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August 13, 2018

Dear Editor,

Below is a composite file with point-by-point responses to all three anonymous referees and an additional
community member. Following that is the revised manuscript document with all changes tracked from the
originally submitted version. We are confident that you will find the revised document to be well
improved after systematic and comprehensive revisions following all the review period. Please let us
know if you have additional comments or questions.

Best regards,

Alex Huffman
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Point-by-point responses:

Anonymous Referee #1
Received and published: 1 June 2018

Note regarding document formatting: black text shows original referee comment, blue text shows
author response, and red text shows quoted manuscript text. Changes to manuscript text are
shown as italicized and underlined. Bracketed comment numbers (e.g. [R1.1]) were added for
clarity. All line numbers refer to discussion/review manuscript.

[R1.0] This paper builds on existing literature examining unsupervised learning techniques to improve the
interpretation and classification of data obtained with WIBS UV-LIF spectrometers. As shown in
previous publications, Hierarchical Agglomerative Clustering (HAC) can serve as a robust data analysis
method for classification/interpretation of bioaerosol data but the accuracy of technique is highly sensitive
to the choice of clustering linkage and data pre-treatment (e.g., Crawford et al., 2015); this is further
explored in this paper which elucidates how data pre-treatment choices such as choice of fluorescent
threshold and log normalising data may influence clustering accuracy using laboratory samples of known
particle types (Savage et al., 2017) in various synthetic mixtures, and thus the authors present tentative
recommendations of data pretreatment regimes depending on the analysis goals. Overall the paper is well
written and the computational experiments well thought out. The findings here are useful and further
validate the usefulness of Hierarchical Agglomerative Clustering for interpretation of WIBS data. The
results also provide a useful framework for testing Hierarchical Agglomerative Clustering data pre-
treatment regimes for other atmospheric science data problems and neatly demonstrate the potential
pitfalls of not rigorously performing such tests. | recommend publication after the following comments
have been addressed.

[A1.0] Author response: We thank the referee for her/his positive summary of the manuscript and
recommendation to publish after comments are addressed.

Specific comments

[R1.1] L73-77: The authors have conflated some of the terminology relating to unsupervised and
supervised leaning methods. I’m uncomfortable with the use of the term clustering when discussing
supervised methods as clustering specifically relates to cluster analysis. | suggest replacing “clustering
techniques” with “classification algorithms” and “(trains) the clustering algorithm” with “(trains) the
classification algorithm”.

[ALl.1] The referee raises a good point. We changed terminology on page 2 according the referee

suggestions, as listed below:

- L68: “Classification algorithms, including several clustering techniques in particular, have
shown successful results ...”

- L73: “Clustering-technigues-Classification algorithms can be divided ...”

- L76: “This type of method enhances (trains) the elustering-classification algorithm in that the
output eluster-elasses groups are predetermined ...”

[R1.2] L120: Please state the bands and what they relate to.

[Al.2] Additional text was added, as shown below:

“The WIBS collects 3 channels of fluorescence intensity information (FL1, FL2, and FL3),
particle size, and particle asymmetry for each interrogated particle. The bands of excitation and
[fluorescence emission are: FLI (Jex = 280 nm, Aem = 310 — 400 nm), FL2 (Aex = 280 nm, Aem = 420
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— 650 nm), and FL3 (Aex = 370 nm, Jem = 420 — 650 nm). The excitation and emission
wavelengths chosen for each of the 3 fluorescence channels were designed to maximize the
information gained about key biological fluorophores present in a broad range of bioparticles
(Kaye et al., 2005; Pohlker et al., 2012). Early generations of UV-LIF bioaerosol spectrometers
were often interpreted to be able to detect proteins via channels similar to FL1 and products of
active cellular metabolism (i.e. riboflavin and NAD(P)H) via channels similar to FL3, but these
approximations are gross simplifications that confound more detailed investigation of particle

types.”

[R1.3] L198: Can the authors please clarify why they have used log spaced bins. Do you mean that you
have taken a log of the data and it is binned naturally by the discrete nature of the detector resolution (i.e.,
fine bins) or have you binned the data into specific (coarse) log bins? If it is the latter can you please state
what the bins are and can you comment on how forcing the data to in bins may influence the clustering?
My concern here is that too coarsely binning the data may create artificial hotspots due to reduced
resolution and bias the clustering, reducing the capacity to differentiate between particles with similar
properties. Can the authors comment on this and demonstrate the effect this may have by providing an
example for comparison where the data is converted to log space and not binned. I also wonder if the bins
should be normalised by the bin width to further complicate matters.

[A1.3] Aspects of this discussion are presented in L209-212. To summarize in different words,
the data values from a given channel were either used as recorded (i.e. “value”) or as
logarithmically transformed (i.e. “log(value)”), depending on the Scenario. The values were not
forced into specific bins, but rather input into the cluster algorithm using the exact value in either
of these forms. The reason that logged values can provide different results by HAC is that the
distance between points is different in linear space or log space, because the cluster process does
not independently take into account whether a value is as recorded or as log(value). Because
many real-world particle variables can present normal distributions only in log space (i.e.
lognormal size distributions), we explored inputting values in both raw and log forms.

The following sentence was added to the manuscript at L211 for clarity:
“By this process, data values were input into the algorithm as log(value), but without additional

binning.”

[R1.4] L254: Can the authors comment on the environmental applicability of the chosen ratios. | would
suspect that in an urban environment you may expect something closer to a ratio of 1:99 fungal to diesel
particles with the converse being true in a forest environment. How does the clustering perform under
such extreme mismatches?

[Al.4] We originally explored three different ratios of particle concentrations (80:20, 50:50, and
20:80) for each of the three match-ups discussed in Figure 3 in order to show that input ratio can
be important to how the algorithm responds. This was certainly not intended to be exhaustive, and
one could additionally explore more extreme ratios. So to limit the scope of the analysis here, we
chose to present evidence only that the ratio matters, without trying in all cases to predict ratios
that could be relevant to a wider range of ambient environments.

The question the referee brings up is interesting, however, and so we explored 1:99 ratios of each
of the three particle type combinations presented in Figure 3, where the bioparticle is the minority
concentration in each experiment. The results are shown below in a plot/table form identical to
how they are presented in Figure 5. The Bacteria:Diesel and Fungi:Dust separations still
performed quite well (6.6% and 13.5% misclassification, respectively), even with the extreme
mismatch of input concentrations. The Fungi:Diesel separation was poor, however, in a 2-factor
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solution, because the Diesel particles split into both clusters, and the Fungi particles were likely
too low in concentration to influence the cluster properties. We added text including a summary
of these new experiments to the manuscript at L304:

“To extend the investigation of particle input ratio, the three match-ups presented in Figure 3
were investigated using Scenario B with 1% bioparticles and 99% non-bioparticles in each
respective case. In these experiments the Bacteria:Diesel and Fungi:Dust particles separated
relatively well (6.6% and 13.5% misclassification, respectively). The Fungi:Diesel separation
was poor, however, because the Diesel particles were nearly evenly split into both clusters, and
the Fungi particles were too low in concentration to influence the cluster properties. More
investigation is needed to explore how extreme disparities in particle ratio could negatively
influence cluster quality in real-world settings.”

Part A: Individual Clusters Part B: Grouped Clusters Part C: Summary

(Particle Number) (Particle Number) (Cluster Quality)

i Cluster Cluster Total P| Miscl. | Cat.

Eg 1 2588 2625 | 98.6% | Fungi

| o | 1111

o — |Cluster Cluster Total P| Miscl. | Cat.

g 8 1 61 | 6.6% |Bacteria

S0

om 5653

oo Cluster Total P.| Miscl. | Cat.

g3 1 52 | 135% | Fungi

v 5662

[R1.5] L238: Would it be possible to show examples of the cluster centroids for a case where there is
significant misclassification? This may illuminate why the algorithm is failing to correctly attribute
particles. It may also be useful to examine the fluorescence/AF characteristics of each cluster as a
function of size here. A 2D histogram or color density plot could show distinct hot spots that haven’t been
separated correctly and could provide a basis for manual separation based on sensible thresholds.

[AL1.5] To address the referee’s suggestion, we included an additional set of plots here as
suggested. The results below correspond to the match-up between Bacteria 1 and Bacteria 3 using
Scenario B and the 3-sigma threshold, which corresponds to Experiment 22 from Table 2 (65%
misclassification). The two colors of dots in the plots represent clusters 1 and 2. In this case it is
still unclear how to utilize a single threshold to separate between the two particle types here.

In the process of analyzing results of this study we produced countless plots and tables, each of
which showed slightly different angles of the same story. We chose to simplify the results in
many cases to make the manuscript shorter and more manageably readable. We find that the table
of fluorescence intensity and AF median values (Table 2 from original data published in Savage
et al., 2017) often summarizes the differences in the particle types rather well and so were rarely
able to separate using 2D histograms as the referee suggests. One example of these two additional
plots is included here for reference, however.
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[R1.6] L312-315: Can you describe the method for producing the soot as they seem rather large as

compared to that in the study of Toprak and Schnaiter (2013) which were also coincidently found to be
weakly fluorescent in FL1. Perhaps the soot used in this study is larger and more fluorescent than we may
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expect of ambient/urban soot which may cause some of the difficulty in correctly attributing in in some

[AL1.6] The method for aerosolization of particle types discussed was presented in Section 3.2 of
the associated Savage et al., 2017. Specifically, the aerosolization details related to soot are
copied here:

From Page 4284, Section 3.2.3 of Savage et al., 2017: “Dry powders were aerosolized by
mechanically agitating material by one of several methods mentioned below and passing
filtered air across a vial containing the powder. For each method, approximately 2.5-5.0
g of sample was placed in a 10 mL glass vial. For most samples (method P1), a stir bar
was added, and the vial was placed on a magnetic stir plate. Two tubes were connected
through the lid of the vial. The first tube connected a filter, allowing particle-free air to
enter the vessel. The second tube connected the vial through approximately 33 cm of
conductive tubing (0.25 in. inner diam.) to the WIBS for sample collection.”

The referee is correct that the method of producing/aerosolizing particles, including soot, will
bear heavily on the fluorescent properties observed. In particular, different aerosolization
methods are likely to produce very different size distributions, which then will dictate the overall
fluorescence properties. For this reason, we included the following statements in the Savage et al.,
2017 paper:

From Page 4292, Section 4.3: “It is important to note, however, that the method chosen
for particle generation in the laboratory strongly impacts the size distribution of
aerosolized particles. For example, higher concentrations of an aqueous suspension of
particle material generally produce larger particles, and the mechanical force used to
agitate powders or aerosolize bacteria can have strong influences on particle viability and
physical agglomeration or fragmentation of the aerosol (Mainelis et al., 2005). So, while
the absolute size of particles shown here is not a key message, the relative fluorescence at
a given size can be informative.”

The referee points out that the work by Toprak and Schnaiter (2013) presented small soot
particles that also exhibited relatively weaker fluorescence in FL1. This is consistent with the
expectation that fluorescence intensity will scale strongly with particle size. Differences in
particle size could also impact clustering separation properties somewhat, and so further
investigation of clustering using multiple narrow size ranges of different types of particles could
further explore this process. This exhaustive process was beyond the scope of this work, however.

To make sure these points are clear in the revised manuscript we have added the following text at
L327:

“Itis also important to note here that the method of aerosolization for each particle type plays an
important role in the observed size distribution and so results involving laboratory particles
should be interpreted with this in mind. Observed fluorescence properties, in contrast, are
expected to be conserved at a given particle size and intrinsically related to particle

composition.”

[R1.7] L384: Would we expect to be able to differentiate between 2 different particles of the same type
with such coarse spectral resolution?

[AL1.7] The referee’s implied point is correct. No, we would not expect to be able to separate
between very similar types of particles using such coarse resolution as is available in the WIBS.
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Frankly, the fact that HAC paired with WIBS data was able to separate as well as it did was
somewhat remarkable and surprising. To make the point clearer, we added text at the end of that
paragraph as follows at L390:

“...separating more finely to quantify differences between types of individual biological particles
is Hikehyto-be-significantly more challenging and not likely to be possible in most situations.”

[R1.8] L415: Again | wonder if the use of too coarsely separated bins may compromise the 9-sigma
thresholding and cause misclassification?

[A1.8] This question also loops back to [R1.3] and stems from a miscommunication. Values of
the five WIBS data parameters were not separately binned (either during the logging process or
when used as recorded), but are input into the cluster algorithm in the same spacing provided in
the raw output of the instrument. The bin resolution is therefore limited by the WIBS optics and
PMT settings.

Further, fluorescence intensity is relayed by a integer units between 0 and 2047, and resolution is
not a limiting factor. For example, see Figure 5 of the Savage et al. 2017 paper. Biological
particles typically exhibit median fluorescence intensity much higher than non-biological
particles, thus using different threshold strategies can help separate particle classes from one
another by this strategy.

[R1.9] L514: Can the authors comment on the applicability of their findings to new high resolution UV-
LIF instruments that are beginning to become commercially available. Some of these new instruments
have significantly more channels/greater fluorescent resolution than the WIBS.

[AL1.9] This is a helpful suggestion. To extend the applicability of results, the text was amended
as follows:

“Results here are enly-generally extendable to other UV-LIF instruments, however, whether they
offer single or many channels of emission spectral resolution, in that the methods of particle pre-
preparation and the impact of particle number ratio are likely to relay similar effects on
clustering strategy.”

[R1.10] Technical corrections

L63: instruments, not instrument.

grains, not gains.

Suggest “Experimental and Computational Methods”
“each of the three”

“was the best”

[A1.10] All typos corrected.
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Anonymous Referee #2
Received and published: 3 June 2018

Note regarding document formatting: black text shows original referee comment, blue text shows
author response, and red text shows quoted manuscript text. Changes to manuscript text are
shown as italicized and underlined. Bracketed comment numbers (e.g. [R1.1]) were added for
clarity. All line numbers refer to discussion/review manuscript.

[R2.0] This manuscript discusses application of Hierarchical Agglomerative Clustering (HAC) to analysis
of data collected using the Wideband Integrated Bioaerosol Sensor (WIBS4A). While real-time detection
of bioaerosols has been quite well controlled, the analysis and classification is still challenging and vital
problem. Therefore, investigation and improvements in this area are very important and crucial for
understanding the abilities and limitations of LIF aerosol detectors. The manuscript is well written and in
detail reveals important problems of fluorescence data analysis of bioaerosols. | recommend presented
manuscript to publication, however some corrections and further explanations to the following remarks
will be appreciated:

[A2.0] Author response: We thank the referee for her/his positive summary of the manuscript and
recommendation to publish after comments are addressed.

[R2.1] 1. The techniques of single particle detection using LIF devices, like WIBS, reached relatively
high reliability and perfection. The device collects data in real time, on the other hand the presented
results are offline. The data analysis takes a long time. Finally, the standard methods like particle
collection on tape is still competitive with LIF. My question is: Did the authors try or are going to apply
real-time aerosol data analysis?

[A2.1] I think the statement that “LIF devices ... reached relatively high reliability and
perfection” is already an very optimistic statement, but | agree that when operated and analyzed
properly the data can often be useful. The referee’s suggestion about real-time data analysis is an
interesting idea that has been discussed. We are working on this type of analysis from a different
angle and with respect to a different class of instruments, but we have not had the ability to
investigate real-time analysis strategies with respect to WIBS data. This would be a worthwhile
project, but is outside the scope of what we were aiming to accomplish in this study and would
likely require dedicated project funding.

[R2.2] 2. L67 - principle or principal component analysis?

[A2.2] In this case the word “principal” is the correct one. | often get this word confused with
“principle” and have to look up the definitions to make sure I’m correct.

[R2.3] 3. L116 — “The WIBS collects
3 channels of fluorescence intensity. . ...” — collect channels or collects fluorescence intensity in 3
channels?

[A2.3] This was indeed poor grammatical construction. The sentence has been changed to:
“The WIBS collects information about-3-channrels-of fluorescence intensity-ifermation in three
channels ...”

[R2.4] 4. L170 —*“. . .both saturating and non-fluorescent particles were retained. . .” — Did authors collect
the particles?

Page 8 of 16



296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342

[A2.4] We did not physically collect the particles. The wording here was unfortunately confusing.
In this case we have “retained” the data in the analysis process by not removing particles based
on certain attributes. To clarify, the word “retained” was changed to “analyzed” as shown here:
“... both saturating and non-fluorescent particles were analyzed retained ...”

[R2.5] 5. L370 .. .gains. ..” or grains?
[A2.5] This is a typo; “gains” was corrected to “grains”.

[R2.6] 6. L494 - ..fluorescence and non-fluorescent particles.. - The phenomenon should not be compared
with the property.

[A2.6] This typo was changed for the discussion version of the manuscript to be “fluorescent and
non-fluorescent particles.”

[R2.7] 7. L 424 and further — I think that term “synthetic mixtures” for recorded numerical data is
confusing and should be corrected. Firstly, it sounds like a chemical synthesis process. Secondly, the final
result of clustering should be the same and independent whether the particle data are sorted or not.
Otherwise, the order (sequence) of detected particles would change final result. | think that actual
meaning of used data is well described in L298-300 (*...subset taken from the pool of particles..”.

[A2.7] The term “synthetic mixtures” is indeed confusing terminology, and this is a point raised
also by Referee #3 (i.e. [R3.1], [R3.3], and [R3.6]). Referee #3 suggested the term
“computational simulations” or “simulated mixtures” among several possibilities, and we have
changed the text in a variety of places through-out the manuscript to reflect this new terminology.

[R2.8] 8. L 426 — “analytically synthesized” — analysis has opposite meaning to synthesis should be
corrected

[A2.8] Here the term was changed to “computationally simulated.”
[R2.9] 9. L 428, 431, 434, 436, — “. . .mixture synthesized. . .” — see point 7.

[A2.9] The word “synthesized” was changed to “simulated” in each of these cases and all others
within the manuscript.

[R2.10] 10. The authors compared clustering ability using selected small groups of substances. It would
be interesting to see the clustering output for all 14 types together. Why it was not presented?

[A2.10] This additional experiment might be interesting, but it is unlikely to add anything to the
general nature of the conclusions. The 14 types of particles assembled for these match-up
experiments (i.e. Sections 4.1 — 4.3) were meant to be individually instructive, but not to
represent the entirety of the types of particles one might see in a more complex, ambient
environment. So collecting all 14 into one experiment would represent another experimental
combination, but would in itself not be any more relevant than the individual simulations already
discussed.
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Anonymous Referee #3
Received and published: 9 May 2018

Note regarding document formatting: black text shows original referee comment, blue text shows
author response, and red text shows quoted manuscript text. Changes to manuscript text are
shown as italicized and underlined. Bracketed comment numbers (e.g. [R1.1]) were added for
clarity. All line numbers refer to discussion/review manuscript.

[R3.0] This paper describes methods and results which should help improve the interpretation and use of
data obtained with UV-LIF instruments such as the WIBS. The WIBS measures light scattering, a light
scattering asymmetry factor, and fluorescence in three channels. Fielded instruments with data rates that
can exceed hundreds of particles per minute are available. This paper uses a large set of WIBS data
measured for individual materials (Savage et al. 2017) to evaluate different preprocessing procedures for
analysis of such data. Mathematical simulations of externally mixed particles of known composition are
studied. The findings should be useful not only for understanding WIBS data, but more broadly in
applying Hierarchical Agglomerative Clustering to some other problems in aerosol analytical chemistry. |
recommend publication. However, | request that several confusing items be made less confusing.

[A3.0] Author response: We thank the referee for her/his positive summary of the manuscript and
recommendation to publish after comments are addressed.

[R3.1] The use of the term “synthetic mixtures” (L31-32, L424, 707, L734) is confusing. Chamber studies
with synthetic mixtures of real aerosols and real gases are not uncommon in aerosol science. A google
search of “synthetic mixture” provides discussions of various real “synthetic mixtures.” 1 only looked at
the first 8 or so items in that search, but | saw none with the meaning used in this paper. The online
dictionaries | saw do not indicate this use of “synthetic” (which as far as | can tell indicates something
about numerical or computational). Synthetic organic chemists make real chemicals. If “synthetic
mixtures” is used for the simulated data investigated here, what terminology is left for researchers to use
when they make real synthetic mixtures of aerosols in a chamber and investigate changes in clusters as
time passes and as particles agglomerate? | do not see how a reader can see from the abstract or even well
into this paper that “synthetic” is being used in this highly non-standard way, and that Savage et al., 2017
did not measure mixtures of particles. The “synthetic mixtures” are actually numerical (or mathematical)
simulations of the WIBS the data that should be obtained for dilute mixtures of particles. Real mixtures of
particles can form agglomerates, and some may agglomerate quickly unless they are sufficiently dilute.

[A3.1] This is a good point that we had not previously considered. The same point was raised by
Referee #2 [R2.7, R.2.8, and R2.9]. We removed all use of the term “synthetic mixtures” and
changed most instances of the term to “simulated mixtures.” Note that this comment also impacts
comments [R3.3] and [R3.6].

[R3.2] L 20-22 (Abstract). “Here we show for the first time a systematic application of HAC to a
comprehensive set of laboratory data collected using the wideband integrated bioaerosol sensor (WIBS-
4A) (Savage et al., 2017).” Suggest change to: “Here we show for the first time a systematic application
of HAC to a comprehensive set of laboratory data collected for individual particle types using the
wideband integrated bioaerosol sensor (WIBS-4A) (Savage et al., 2017). Here the WIBS data for single-
composition aerosols is combined numerically to generate data to simulate WIBS values for mixtures of
aerosol.”

[A3.2] The text of the abstract was modified as suggested.
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[R3.3] L31-32 (Abstract): “Lastly, six synthetic mixtures of four to seven components were analyzed.”
Might be changed to: “Numerical simulations of mixtures of four to seven components were HAC
analyzed.”

[A3.3] The text of the abstract was changed as requested to:
“Lastly, six numerical simulations of synthetic-mixtures of four to seven components were

analyzed using HAC.”

[R3.4] L424: “Investigating cluster ability to separate complex synthetic mixtures” Might be changed to:
Investigating the capability to separate particles in simulations of complex synthetic mixtures

[A3.4] The sub-title was changed along the suggested lines to:
“Investigating the capability-cluster-abitity to separate particles in simulations of complex
synthetic-mixtures”

[R3.5] L426-429: “To better simulate real-world scenarios, we analytically synthesized six mixtures of
particles by pooling existing data from selected particle types in prescribed ratios. Each mixture was
synthesized to roughly represent a different hypothetical mixture of particles that might be expected.”
“Analytically” suggests equations or functions were used in obtaining the data for the mixtures. Isn’t
“numerically” or “computationally” what is meant?

[A3.5] The word “analytically” was changed to “computationally.”

[R3.6] L426-429 might be changed to: “To better simulate real-world scenarios, we numerically
simulated six mixtures of particles by pooling existing WIBS data from selected particle types in
prescribed ratios. Each simulated mixture was assembled to roughly represent a different hypothetical
mixture of particles that might be expected. Also, the particles in each simulated mixture are assumed to
be so dilute that any agglomeration is negligible. ” Also, a significant fraction of readers read the abstract
and then look at the figures to see what the results will be. Adding clarifying words to the figure captions
and tables would be useful.

[A3.6] These are good suggestions that add clarity to the text. The section was re-written with the
suggested text. Words “computational” or “numerical” added to captions of several figures and
tables to increase clarity, as suggested.

[R3.7] [a] | don’t know what “normalized to particle size” means here. Please clarify, possibly with an
equation. Please also give the ranges of error in particle sizes expected. [b] Why is scenario D worse than
B? I think it is because D adds noise to the FL signals, making them less informative by decreasing the
S/N. This added noise occurs in the elastic scattering measurements, and also results from the
approximations used in estimating solutions to the inverse problem for size (with unknown shape,
orientation and refractive index). If the scattering measurement and the solution to the inverse problem
were perfect, then D and B should give very similar results, at least for spherical particles and some
methods of normalizing to particle size and shape. It may be useful to cite a paper or data with WIBS
measurements of size and fluorescence for uniformly-sized fluorescent PSL. For a single size of PSL, do
plots of the WIBS-measured scattering and fluorescence fall on a line or are they spread more randomly?
Even for a spherical PSL particle, with known refractive index, would you suspect that the noise is large
enough to make D less useful than B?

[A3.7] To clarify the first question [a], additional text was added to L207:
“...fluorescence intensity was normalized to particle size (by dividing fluorescence intensity value
by light scattering signal when a particle interacts with the diode laser beam) in order to ...”
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With respect to the second question [b], the referee is likely correct that results for Scenario D
(fluorescence normalized) are worse than for Scenario B (fluorescence not normalized), because
for Scenario D additional uncertainty with respect to size is propagated into the intensity value.
Normalizing in this way would also propagate uncertainty for field measurements, and so given
the poorer results of the tests analyses represented here we chose not to further explore
parameters represented by Scenario D.

[R3.8] Can the authors say anything about the length of times bacteria or fungal spores might last in an
urban environment before a significant fraction of the bioparticles combine with soot, and how that might
affect the usefulness of the WIBS? I’ll be very interested to see the results when (sometime in the future)
the authors inject bacteria or fungal spores into a chamber, add soot particles, use the WIBS to sample
with time, and then repeat the some of the analyses in this paper with the results given as a function of
time.

[A3.8] This an interesting question, but we do not have a good answer to the hypothetical thought
about atmospheric lifetimes of these particles at this point. It would be great to explore external
mixing of different particles types in the future in order to see how these mixtures could further
influence fluorescence and particle size properties observed by instruments like the WIBS. This is
beyond the scope of the experimental process for now.

[R3.9] L23: In abstract: “ratio” of what? In the text, “ratio” first appears in “distance ratio.” Suggest
change first use of “ratio” in abstract to “ratio of particle concentrations.”

[A3.9] Text edited as requested.
[R3.10] L117: please add wavelength ranges of FL1 to FL3. Aim for a little broader set of readers.

[A3.10] This was also requested by Referee #1. Additional text was added, as shown here:

“The WIBS collects 3 channels of fluorescence intensity information (FL1, FL2, and FL3),
particle size, and particle asymmetry for each interrogated particle. The bands of excitation and
[fluorescence emission are: FLI1 (Aex = 280 nm, Aem = 310 — 400 nm), FL2 (Aex = 280 nm, Aem = 420
— 650 nm), and FL3 (Aex = 370 nm, Aem = 420 — 650 nm).”

[R3.11] L171: replace “will be” with “were”.

[A3.11] The phrase “will be” changed to “is” to match correct tense.
[R3.12] L199: Suggest change to: Ambient particle number vs size distributions can often be well
approximated by lognormal distributions (citation), although specific subsets of particles, such as
bacteria, pollens or fungal spores, may not exhibit lognormal distributions.

[A3.12] Text revised as suggested.

[R3.13] L245: “placed into a conceptual pool”? How about, “A subset of the particles were selected
randomly for analysis”?

[A3.13] Text was changed, as suggested, to:
“For each trial, a subset gwewnumbepof particles from each materlal type was selected randomlv
for HAC analysis pla
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[R3.14] L258-259: “diesel soot particles . . . commonly observed . . .” Is this referring to WIBS
measurements? Please provide a citation(s).

[A3.14] The text as originally written was indeed over-stated and confusing. The text has been
revised to the following:

“The first two trials include diesel soot particles, because light-absorbing carbon aerosol they-are
commonly observed in almestal-aerosol atmespheric samples with even-minbmal-anthropogenic
influence (Bond et al., 2013) ...”

[R3.15] L299-300: Do you mean: “In each case the input particles are a random subset . . .”

[A3.15] Yes, the words “number of” was inserted incorrectly here and the typo was corrected as
suggested by the referee.
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Public Comment- Simon Ruske (simon.ruske@student.manchester.ac.uk)
Received and published: 3 June 2018

Note regarding document formatting: black text shows original referee comment, blue text shows
author response, and red text shows quoted manuscript text. Changes to manuscript text are
shown as italicized and underlined. All line numbers refer to discussion/review manuscript.

[Public Comment] The study presented is an extremely well structured and written investigation into the
use of Hierarchical Agglomerative Clustering for classification of biological aerosol using a UV-LIF
sensor, and will make an excellent addition to the literature upon publication.

[Author Response] Simon, thanks for taking the time to read and comment on the manuscript. We
appreciate the useful comments, which will help improve the quality of the manuscript. We
respond to each comment in detail below.

However, the authors may have made a small error [L161-L.162] where they state that the conclusions for
Ruske et al. (2017) were for ambient data, whereas in the abstract they correctly state that the study was
on standardised laboratory particles [L19-L20]. Please could you correct this prior to final publication.

| apologize for this mistake. | am not sure where this error came in our writing process, but |
removed the incorrect statement, as requested: “Their conclusions, however, were based on
ambient field data using unknown particle types and did not investigate laboratory generated
particles of known origin.”

In addition the authors may wish to consider the following comments prior to publication.

[L78-L79] Would it be possible to clarify the starting conditions for supervised learning you are referring
to? Hyper-parameter selection is an extremely important consideration for neural networks, but other
supervised techniques such as decision trees and ensemble methods do exist where low classification
error can be attained without providing the algorithm with any initial conditions other than the training
data.

This may have been a bit of a miscommunication. We do not deal with any supervised learning
methods in this manuscript. We trust your team as the experts in this area. Nicole simply wanted
to provide a few sentences of general contrast between supervised and unsupervised methods.
That is also why we pointed to your 2017 paper in this section. We have also included citation of
your manuscript currently being reviewed in AMT.

[L84-L85] Is it necessary to apply unsupervised techniques to assess the advantages of supervised
methods? Do you mean that supervised techniques require laboratory data of known types to assess their
advantages? A very important disadvantage of supervised techniques is that they rely on adequate training
data, and it is not clear at this point how much training data will be required to adequately represent an
ambient environment, which is the point I think you are alluding to here.

This is the way | understand some of the pros/cons of supervised and unsupervised. | agree that
the community (probably you first) will continue to lean about how this all works together and
how well lab-generated data can be useful to train supervised data algorithms. As you well know,
the differences between nicely behaving lab particles and more complicated particles collected in
the field confounds most areas of aerosol science to some degree. So these problems will not
necessarily be trivial to solve, but I think collectively we are all learning little pieces that will
help.
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[L186 - 187] Does the z-score rely on the assumption of normality? The z-scores of a normal random
variable will be normally distributed whereas the z-scores of a non-normal random variable will be non-
normally distributed. Applied to any data set, regardless of distribution, the resultant variables after
z-scoring will have mean of 0 and standard deviation of 1. Is the purpose of standardising the data to
prevent one of the variables from dominating in the analysis or to produce normally distributed data?

Thanks to your prompting, we looked into these details and learned a bit more, which has been
helpful to us. You are right that the way we characterized the z-scoring process was not correct.
Talking back and forth with the university statistician, we now understand that values can indeed
be input scaled to a normal distribution or not. We chose to standardize our variables to a mean of
0 and a variance of 1 so that the output variables would be on comparable scales, but this is also
not the same as rigorously normalizing them in the rigorous sense. As a result, we have removed
the statement you correctly indicated was inaccurate and updated the sentence as follows:

Original text: “Standardlzatlon using the z- score method compares results to a normal (Gaussian)
populatlon g ;

Updated text: “Standardization using the z-score method compares results to a normal (Gaussian)
population, and we have chosen to standardize our variables to a mean of 0 and a variance of 1 so
that the output variables would be on comparable scales.”

[L203] It would be worth noting that in Crawford et al., 2015, there are particles for which negative
measurement of fluorescence was recorded. The option of logtransformations may have been overlooked,
as the logarithm is undefined for negative values. This was not intended to imply an assumption of
normality, although this assumption has been stated explicitly in Robinson et al., 2013. In these cases
would you recommend translating the fluorescence measurements to a range bounded below by 1, or
alternatively would it be more appropriate to reject measurements for which the fluorescence produced
was negative? It is also important to note that even if the data is log transformed, the data will still have a
finite range due to the saturation point on the detector, and hence the data will have a truncated normal
distribution rather than a normal distribution, and depending on how often saturation occurred there may
still be a peak to the right hand side of the distribution. It is however, perfectly acceptable to apply HAC
when the assumptions for best performance are not met as stated in Norusis, 2011.

My understanding is that negative fluorescence values can be observed after subtracting some
threshold value from the fluorescence intensity data. Instead of subtracting the data and looking
only at positive values, we did the same thing by filtering the data at several discreet thresholds.
This gets around the problem of negative values. In any case, we looked at three thresholding
scenarios (Table 3), i.e. no threshold, 3 sigma, and 9 sigma. The ultimate result is that we found
the most consistently positive results to be as a result of 3 sigma filtering, but this could be
different in other situations. You are correct about the fact that particles that exhibit saturation of
the detector in any channel will truncate a normal distribution.

[L222] How often did the CH index conclude that there were 2 clusters? When the CH index concluded a
number of clusters other than 2, how much of an impact did this have on the quality of the results? Were
the two cluster solutions always the best solution?

We did not explore solutions that had more than 2 solutions, simply as a matter of limited time.
There are certainly many scenarios in which individual bioparticle types (i.e. pollen, in many
instances) can split into two reasonable clusters by themselves, and so independently allowing 3
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or more cluster solutions could significantly improve results in many cases. We just didn’t have
the time to do this systematically, and so we chose to limit analysis to only 2 clusters in all cases.
To help clarify this point, we added text at:

L227: “In order to reduce the length and complexity of discussion, analysis of results in Sections
4.1-4.3 was limited to using cluster products only from the 2-cluster solution. In some cases a 3-
cluster solution may have produced higher quality results, but these cases were not investigated.”

[L267-270 & Figure 3] The HAC algorithm may not necessarily output clusters in the same order that
they were inputted as demonstrated in Figure 5. In Figure 3 for preparation strategy A for bacteria and
diesel for the 80:20 ratio, is it possible to attain 80% misclassification for a two cluster solution? Perhaps
I have misunderstood, but would this not mean that there were more diesel particles in the bacterial
cluster and more bacterial particles in the diesel cluster, and hence a better classification error could be
attained simply by swapping the labels on the clusters?

You are correct that the order of cluster numbering is unrelated to the order of particles input and
so the source of individual particles must be known already, but it is not possible to improve the
results by swapping labels in the way you suggest. We independently tracked the source of each
particle assigned to each cluster so we can rigorously calculate which particles were incorrectly
assigned. The numbering of the clusters is arbitrary and the naming was assigned simply as a
function of which particle was assigned in the largest concentration.

[Figure 3 & Table 2] Could you extend the results presented in Figure 3 to include at least one biological
versus biological matchup? | notice when considering matching ups which contained only biological
material the classification error is much higher. | believe that by not standardising the data this would
cause the fluorescence to dominate more in the analysis. In the case of attempting to discriminate between
fluorescent and non-fluorescent particles, this may be advantageous. However, in the case of attempting
to discriminate between two different types of biological particle, it may be advantageous to give the size
and shape measurements more weight, and hence it would be better in these cases to standardise the data.
In addition other instruments such as the WIBS-NEO will have fluorescence measurements over a much
larger range and fluorescent measurements are recorded often above 10000. What would the implication
then be when not standardising the data in this case?

This is another interesting idea, but it was beyond the scope of what we were able to accomplish
in the relatively short time we had available for this project. We chose to focus on the ability to
separate bio from non-bio particles. While we didn’t explore all Scenarios (e.g. A-F) for
biological particles, we chose to look at bio-bio separations using Scenario B (i.e. Tables 2 and
3).
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Abstract
Hierarchical agglomerative clustering (HAC) analysis has been successfully applied to
several sets of ambient data (e.g. Crawford et al., 2015; Robinson et al., 2013) and with respect
to standardized particles in the laboratory environment (Ruske et al., 2017; Ruske et al., 2018).
Here we show for the first time a systematic application of HAC to a comprehensive set of
laboratory data collected using the ideband i/ntegrated
ioaerosol sSensor (WIBS-4A) (Savage et al., 2017). The impact of ratio
on HAC results was investigated, showing that clustering quality can vary
dramatically as a function of ratio. Six strategies for particle pre-processing were also compared,
concluding that using raw fluorescence intensity (without normalizing to particle size) and
inputting all data in logarithmic bins consistently produced the highest quality results
. A total of 23 one-on-one matchups of individual particles types were
investigated. Results showed cluster misclassification of <15% for 12 of 17
experiments using one biological and one non-biological particle type each. Inputting
fluorescence data using a baseline + 3o threshold produced lower misclassification than when
inputting either all particles (without fluorescence threshold) or a baseline + 9c threshold. Lastly,
Six mixtures of four to seven components were analyzed
. These results show that a range of 12-24% of fungal clusters were consistently
misclassified by inclusion of a mixture of non-biological materials, whereas bacteria and diesel
soot were each able to be separated with nearly 100% efficiency. The study gives significant
support to the application of clustering analysis to data from commercial UV-LIF instruments
being commonly used for bioaerosol research across the globe and provides practical tools that
will improve clustering results within scientific studies as a part of diverse research disciplines.
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1. Introduction

Particles of biological origin, or bioaerosols, make up a substantial fraction of atmospheric
aerosol and have the potential to influence environmental processes and to negatively impact
human health (Després et al., 2012; Douwes et al., 2003; Frohlich-Nowoisky et al., 2016;
Shiraiwa et al., 2017). In order to understand the impact bioaerosols, such as pollen, spores, and
bacteria, play on various systems, it is important to be able to identify and characterize these
biological particles in the atmosphere. One common method for the detection of bioaerosols is
ultraviolet laser/light-induced fluorescence (UV-LIF), because it can provide particle detection in
near real-time and at high particle size resolution (Fennelly et al., 2017; Huffman and Santarpia,
2017; Sodeau and O'Connor, 2016). Many commercial UV-LIF instruments have become
available for bioaerosol detection, but all of these techniques are challenged with the need to
differentiate between small differences in fluorescence properties in order to and
quantify biological aerosols from non-biological material. Recently commercialized instruments
show improved ability to discriminate between particle types, for example by utilizing multiple
excitation sources or other particle data (e.g. size and shape). UV-LIF techniques are inherently
limited, however, by the broad nature of fluorescence spectra and so instruments face a
ubiquitous problem of poor selectivity between particle types. By applying improved data
thresholding and particle classification techniques, particle characterization can be further
improved, but important limitations still remain (Hernandez et al., 2016; Huffman et al., 2012;
Perring et al., 2015; Savage et al., 2017; Toprak and Schnaiter, 2013; Wright et al., 2014). One
strategy to improving quality of differentiation between particles types has been to collect full,
resolved emission spectra, each at multiple excitation wavelengths. This leads to high
instrumental purchase cost, and such instruments have not been widely applied or
commercialized (Huffman et al., 2016; Kiselev et al., 2013; Pan et al., 2009b; Ruske et al., 2017;
Swanson and Huffman, 2018). Most commercial UV-LIF instruments for bioaerosol detection
utilize 1-2 excitation wavelengths and integrate fluorescence signals into a small number of
emission bands. To extend the improvements in particle classification for these commercial UV-
LIF instruments, a number of multivariate analysis techniques have been applied to ambient
particle analysis. The most common of these techniques include principal component analysis,
factor analysis, and cluster analysis strategies.

lustering techniques; in particular, have shown successful results in providing unbiased
insights to the classification of bioaerosols (Crawford et al., 2015; Pinnick et al., 2013; Robinson
et al., 2013; Swanson and Huffman, 2018).

Cluster analysis is a broad class of data mining methods in which data objects placed in the
same group (or cluster) are more similar to one another than to those objects placed in other
groups. can be divided into two central models:
(1) supervised and (2) unsupervised learning. Both models have associated advantages and
disadvantages. Supervised learning methods allow the “training” of data and grouping to better
reflect the data observations (Eick et al., 2004; Ruske et al., 2017; Ruske et al., 2018). This type
of method enhances (trains) the algorithm in that the output

are pre-determined rather than discovered, as is the case for unsupervised methods.
Supervision requires the user to have appropriate starting conditions to put into the model, which
are often difficult or impossible to determine. Supervised training methods are also much more
time-efficient compared to unsupervised methods, which is important when analyzing ambient
datasets where particle counts (individual objects) can be greater than 10° (Ruske et al., 2017). In
contrast, unsupervised training methods present less bias and can adapt to unique situations,
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because the resultant clusters are based on models that have not been previously trained. To
access some of the advantages of supervised methods, however, it is to first
apply unsupervised models to wide collections of laboratory data of known particle types in
order to gain insight on how these models interpret data inputs and to learn how algorithms can
best be trained (Ruske et al., 2017).

Hierarchical agglomerative clustering (HAC) is an unsupervised learning method that has
been most commonly applied for bioaerosol related studies (e.g. Crawford et al., 2016; Crawford
et al., 2015; Gosselin et al., 2016; Pan et al., 2009a; Pan et al., 2007; Pinnick et al., 2013; Pinnick
et al., 2004; Robinson et al., 2013; Ruske et al., 2017; Ruske et al., 2018). Other unsupervised
clustering techniques, such as the k-means clustering method, have shown poor results when
applied to ambient data sets because the number of clusters used to represent the data are
required a priori, and this information is usually unknown prior to analysis (Ruske et al., 2017).
There are several different HAC methods or linkages including: Single, Complete, Average,
Weighted, Ward’s, Centroid, and Median (Crawford et al., 2015; Mllner, 2013). Ruske et al.
(2017) compared a variety of HAC linkages and determined that Ward’s linkage had a higher
percentage of correctly classifying particles, in comparison to other HAC methods.

Recently, Savage et al. (2017) published a comprehensive laboratory study applying the

ideband iIntegrated 5Eioaerosol sSensor (WIBS-4A) to a large and diverse set of biological
and non-biological aerosol types. Following on that work, the study presented here utilizes those
data as inputs to evaluate and challenge the HAC strategy of particle differentiation using the
Ward’s linkage of unsupervised clustering. Previous HAC studies have focused primarily on (a)
the analysis of simple particle standards (i.e. fluorescent microbeads) and (b) clustering of
particles from ambient data sets. There have been relatively few published attempts to
differentiate between biological particles and interfering particles by clustering methods using
controlled laboratory UV-LIF data or to separate different kinds of biological particles from one
another. Presented here are results of the HAC method applied to data from a comprehensive
WIBS laboratory study showing that clustering can dramatically improve removal of non-
biological particle types from data sets if operated under appropriate conditions.

2. Experimental and Comput Methods
The WIBS-4A (Droplet Measurement Techniques, Longmont, CO) is a commonly used UV-
LIF based instrument for the detection and characterization of biological particles. The
instrument collects particles in the size range 0.8 — 20 um and interrogates them in real-time as
particles flow through the path between optical sources. The WIBS collects
fluorescence intensity (FL1, FL2, and FL3), particle
size, and particle asymmetry for each interrogated particle.

The excitation and emission
wavelengths chosen for each of the 3 fluorescence channels were designed to maximize the
information gained about key biological fluorophores present in a broad range of bioparticles
(Kaye et al., 2005; Pohlker et al., 2012).

For more information on the design, operation, and calibration of this instrument see e.g.
the manuscripts listed here and references therein (Foot et al., 2008; Healy et al., 2012a; Healy et
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al., 2012b; Hernandez et al., 2016; Kaye et al., 2005; Perring et al., 2015; Robinson et al., 2017;
Savage et al., 2017; Stanley et al., 2011).

All aerosol materials utilized have been listed previously in Table 2 shown by Savage et al.
(2017), where an overview of size and fluorescence properties of particles utilized for this study
are also reported. No additional laboratory experiments were performed here beyond the results
presented previously.

The fluorescence threshold applied to the differentiation of fluorescent from non-fluorescent
particles is a key step in UV-LIF data analysis. Traditionally a fluorescence threshold has been
determined as the average baseline fluorescence intensity measured in each of the three channels
during the forced trigger (FT) mode when no particles are present, plus three times the standard
deviation (o) of that measurement (i.e. FT + 3c) (Gabey et al., 2010). Savage et al. (2017) also
reported that additional particle discrimination is possible by using FT + 9o as the threshold.
Both threshold definitions will be discussed here. After choosing a threshold of minimum
fluorescence, the fluorescence characteristics of a particle can be classified into 7 different
particle types introduced by Perring et al. (2015) and as summarized in Figure 1 shown by
Savage et al. (2017).

3. Clustering Strategy

Hierarchical clustering methods work by grouping objects from the bottom up, meaning that
each object (particle) starts as its own “cluster,” and clusters are merged together based on
similarities until a greatly reduced number of clusters are presented as a final solution. Ward’s
method for clustering is among the most popular approaches for HAC and is the only method
based on a classical sum-of-squares criterion, minimizing the within-group sum of squares (or
variance) (Miillner, 2013). The WIBS-4A used here for data collection provides 5 parameters of
information for each individual particle detected (3 fluorescence channels, size and asymmetry
factor:AF), resulting in 5 dimensions of data.

The clustering analysis was performed using the open-source software R package
‘fastercluster’ (Mllner, 2013) using a Dell Latitude E7450 laptop computer with an Intel®
Core™ Processor (i7-5600U CPU @ 2.60 GHz, 16 GB RAM).

3.1 Data Preparation

Saturation of fluorescence intensity occurs at 2047 analog-to-digital counts (ADC) for each
of the three FL channels in the WIBS-4A, at which point the photomultiplier tube (PMT) reaches
its upper limit of detection. A study by Ruske et al. (2017) investigated whether non-fluorescent
(in that case, particles below the FT + 3o fluorescence threshold) and/or saturating data points
included in the clustering analysis hindered the efficiency of the cluster output. The authors
determined that removing both saturating and non-fluorescent particles before HAC analysis
resulted in a better clustering performance in terms of correctly classifying ambient particles.

The quality of the clustering
results likely to be impacted by types of particles involved and the assumptions placed on
those. As shown by Savage et al. (2017), many biological particles present a large fraction that
saturate one or more of the fluorescence detectors. Conversely, many non-biological particles
present a large fraction of very weakly fluorescent particles with intensity below a given
threshold and thus that are classified as non-fluorescent. To limit pre-modification of particle
populations before clustering, the only filter applied before clustering was to remove particles
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smaller than the lower particle size detection limit of the WIBS-4A (0.8 um), similar to Ruske et
al. (2017). In contrast, both saturating and non-fluorescent particles were and
the clustering results will be evaluated. Figure 1 outlines the data preparation process, including
the conceptual process of normalization, clustering, and validation of data, which

explained in detail below.

3.2 Data Normalization

Normalization of the raw data is necessary before executing the clustering algorithm,
because data parameters delivered from the instrument are measured on different respective
scales. For example, fluorescent intensity values range from 0 to 2047 ADC

, Size from 0 to ~20 pum, and AF from 0 to 100 arbitrary units. Crawford et al. (2015)

performed analysis on polystyrene latex spheres (PSLs) using several different normalization
techniques, concluding that z-score normalization +was the best technique when looking at
cluster performance using Ward’s linkage for the separation of PSLs. As a result, we utilize the
z-score normalization of Ward’s linkage HAC for the presented study. By this type of
normalization, the mean value of all data points is subtracted from each individual data point,
and then each data point is divided by the standard deviation of all points. Standardization using
the z-score method compares results to a normal (Gaussian) population

3.3 HAC Scenarios

Hierarchical agglomerative clustering performs optimally if all variables (1) are independent
of one another and (2) can be described well by a normal (Gaussian) distribution (Norusis,
2011). To achieve meaningful results from the clustering analysis data values must, therefore, be
input into the clustering algorithm with a understanding of how specific preparatory
conditions can significantly impact results. To investigate optimal input conditions a total of 6
clustering scenarios were explored, with conditions summarized in Table 1. The impact of two
separate variables were explored within these scenarios by varying: (i) whether fluorescence
intensity were pre-normalized by particle size and (ii) whether the data values were input
logarithmic to produce a normal distribution.

Ambient particle distributions well

lognormal distributions
. Further, fluorescence intensity
has been shown to scale with particle size (e.g. Hill et al., 2001; Sivaprakasam et al., 2011).
Several previous studies attempted to utilize HAC for ambient lognormally-distributed particle
size data (Crawford et al., 2014; Crawford et al., 2015; Robinson et al., 2013), but applied the
assumption that particle fluorescence is normally distributed in a group of particles. If this
assumption does not hold to be correct, however, weakly fluorescing particles are likely to be
grouped into a single cluster based on the high abundance of these particles (Robinson et al.,
2013). Scenarios C, D, and E (Table 1) utilize data input to the clustering algorithm after
fluorescence intensity was normalized to particle size
in order to explore

whether the assumption that laboratory data should be treated like previously explored ambient
data sets and not logged. Scenarios B and D take into account the logging of all parameters,
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producing normal distributions of all variables (AF, particle size, 3 channels of fluorescence).

For comparison, scenarios E and F explore log-spaced distributions of size and AF,
while retaining the assumption that the fluorescence output is normally distributed. Scenario A
data is neither logged nor normalized. For comparison, Scenario F represents the input
conditions that have been used frequently (e.g. Crawford et al., 2015; Ruske et al., 2017).

3.4 Cluster Validation

An important feature of HAC is that it provides clusters in an unsupervised manner, and the
user must determine the number of clusters that makes physical sense. One useful tool to
systematically determine the optimal number of final clusters is the Calinski-Harabasz (CH)
index, which uses the interclass-intraclass distance ratio (Liu et al., 2010). For each clustering
output the CH index was calculated for cluster solutions with one through ten clusters, and the
solution with the highest CH value was generally determined to be the optimal number of
clusters. Figure 2 shows an example CH versus cluster number plot for a mixture of Aspergillus
niger fungal spores mixed with diesel soot particles. The curve suggests the optimal result to be a
2-cluster solution for this trial, as was generally the case for investigations where two particle
types were mixed before clustering. In order to reduce the length and complexity of

4 Results and Discussion

The analysis of clustering quality was performed systematically and with increasing
complexity. Section 4.1 utilizes three pairs of particles types to explore the effect of particle ratio
and normalization strategies on cluster performance. Using conclusions from this section,
Section 4.2 then expands the exploration to 20 additional pairs of particle types. Section 4.3
explores the effect of three different fluorescence thresholding strategies on cluster output.
Finally, Section 4.4 investigates the ability of HAC analysis to separate particle types from
mixed populations of particle types.

4.1 Investigating pre-normalization scenarios and particle input ratio

To explore the ability to separate two distinct populations of particles from one another, three
different clustering trials are presented in this section as one-on-one match-ups: (1) Aspergillus
niger (fungal spores, F2) vs. NIST diesel soot (S4), (2) Pseudomonas stutzeri (bacteria, B3) vs.
NIST diesel soot (S4), and (3) Aspergillus niger (fungal spores, F2) vs. California sand (mineral
dust, D12). These four particle materials were chosen to represent key classes of coarse particles
observed in ambient air. For each trial, a of particles from each material type
was

. The clustering process includes: (i) evaluation of cluster

performance based on particle assignment and cluster composition, and (ii) visual representations
of cluster outputs using particle type classification introduced by Perring et al. (2015). For each
of these three trials, the clustering process was run separately using each of the six scenarios A-F
described in Table 1. Additionally, while exploring the optimal data pre-processing scenario, the
influence that different concentration ratios of particle types could play in the clustering output
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was also explored. The cluster process for each trial was performed using different
ratios of particles in each particle set including an equal ratio and
where the concentration of each particle type was significantly mismatched
. In total, this section represents 574 individual clustering experiments (3 trials x 6
scenarios x 3 particle ratios ) exploring three independent input
variables. The results will be utilized to explore many more individual particle type match-ups in
the following sections.

The first two trials include diesel soot particles, because
are commonly observed in samples with
anthropogenic influence (Bond et al., 2013), and because they have fluorescence
characteristics difficult to distinguish from small biological particles (e.g. Huffman et al., 2010;
Pan et al., 2012; Savage et al., 2017; Yu et al., 2016). For example, when excited by photons
with a wavelength of 280 nm, diesel soot can be misinterpreted as single bacterial cells using the
WIBS, and so we explored here whether the two particle types could be clustered separately
(Pohlker et al., 2012). The three trials include two examples of biological particles, both
exhibiting fluorescent properties, but with different excitation-emission characteristics and with
different average particle size.

The output of the algorithm reports the particle type from which each particle was input in
order to evaluate the accuracy of the clustering. The resulting output of each particle with an
assigned cluster number is then compared to the originating particle type to determine
classification accuracy. Figure 3 summarizes the relative accuracy of individual clustering
experiments by representing the percent of particles misclassified with respect to known input
identities (blue bar corresponding to correct classification, red bar and overlaid value
corresponding to incorrect classification). The clustering process was generally effective for
separating particles correctly when two particle types were considered, but results vary widely
across the six scenarios. Several previous studies that used HAC to separate particles within an
ambient data set assumed that particle fluorescence is already normally distributed (Crawford et
al., 2014; Crawford et al., 2015; Robinson et al., 2013). As a result, these previous studies did
not normalize fluorescence data and thus used data preparation scenario F in their clustering
analysis. For comparison, scenarios B and D were explored to test whether the clustering
efficiency would be improved or hindered by fluorescence normalization. Scenarios A and F
produced inconsistent results, with some experiments (i.e. 50:50 ratio of fungal spores:diesel)
producing misclassification <1.1%, whereas other experiments (i.e. 20:80 ratio of
bacterial:diesel) producing misclassification 80%. In contrast, scenarios B and D
produced consistently more accurate results. Scenario B, in particular, consistently exhibited the
most accurate classification of particles for almost every individual experiment. No experiment
involving scenario B produced greater than 9% misclassification of particles, regardless of
particle input ratio, and most experiments produced results with 0.1 - 3% error. These
observations taken together suggest that particle fluorescence properties may not be well
described by normal distributions and that normalizing fluorescence data prior to analysis may
be more effective.

The results of these experiments also highlight how important the ratio of input particles can
be. While scenario B was relatively consistent, varying only between 0.1 and 3.8% error for
different ratios of the fungal spore versus diesel match-up, other experiments depended strongly
on particle ratio. It is clear that the input ratio of particle types cannot be controlled during an
ambient study, and so these results suggest that it is important to keep the possibility of varying
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concentration ratios in mind when interpreting time- or air mass-associated changes in cluster
composition or when relaying the relative confidence in clustering results. For the remainder of
the discussion, experiments will be limited to a 50:50 ratio following scenario B. In each case the

input particles a random subset taken from the pool of particles in the
experimental data. As a result, individual samples selected from the same experiments (i.e. Fig.
4a, Fig 4e) can show slightly different average properties. In some cases (i.e. 2diesel soot, Fig.
4d) the number of particles originally analyzed was small and so to keep the input particle ratio
50:50 the corresponding particle type was also limited to small numbers.

An important tool readily applied to analysis of ambient data is the categorization of particles
into 8 fluorescent particle types (Perring et al., 2015). Thus, to further investigate the quality of
cluster accuracy, Figure 4 shows inputs and cluster outputs from three clustering experiments
stacked as a function of fluorescence particle type and particle size. The top row of Figure 4
shows the input data for Aspergillus niger and diesel soot (Fig. 4a-b) paired with the outputs of
the 2-cluster solution (Fig. 4g-h). It can be seen that both particle materials have predominantly
particle type-A characteristics, meaning that they are fluorescent only in channel FL1. The
fungal material also presents roughly a third AB (green) and a small minority of non-fluorescent
(gray) characteristics. The size distribution of the fungal spores peaks at ~3 pum, whereas diesel
soot peaks at ~1 um in size. While not shown in this plot style, the spores exhibit moderately
higher FL1 channel fluorescence, with a median of 543 ADC, whereas diesel soot exhibits a
median of 751 ADC in this channel (see Savage et al., 2017; Table 2). Both particle types show
almost no fluorescent characteristics in either FL2 or FL3. In summary, the particle distributions
are relatively similar in fluorescence particle type and their differences are largely related to
particle size, so separation of these particles through Trial 1 was hypothesized to represent a
relatively challenging initial exercise. The clustering outputs presented in Figures 4g-h, however,
visually highlight the conclusion represented by Figure 3, which is that the particles in this trial
separated very well. Cluster 1 was comprised predominantly of fungal particles and presented
fluorescence and size traits qualitatively similar to the input fungal particles, whereas cluster 2
was comprised predominantly of diesel soot particles. Results from the 50:50 ratio of the
scenario B experiments for the other two trials are also shown in the last two rows of Figure 4. In
each case, the qualitative properties of the input particles are extremely well represented by the
corresponding output cluster, corroborating the conclusion from Figure 3 that the scenario B
cases accurately separated the particle groups investigated through these experiments.

4.2 Investigating cluster quality without fluorescence threshold

Page 8 of 27



362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
ko2
403
404
405
406

After concluding that scenario B exhibited the most consistently accurate clustering results
using 2-cluster solutions from mixtures comprised of 2 particle type inputs, the analysis was
expanded to include a broader range of particle types. Using 50:50 ratios of two types of input
particles, prepared using scenario B (leaving fluorescence data un-normalized and forcing all
five data parameters into logarithmically spaced bins), 20 new individual experiments were
performed. The results of all 23 experiments (3 from Section 4.1 and 20 introduced in Section
4.2) are summarized in Table 2 as the percentage of particle misclassification. These trials were
chosen to represent a broad range of individual match-ups that might be expected in ambient air.
From the original 69 types of particles analyzed by Savage et al. (2017), 14 were used in
experiments here: 8 types of non-biological particles and 6 types of biological particles (2 each
of fungal spores, bacteria, and pollen species). Supplemental Figure S4 from Savage et al. (2017)
shows size distributions stacked by fluorescence particle type for each of the particle species
discussed.

Table 2a organizes clustering results into three rows, showing misclassification of F2
(Aspergillus niger fungal spore), B3 (Pseudomonas stutzeri bacteria), and P9 (Phelum pratense
pollen) particles, respectively, with respect to a variety of other particle types represented by
table column. Of the 15 cluster experiments between fungal spore or bacteria and non-biological
material (top two table rows), only 3 showed misclassification greater than 7.5% (bold text), and
7 were less than 3%. The three outliers were: experiment (7) F2 vs BC3 (glyoxal + ammonium
sulfate brown carbon aerosol), (8) F2 vs WT (white t-shirt particles), and (14) B3 vs WT.
Looking first at experiment (7), F2 particles show A-type fluorescence characteristics and are
dominated by a mode between 1.5 and 4 um. BC3 particles are primarily non-fluorescent <1.5
pum, but are primarily A-type between 1.5 and 3 um, suggesting similar size and fluorescence
properties. The white t-shirt particles separated poorly (~41% misclassification) from both the
fungal spore and bacterial particles. All three particle types (WT, F2, and B3) exhibit medium
fluorescent intensity in the FL1 channel. The poor ability to separate WT from both F2 and B3
was surprising, however, given that WT exhibited significantly higher mean fluorescence in each
of the FL2 and FL3 channels. As first mentioned by Savage et al. (2017), great care should be
taken when interpreting fluorescent particle results from indoor environments where increased
concentrations of bleached fibers from clothing, bedding, paper, and cleaning products may be
present.

While the results show that the spores and bacterial particles investigated could generally be
well separated from most potentially interfering non-biological species, the results were much
less successful for differentiation from pollen. P9 pollen particles separated poorly in all
experiments (versus D12, H2, or P5), with rate of misclassification ranging from 22 to 47%. It is
important to keep in mind, however, that the WIBS was operated using a standard gain setting
that limits analysis of particle size to below approximately 20 um. As a result, the WIBS is
insensitive to whole pollen grains and so most of the particles observed during pollen
experiments are small pollen fragments. Any intact pollen grains that navigate the flow system to
be detected are likely to be binned together in the channel representing the largest particles.
Clustering results including pollen should be interpreted accordingly. Pollen grains can fragment
in ambient air as function of increased relative humidity (Miguel et al., 2006; Suphioglu et al.,
1992; Taylor et al., 2004), but the relative ratio of whole/fragmented particles is hard to predict
under ambient conditions. Smaller fragments can also exhibit different fluorescent properties
than whole grains (Péhlker et al., 2013). O’Connor et al. (2014) operated a WIBS-4 (Univ.
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Hertfordshire) at lower gain in order to improve pollen detection efficiency, but these results are
not explored directly here.

The WIBS instrument is frequently used to differentiate between airborne biological particles
and material of non-biological origin. A secondary goal of differentiating more finely between
types of biological aerosols is also frequently pursued. To investigate this goal, six additional
experiments were conducted by pairing two different types of non-biological particles (Table
2b). In contrast to the results shown in Table 2a, the clustering algorithm showed generally poor
ability to separate between two biological particle types. Only one of the six experiments
resulted in error <15% (F2 vs B3, 10.3% error), whereas error for the other five experiments
ranged from 18% to 65%. The worst accuracy was demonstrated by experiments (22) B1 vs B3
and experiment (23) P5 vs P9. Both of these experiments attempted to separate between different
species of a single particle type (i.e. between two bacteria or two pollen, respectively). Overall,
these results suggest that the clustering strategy may be quite useful at aiding the differentiation
of biological material from non-biological material, but that separating more finely to quantify
differences between types of individual biological particles is significantly more
challenging

4.3 Investigating impact of fluorescence thresholding strategy on cluster quality

In previously published studies, removing particles from clustering analysis that exhibited
particle fluorescence intensity below the threshold (i.e. non-fluorescent) or at the saturating point
improved the efficiency of clustering (Crawford et al., 2015; Ruske et al., 2017). In Sections 4.1-
4.2, particles with either of these characteristics were left in the analysis to prevent the
underestimation of particles clustered. In this section, however, we investigated whether
removing non-fluorescent particles could improve cluster accuracy for the experiments that
performed poorly in Section 4.2. Of the 23 trials represented in Table 2, 10 experiments
exhibited 15% or greater misclassification and were subjected to further analysis in order to
investigate whether using a more discriminating fluorescence thresholding strategy could
improve cluster results. In all 10 cases fluorescence saturating particles were retained, and three
separate thresholding conditions were compared by: (I) keeping all non-fluorescent and
saturating particles, (11) removing non-fluorescent particles by applying a fluorescence threshold
of FT baseline + 3o, and (111) and removing non-fluorescent particles by applying a fluorescence
threshold of FT baseline + 9c.

Table 3 shows the percentage of particles misclassified in each of three
scenarios (Table 3a) as well as the number of particles subjected to the
clustering algorithm (Table 3b).

Each scenario, with exception of the B3 vs B9 experiment (21), shows a decrease in particle
misclassification from scenario | (no fluorescence threshold applied) to scenario Il (FT + 3c). In
contrast, eight of the ten scenarios increase in particle misclassification when raising the
fluorescence threshold from 3o (I1) to 9o (111). The exceptions to this trend are experiments (8)
F2 vs WT and (19) F2 vs P9, which show nominal improvement in error (2-4% reduction) with
increased threshold. We hypothesize that the 9c results degrade, in most cases, because the
threshold becomes high enough that most weakly fluorescing particles have been removed from
analysis. This reduces the ability of the cluster to group into low and high fluorescence
categories, and so remaining particles are separated less efficiently. Secondly, removing particles
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at higher fluorescence thresholds leads to increasingly poor counting statistics, as represented in
Table 3b by the number of particles included in each experiment. Overall, these results suggest
that inputting particles into the clustering analysis with at least a nominal fluorescence threshold
(i.e. FT + 30) can improve the clustering results in many cases, however, increasing the
threshold further may decrease cluster quality.

4.4 Investigating to separate
complex mixtures

To this point, our investigation has focused on a variety of individual match-ups between two
distinct particle types. To better simulate real-world scenarios, we

six mixtures of particles by pooling existing data from selected
particle types in prescribed ratios. Each mixture was to roughly
represent a different hypothetical mixture of particles that might be expected.
Table
4 provides an overview of the percentage of each particle type included as well as the total
number of particles in the mixture. Mixtures 1 and 2 were arbitrarily to test
if a minority (25%) of one type of fungal spores (F2) could be separated from a majority (75%)
of a mixture of three different non-biological materials. Mixtures 3 and 4 synthesized arbitrary
mixtures of two types of bioaerosol (F2 and B3) with three or five types of non-biological
particles, respectively. Mixture 5 was to examine the separation of pollen
(P9) from a set of five non-biological particles. Mixture 6 was to
an indoor environment that might have a mixture of biological particles (F2 and B3)
with non-biological materials, including bleached fibers (WT). These mixtures are not intended
to closely mimic any set of individual ambient conditions, but are rather used as very rough
used for discussion
. In a real-world sampling environment one would also expect
a high concentration of non-fluorescent particles as well (e.g. most organic aerosols, sea salt,
dusts), but these were not sampled as a part of the Savage et al. (2017) study,
which focused on fluorescent particles. As a result, relatively non-fluorescent particles like D12
and H2 were included here as “fillers” in most mixtures as surrogates for other types of non-
fluorescent particles. Clustering analysis was performed using the ratios listed in Table 4, the B
scenario of pre-normalization conditions, and filtering non-fluorescent particles below the FT +
3o threshold. In all cases, the number of clusters retrieved after HAC was the
same as the number of particle types input.

Cluster results from all six mixtures are summarized in Figure 5. Figure 5 (Part A) shows the
number of particles from each type assigned to each cluster, and Parts B and C show results
grouped by general particle classification (brown for non-biological and dark green for
biological). Overall, the ability of the HAC analysis to separate the biological particles from the
non-biological particles was high. In some cases, the quality of separation of one or two
biological species from a mixture of non-biological materials was even higher than the 2-
material match-ups shown in Sections 4.1-4.3. The two 4-component mixtures showed 22.4%
and 14.8% misclassification of fungal spores. In both cases, a small fraction of each of the non-
biological materials were mixed into the spore cluster, whereas almost none (1.5% and 0.6%) of
the spores were incorrectly mixed into the sum of the non-biological clusters.

Mixtures 3 and 4 showed similar misclassification for fungal spores (11.9% and 13.8%,
respectively), whereas the bacterial particles clustered with amazing quality. For Mixture 3, no
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particles other than bacterial particles were grouped into Cluster 1, and only 16 of 213 bacterial
particles were assigned to other clusters. For Mixture 4, 135 of 137 particles in Cluster 6 were
bacterial in origin and 135 of 142 bacterial particles were assigned to the cluster. The
combination of fungal and bacterial particles in Mixtures 3 and 4 resulted in a total of 5.0% and
5.3% misclassification of all biological particles.

In contrast to the poor separation of pollen from other particle types discussed in Section 4.2,
Mixture 5 showed a higher quality of separation between pollen (9.4% misclassified) and the
sum of five other non-biological particle types. Lastly, the mixture designed to roughly mimic an
indoor environment including white t-shirt particles. In this mixture the WT particles confounded
the spore separation, but the bacterial separation was nearly flawless.

Another surprising observation from the analysis of these mixtures was
that the diesel soot particles (Mixtures 1, 2, 4, and 5) separated into their own cluster in almost
all cases with very high quality (1.8%, 2.9%, 0.6%, and 9.4%, respectively, of diesel soot
particles misclassified into a different cluster). The quality of separation of bacterial particles and
diesel soot (Mixture 4) was especially amazing, given the qualitative similarity of the two
particle populations. For example, size-distributions of each particle type show primarily A-type
particles with similar mean fluorescent intensity values in FL1, FL2, and FL3 (Savage et al.,
2017).

5. Conclusions

Application of results from a recent set of systematic laboratory experiments (Savage et al.,
2017) by the commonly used hierarchical agglomerative clustering analysis helps to reveal areas
where the tool can be used well and other areas where it struggles. First (Section 4.1) it was
observed that differing ratios of particle input into the clustering algorithm can produce
dramatically different results. It will be important for anyone applying HAC to ambient particle
sets where particle ratios are not independently verified to interpret results somewhat loosely. In
Section 4.1 the clustering quality of scenario B, where fluorescence intensity was not normalized
to particle size and where all input variables were binned into log space, was determined to
consistently demonstrate the highest quality results. Further, the ability to the HAC analysis to
separate between two groups of individual particle types using no fluorescence threshold
(Section 4.2) and comparing three separate threshold strategies (Section 4.3) was shown to be
relatively high in many cases, but confounded in others. Lastly, Section 4.4 explored the ability
of HAC analysis to separate biological components from more complex mixtures of four to
seven types of input particles.

A standard fluorescence threshold of FT + 3o has been commonly applied during WIBS
analysis to separate between fluorescent and non-fluorescent particles. Savage et al. (2017)
concluded that application of a more aggressive threshold strategy (FT + 9c) could help
discriminate between biological and non-biological particles more successfully in many
circumstances, however certain types of interfering, non-biological particle species can still
confound WIBS analysis irrespective of the threshold. Here we have investigated an orthogonal
strategy to separate particle types by subjecting particles to HAC computer analysis. By
comparing the results of the HAC analysis with raw separation based on fluorescence
thresholding alone, the HAC analysis can clearly increase quality of differentiation. Interestingly,
while Savage et al. (2017) reported that the FT + 9o strategy helped improved differentiation,
using the same threshold in conjunction with HAC analysis actually degraded results. We
therefore conclude that if HAC analysis is to be performed, the standard FT + 3c threshold is
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545  likely to produce the highest quality results, however if HAC is not to be applied that the FT +

46 9o threshold is to
47 non-biological particles.
548 The overall message here is that HAC can be applied successfully to differentiate particle

549  types sampled by WIBS instruments and that it is most successful at separating biological

550  species (i.e. fungal spores and bacteria) from non-biological particles. In all cases the HAC
551  method allows separation of particles at least at the order-of-magnitude level, and often with
l552 misclassification of <5%. As mentioned by Savage et al. (2017), however, it should always be
553  kept in mind that different instruments may produce slightly different signals due to physical

54  differences (i.e. fluorescence calibration, tuning, and detector gain

55  sensitivity) (Konemann et al., 2018; Robinson et al., 2017).
56 esults here are generally extendable to other UV-LIF instruments

57

58

59 Subtle differences in particles observed in a real-world environment may
60 complicate HAC analysis or the extension of results presented here. The UV-LIF

561 community is encouraged to continue laboratory investigations, including detailed interrogation
562  of clustering analytical techniques, to further understand limitations to better differentiating
563  between particles.
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Tables

Table 1. Six scenarios explored, with varying combinations of pre-analysis treatment. (1)
Fluorescence normalization refers to whether fluorescence intensity was normalized to particle
size. (2) Variables logged refers to whether data was manipulated to produce a normal

distribution.
Parameters B C D E F
1. Fluorescence 1. No 1. No 1. Yes 1. Yes 1. Yes 1. No
Normalization
2. Variables 2. No 2. Yes 2. No 2. Yes 2. Yes, only 2. Yes, only AF/Size
Logged AF/Size variables variables
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Table 2. Misclassification of 2-cluster solutions for 23 match-ups of two individual particle types
(equal ratio of particle number, B-scenario)
. Misclassification calculated as the sum percentage of particles misclassified in each
cluster divided by the total number of particles. Three biological particle types (F2, B3, P9)
compared separately to (a) non-biological particle materials and (b) biological particle materials.
Particle number input was a subset of total population of particles experimentally analyzed.

(@)

(b)

Non-biological particle materials
Methyl-
glyoxal + | Glyoxal +
Suwannee glycine  |amm. sulfate
California Arizona [River Humic| aerosol aerosol White Wood
Diesel soot sand Test Dust Acid (Brown (Brown t-shirt smoke
(Soot 4) (Dust 2) (Dust 12) | (HULIS 2) | carbon1) | carbon3) | (Misc. 2) (Soot 6)
S4 D2 D12 H2 BC1 BC3 WT WS
Aspergillus @) ©) ) ®) (6) @ ®) ©)
niger (Fungi 2) 0.1% 2.6% 6.1% 4.8% 2.5% 23.0% 40.5% 7.2%
P. stutzeri 2) (10 (11) (12) (13) (14) (15)
(Bacteria 3) 1.2% 1.9% 1.2% 1.3% 6.1% 41.7% 4.7%
Phelum pretense (16) 17)
(Pollen 9) 22.7% 23.2%
Biological particle materials
S. Phelum Taxus B.
cerevisiae | pretense | P.stutzeri | baccata |atrophaeus
(Fungi4) | (Pollen9) | (Bacteria3) | (Pollen5) | (Bacteria 1)
F4 P9 B3 P5 Bl
Aspergillus (18) (19) (20)
niger (Fungi 2) 27.9% 36.4% 10.3%
P. stutzeri (21) (22)
(Bacteria 3) 18.3% 65.4%
Phelum pratense (23)
(Pollen 9) 46.8%
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Table 3. Further exploration of 2-cluster solutions for the 10 match-ups of two individual particle
types shown in Table 2 with misclassification >15%. Each match-up shown using three separate
fluorescence threshold strategies in advance of particle input into cluster algorithm: (1) all
particles included (no fluorescence threshold), (I1) particles with fluorescence intensity < FT +
3o removed, and (111) particles with fluorescence intensity < FT + 9o removed. (a) Particle
misclassification. (b) Total particle number used for clustering experiment.

—
&

Percent misclassified

—
(=)}
~

Number of particles

2 () ) (14 (16) 17
< Input F2 + BC3 F2+WT B3+ WT P9 + D12 P9 + H2
z (1) All particles 23.0% 40.5% 41.7% 22.7% 23.2%
¢ | (D) Fluor. > FT + 3¢ 10.3% 36.2% 24.3% 19.3% 3.4%
@ | (II) Fluor. > FT + 9¢ 41.4% 32.6% 31.8% 45.3% 14.0%
(18) (19) (21) (22) (23)
a2 Input F2+F4 F2 + P9 B3 + P9 B1+ B3 P9 + P5
; (1) All particles 27.9% 36.4% 18.8% 65.4% 46.8%
@ | (D Fluor. > FT + 36 13.3% 31.0% 20.0% 77.5% 24.9%
(1) Fluor. > FT + 96 29.0% 28.6% 29.0% 66.7% 33.9%
2 @) ® (14) (16) 17)
< Input F2 + BC3 F2+WT B3+ WT P9 + D12 P9 + H2
z (1) All particles 1,959 565 565 10,359 8,902
o | Fluor. > FT + 30 1,000 393 393 171 207
@ [ () Fluor. > FT + 90 471 319 319 38 37
. (18) (19) (1) (22) (23)
= Input F2 + F4 F2 + P9 B3 + P9 B1+ B3 P9 + P5
* (1) All particles 10,000 8,900 10,000 10,000 10,000
@ | () Fluor. > FT + 36 9,600 8,500 9,800 10,000 10,000
(I1I) Fluor. > FT + 96 9,200 8,100 9,700 10,000 7,895
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Table 4. Particle fraction for each type and total particle number used as inputs for

mixtures.
F2 B3 P9 S4 D12 H2 BC1 WS WT :
Suwannee :
Phelum River : Total
Mixture|  Mixture Asp. niger | P. stutzeri | pretense | Diesel | AZ Test| Humic | Brown | Wood | White | Particle
Number|  Name (Fungi) (Bacteria) | (Pollen) | soot Dust Acid |Carbon1| smoke | t-shirt : Number
1 4-Comp. A 25% 25% 25% 25% I 680
2 4-Comp. B 25% 25% 25% 25% I 680
3 High PBAP 25% 25% 20% 20% 10% I 850
4 Low PBAP 12.5% 12.5% 15% 15% 15% 15% 15% : 1134
5 Pollen 30% 10% 20% 20% 10% 10% I 850
6 Indoor Air 20% 20% 20% 20% 20% ! 850

Page 22 of 27



772  Figures

773
Prepare: Normalize: Validate:
Remove Z-score CH Index
particles method
Section 3.1 | Section 3.2 Section 3.4
774

775  Figure 1. Schematic diagram showing the data preparation process resulting in the generated
776  clustering products. Parameters within the pink box are the focus of this manuscript.
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Figure 2. Example of Calinski-Harabasz Index plot for cluster experiment with input of
Aspergillus niger and diesel soot (50:50 ratio). Optimal number of clusters is determined by the

highest CH value.
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Bacteria : Diesel
........... 50:50 Ratio
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Fungi : Dust
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Figure 3. Cluster misclassification shown for three computational combinations of fungal spores
(F2), bacteria (B3),an¢ diesel soot (S4), and mineral dust (D12). Each combination explored
with respect to ratio of input particle number using the scenario B and a 2-cluster solution for
each experiment. Scenario letter A-F refers to scenarios summarized in Table 1. Red shaded
region (and values) indicates the percent of particles misclassified. Blue shaded region represents
the percentage of particles correctly classified.
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Figure 4. Particle type stacked category size distributions for input and output clustering results,

using FT + 3o threshold definition. Each experiment (row) shows match-ups of two particle
types computationally mixed using 50:50 ratios, scenario B, and 2 cluster solutions. Left two

columns show properties of input particles, right two columns show properties of cluster outputs.
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Part A: Individual Clusters Part B: Grouped Clusters Part C: Summary

(Particle Number) (Particle Number) (Cluster Quality)
Mixture #1
o < |Cluster| F2 Cluster [ Fungi Total P.| Miscl. | Cat.
ool 1 [163] 2 [22]23 1 163 210 [22.4% | Fungi
SE 7)1 67 7 [ 470 [ 1.5% [Non-bio)
20 0lof21
~ 0 410
Mixture #2
& m |Cluster] F2 Cluster| Fungi Total P.| Miscl. | Cat.
S gl L [167] 2 [23] 4 1 167 196 |14.8% | Fungi
3E 2[3 10 P 484 [ 0.6% [Non-bio]
S g 1 0 | 55
0 410
Mixture #3
& Cluster| Fungi - * Total P.| Miscl. | Cat.
= 0 0 227 | 11.9% | Fungi
= 200 6 21 197
-§ 2 13 10 424
426
Mixture #4
Yo * Total P.| Miscl. | Cat.
o5 13 130 |13.8% i
g % 1 136
= O
==

Mixture #5

Total P.| Miscl. | Cat.
267
583

Cluster

Mixture #5:
Pollen

Mixture #6
i ~ |Cluster| F2 Cluster| Fungi * Total P.| Miscl. | Cat.
g 1 160 44 211 | 24.2% | Fungi
E 0 0 154
L2 . 10 9 365
485
793
794

[795  Figure 5. Overview of computationally simulatedsynthetic mixtures. Six mixtures shown as
796  groups of rows, with input particle fractions defined in Table 4. Part A (left columns) show

797  particle number retrieved by each individual cluster and categorized by each input particle type.
798  Part B (middle columns) show particle number categorized and grouped by particle classes (i.e.
799  non-biological and biological). Part C (right columns) show misclassification of groups of

800 particles. Colors: light green (fungal spores), blue (bacteria), pink (pollen), dark green (grouped
801  biological), brown (all non-biological).
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