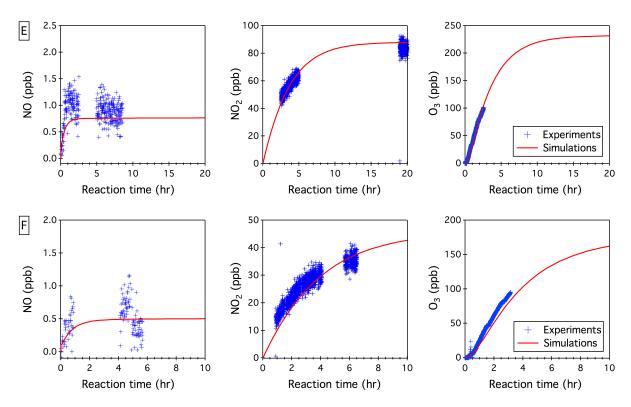



Figure S1. Simulated vs. measured temporal profiles of  $O_3$  and  $NO_x$  in six continuous-flow photochemical blank experiments. It takes in general 16 hours to reach steady state, although the duration of most experiments was in the range of 8 to 10 hours for the preservation of injection sources. One experiment lasted for 20 hours to ensure the establishment of predicted steady state  $NO_x$  concentrations. Inflow  $H_2O_2$  and NO concentrations used for these experiments are (A) 658 ppb and 5 ppb, (B) 1316 ppb and 10 ppb, (C) 3290 ppb and 25 ppb, (D) 3290 ppb and 50 ppb, (E) 6580 ppb and 100 ppb, and (F) 6580 ppb and 50 ppb, respectively.

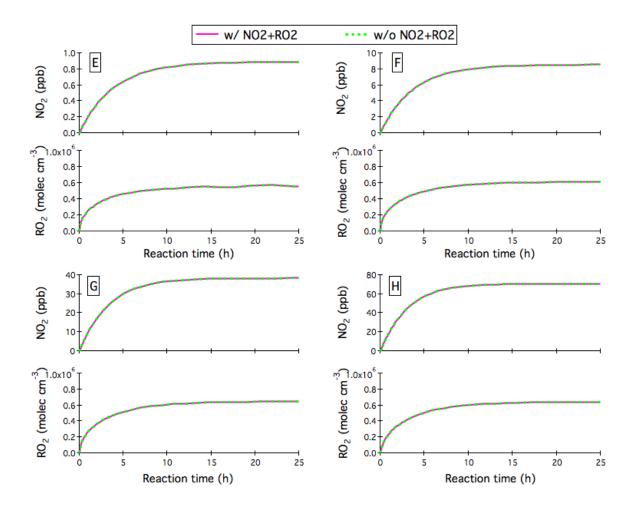
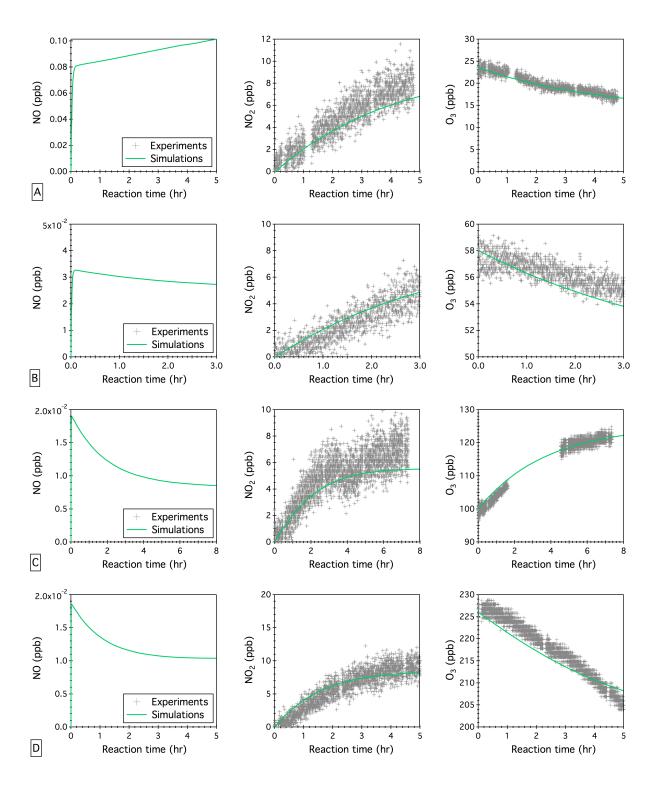




Figure S2. Simulated temporal profiles of ethylperoxy radicals ( $C_2H_5O_2$ ) generated from OH oxidation of ethane in the presence (red) and absence (green) of the  $C_2H_5O_2+NO_2+M\leftrightarrow C_2H_5O_2NO_2+M$  reaction under ~1–80 ppb steady state  $NO_2$  levels in the chamber.



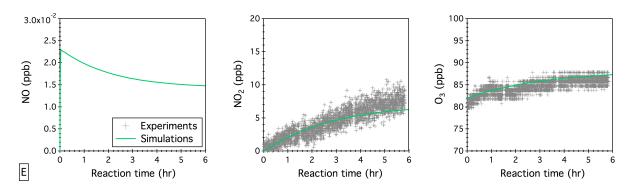



Figure S3. Simulated vs. measured temporal profiles of  $O_3$  and  $NO_x$  in five continuous-flow dark blank experiments. Inflow  $O_3$  and NO concentrations used for these experiments are (A) 22 ppb and 10 ppb, (B) 57 ppb and 10 ppb, (C) 110 ppb and 10 ppb, (D) 225 ppb and 20 ppb, and (E) 85 ppb and 10 ppb, respectively. Rises in the  $O_3$  concentrations in panel (C) and (E) result from the higher  $O_3$  concentrations in the continuous injection flow compared with the initial  $O_3$  concentrations in the chamber.

Table S1. Initial conditions used for modeling and experiments comparison.

| No. | T (K)   | RH (%) | UV lights | H <sub>2</sub> O <sub>2</sub> (ppb) | NO (ppb) | O <sub>3</sub> (ppb) | HCHO<br>(ppb) | C <sub>5</sub> H <sub>8</sub> (ppb) |
|-----|---------|--------|-----------|-------------------------------------|----------|----------------------|---------------|-------------------------------------|
| 1   | 305-306 | 4-5    | √         | 658                                 | 5        | 0                    | 0             | 0                                   |
| 2   | 305-306 | 4-5    | √         | 1316                                | 10       | 0                    | 0             | 0                                   |
| 3   | 305-306 | 4-5    | √         | 3290                                | 25       | 0                    | 0             | 0                                   |
| 4   | 305-306 | 4-5    | √         | 3290                                | 50       | 0                    | 0             | 0                                   |
| 5   | 305-306 | 4-5    | √         | 6580                                | 100      | 0                    | 0             | 0                                   |
| 6   | 305-306 | 4-5    | √         | 6580                                | 50       | 0                    | 0             | 0                                   |
| 7   | 294-295 | 8-9    | ×         | 0                                   | 0        | 22                   | 0             | 0                                   |
| 8   | 294-295 | 8-9    | ×         | 0                                   | 0        | 57                   | 0             | 0                                   |
| 9   | 294-295 | 8-9    | ×         | 0                                   | 0        | 100                  | 0             | 0                                   |
| 10  | 294-295 | 8-9    | ×         | 0                                   | 0        | 85                   | 0             | 0                                   |
| 11  | 294-295 | 8-9    | ×         | 0                                   | 0        | 225                  | 0             | 0                                   |
| 12  | 305-306 | 4-5    | √         | 600                                 | 19       | 0                    | 0             | 19.9                                |
| 13  | 294-295 | 8-9    | ×         | 0                                   | 59       | 0                    | 0             | 10.2                                |

Table S2. A spreadsheet for calculating the  $\rm H_2O_2$  mixing ratio in the injection flow from the infused concentration of  $\rm H_2O_2$  aqueous solution.

| Row 1  | Column A                                                                                                | Column B                  |  |  |  |  |
|--------|---------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|--|
| Row 2  | Constants                                                                                               |                           |  |  |  |  |
| Row 3  | P (Pa)                                                                                                  | 8.60E+04                  |  |  |  |  |
| Row 4  | T (K)                                                                                                   | 298.15                    |  |  |  |  |
| Row 5  | $R (J K^{-1} mol^{-1})$                                                                                 | 8.31                      |  |  |  |  |
| Row 6  | Avogadro constant (molecules mol <sup>-1</sup> )                                                        | 6.02E23                   |  |  |  |  |
| Row 7  | Density (g cm <sup>-3</sup> )                                                                           | 1.11*B9+1.00*(1-B9)       |  |  |  |  |
| Row 8  | Molecular weight (g mol <sup>-1</sup> )                                                                 | 34.01*B9+18.02*(1-B9)     |  |  |  |  |
| Row 9  | H <sub>2</sub> O <sub>2</sub> percent in aqueous solution                                               | 0.01                      |  |  |  |  |
| Row 10 | Chamber parameters                                                                                      |                           |  |  |  |  |
| Row 11 | Volume of chamber (m <sup>3</sup> )                                                                     | 10.00                     |  |  |  |  |
| Row 12 | Desired steady state H <sub>2</sub> O <sub>2</sub> concentration in chamber (ppm)                       | 1.31                      |  |  |  |  |
| Row 13 | In/Out flow rate (L/min)                                                                                | 40.00                     |  |  |  |  |
| Row 14 | Calculation intermediates                                                                               |                           |  |  |  |  |
| Row 15 | Residence time (s)                                                                                      | B11*1000*60/B13           |  |  |  |  |
| Row 16 | Incoming number concentration of H <sub>2</sub> O <sub>2</sub> in chamber (molecules cm <sup>-3</sup> ) | B6*B3*B12*1E-12/B5/B4     |  |  |  |  |
| Row 17 | Incoming molar concentration of H <sub>2</sub> O <sub>2</sub> to chamber (mol L <sup>-1</sup> )         | 1000*B16/B6               |  |  |  |  |
| Row 18 | Target                                                                                                  |                           |  |  |  |  |
| Row 19 | Injection rate (uL/hr)                                                                                  | 60*B17*B13*B8/B7/B9/0.001 |  |  |  |  |