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August 13, 2018 1 
 2 
Dear Editor, 3 
 4 
Below is a composite file with point-by-point responses to all three anonymous referees and an additional 5 
community member. Following that is the revised manuscript document with all changes tracked from the 6 
originally submitted version. We are confident that you will find the revised document to be well 7 
improved after systematic and comprehensive revisions following all the review period. Please let us 8 
know if you have additional comments or questions. 9 
 10 
Best regards, 11 
 12 
Alex Huffman  13 
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Point-by-point responses: 14 
 15 
Anonymous Referee #1  16 
Received and published: 1 June 2018  17 
 18 

Note regarding document formatting: black text shows original referee comment, blue text shows 19 
author response, and red text shows quoted manuscript text. Changes to manuscript text are 20 
shown as italicized and underlined. Bracketed comment numbers (e.g. [R1.1]) were added for 21 
clarity. All line numbers refer to discussion/review manuscript. 22 

 23 
[R1.0] This paper builds on existing literature examining unsupervised learning techniques to improve the 24 
interpretation and classification of data obtained with WIBS UV-LIF spectrometers. As shown in 25 
previous publications, Hierarchical Agglomerative Clustering (HAC) can serve as a robust data analysis 26 
method for classification/interpretation of bioaerosol data but the accuracy of technique is highly sensitive 27 
to the choice of clustering linkage and data pre-treatment (e.g., Crawford et al., 2015); this is further 28 
explored in this paper which elucidates how data pre-treatment choices such as choice of fluorescent 29 
threshold and log normalising data may influence clustering accuracy using laboratory samples of known 30 
particle types (Savage et al., 2017) in various synthetic mixtures, and thus the authors present tentative 31 
recommendations of data pretreatment regimes depending on the analysis goals. Overall the paper is well 32 
written and the computational experiments well thought out. The findings here are useful and further 33 
validate the usefulness of Hierarchical Agglomerative Clustering for interpretation of WIBS data. The 34 
results also provide a useful framework for testing Hierarchical Agglomerative Clustering data pre-35 
treatment regimes for other atmospheric science data problems and neatly demonstrate the potential 36 
pitfalls of not rigorously performing such tests. I recommend publication after the following comments 37 
have been addressed.  38 
 39 

[A1.0] Author response: We thank the referee for her/his positive summary of the manuscript and 40 
recommendation to publish after comments are addressed. 41 

 42 
Specific comments  43 
[R1.1] L73-77: The authors have conflated some of the terminology relating to unsupervised and 44 
supervised leaning methods. I’m uncomfortable with the use of the term clustering when discussing 45 
supervised methods as clustering specifically relates to cluster analysis. I suggest replacing “clustering 46 
techniques” with “classification algorithms” and “(trains) the clustering algorithm” with “(trains) the 47 
classification algorithm”.  48 
 49 

[A1.1] The referee raises a good point. We changed terminology on page 2 according the referee 50 
suggestions, as listed below: 51 
- L68: “Classification algorithms, including several clustering techniques in particular, have 52 

shown successful results …” 53 
- L73: “Clustering techniques Classification algorithms can be divided …” 54 
- L76: “This type of method enhances (trains) the clustering classification algorithm in that the 55 

output cluster classes groups are predetermined …” 56 
 57 
[R1.2] L120: Please state the bands and what they relate to.  58 
 59 

[A1.2] Additional text was added, as shown below: 60 
“The WIBS collects 3 channels of fluorescence intensity information (FL1, FL2, and FL3), 61 
particle size, and particle asymmetry for each interrogated particle. The bands of excitation and 62 
fluorescence emission are: FL1 (λex = 280 nm, λem = 310 – 400 nm), FL2 (λex = 280 nm, λem = 420 63 
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– 650 nm), and FL3 (λex = 370 nm, λem = 420 – 650 nm). The excitation and emission 64 
wavelengths chosen for each of the 3 fluorescence channels were designed to maximize the 65 
information gained about key biological fluorophores present in a broad range of bioparticles 66 
(Kaye et al., 2005; Pöhlker et al., 2012). Early generations of UV-LIF bioaerosol spectrometers 67 
were often interpreted to be able to detect proteins via channels similar to FL1 and products of 68 
active cellular metabolism (i.e. riboflavin and NAD(P)H) via channels similar to FL3, but these 69 
approximations are gross simplifications that confound more detailed investigation of particle 70 
types.” 71 

 72 
[R1.3] L198: Can the authors please clarify why they have used log spaced bins. Do you mean that you 73 
have taken a log of the data and it is binned naturally by the discrete nature of the detector resolution (i.e., 74 
fine bins) or have you binned the data into specific (coarse) log bins? If it is the latter can you please state 75 
what the bins are and can you comment on how forcing the data to in bins may influence the clustering? 76 
My concern here is that too coarsely binning the data may create artificial hotspots due to reduced 77 
resolution and bias the clustering, reducing the capacity to differentiate between particles with similar 78 
properties. Can the authors comment on this and demonstrate the effect this may have by providing an 79 
example for comparison where the data is converted to log space and not binned. I also wonder if the bins 80 
should be normalised by the bin width to further complicate matters.  81 
 82 

[A1.3] Aspects of this discussion are presented in L209-212. To summarize in different words, 83 
the data values from a given channel were either used as recorded (i.e. “value”) or as 84 
logarithmically transformed (i.e. “log(value)”), depending on the Scenario. The values were not 85 
forced into specific bins, but rather input into the cluster algorithm using the exact value in either 86 
of these forms. The reason that logged values can provide different results by HAC is that the 87 
distance between points is different in linear space or log space, because the cluster process does 88 
not independently take into account whether a value is as recorded or as log(value). Because 89 
many real-world particle variables can present normal distributions only in log space (i.e. 90 
lognormal size distributions), we explored inputting values in both raw and log forms. 91 
 92 
The following sentence was added to the manuscript at L211 for clarity: 93 
“By this process, data values were input into the algorithm as log(value), but without additional 94 
binning.” 95 
 96 

 [R1.4] L254: Can the authors comment on the environmental applicability of the chosen ratios. I would 97 
suspect that in an urban environment you may expect something closer to a ratio of 1:99 fungal to diesel 98 
particles with the converse being true in a forest environment. How does the clustering perform under 99 
such extreme mismatches?  100 
 101 

[A1.4] We originally explored three different ratios of particle concentrations (80:20, 50:50, and 102 
20:80) for each of the three match-ups discussed in Figure 3 in order to show that input ratio can 103 
be important to how the algorithm responds. This was certainly not intended to be exhaustive, and 104 
one could additionally explore more extreme ratios. So to limit the scope of the analysis here, we 105 
chose to present evidence only that the ratio matters, without trying in all cases to predict ratios 106 
that could be relevant to a wider range of ambient environments. 107 
 108 
The question the referee brings up is interesting, however, and so we explored 1:99 ratios of each 109 
of the three particle type combinations presented in Figure 3, where the bioparticle is the minority 110 
concentration in each experiment. The results are shown below in a plot/table form identical to 111 
how they are presented in Figure 5. The Bacteria:Diesel and Fungi:Dust separations still 112 
performed quite well (6.6% and 13.5% misclassification, respectively), even with the extreme 113 
mismatch of input concentrations. The Fungi:Diesel separation was poor, however, in a 2-factor 114 
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solution, because the Diesel particles split into both clusters, and the Fungi particles were likely 115 
too low in concentration to influence the cluster properties. We added text including a summary 116 
of these new experiments to the manuscript at L304:  117 
“To extend the investigation of particle input ratio, the three match-ups presented in Figure 3 118 
were investigated using Scenario B with 1% bioparticles and 99% non-bioparticles in each 119 
respective case. In these experiments the Bacteria:Diesel and Fungi:Dust particles separated 120 
relatively well (6.6% and 13.5% misclassification, respectively). The Fungi:Diesel separation 121 
was poor, however, because the Diesel particles were nearly evenly split into both clusters, and 122 
the Fungi particles were too low in concentration to influence the cluster properties. More 123 
investigation is needed to explore how extreme disparities in particle ratio could negatively 124 
influence cluster quality in real-world settings.” 125 
 126 

 127 
 128 
[R1.5] L238: Would it be possible to show examples of the cluster centroids for a case where there is 129 
significant misclassification? This may illuminate why the algorithm is failing to correctly attribute 130 
particles. It may also be useful to examine the fluorescence/AF characteristics of each cluster as a 131 
function of size here. A 2D histogram or color density plot could show distinct hot spots that haven’t been 132 
separated correctly and could provide a basis for manual separation based on sensible thresholds.  133 
 134 

[A1.5] To address the referee’s suggestion, we included an additional set of plots here as 135 
suggested. The results below correspond to the match-up between Bacteria 1 and Bacteria 3 using 136 
Scenario B and the 3-sigma threshold, which corresponds to Experiment 22 from Table 2 (65% 137 
misclassification). The two colors of dots in the plots represent clusters 1 and 2. In this case it is 138 
still unclear how to utilize a single threshold to separate between the two particle types here.   139 
 140 
In the process of analyzing results of this study we produced countless plots and tables, each of 141 
which showed slightly different angles of the same story. We chose to simplify the results in 142 
many cases to make the manuscript shorter and more manageably readable. We find that the table 143 
of fluorescence intensity and AF median values (Table 2 from original data published in Savage 144 
et al., 2017) often summarizes the differences in the particle types rather well and so were rarely 145 
able to separate using 2D histograms as the referee suggests. One example of these two additional 146 
plots is included here for reference, however. 147 

Part A: Individual Clusters Part B: Grouped Clusters Part C: Summary
(Particle Number) (Particle Number) (Cluster Quality)

Cluster B3 F2 S4 D12 Cluster Bio Non-bio Total P. Miscl. Cat.
1 - 37 2588 - 1 37 2588 2625 98.6% Fungi
2 - 0 1111 - 2 0 1111 1111 0.0% Diesel

Cluster B3 F2 S4 D12 Cluster Bio Non-bio Total P. Miscl. Cat.
1 57 - 4 - 1 57 4 61 6.6% Bacteria
2 0 - 5653 - 2 0 5653 5653 0.0% Diesel

Cluster B3 F2 S4 D12 Cluster Bio Non-bio Total P. Miscl. Cat.
1 - 45 - 7 1 45 7 52 13.5% Fungi
2 - 12 - 5650 2 12 5650 5662 0.2% Dust
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 148 
 149 

 150 
 151 
[R1.6] L312-315: Can you describe the method for producing the soot as they seem rather large as 152 
compared to that in the study of Toprak and Schnaiter (2013) which were also coincidently found to be 153 
weakly fluorescent in FL1. Perhaps the soot used in this study is larger and more fluorescent than we may 154 
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expect of ambient/urban soot which may cause some of the difficulty in correctly attributing in in some 155 
cases?  156 
 157 

[A1.6] The method for aerosolization of particle types discussed was presented in Section 3.2 of 158 
the associated Savage et al., 2017. Specifically, the aerosolization details related to soot are 159 
copied here: 160 
 161 

From Page 4284, Section 3.2.3 of Savage et al., 2017: “Dry powders were aerosolized by 162 
mechanically agitating material by one of several methods mentioned below and passing 163 
filtered air across a vial containing the powder. For each method, approximately 2.5–5.0 164 
g of sample was placed in a 10 mL glass vial. For most samples (method P1), a stir bar 165 
was added, and the vial was placed on a magnetic stir plate. Two tubes were connected 166 
through the lid of the vial. The first tube connected a filter, allowing particle-free air to 167 
enter the vessel. The second tube connected the vial through approximately 33 cm of 168 
conductive tubing (0.25 in. inner diam.) to the WIBS for sample collection.” 169 

 170 
The referee is correct that the method of producing/aerosolizing particles, including soot, will 171 
bear heavily on the fluorescent properties observed. In particular, different aerosolization 172 
methods are likely to produce very different size distributions, which then will dictate the overall 173 
fluorescence properties. For this reason, we included the following statements in the Savage et al., 174 
2017 paper: 175 
 176 

From Page 4292, Section 4.3: “It is important to note, however, that the method chosen 177 
for particle generation in the laboratory strongly impacts the size distribution of 178 
aerosolized particles. For example, higher concentrations of an aqueous suspension of 179 
particle material generally produce larger particles, and the mechanical force used to 180 
agitate powders or aerosolize bacteria can have strong influences on particle viability and 181 
physical agglomeration or fragmentation of the aerosol (Mainelis et al., 2005). So, while 182 
the absolute size of particles shown here is not a key message, the relative fluorescence at 183 
a given size can be informative.” 184 

 185 
The referee points out that the work by Toprak and Schnaiter (2013) presented small soot 186 
particles that also exhibited relatively weaker fluorescence in FL1. This is consistent with the 187 
expectation that fluorescence intensity will scale strongly with particle size. Differences in 188 
particle size could also impact clustering separation properties somewhat, and so further 189 
investigation of clustering using multiple narrow size ranges of different types of particles could 190 
further explore this process. This exhaustive process was beyond the scope of this work, however. 191 
 192 
To make sure these points are clear in the revised manuscript we have added the following text at 193 
L327: 194 
“It is also important to note here that the method of aerosolization for each particle type plays an 195 
important role in the observed size distribution and so results involving laboratory particles 196 
should be interpreted with this in mind. Observed fluorescence properties, in contrast, are 197 
expected to be conserved at a given particle size and intrinsically related to particle 198 
composition.” 199 

 200 
[R1.7] L384: Would we expect to be able to differentiate between 2 different particles of the same type 201 
with such coarse spectral resolution?  202 
 203 

[A1.7] The referee’s implied point is correct. No, we would not expect to be able to separate 204 
between very similar types of particles using such coarse resolution as is available in the WIBS.  205 
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Frankly, the fact that HAC paired with WIBS data was able to separate as well as it did was 206 
somewhat remarkable and surprising. To make the point clearer, we added text at the end of that 207 
paragraph as follows at L390: 208 
“…separating more finely to quantify differences between types of individual biological particles 209 
is likely to be significantly more challenging and not likely to be possible in most situations.” 210 

 211 
[R1.8] L415: Again I wonder if the use of too coarsely separated bins may compromise the 9-sigma 212 
thresholding and cause misclassification?  213 
 214 

[A1.8] This question also loops back to [R1.3] and stems from a miscommunication. Values of 215 
the five WIBS data parameters were not separately binned (either during the logging process or 216 
when used as recorded), but are input into the cluster algorithm in the same spacing provided in 217 
the raw output of the instrument. The bin resolution is therefore limited by the WIBS optics and 218 
PMT settings.  219 
 220 
Further, fluorescence intensity is relayed by a integer units between 0 and 2047, and resolution is 221 
not a limiting factor. For example, see Figure 5 of the Savage et al. 2017 paper. Biological 222 
particles typically exhibit median fluorescence intensity much higher than non-biological 223 
particles, thus using different threshold strategies can help separate particle classes from one 224 
another by this strategy. 225 
 226 

[R1.9] L514: Can the authors comment on the applicability of their findings to new high resolution UV-227 
LIF instruments that are beginning to become commercially available. Some of these new instruments 228 
have significantly more channels/greater fluorescent resolution than the WIBS.  229 
 230 

[A1.9] This is a helpful suggestion. To extend the applicability of results, the text was amended 231 
as follows: 232 
“Results here are only generally extendable to other UV-LIF instruments, however, whether they 233 
offer single or many channels of emission spectral resolution, in that the methods of particle pre-234 
preparation and the impact of particle number ratio are likely to relay similar effects on 235 
clustering strategy.” 236 

 237 
[R1.10] Technical corrections  238 
L63: instruments, not instrument.  239 
L370: grains, not gains.  240 
L112: Suggest “Experimental and Computational Methods”  241 
L131: “each of the three”  242 
L181: “was the best” 243 
 244 

[A1.10] All typos corrected.   245 
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Anonymous Referee #2  246 
Received and published: 3 June 2018  247 
 248 

Note regarding document formatting: black text shows original referee comment, blue text shows 249 
author response, and red text shows quoted manuscript text. Changes to manuscript text are 250 
shown as italicized and underlined. Bracketed comment numbers (e.g. [R1.1]) were added for 251 
clarity. All line numbers refer to discussion/review manuscript. 252 

 253 
[R2.0] This manuscript discusses application of Hierarchical Agglomerative Clustering (HAC) to analysis 254 
of data collected using the Wideband Integrated Bioaerosol Sensor (WIBS4A). While real-time detection 255 
of bioaerosols has been quite well controlled, the analysis and classification is still challenging and vital 256 
problem. Therefore, investigation and improvements in this area are very important and crucial for 257 
understanding the abilities and limitations of LIF aerosol detectors. The manuscript is well written and in 258 
detail reveals important problems of fluorescence data analysis of bioaerosols. I recommend presented 259 
manuscript to publication, however some corrections and further explanations to the following remarks 260 
will be appreciated:  261 
 262 

[A2.0] Author response: We thank the referee for her/his positive summary of the manuscript and 263 
recommendation to publish after comments are addressed. 264 

 265 
[R2.1] 1. The techniques of single particle detection using LIF devices, like WIBS, reached relatively 266 
high reliability and perfection. The device collects data in real time, on the other hand the presented 267 
results are offline. The data analysis takes a long time. Finally, the standard methods like particle 268 
collection on tape is still competitive with LIF. My question is: Did the authors try or are going to apply 269 
real-time aerosol data analysis?  270 
 271 

[A2.1] I think the statement that “LIF devices … reached relatively high reliability and 272 
perfection” is already an very optimistic statement, but I agree that when operated and analyzed 273 
properly the data can often be useful. The referee’s suggestion about real-time data analysis is an 274 
interesting idea that has been discussed. We are working on this type of analysis from a different 275 
angle and with respect to a different class of instruments, but we have not had the ability to 276 
investigate real-time analysis strategies with respect to WIBS data. This would be a worthwhile 277 
project, but is outside the scope of what we were aiming to accomplish in this study and would 278 
likely require dedicated project funding. 279 

 280 
[R2.2] 2. L67 - principle or principal component analysis?  281 
 282 

[A2.2] In this case the word “principal” is the correct one. I often get this word confused with 283 
“principle” and have to look up the definitions to make sure I’m correct.  284 

 285 
[R2.3] 3. L116 – “The WIBS collects  286 
3 channels of fluorescence intensity. . ...” – collect channels or collects fluorescence intensity in 3 287 
channels?  288 
 289 

[A2.3] This was indeed poor grammatical construction. The sentence has been changed to: 290 
“The WIBS collects information about 3 channels of fluorescence intensity information in three 291 
channels …” 292 

 293 
[R2.4] 4. L170 – “. . .both saturating and non-fluorescent particles were retained. . .” – Did authors collect 294 
the particles?  295 
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 296 
[A2.4] We did not physically collect the particles. The wording here was unfortunately confusing. 297 
In this case we have “retained” the data in the analysis process by not removing particles based 298 
on certain attributes. To clarify, the word “retained” was changed to “analyzed” as shown here: 299 
“… both saturating and non-fluorescent particles were analyzed retained …” 300 

 301 
[R2.5] 5. L370 – “. . .gains. . .” or grains?  302 
 303 

[A2.5] This is a typo; “gains” was corrected to “grains”. 304 
 305 
[R2.6] 6. L494 - ..fluorescence and non-fluorescent particles.. - The phenomenon should not be compared 306 
with the property.  307 
 308 

[A2.6] This typo was changed for the discussion version of the manuscript to be “fluorescent and 309 
non-fluorescent particles.” 310 

 311 
[R2.7] 7. L 424 and further – I think that term “synthetic mixtures” for recorded numerical data is 312 
confusing and should be corrected. Firstly, it sounds like a chemical synthesis process. Secondly, the final 313 
result of clustering should be the same and independent whether the particle data are sorted or not. 314 
Otherwise, the order (sequence) of detected particles would change final result. I think that actual 315 
meaning of used data is well described in L298-300 (“...subset taken from the pool of particles..”.  316 
 317 

[A2.7] The term “synthetic mixtures” is indeed confusing terminology, and this is a point raised 318 
also by Referee #3 (i.e. [R3.1], [R3.3], and [R3.6]). Referee #3 suggested the term 319 
“computational simulations” or “simulated mixtures” among several possibilities, and we have 320 
changed the text in a variety of places through-out the manuscript to reflect this new terminology.  321 

 322 
[R2.8] 8. L 426 – “analytically synthesized” – analysis has opposite meaning to synthesis should be 323 
corrected  324 
 325 

[A2.8] Here the term was changed to “computationally simulated.” 326 
 327 
[R2.9] 9. L 428, 431, 434, 436, – “. . .mixture synthesized. . .” – see point 7.  328 
 329 

[A2.9] The word “synthesized” was changed to “simulated” in each of these cases and all others 330 
within the manuscript. 331 

 332 
[R2.10] 10. The authors compared clustering ability using selected small groups of substances. It would 333 
be interesting to see the clustering output for all 14 types together. Why it was not presented? 334 
 335 

[A2.10] This additional experiment might be interesting, but it is unlikely to add anything to the 336 
general nature of the conclusions. The 14 types of particles assembled for these match-up 337 
experiments (i.e. Sections 4.1 – 4.3) were meant to be individually instructive, but not to 338 
represent the entirety of the types of particles one might see in a more complex, ambient 339 
environment. So collecting all 14 into one experiment would represent another experimental 340 
combination, but would in itself not be any more relevant than the individual simulations already 341 
discussed.  342 
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Anonymous Referee #3  343 
Received and published: 9 May 2018 344 
 345 

Note regarding document formatting: black text shows original referee comment, blue text shows 346 
author response, and red text shows quoted manuscript text. Changes to manuscript text are 347 
shown as italicized and underlined. Bracketed comment numbers (e.g. [R1.1]) were added for 348 
clarity. All line numbers refer to discussion/review manuscript. 349 

 350 
[R3.0] This paper describes methods and results which should help improve the interpretation and use of 351 
data obtained with UV-LIF instruments such as the WIBS. The WIBS measures light scattering, a light 352 
scattering asymmetry factor, and fluorescence in three channels. Fielded instruments with data rates that 353 
can exceed hundreds of particles per minute are available. This paper uses a large set of WIBS data 354 
measured for individual materials (Savage et al. 2017) to evaluate different preprocessing procedures for 355 
analysis of such data. Mathematical simulations of externally mixed particles of known composition are 356 
studied. The findings should be useful not only for understanding WIBS data, but more broadly in 357 
applying Hierarchical Agglomerative Clustering to some other problems in aerosol analytical chemistry. I 358 
recommend publication. However, I request that several confusing items be made less confusing.  359 
 360 

[A3.0] Author response: We thank the referee for her/his positive summary of the manuscript and 361 
recommendation to publish after comments are addressed. 362 

 363 
[R3.1] The use of the term “synthetic mixtures” (L31-32, L424, 707, L734) is confusing. Chamber studies 364 
with synthetic mixtures of real aerosols and real gases are not uncommon in aerosol science. A google 365 
search of “synthetic mixture” provides discussions of various real “synthetic mixtures.” I only looked at 366 
the first 8 or so items in that search, but I saw none with the meaning used in this paper. The online 367 
dictionaries I saw do not indicate this use of “synthetic” (which as far as I can tell indicates something 368 
about numerical or computational). Synthetic organic chemists make real chemicals. If “synthetic 369 
mixtures” is used for the simulated data investigated here, what terminology is left for researchers to use 370 
when they make real synthetic mixtures of aerosols in a chamber and investigate changes in clusters as 371 
time passes and as particles agglomerate? I do not see how a reader can see from the abstract or even well 372 
into this paper that “synthetic” is being used in this highly non-standard way, and that Savage et al., 2017 373 
did not measure mixtures of particles. The “synthetic mixtures” are actually numerical (or mathematical) 374 
simulations of the WIBS the data that should be obtained for dilute mixtures of particles. Real mixtures of 375 
particles can form agglomerates, and some may agglomerate quickly unless they are sufficiently dilute.  376 
 377 

[A3.1] This is a good point that we had not previously considered. The same point was raised by 378 
Referee #2 [R2.7, R.2.8, and R2.9]. We removed all use of the term “synthetic mixtures” and 379 
changed most instances of the term to “simulated mixtures.” Note that this comment also impacts 380 
comments [R3.3] and [R3.6].  381 

 382 
[R3.2] L 20-22 (Abstract). “Here we show for the first time a systematic application of HAC to a 383 
comprehensive set of laboratory data collected using the wideband integrated bioaerosol sensor (WIBS-384 
4A) (Savage et al., 2017).” Suggest change to: “Here we show for the first time a systematic application 385 
of HAC to a comprehensive set of laboratory data collected for individual particle types using the 386 
wideband integrated bioaerosol sensor (WIBS-4A) (Savage et al., 2017). Here the WIBS data for single-387 
composition aerosols is combined numerically to generate data to simulate WIBS values for mixtures of 388 
aerosol.”  389 
 390 

[A3.2] The text of the abstract was modified as suggested. 391 
 392 
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[R3.3] L31-32 (Abstract): “Lastly, six synthetic mixtures of four to seven components were analyzed.” 393 
Might be changed to: “Numerical simulations of mixtures of four to seven components were HAC 394 
analyzed.”  395 
 396 

[A3.3] The text of the abstract was changed as requested to: 397 
“Lastly, six numerical simulations of synthetic mixtures of four to seven components were 398 
analyzed using HAC.” 399 
 400 

[R3.4] L424: “Investigating cluster ability to separate complex synthetic mixtures” Might be changed to: 401 
Investigating the capability to separate particles in simulations of complex synthetic mixtures  402 
 403 

[A3.4] The sub-title was changed along the suggested lines to: 404 
“Investigating the capability cluster ability to separate particles in simulations of complex 405 
synthetic mixtures” 406 

 407 
[R3.5] L426-429: “To better simulate real-world scenarios, we analytically synthesized six mixtures of 408 
particles by pooling existing data from selected particle types in prescribed ratios. Each mixture was 409 
synthesized to roughly represent a different hypothetical mixture of particles that might be expected.” 410 
“Analytically” suggests equations or functions were used in obtaining the data for the mixtures. Isn’t 411 
“numerically” or “computationally” what is meant?  412 
 413 

[A3.5] The word “analytically” was changed to “computationally.” 414 
 415 
[R3.6] L426-429 might be changed to: “To better simulate real-world scenarios, we numerically 416 
simulated six mixtures of particles by pooling existing WIBS data from selected particle types in 417 
prescribed ratios. Each simulated mixture was assembled to roughly represent a different hypothetical 418 
mixture of particles that might be expected. Also, the particles in each simulated mixture are assumed to 419 
be so dilute that any agglomeration is negligible. ” Also, a significant fraction of readers read the abstract 420 
and then look at the figures to see what the results will be. Adding clarifying words to the figure captions 421 
and tables would be useful.  422 
 423 

[A3.6] These are good suggestions that add clarity to the text. The section was re-written with the 424 
suggested text. Words “computational” or “numerical” added to captions of several figures and 425 
tables to increase clarity, as suggested. 426 

 427 
[R3.7] [a] I don’t know what “normalized to particle size” means here. Please clarify, possibly with an 428 
equation. Please also give the ranges of error in particle sizes expected. [b] Why is scenario D worse than 429 
B? I think it is because D adds noise to the FL signals, making them less informative by decreasing the 430 
S/N. This added noise occurs in the elastic scattering measurements, and also results from the 431 
approximations used in estimating solutions to the inverse problem for size (with unknown shape, 432 
orientation and refractive index). If the scattering measurement and the solution to the inverse problem 433 
were perfect, then D and B should give very similar results, at least for spherical particles and some 434 
methods of normalizing to particle size and shape. It may be useful to cite a paper or data with WIBS 435 
measurements of size and fluorescence for uniformly-sized fluorescent PSL. For a single size of PSL, do 436 
plots of the WIBS-measured scattering and fluorescence fall on a line or are they spread more randomly? 437 
Even for a spherical PSL particle, with known refractive index, would you suspect that the noise is large 438 
enough to make D less useful than B?  439 
 440 

[A3.7] To clarify the first question [a], additional text was added to L207: 441 
“…fluorescence intensity was normalized to particle size (by dividing fluorescence intensity value 442 
by light scattering signal when a particle interacts with the diode laser beam) in order to …” 443 
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 444 
With respect to the second question [b], the referee is likely correct that results for Scenario D 445 
(fluorescence normalized) are worse than for Scenario B (fluorescence not normalized), because 446 
for Scenario D additional uncertainty with respect to size is propagated into the intensity value. 447 
Normalizing in this way would also propagate uncertainty for field measurements, and so given 448 
the poorer results of the tests analyses represented here we chose not to further explore 449 
parameters represented by Scenario D. 450 

 451 
[R3.8] Can the authors say anything about the length of times bacteria or fungal spores might last in an 452 
urban environment before a significant fraction of the bioparticles combine with soot, and how that might 453 
affect the usefulness of the WIBS? I’ll be very interested to see the results when (sometime in the future) 454 
the authors inject bacteria or fungal spores into a chamber, add soot particles, use the WIBS to sample 455 
with time, and then repeat the some of the analyses in this paper with the results given as a function of 456 
time.  457 
 458 

[A3.8] This an interesting question, but we do not have a good answer to the hypothetical thought 459 
about atmospheric lifetimes of these particles at this point. It would be great to explore external 460 
mixing of different particles types in the future in order to see how these mixtures could further 461 
influence fluorescence and particle size properties observed by instruments like the WIBS. This is 462 
beyond the scope of the experimental process for now. 463 

 464 
[R3.9] L23: In abstract: “ratio” of what? In the text, “ratio” first appears in “distance ratio.” Suggest 465 
change first use of “ratio” in abstract to “ratio of particle concentrations.”  466 
 467 

[A3.9] Text edited as requested.  468 
 469 
[R3.10] L117: please add wavelength ranges of FL1 to FL3. Aim for a little broader set of readers.  470 
 471 

[A3.10] This was also requested by Referee #1. Additional text was added, as shown here: 472 
“The WIBS collects 3 channels of fluorescence intensity information (FL1, FL2, and FL3), 473 
particle size, and particle asymmetry for each interrogated particle. The bands of excitation and 474 
fluorescence emission are: FL1 (λex = 280 nm, λem = 310 – 400 nm), FL2 (λex = 280 nm, λem = 420 475 
– 650 nm), and FL3 (λex = 370 nm, λem = 420 – 650 nm).” 476 

 477 
[R3.11] L171: replace “will be” with “were”.  478 
 479 

[A3.11] The phrase “will be” changed to “is” to match correct tense. 480 
 481 
[R3.12] L199: Suggest change to: Ambient particle number vs size distributions can often be well 482 
approximated by lognormal distributions (citation), although specific subsets of particles, such as 483 
bacteria, pollens or fungal spores, may not exhibit lognormal distributions.  484 
 485 

[A3.12] Text revised as suggested. 486 
 487 
[R3.13] L245: “placed into a conceptual pool”? How about, “A subset of the particles were selected 488 
randomly for analysis”?  489 
 490 

[A3.13] Text was changed, as suggested, to: 491 
“For each trial, a subset given number of particles from each material type was selected randomly 492 
for HAC analysis placed into a conceptual pool before running through the algorithm to organize 493 
clusters.” 494 
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 495 
[R3.14] L258-259: “diesel soot particles . . . commonly observed . . .” Is this referring to WIBS 496 
measurements? Please provide a citation(s).  497 
 498 

[A3.14] The text as originally written was indeed over-stated and confusing. The text has been 499 
revised to the following: 500 
“The first two trials include diesel soot particles, because light-absorbing carbon aerosol they are 501 
commonly observed in almost all aerosol atmospheric samples with even minimal anthropogenic 502 
influence (Bond et al., 2013) …” 503 

 504 
[R3.15] L299-300: Do you mean: “In each case the input particles are a random subset . . .” 505 
 506 

[A3.15] Yes, the words “number of” was inserted incorrectly here and the typo was corrected as 507 
suggested by the referee. 508 

  509 
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Public Comment- Simon Ruske (simon.ruske@student.manchester.ac.uk) 510 
Received and published: 3 June 2018  511 
 512 

Note regarding document formatting: black text shows original referee comment, blue text shows 513 
author response, and red text shows quoted manuscript text. Changes to manuscript text are 514 
shown as italicized and underlined. All line numbers refer to discussion/review manuscript. 515 

 516 
[Public Comment] The study presented is an extremely well structured and written investigation into the 517 
use of Hierarchical Agglomerative Clustering for classification of biological aerosol using a UV-LIF 518 
sensor, and will make an excellent addition to the literature upon publication.  519 
 520 

[Author Response] Simon, thanks for taking the time to read and comment on the manuscript. We 521 
appreciate the useful comments, which will help improve the quality of the manuscript. We 522 
respond to each comment in detail below. 523 

 524 
However, the authors may have made a small error [L161-L162] where they state that the conclusions for 525 
Ruske et al. (2017) were for ambient data, whereas in the abstract they correctly state that the study was 526 
on standardised laboratory particles [L19-L20]. Please could you correct this prior to final publication. 527 
 528 

I apologize for this mistake. I am not sure where this error came in our writing process, but I 529 
removed the incorrect statement, as requested: “Their conclusions, however, were based on 530 
ambient field data using unknown particle types and did not investigate laboratory generated 531 
particles of known origin.” 532 

 533 
In addition the authors may wish to consider the following comments prior to publication. 534 
[L78-L79] Would it be possible to clarify the starting conditions for supervised learning you are referring 535 
to? Hyper-parameter selection is an extremely important consideration for neural networks, but other 536 
supervised techniques such as decision trees and ensemble methods do exist where low classification 537 
error can be attained without providing the algorithm with any initial conditions other than the training 538 
data. 539 
 540 

This may have been a bit of a miscommunication. We do not deal with any supervised learning 541 
methods in this manuscript. We trust your team as the experts in this area. Nicole simply wanted 542 
to provide a few sentences of general contrast between supervised and unsupervised methods. 543 
That is also why we pointed to your 2017 paper in this section. We have also included citation of 544 
your manuscript currently being reviewed in AMT. 545 

 546 
[L84-L85] Is it necessary to apply unsupervised techniques to assess the advantages of supervised 547 
methods? Do you mean that supervised techniques require laboratory data of known types to assess their 548 
advantages? A very important disadvantage of supervised techniques is that they rely on adequate training 549 
data, and it is not clear at this point how much training data will be required to adequately represent an 550 
ambient environment, which is the point I think you are alluding to here. 551 
 552 

This is the way I understand some of the pros/cons of supervised and unsupervised. I agree that 553 
the community (probably you first) will continue to lean about how this all works together and 554 
how well lab-generated data can be useful to train supervised data algorithms. As you well know, 555 
the differences between nicely behaving lab particles and more complicated particles collected in 556 
the field confounds most areas of aerosol science to some degree. So these problems will not 557 
necessarily be trivial to solve, but I think collectively we are all learning little pieces that will 558 
help. 559 



Page 15 of 16 
 

 560 
[L186 - 187] Does the z-score rely on the assumption of normality? The z-scores of a normal random 561 
variable will be normally distributed whereas the z-scores of a non-normal random variable will be non-562 
normally distributed. Applied to any data set, regardless of distribution, the resultant variables after 563 
z-scoring will have mean of 0 and standard deviation of 1. Is the purpose of standardising the data to 564 
prevent one of the variables from dominating in the analysis or to produce normally distributed data? 565 
 566 

Thanks to your prompting, we looked into these details and learned a bit more, which has been 567 
helpful to us. You are right that the way we characterized the z-scoring process was not correct. 568 
Talking back and forth with the university statistician, we now understand that values can indeed 569 
be input scaled to a normal distribution or not. We chose to standardize our variables to a mean of 570 
0 and a variance of 1 so that the output variables would be on comparable scales, but this is also 571 
not the same as rigorously normalizing them in the rigorous sense. As a result, we have removed 572 
the statement you correctly indicated was inaccurate and updated the sentence as follows:  573 
 574 
Original text: “Standardization using the z-score method compares results to a normal (Gaussian) 575 
population, and therefore relies on the assumption that input data can be described by a normal 576 
distribution (Gordon, 2006).” 577 
 578 
Updated text: “Standardization using the z-score method compares results to a normal (Gaussian) 579 
population, and we have chosen to standardize our variables to a mean of 0 and a variance of 1 so 580 
that the output variables would be on comparable scales.” 581 

 582 
[L203] It would be worth noting that in Crawford et al., 2015, there are particles for which negative 583 
measurement of fluorescence was recorded. The option of logtransformations may have been overlooked, 584 
as the logarithm is undefined for negative values. This was not intended to imply an assumption of 585 
normality, although this assumption has been stated explicitly in Robinson et al., 2013. In these cases 586 
would you recommend translating the fluorescence measurements to a range bounded below by 1, or 587 
alternatively would it be more appropriate to reject measurements for which the fluorescence produced 588 
was negative? It is also important to note that even if the data is log transformed, the data will still have a 589 
finite range due to the saturation point on the detector, and hence the data will have a truncated normal 590 
distribution rather than a normal distribution, and depending on how often saturation occurred there may 591 
still be a peak to the right hand side of the distribution. It is however, perfectly acceptable to apply HAC 592 
when the assumptions for best performance are not met as stated in Norusis, 2011. 593 
 594 

My understanding is that negative fluorescence values can be observed after subtracting some 595 
threshold value from the fluorescence intensity data. Instead of subtracting the data and looking 596 
only at positive values, we did the same thing by filtering the data at several discreet thresholds. 597 
This gets around the problem of negative values. In any case, we looked at three thresholding 598 
scenarios (Table 3), i.e. no threshold, 3 sigma, and 9 sigma. The ultimate result is that we found 599 
the most consistently positive results to be as a result of 3 sigma filtering, but this could be 600 
different in other situations. You are correct about the fact that particles that exhibit saturation of 601 
the detector in any channel will truncate a normal distribution. 602 

 603 
[L222] How often did the CH index conclude that there were 2 clusters? When the CH index concluded a 604 
number of clusters other than 2, how much of an impact did this have on the quality of the results? Were 605 
the two cluster solutions always the best solution? 606 
 607 

We did not explore solutions that had more than 2 solutions, simply as a matter of limited time. 608 
There are certainly many scenarios in which individual bioparticle types (i.e. pollen, in many 609 
instances) can split into two reasonable clusters by themselves, and so independently allowing 3 610 
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or more cluster solutions could significantly improve results in many cases. We just didn’t have 611 
the time to do this systematically, and so we chose to limit analysis to only 2 clusters in all cases. 612 
To help clarify this point, we added text at: 613 
 614 
L227: “In order to reduce the length and complexity of discussion, analysis of results in Sections 615 
4.1-4.3 was limited to using cluster products only from the 2-cluster solution. In some cases a 3-616 
cluster solution may have produced higher quality results, but these cases were not investigated.” 617 

 618 
[L267-270 & Figure 3] The HAC algorithm may not necessarily output clusters in the same order that 619 
they were inputted as demonstrated in Figure 5. In Figure 3 for preparation strategy A for bacteria and 620 
diesel for the 80:20 ratio, is it possible to attain 80% misclassification for a two cluster solution? Perhaps 621 
I have misunderstood, but would this not mean that there were more diesel particles in the bacterial 622 
cluster and more bacterial particles in the diesel cluster, and hence a better classification error could be 623 
attained simply by swapping the labels on the clusters? 624 
 625 

You are correct that the order of cluster numbering is unrelated to the order of particles input and 626 
so the source of individual particles must be known already, but it is not possible to improve the 627 
results by swapping labels in the way you suggest. We independently tracked the source of each 628 
particle assigned to each cluster so we can rigorously calculate which particles were incorrectly 629 
assigned. The numbering of the clusters is arbitrary and the naming was assigned simply as a 630 
function of which particle was assigned in the largest concentration. 631 

 632 
[Figure 3 & Table 2] Could you extend the results presented in Figure 3 to include at least one biological 633 
versus biological matchup? I notice when considering matching ups which contained only biological 634 
material the classification error is much higher. I believe that by not standardising the data this would 635 
cause the fluorescence to dominate more in the analysis. In the case of attempting to discriminate between 636 
fluorescent and non-fluorescent particles, this may be advantageous. However, in the case of attempting 637 
to discriminate between two different types of biological particle, it may be advantageous to give the size 638 
and shape measurements more weight, and hence it would be better in these cases to standardise the data. 639 
In addition other instruments such as the WIBS-NEO will have fluorescence measurements over a much 640 
larger range and fluorescent measurements are recorded often above 10000. What would the implication 641 
then be when not standardising the data in this case? 642 
 643 

This is another interesting idea, but it was beyond the scope of what we were able to accomplish 644 
in the relatively short time we had available for this project. We chose to focus on the ability to 645 
separate bio from non-bio particles. While we didn’t explore all Scenarios (e.g. A-F) for 646 
biological particles, we chose to look at bio-bio separations using Scenario B (i.e. Tables 2 and 647 
3). 648 
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 16 
Abstract 17 
Hierarchical agglomerative clustering (HAC) analysis has been successfully applied to 18 

several sets of ambient data (e.g. Crawford et al., 2015; Robinson et al., 2013) and with respect 19 
to standardized particles in the laboratory environment (Ruske et al., 2017; Ruske et al., 2018). 20 
Here we show for the first time a systematic application of HAC to a comprehensive set of 21 
laboratory data collected for many individual particle types using the wWideband iIntegrated 22 
bBioaerosol sSensor (WIBS-4A) (Savage et al., 2017). The impact of particle ratio of particle 23 
concentrations on HAC results was investigated, showing that clustering quality can vary 24 
dramatically as a function of ratio. Six strategies for particle pre-processing were also compared, 25 
concluding that using raw fluorescence intensity (without normalizing to particle size) and 26 
inputting all data in logarithmic bins consistently produced the highest quality results for the 27 
particle types analyzed. A total of 23 one-on-one matchups of individual particles types were 28 
investigated. Results showed cluster misclassification of <15% for 12 of 17 numericalanalytical 29 
experiments using one biological and one non-biological particle type each. Inputting 30 
fluorescence data using a baseline + 3σ threshold produced lower misclassification than when 31 
inputting either all particles (without fluorescence threshold) or a baseline + 9σ threshold. Lastly, 32 
six numerical simulations ofsynthetic mixtures of four to seven components were analyzed using 33 
HAC. These results show that a range of 12-24% of fungal clusters were consistently 34 
misclassified by inclusion of a mixture of non-biological materials, whereas bacteria and diesel 35 
soot were each able to be separated with nearly 100% efficiency. The study gives significant 36 
support to the application of clustering analysis to data from commercial UV-LIF instruments 37 
being commonly used for bioaerosol research across the globe and provides practical tools that 38 
will improve clustering results within scientific studies as a part of diverse research disciplines.  39 
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1. Introduction 40 
Particles of biological origin, or bioaerosols, make up a substantial fraction of atmospheric 41 

aerosol and have the potential to influence environmental processes and to negatively impact 42 
human health (Després et al., 2012; Douwes et al., 2003; Fröhlich-Nowoisky et al., 2016; 43 
Shiraiwa et al., 2017). In order to understand the impact bioaerosols, such as pollen, spores, and 44 
bacteria, play on various systems, it is important to be able to identify and characterize these 45 
biological particles in the atmosphere. One common method for the detection of bioaerosols is 46 
ultraviolet laser/light-induced fluorescence (UV-LIF), because it can provide particle detection in 47 
near real-time and at high particle size resolution (Fennelly et al., 2017; Huffman and Santarpia, 48 
2017; Sodeau and O'Connor, 2016). Many commercial UV-LIF instruments have become 49 
available for bioaerosol detection, but all of these techniques are challenged with the need to 50 
differentiate between small differences in fluorescence properties in order to identifysort and 51 
quantify biological aerosols from non-biological material. Recently commercialized instruments 52 
show improved ability to discriminate between particle types, for example by utilizing multiple 53 
excitation sources or other particle data (e.g. size and shape). UV-LIF techniques are inherently 54 
limited, however, by the broad nature of fluorescence spectra and so instruments face a 55 
ubiquitous problem of poor selectivity between particle types. By applying improved data 56 
thresholding and particle classification techniques, particle characterization can be further 57 
improved, but important limitations still remain (Hernandez et al., 2016; Huffman et al., 2012; 58 
Perring et al., 2015; Savage et al., 2017; Toprak and Schnaiter, 2013; Wright et al., 2014). One 59 
strategy to improving quality of differentiation between particles types has been to collect full, 60 
resolved emission spectra, each at multiple excitation wavelengths. This can leads to high 61 
instrumental purchase cost, and such instruments have not been widely applied or 62 
commercialized (Huffman et al., 2016; Kiselev et al., 2013; Pan et al., 2009b; Ruske et al., 2017; 63 
Swanson and Huffman, 2018). Most commercial UV-LIF instruments for bioaerosol detection 64 
utilize 1-2 excitation wavelengths and integrate fluorescence signals into a small number of 65 
emission bands. To extend the improvements in particle classification for these commercial UV-66 
LIF instruments, a number of multivariate analysis techniques have been applied to ambient 67 
particle analysis. The most common of these techniques include principal component analysis, 68 
factor analysis, and cluster analysis strategies. Classification algorithms, including several 69 
cClustering techniques, in particular, have shown successful results in providing unbiased 70 
insights to the classification of bioaerosols (Crawford et al., 2015; Pinnick et al., 2013; Robinson 71 
et al., 2013; Swanson and Huffman, 2018). 72 

Cluster analysis is a broad class of data mining methods in which data objects placed in the 73 
same group (or cluster) are more similar to one another than to those objects placed in other 74 
groups. Classification algorithmsClustering techniques can be divided into two central models: 75 
(1) supervised and (2) unsupervised learning. Both models have associated advantages and 76 
disadvantages. Supervised learning methods allow the “training” of data and grouping to better 77 
reflect the data observations (Eick et al., 2004; Ruske et al., 2017; Ruske et al., 2018). This type 78 
of method enhances (trains) the classificationclustering algorithm in that the output cluster 79 
classesgroups are pre-determined rather than discovered, as is the case for unsupervised methods. 80 
Supervision requires the user to have appropriate starting conditions to put into the model, which 81 
are often difficult or impossible to determine. Supervised training methods are also much more 82 
time-efficient compared to unsupervised methods, which is important when analyzing ambient 83 
datasets where particle counts (individual objects) can be greater than 106 (Ruske et al., 2017). In 84 
contrast, unsupervised training methods present less bias and can adapt to unique situations, 85 
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because the resultant clusters are based on models that have not been previously trained. To 86 
access some of the advantages of supervised methods, however, it is importantcritical to first 87 
apply unsupervised models to wide collections of laboratory data of known particle types in 88 
order to gain insight on how these models interpret data inputs and to learn how algorithms can 89 
best be trained (Ruske et al., 2017).  90 

Hierarchical agglomerative clustering (HAC) is an unsupervised learning method that has 91 
been most commonly applied for bioaerosol related studies (e.g. Crawford et al., 2016; Crawford 92 
et al., 2015; Gosselin et al., 2016; Pan et al., 2009a; Pan et al., 2007; Pinnick et al., 2013; Pinnick 93 
et al., 2004; Robinson et al., 2013; Ruske et al., 2017; Ruske et al., 2018). Other unsupervised 94 
clustering techniques, such as the k-means clustering method, have shown poor results when 95 
applied to ambient data sets because the number of clusters used to represent the data are 96 
required a priori, and this information is usually unknown prior to analysis (Ruske et al., 2017). 97 
There are several different HAC methods or linkages including: Single, Complete, Average, 98 
Weighted, Ward’s, Centroid, and Median (Crawford et al., 2015; Müllner, 2013). Ruske et al. 99 
(2017) compared a variety of HAC linkages and determined that Ward’s linkage had a higher 100 
percentage of correctly classifying particles, in comparison to other HAC methods.  101 

Recently, Savage et al. (2017) published a comprehensive laboratory study applying the 102 
wWideband iIntegrated bBioaerosol sSensor (WIBS-4A) to a large and diverse set of biological 103 
and non-biological aerosol types. Following on that work, the study presented here utilizes those 104 
data as inputs to evaluate and challenge the HAC strategy of particle differentiation using the 105 
Ward’s linkage of unsupervised clustering. Previous HAC studies have focused primarily on (a) 106 
the analysis of simple particle standards (i.e. fluorescent microbeads) and (b) clustering of 107 
particles from ambient data sets. There have been relatively few published attempts to 108 
differentiate between biological particles and interfering particles by clustering methods using 109 
controlled laboratory UV-LIF data or to separate different kinds of biological particles from one 110 
another. Presented here are results of the HAC method applied to data from a comprehensive 111 
WIBS laboratory study showing that clustering can dramatically improve removal of non-112 
biological particle types from data sets if operated under appropriate conditions.  113 

 114 
2. Experimental and Computationaling Methods 115 
The WIBS-4A (Droplet Measurement Techniques, Longmont, CO) is a commonly used UV-116 

LIF based instrument for the detection and characterization of biological particles. The 117 
instrument collects particles in the size range 0.8 – 20 µm and interrogates them in real-time as 118 
particles flow through the path between optical sources. The WIBS collects information about 3 119 
channels of fluorescence intensity information in three channels (FL1, FL2, and FL3), particle 120 
size, and particle asymmetry for each interrogated particle. The bands of excitation and 121 
fluorescence emission are: FL1 (λex = 280 nm, λem = 310 – 400 nm), FL2 (λex = 280 nm, λem = 122 
420 – 650 nm), and FL3 (λex = 370 nm, λem = 420 – 650 nm). The excitation and emission 123 
wavelengths chosen for each of the 3 fluorescence channels were designed to maximize the 124 
information gained about key biological fluorophores present in a broad range of bioparticles 125 
(Kaye et al., 2005; Pöhlker et al., 2012). Early generations of UV-LIF bioaerosol spectrometers 126 
were often interpreted to be able to detect proteins via channels similar to FL1 and products of 127 
active cellular metabolism (i.e. riboflavin and NAD(P)H) via channels similar to FL3, but these 128 
approximations are gross simplifications that confound more detailed investigation of particle 129 
types. For more information on the design, operation, and calibration of this instrument see e.g. 130 
the manuscripts listed here and references therein (Foot et al., 2008; Healy et al., 2012a; Healy et 131 
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al., 2012b; Hernandez et al., 2016; Kaye et al., 2005; Perring et al., 2015; Robinson et al., 2017; 132 
Savage et al., 2017; Stanley et al., 2011).  133 

All aerosol materials utilized have been listed previously in Table 2 shown by Savage et al. 134 
(2017), where an overview of size and fluorescence properties of particles utilized for this study 135 
are also reported. No additional laboratory experiments were performed here beyond the results 136 
presented previously.  137 

The fluorescence threshold applied to the differentiation of fluorescent from non-fluorescent 138 
particles is a key step in UV-LIF data analysis. Traditionally a fluorescence threshold has been 139 
determined as the average baseline fluorescence intensity measured in each of the three channels 140 
during the forced trigger (FT) mode when no particles are present, plus three times the standard 141 
deviation (σ) of that measurement (i.e. FT + 3σ) (Gabey et al., 2010). Savage et al. (2017) also 142 
reported that additional particle discrimination is possible by using FT + 9σ as the threshold. 143 
Both threshold definitions will be discussed here. After choosing a threshold of minimum 144 
fluorescence, the fluorescence characteristics of a particle can be classified into 7 different 145 
particle types introduced by Perring et al. (2015) and as summarized in Figure 1 shown by 146 
Savage et al. (2017).  147 
 148 

3. Clustering Strategy 149 
Hierarchical clustering methods work by grouping objects from the bottom up, meaning that 150 

each object (particle) starts as its own “cluster,” and clusters are merged together based on 151 
similarities until a greatly reduced number of clusters are presented as a final solution. Ward’s 152 
method for clustering is among the most popular approaches for HAC and is the only method 153 
based on a classical sum-of-squares criterion, minimizing the within-group sum of squares (or 154 
variance) (Müllner, 2013). The WIBS-4A used here for data collection provides 5 parameters of 155 
information for each individual particle detected (3 fluorescence channels, size and asymmetry 156 
factor:AF), resulting in 5 dimensions of data. 157 

The clustering analysis was performed using the open-source software R package 158 
‘fastercluster’ (Müllner, 2013) using a Dell Latitude E7450 laptop computer with an Intel® 159 
Core™ Processor (i7-5600U CPU @ 2.60 GHz, 16 GB RAM). 160 

 161 
3.1 Data Preparation 162 
Saturation of fluorescence intensity occurs at 2047 analog-to-digital counts (ADC) for each 163 

of the three FL channels in the WIBS-4A, at which point the photomultiplier tube (PMT) reaches 164 
its upper limit of detection. A study by Ruske et al. (2017) investigated whether non-fluorescent 165 
(in that case, particles below the FT + 3σ fluorescence threshold) and/or saturating data points 166 
included in the clustering analysis hindered the efficiency of the cluster output. The authors 167 
determined that removing both saturating and non-fluorescent particles before HAC analysis 168 
resulted in a better clustering performance in terms of correctly classifying ambient particles. 169 
Their conclusions, however, were based on ambient field data using unknown particles types and 170 
did not investigate laboratory-generated particles of known origin. The quality of the clustering 171 
results isare likely to be impacted by types of particles involved and the assumptions placed on 172 
those. As shown by Savage et al. (2017), many biological particles present a large fraction that 173 
saturate one or more of the fluorescence detectors. Conversely, many non-biological particles 174 
present a large fraction of very weakly fluorescent particles with intensity below a given 175 
threshold and thus that are classified as non-fluorescent. To limit pre-modification of particle 176 
populations before clustering, the only filter applied before clustering was to remove particles 177 
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smaller than the lower particle size detection limit of the WIBS-4A (0.8 µm), similar to Ruske et 178 
al. (2017). In contrast, both saturating and non-fluorescent particles were analyzedretained and 179 
the clustering results will be evaluated. Figure 1 outlines the data preparation process, including 180 
the conceptual process of normalization, clustering, and validation of data, which iswill be 181 
explained in detail below.  182 

 183 
3.2 Data Normalization 184 
 Normalization of the raw data is necessary before executing the clustering algorithm, 185 

because data parameters delivered from the instrument are measured on different respective 186 
scales. For example, fluorescent intensity values range from 0 to 2047 ADC (analog-to-digital 187 
counts), size from 0 to ~20 µm, and AF from 0 to 100 arbitrary units. Crawford et al. (2015) 188 
performed analysis on polystyrene latex spheres (PSLs) using several different normalization 189 
techniques, concluding that z-score normalization iwas the best technique when looking at 190 
cluster performance using Ward’s linkage for the separation of PSLs. As a result, we utilize the 191 
z-score normalization of Ward’s linkage HAC for the presented study. By this type of 192 
normalization, the mean value of all data points is subtracted from each individual data point, 193 
and then each data point is divided by the standard deviation of all points. Standardization using 194 
the z-score method compares results to a normal (Gaussian) population, and we have chosen to 195 
standardize our variables to a mean of 0 and a variance of 1 so that the output variables would be 196 
on comparable scales., and it therefore relies on the assumption that input data can be described 197 
by a normal distribution .  198 

 199 
3.3 HAC Scenarios 200 
Hierarchical agglomerative clustering performs optimally if all variables (1) are independent 201 

of one another and (2) can be described well by a normal (Gaussian) distribution (Norusis, 202 
2011). To achieve meaningful results from the clustering analysis data values must, therefore, be 203 
input into the clustering algorithm with an careful understanding of how specific preparatory 204 
conditions can significantly impact results. To investigate optimal input conditions a total of 6 205 
clustering scenarios were explored, with conditions summarized in Table 1. The impact of two 206 
separate variables were explored within these scenarios by varying: (i) whether fluorescence 207 
intensity were pre-normalized by particle size and (ii) whether the data values were input in after 208 
logarithmic transformationally spaced bins to produce a normal distribution.  209 

Ambient particle number vs size distributions can often be are well approximated byknown 210 
to exhibit lognormal distributions, although specific groups of particles, including some bacteria, 211 
spores, and pollen, may not always exhibit lognormal distribution. Further, fluorescence intensity 212 
has been shown to scale with particle size (e.g. Hill et al., 2001; Sivaprakasam et al., 2011). 213 
Several previous studies attempted to utilize HAC for ambient lognormally-distributed particle 214 
size data (Crawford et al., 2014; Crawford et al., 2015; Robinson et al., 2013), but applied the 215 
assumption that particle fluorescence is normally distributed in a group of particles. If this 216 
assumption does not hold to be correct, however, weakly fluorescing particles are likely to be 217 
grouped into a single cluster based on the high abundance of these particles (Robinson et al., 218 
2013). Scenarios C, D, and E (Table 1) utilize data input to the clustering algorithm after 219 
fluorescence intensity was normalized to particle size (by dividing fluorescence intensity value 220 
by light scattering signal when a particle interacts with the diode laser beam) in order to explore 221 
whether the assumption that laboratory data should be treated like previously explored ambient 222 
data sets and not logged. Scenarios B and D take into account the logging of all parameters, 223 
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producing normal distributions of all variables (AF, particle size, 3 channels of fluorescence). By 224 
this process, data values were input into the algorithm as log(value) without separately binning 225 
the points. For comparison, scenarios E and F explore log-spaced distributions of size and AF, 226 
while retaining the assumption that the fluorescence output is normally distributed. Scenario A 227 
data is neither logged nor normalized. For comparison, Scenario F represents the input 228 
conditions that have been used frequently (e.g. Crawford et al., 2015; Ruske et al., 2017). 229 

 230 
3.4 Cluster Validation 231 
An important feature of HAC is that it provides clusters in an unsupervised manner, and the 232 

user must determine the number of clusters that makes physical sense. One useful tool to 233 
systematically determine the optimal number of final clusters is the Calinski-Harabasz (CH) 234 
index, which uses the interclass-intraclass distance ratio (Liu et al., 2010). For each clustering 235 
output the CH index was calculated for cluster solutions with one through ten clusters, and the 236 
solution with the highest CH value was generally determined to be the optimal number of 237 
clusters. Figure 2 shows an example CH versus cluster number plot for a mixture of Aspergillus 238 
niger fungal spores mixed with diesel soot particles. The curve suggests the optimal result to be a 239 
2-cluster solution for this trial, as was generally the case for investigations where two particle 240 
types were mixed before clustering. In order to reduce the length and complexity of 241 
discussionanalysis, analysis of results in Sections 4.1-4.3 was limited to using cluster products 242 
only from the 2-cluster solutionall cases presented. In some cases a 3-cluster solution may have 243 
produced higher quality results, but these cases were not investigated. in Sections 4.1-4.3 are 244 
products of a 2-cluster solution.  245 

 246 
4 Results and Discussion 247 

The analysis of clustering quality was performed systematically and with increasing 248 
complexity. Section 4.1 utilizes three pairs of particles types to explore the effect of particle ratio 249 
and normalization strategies on cluster performance. Using conclusions from this section, 250 
Section 4.2 then expands the exploration to 20 additional pairs of particle types. Section 4.3 251 
explores the effect of three different fluorescence thresholding strategies on cluster output. 252 
Finally, Section 4.4 investigates the ability of HAC analysis to separate particle types from 253 
mixed populations of particle types. 254 

 255 
4.1 Investigating pre-normalization scenarios and particle input ratio 256 

To explore the ability to separate two distinct populations of particles from one another, three 257 
different clustering trials are presented in this section as one-on-one match-ups: (1) Aspergillus 258 
niger (fungal spores, F2) vs. NIST diesel soot (S4), (2) Pseudomonas stutzeri (bacteria, B3) vs. 259 
NIST diesel soot (S4), and (3) Aspergillus niger (fungal spores, F2) vs. California sand (mineral 260 
dust, D12). These four particle materials were chosen to represent key classes of coarse particles 261 
observed in ambient air. For each trial, a subsetgiven number of particles from each material type 262 
was selected randomly for HAC analysisplaced into a conceptual pool before running through 263 
the algorithm to organize clusters. The clustering process includes: (i) evaluation of cluster 264 
performance based on particle assignment and cluster composition, and (ii) visual representations 265 
of cluster outputs using particle type classification introduced by Perring et al. (2015). For each 266 
of these three trials, the clustering process was run separately using each of the six scenarios A-F 267 
described in Table 1. Additionally, while exploring the optimal data pre-processing scenario, the 268 
influence that different concentration ratios of particle types could play in the clustering output 269 
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was also explored. The cluster process for each trial was performed using three four different 270 
ratios of particles in each particle set including situations with an equal ratio (50:50) and 271 
situations where the concentration of each particle type was significantly mismatched (80:20 and 272 
20:80). In total, this section represents 574 individual clustering experiments (3 trials x 6 273 
scenarios x 3 particle ratios + 3 additional ratio trials) exploring three independent input 274 
variables. The results will be utilized to explore many more individual particle type match-ups in 275 
the following sections. 276 

The first two trials include diesel soot particles, because light-absorbing carbon aerosolthey 277 
are commonly observed in almost all aerosolatmospheric samples with even minimal 278 
anthropogenic influence (Bond et al., 2013), and because they can have fluorescence 279 
characteristics difficult to distinguish from small biological particles (e.g. Huffman et al., 2010; 280 
Pan et al., 2012; Savage et al., 2017; Yu et al., 2016). For example, when excited by photons 281 
with a wavelength of 280 nm, diesel soot can be misinterpreted as single bacterial cells using the 282 
WIBS, and so we explored here whether the two particle types could be clustered separately 283 
(Pöhlker et al., 2012). The three trials include two examples of biological particles, both 284 
exhibiting fluorescent properties, but with different excitation-emission characteristics and with 285 
different average particle size.  286 

The output of the algorithm reports the particle type from which each particle was input in 287 
order to evaluate the accuracy of the clustering. The resulting output of each particle with an 288 
assigned cluster number is then compared to the originating particle type to determine 289 
classification accuracy. Figure 3 summarizes the relative accuracy of individual clustering 290 
experiments by representing the percent of particles misclassified with respect to known input 291 
identities (blue bar corresponding to correct classification, red bar and overlaid value 292 
corresponding to incorrect classification). The clustering process was generally effective for 293 
separating particles correctly when two particle types were considered, but results vary widely 294 
across the six scenarios. Several previous studies that used HAC to separate particles within an 295 
ambient data set assumed that particle fluorescence is already normally distributed (Crawford et 296 
al., 2014; Crawford et al., 2015; Robinson et al., 2013). As a result, these previous studies did 297 
not normalize fluorescence data and thus used data preparation scenario F in their clustering 298 
analysis. For comparison, scenarios B and D were explored to test whether the clustering 299 
efficiency would be improved or hindered by fluorescence normalization. Scenarios A and F 300 
produced inconsistent results, with some experiments (i.e. 50:50 ratio of fungal spores:diesel) 301 
producing misclassification <1.1%, whereas other experiments (i.e. 20:80 ratio of 302 
bacterial:diesel) producing misclassification up to> 80%. In contrast, scenarios B and D 303 
produced consistently more accurate results. Scenario B, in particular, consistently exhibited the 304 
most accurate classification of particles for almost every individual experiment. No experiment 305 
involving scenario B produced greater than 9% misclassification of particles, regardless of 306 
particle input ratio, and most experiments produced results with 0.1 - 3% error. These 307 
observations taken together suggest that particle fluorescence properties may not be well 308 
described by normal distributions and that normalizing fluorescence data prior to analysis may 309 
be more effective.  310 

The results of these experiments also highlight how important the ratio of input particles can 311 
be. While scenario B was relatively consistent, varying only between 0.1 and 3.8% error for 312 
different ratios of the fungal spore versus diesel match-up, other experiments depended strongly 313 
on particle ratio. It is clear that the input ratio of particle types cannot be controlled during an 314 
ambient study, and so these results suggest that it is important to keep the possibility of varying 315 
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concentration ratios in mind when interpreting time- or air mass-associated changes in cluster 316 
composition or when relaying the relative confidence in clustering results. For the remainder of 317 
the discussion, experiments will be limited to a 50:50 ratio following scenario B. In each case the 318 
number of input particles arerepresents a random subset taken from the pool of particles in the 319 
experimental data. As a result, individual samples selected from the same experiments (i.e. Fig. 320 
4a, Fig 4e) can show slightly different average properties. In some cases (i.e. Ddiesel soot, Fig. 321 
4d) the number of particles originally analyzed was small and so to keep the input particle ratio 322 
50:50 the corresponding particle type was also limited to small numbers. 323 

To extend the investigation of particle input ratio, the three match-ups presented in Figure 3 324 
were investigated using Scenario B with 1% bioparticles and 99% non-bioparticles in each 325 
respective case. In these experiments the bacteria:diesel soot and fungal spores:dust particles 326 
separated relatively well (6.6% and 13.5% misclassification, respectively). The fungal 327 
spores:diesel soot separation was poor, however, because the diesel soot particles were nearly 328 
evenly split into both clusters, and the fungal spore particles were too low in concentration to 329 
influence the cluster properties. More investigation is needed to explore how extreme disparities 330 
in particle ratio could negatively influence cluster quality in real-world settings. 331 

An important tool readily applied to analysis of ambient data is the categorization of particles 332 
into 8 fluorescent particle types (Perring et al., 2015). Thus, to further investigate the quality of 333 
cluster accuracy, Figure 4 shows inputs and cluster outputs from three clustering experiments 334 
stacked as a function of fluorescence particle type and particle size. The top row of Figure 4 335 
shows the input data for Aspergillus niger and diesel soot (Fig. 4a-b) paired with the outputs of 336 
the 2-cluster solution (Fig. 4g-h). It can be seen that both particle materials have predominantly 337 
particle type-A characteristics, meaning that they are fluorescent only in channel FL1. The 338 
fungal material also presents roughly a third AB (green) and a small minority of non-fluorescent 339 
(gray) characteristics. The size distribution of the fungal spores peaks at ~3 µm, whereas diesel 340 
soot peaks at ~1 µm in size. While not shown in this plot style, the spores exhibit moderately 341 
higher FL1 channel fluorescence, with a median of 543 ADC, whereas diesel soot exhibits a 342 
median of 751 ADC in this channel (see Savage et al., 2017; Table 2). Both particle types show 343 
almost no fluorescent characteristics in either FL2 or FL3. In summary, the particle distributions 344 
are relatively similar in fluorescence particle type and their differences are largely related to 345 
particle size, so separation of these particles through Trial 1 was hypothesized to represent a 346 
relatively challenging initial exercise. The clustering outputs presented in Figures 4g-h, however, 347 
visually highlight the conclusion represented by Figure 3, which is that the particles in this trial 348 
separated very well. Cluster 1 was comprised predominantly of fungal particles and presented 349 
fluorescence and size traits qualitatively similar to the input fungal particles, whereas cluster 2 350 
was comprised predominantly of diesel soot particles. Results from the 50:50 ratio of the 351 
scenario B experiments for the other two trials are also shown in the last two rows of Figure 4. In 352 
each case, the qualitative properties of the input particles are extremely well represented by the 353 
corresponding output cluster, corroborating the conclusion from Figure 3 that the scenario B 354 
cases accurately separated the particle groups investigated through these experiments. It is also 355 
important to note here that the method of aerosolization for each particle type plays an important 356 
role in the observed size distribution and so results involving laboratory particles should be 357 
interpreted with this in mind. Observed fluorescence properties, in contrast, are expected to be 358 
conserved at a given particle size and intrinsically related to particle composition. 359 

 360 
4.2 Investigating cluster quality without fluorescence threshold 361 
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After concluding that scenario B exhibited the most consistently accurate clustering results 362 
using 2-cluster solutions from mixtures comprised of 2 particle type inputs, the analysis was 363 
expanded to include a broader range of particle types. Using 50:50 ratios of two types of input 364 
particles, prepared using scenario B (leaving fluorescence data un-normalized and forcing all 365 
five data parameters into logarithmically spaced bins), 20 new individual experiments were 366 
performed. The results of all 23 experiments (3 from Section 4.1 and 20 introduced in Section 367 
4.2) are summarized in Table 2 as the percentage of particle misclassification. These trials were 368 
chosen to represent a broad range of individual match-ups that might be expected in ambient air. 369 
From the original 69 types of particles analyzed by Savage et al. (2017), 14 were used in 370 
experiments here: 8 types of non-biological particles and 6 types of biological particles (2 each 371 
of fungal spores, bacteria, and pollen species). Supplemental Figure S4 from Savage et al. (2017) 372 
shows size distributions stacked by fluorescence particle type for each of the particle species 373 
discussed.  374 

Table 2a organizes clustering results into three rows, showing misclassification of F2 375 
(Aspergillus niger fungal spore), B3 (Pseudomonas stutzeri bacteria), and P9 (Phelum pratense 376 
pollen) particles, respectively, with respect to a variety of other particle types represented by 377 
table column. Of the 15 cluster experiments between fungal spore or bacteria and non-biological 378 
material (top two table rows), only 3 showed misclassification greater than 7.5% (bold text), and 379 
7 were less than 3%. The three outliers were: experiment (7) F2 vs BC3 (glyoxal + ammonium 380 
sulfate brown carbon aerosol), (8) F2 vs WT (white t-shirt particles), and (14) B3 vs WT. 381 
Looking first at experiment (7), F2 particles show A-type fluorescence characteristics and are 382 
dominated by a mode between 1.5 and 4 µm. BC3 particles are primarily non-fluorescent <1.5 383 
µm, but are primarily A-type between 1.5 and 3 µm, suggesting similar size and fluorescence 384 
properties. The white t-shirt particles separated poorly (~41% misclassification) from both the 385 
fungal spore and bacterial particles. All three particle types (WT, F2, and B3) exhibit medium 386 
fluorescent intensity in the FL1 channel. The poor ability to separate WT from both F2 and B3 387 
was surprising, however, given that WT exhibited significantly higher mean fluorescence in each 388 
of the FL2 and FL3 channels. As first mentioned by Savage et al. (2017), great care should be 389 
taken when interpreting fluorescent particle results from indoor environments where increased 390 
concentrations of bleached fibers from clothing, bedding, paper, and cleaning products may be 391 
present.  392 

While the results show that the spores and bacterial particles investigated could generally be 393 
well separated from most potentially interfering non-biological species, the results were much 394 
less successful for differentiation from pollen. P9 pollen particles separated poorly in all 395 
experiments (versus D12, H2, or P5), with rate of misclassification ranging from 22 to 47%. It is 396 
important to keep in mind, however, that the WIBS was operated using a standard gain setting 397 
that limits analysis of particle size to below approximately 20 µm. As a result, the WIBS is 398 
insensitive to whole pollen grains and so most of the particles observed during pollen 399 
experiments are small pollen fragments. Any intact pollen grains that navigate the flow system to 400 
be detected are likely to be binned together in the channel representing the largest particles. 401 
Clustering results including pollen should be interpreted accordingly. Pollen grains can fragment 402 
in ambient air as function of increased relative humidity (Miguel et al., 2006; Suphioglu et al., 403 
1992; Taylor et al., 2004), but the relative ratio of whole/fragmented particles is hard to predict 404 
under ambient conditions. Smaller fragments can also exhibit different fluorescent properties 405 
than whole grains (Pöhlker et al., 2013). O’Connor et al. (2014) operated a WIBS-4 (Univ. 406 
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Hertfordshire) at lower gain in order to improve pollen detection efficiency, but these results are 407 
not explored directly here. 408 

The WIBS instrument is frequently used to differentiate between airborne biological particles 409 
and material of non-biological origin. A secondary goal of differentiating more finely between 410 
types of biological aerosols is also frequently pursued. To investigate this goal, six additional 411 
experiments were conducted by pairing two different types of non-biological particles (Table 412 
2b). In contrast to the results shown in Table 2a, the clustering algorithm showed generally poor 413 
ability to separate between two biological particle types. Only one of the six experiments 414 
resulted in error <15% (F2 vs B3, 10.3% error), whereas error for the other five experiments 415 
ranged from 18% to 65%. The worst accuracy was demonstrated by experiments (22) B1 vs B3 416 
and experiment (23) P5 vs P9. Both of these experiments attempted to separate between different 417 
species of a single particle type (i.e. between two bacteria or two pollen, respectively). Overall, 418 
these results suggest that the clustering strategy may be quite useful at aiding the differentiation 419 
of biological material from non-biological material, but that separating more finely to quantify 420 
differences between types of individual biological particles is likely to be significantly more 421 
challenging and not likely to be possible in most situations. 422 

 423 
4.3 Investigating impact of fluorescence thresholding strategy on cluster quality 424 
In previously published studies, removing particles from clustering analysis that exhibited 425 

particle fluorescence intensity below the threshold (i.e. non-fluorescent) or at the saturating point 426 
improved the efficiency of clustering (Crawford et al., 2015; Ruske et al., 2017). In Sections 4.1-427 
4.2, particles with either of these characteristics were left in the analysis to prevent the 428 
underestimation of particles clustered. In this section, however, we investigated whether 429 
removing non-fluorescent particles could improve cluster accuracy for the experiments that 430 
performed poorly in Section 4.2. Of the 23 trials represented in Table 2, 10 experiments 431 
exhibited 15% or greater misclassification and were subjected to further analysis in order to 432 
investigate whether using a more discriminating fluorescence thresholding strategy could 433 
improve cluster results. In all 10 cases fluorescence saturating particles were retained, and three 434 
separate thresholding conditions were compared by: (I) keeping all non-fluorescent and 435 
saturating particles, (II) removing non-fluorescent particles by applying a fluorescence threshold 436 
of FT baseline + 3σ, and (III) and removing non-fluorescent particles by applying a fluorescence 437 
threshold of FT baseline + 9σ. Savage et al. (2017) showed evidence that applying a FT + 9σ  438 
improved WIBS results by removing a higher fraction of non-biological material from analysis 439 
than by applying the more commonly used FT + 3σ, without negatively impacting observations 440 
of biological particles. Table 3 shows the percentage of particles misclassified in each of three 441 
scenarios investigated here (Table 3a) as well as the number of particles subjected to the 442 
clustering algorithm (Table 3b).  443 

Each scenario, with exception of the B3 vs B9 experiment (21), shows a decrease in particle 444 
misclassification from scenario I (no fluorescence threshold applied) to scenario II (FT + 3σ). In 445 
contrast, eight of the ten scenarios increase in particle misclassification when raising the 446 
fluorescence threshold from 3σ (II) to 9σ (III). The exceptions to this trend are experiments (8) 447 
F2 vs WT and (19) F2 vs P9, which show nominal improvement in error (2-4% reduction) with 448 
increased threshold. We hypothesize that the 9σ results degrade, in most cases, because the 449 
threshold becomes high enough that most weakly fluorescing particles have been removed from 450 
analysis. This reduces the ability of the cluster to group into low and high fluorescence 451 
categories, and so remaining particles are separated less efficiently. Secondly, removing particles 452 
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at higher fluorescence thresholds leads to increasingly poor counting statistics, as represented in 453 
Table 3b by the number of particles included in each experiment. Overall, these results suggest 454 
that inputting particles into the clustering analysis with at least a nominal fluorescence threshold 455 
(i.e. FT + 3σ) can improve the clustering results in many cases, however, increasing the 456 
threshold further may decrease cluster quality. 457 
 458 
4.4 Investigating the capability cluster ability to separate particles in simulations of 459 
complex synthetic mixtures 460 

To this point, our investigation has focused on a variety of individual match-ups between two 461 
distinct particle types. To better simulate real-world scenarios, we computationallyanalytically 462 
simulatedsynthesized six mixtures of particles by pooling existing WIBS data from selected 463 
particle types in prescribed ratios. Each simulated mixture was assembledsynthesized to roughly 464 
represent a different hypothetical mixture of particles that might be expected. Also, the particles 465 
in each simulated mixture are assumed to be so dilute that any agglomeration is negligible. Table 466 
4 provides an overview of the percentage of each particle type included as well as the total 467 
number of particles in the mixture. Mixtures 1 and 2 were simulatedsynthesized arbitrarily to test 468 
if a minority (25%) of one type of fungal spores (F2) could be separated from a majority (75%) 469 
of a mixture of three different non-biological materials. Mixtures 3 and 4 synthesized arbitrary 470 
mixtures of two types of bioaerosol (F2 and B3) with three or five types of non-biological 471 
particles, respectively. Mixture 5 was simulatedsynthesized to examine the separation of pollen 472 
(P9) from a set of five non-biological particles. Mixture 6 was simulatedsynthesized to simulate 473 
be similar to an indoor environment that might have a mixture of biological particles (F2 and B3) 474 
with non-biological materials, including bleached fibers (WT). These mixtures are not intended 475 
to closely mimic any set of individual ambient conditions, but are rather used as very rough 476 
synthetic scenariossimulations used for discussion and to prompt discussion related to future 477 
experiments within the community. In a real-world sampling environment one would also expect 478 
a high concentration of non-fluorescent particles as well (e.g. most organic aerosols, sea salt, 479 
dusts), but these were generallylargely not sampled as a part of the Savage et al. (2017) study, 480 
which focused on fluorescent particles. As a result, relatively non-fluorescent particles like D12 481 
and H2 were included here as “fillers” in most mixtures as surrogates for other types of non-482 
fluorescent particles. Clustering analysis was performed using the ratios listed in Table 4, the B 483 
scenario of pre-normalization conditions, and filtering non-fluorescent particles below the FT + 484 
3σ threshold. In all cases, the number of clusters retrieved after HAC was pre-defined to be the 485 
same as the number of particle types input. 486 

Cluster results from all six mixtures are summarized in Figure 5. Figure 5 (Part A) shows the 487 
number of particles from each type assigned to each cluster, and Parts B and C show results 488 
grouped by general particle classification (brown for non-biological and dark green for 489 
biological). Overall, the ability of the HAC analysis to separate the biological particles from the 490 
non-biological particles was high. In some cases, the quality of separation of one or two 491 
biological species from a mixture of non-biological materials was even higher than the 2-492 
material match-ups shown in Sections 4.1-4.3. The two 4-component mixtures showed 22.4% 493 
and 14.8% misclassification of fungal spores. In both cases, a small fraction of each of the non-494 
biological materials were mixed into the spore cluster, whereas almost none (1.5% and 0.6%) of 495 
the spores were incorrectly mixed into the sum of the non-biological clusters.  496 

Mixtures 3 and 4 showed similar misclassification for fungal spores (11.9% and 13.8%, 497 
respectively), whereas the bacterial particles clustered with amazing quality. For Mixture 3, no 498 
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particles other than bacterial particles were grouped into Cluster 1, and only 16 of 213 bacterial 499 
particles were assigned to other clusters. For Mixture 4, 135 of 137 particles in Cluster 6 were 500 
bacterial in origin and 135 of 142 bacterial particles were assigned to the cluster. The 501 
combination of fungal and bacterial particles in Mixtures 3 and 4 resulted in a total of 5.0% and 502 
5.3% misclassification of all biological particles.  503 

In contrast to the poor separation of pollen from other particle types discussed in Section 4.2, 504 
Mixture 5 showed a higher quality of separation between pollen (9.4% misclassified) and the 505 
sum of five other non-biological particle types. Lastly, the mixture designed to roughly mimic an 506 
indoor environment including white t-shirt particles. In this mixture the WT particles confounded 507 
the spore separation, but the bacterial separation was nearly flawless. 508 

Another surprising observation from the analysis of these simulatedsynthetic mixtures was 509 
that the diesel soot particles (Mixtures 1, 2, 4, and 5) separated into their own cluster in almost 510 
all cases with very high quality (1.8%, 2.9%, 0.6%, and 9.4%, respectively, of diesel soot 511 
particles misclassified into a different cluster). The quality of separation of bacterial particles and 512 
diesel soot (Mixture 4) was especially amazing, given the qualitative similarity of the two 513 
particle populations. For example, size-distributions of each particle type show primarily A-type 514 
particles with similar mean fluorescent intensity values in FL1, FL2, and FL3 (Savage et al., 515 
2017).  516 

 517 
5. Conclusions 518 

Application of results from a recent set of systematic laboratory experiments (Savage et al., 519 
2017) by the commonly used hierarchical agglomerative clustering analysis helps to reveal areas 520 
where the tool can be used well and other areas where it struggles. First (Section 4.1) it was 521 
observed that differing ratios of particle input into the clustering algorithm can produce 522 
dramatically different results. It will be important for anyone applying HAC to ambient particle 523 
sets where particle ratios are not independently verified to interpret results somewhat loosely. In 524 
Section 4.1 the clustering quality of scenario B, where fluorescence intensity was not normalized 525 
to particle size and where all input variables were binned into log space, was determined to 526 
consistently demonstrate the highest quality results. Further, the ability to the HAC analysis to 527 
separate between two groups of individual particle types using no fluorescence threshold 528 
(Section 4.2) and comparing three separate threshold strategies (Section 4.3) was shown to be 529 
relatively high in many cases, but confounded in others. Lastly, Section 4.4 explored the ability 530 
of HAC analysis to separate biological components from more complex mixtures of four to 531 
seven types of input particles. 532 

A standard fluorescence threshold of FT + 3σ has been commonly applied during WIBS 533 
analysis to separate between fluorescent and non-fluorescent particles. Savage et al. (2017) 534 
concluded that application of a more aggressive threshold strategy (FT + 9σ) could help 535 
discriminate between biological and non-biological particles more successfully in many 536 
circumstances, however certain types of interfering, non-biological particle species can still 537 
confound WIBS analysis irrespective of the threshold. Here we have investigated an orthogonal 538 
strategy to separate particle types by subjecting particles to HAC computer analysis. By 539 
comparing the results of the HAC analysis with raw separation based on fluorescence 540 
thresholding alone, the HAC analysis can clearly increase quality of differentiation. Interestingly, 541 
while Savage et al. (2017) reported that the FT + 9σ strategy helped improved differentiation, 542 
using the same threshold in conjunction with HAC analysis actually degraded results. We 543 
therefore conclude that if HAC analysis is to be performed, the standard FT + 3σ threshold is 544 
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likely to produce the highest quality results, however if HAC is not to be applied that the FT + 545 
9σ threshold is probably a better choicethe most likely to enable investigation of biological 546 
particles while computationally filteringreduce a large fraction of non-biological particles.  547 

The overall message here is that HAC can be applied successfully to differentiate particle 548 
types sampled by WIBS instruments and that it is most successful at separating biological 549 
species (i.e. fungal spores and bacteria) from non-biological particles. In all cases the HAC 550 
method allows separation of particles at least at the order-of-magnitude level, and often with 551 
misclassification of <5%. As mentioned by Savage et al. (2017), however, it should always been 552 
kept in mind that different instruments may produce slightly different signals due to physical 553 
differences between instruments (i.e. fluorescence calibration, tuning, and detector gain 554 
sensitivity) and between calibration strategies (Könemann et al., 2018; Robinson et al., 2017).  555 
and that rResults here are only also generally extendable to other UV-LIF instruments, whether 556 
they offer single or many channels of emission spectral resolution, in that the methods of particle 557 
pre-preparation and the impact of particle number ratio are likely to relay similar effects on 558 
clustering strategy.  Subtle differences in particles observed in a real-world environment may 559 
also complicate HAC analysis or the extension of results presented here. The UV-LIF 560 
community is encouraged to continue laboratory investigations, including detailed interrogation 561 
of clustering analytical techniques, to further understand limitations to better differentiating 562 
between particles. 563 
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Tables 743 
 744 

Table 1. Six scenarios explored, with varying combinations of pre-analysis treatment. (1) 745 
Fluorescence normalization refers to whether fluorescence intensity was normalized to particle 746 
size. (2) Variables logged refers to whether data was manipulated to produce a normal 747 
distribution. 748 
 749 

Parameters A B C D E F 

1. Fluorescence 
Normalization 

2. Variables 
Logged 

1. No 
 

2. No  

1. No 
 

2. Yes 

1. Yes 
 

2. No 

1. Yes 
 

2. Yes 

1. Yes 
 

2. Yes, only 
AF/Size variables  

1. No 
 

2. Yes, only AF/Size 
variables 

  750 
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Table 2. Misclassification of 2-cluster solutions for 23 match-ups of two individual particle types 751 
(equal ratio of particle number, B-scenario) computationally combined before clustering 752 
analysis. Misclassification calculated as the sum percentage of particles misclassified in each 753 
cluster divided by the total number of particles. Three biological particle types (F2, B3, P9) 754 
compared separately to (a) non-biological particle materials and (b) biological particle materials. 755 
Particle number input was a subset of total population of particles experimentally analyzed. 756 

  757 

(a)

Diesel soot 
(Soot 4)

California 
sand 

(Dust 2)

Arizona 
Test Dust 
(Dust 12)

Suwannee 
River Humic 

Acid 
(HULIS 2)

Methyl-
glyoxal + 
glycine 
aerosol 
(Brown 

carbon 1)

Glyoxal + 
amm. sulfate 

aerosol 
(Brown 

carbon 3)

White  
t-shirt 

(Misc. 2)

Wood 
smoke 

(Soot 6)
S4 D2 D12 H2 BC1 BC3 WT WS
(1) (3) (4) (5) (6) (7) (8) (9)

0.1% 2.6% 6.1% 4.8% 2.5% 23.0% 40.5% 7.2%
(2) (10) (11) (12) (13) (14) (15)

1.2% 1.9% 1.2% 1.3% 6.1% 41.7% 4.7%
(16) (17)

22.7% 23.2%

(b)
S. 

cerevisiae 
(Fungi 4)

Phelum 
pretense 
(Pollen 9)

P. stutzeri 
(Bacteria 3)

Taxus 
baccata 
(Pollen 5)

B. 
atrophaeus 
(Bacteria 1)

F4 P9 B3 P5 B1
(18) (19) (20)

27.9% 36.4% 10.3%
(21) (22)

18.3% 65.4%
(23)

46.8%

P. stutzeri 
(Bacteria 3)

Phelum pratense 
(Pollen 9)

Non-biological particle materials

Aspergillus 
niger  (Fungi 2)

P. stutzeri 
(Bacteria 3)

Phelum pretense 
(Pollen 9)

Biological particle materials

Aspergillus 
niger  (Fungi 2)
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Table 3. Further exploration of 2-cluster solutions for the 10 match-ups of two individual particle 758 
types shown in Table 2 with misclassification >15%. Each match-up shown using three separate 759 
fluorescence threshold strategies in advance of particle input into cluster algorithm: (I) all 760 
particles included (no fluorescence threshold), (II) particles with fluorescence intensity < FT + 761 
3σ removed, and (III) particles with fluorescence intensity < FT + 9σ removed. (a) Particle 762 
misclassification. (b) Total particle number used for clustering experiment. 763 

 764 

 765 

  766 

(a) Input
(7)

F2 + BC3
 (8)

F2 + WT 
(14)

B3 + WT
(16)

P9 + D12
(17)

P9 + H2
(I) All particles 23.0% 40.5% 41.7% 22.7% 23.2%

(II) Fluor. > FT + 3σ 10.3% 36.2% 24.3% 19.3% 3.4%
(III) Fluor. > FT + 9σ 41.4% 32.6% 31.8% 45.3% 14.0%

Input
(18)

F2 + F4
(19)

F2 + P9
(21)

B3 + P9 
(22)

B1 + B3
(23)

P9 + P5
(I) All particles 27.9% 36.4% 18.8% 65.4% 46.8%

(II) Fluor. > FT + 3σ 13.3% 31.0% 20.0% 77.5% 24.9%
(III) Fluor. > FT + 9σ 29.0% 28.6% 29.0% 66.7% 33.9%

(b) Input
(7)

F2 + BC3
 (8)

F2 + WT 
(14)

B3 + WT
(16)

P9 + D12
(17)

P9 + H2
(I) All particles 1,959 565 565 10,359 8,902

(II) Fluor. > FT + 3σ 1,000 393 393 171 207
(III) Fluor. > FT + 9σ 471 319 319 38 37

Input
(18)

F2 + F4
(19)

F2 + P9
(21)

B3 + P9 
(22)

B1 + B3
(23)

P9 + P5
(I) All particles 10,000 8,900 10,000 10,000 10,000

(II) Fluor. > FT + 3σ 9,600 8,500 9,800 10,000 10,000
(III) Fluor. > FT + 9σ 9,200 8,100 9,700 10,000 7,895
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Table 4. Particle fraction for each type and total particle number used as inputs for 767 
simulatedsynthetic mixtures.  768 
 769 

 770 
  771 

F2 B3 P9 S4 D12 H2 BC1 WS WT

Mixture 
Number

Mixture 
Name

Asp. niger 
(Fungi)

P. stutzeri 
(Bacteria)

Phelum 
pretense 
(Pollen)

Diesel 
soot

AZ Test 
Dust

Suwannee 
River 
Humic 
Acid

Brown 
Carbon 1

Wood 
smoke

White 
t-shirt

Total 
Particle 
Number

1 4-Comp. A 25% 25% 25% 25% 680
2 4-Comp. B 25% 25% 25% 25% 680
3 High PBAP 25% 25% 20% 20% 10% 850
4 Low PBAP 12.5% 12.5% 15% 15% 15% 15% 15% 1134
5 Pollen 30% 10% 20% 20% 10% 10% 850
6 Indoor Air 20% 20% 20% 20% 20% 850
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Figures 772 
 773 

 774 
Figure 1. Schematic diagram showing the data preparation process resulting in the generated 775 
clustering products. Parameters within the pink box are the focus of this manuscript.  776 
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 777 

Figure 2. Example of Calinski-Harabasz Index plot for cluster experiment with input of 778 
Aspergillus niger and diesel soot (50:50 ratio). Optimal number of clusters is determined by the 779 
highest CH value.   780 
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 781 
Figure 3. Cluster misclassification shown for three computational combinations of fungal spores 782 
(F2), bacteria (B3), and diesel soot (S4), and mineral dust (D12). Each combination explored 783 
with respect to ratio of input particle number using the scenario B and a 2-cluster solution for 784 
each experiment. Scenario letter A-F refers to scenarios summarized in Table 1. Red shaded 785 
region (and values) indicates the percent of particles misclassified. Blue shaded region represents 786 
the percentage of particles correctly classified.   787 
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 788 
Figure 4. Particle type stacked category size distributions for input and output clustering results, 789 
using FT + 3σ threshold definition. Each experiment (row) shows match-ups of two particle 790 
types computationally mixed using 50:50 ratios, scenario B, and 2 cluster solutions. Left two 791 
columns show properties of input particles, right two columns show properties of cluster outputs.  792 
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 793 
 794 
Figure 5. Overview of computationally simulatedsynthetic mixtures. Six mixtures shown as 795 
groups of rows, with input particle fractions defined in Table 4. Part A (left columns) show 796 
particle number retrieved by each individual cluster and categorized by each input particle type. 797 
Part B (middle columns) show particle number categorized and grouped by particle classes (i.e. 798 
non-biological and biological). Part C (right columns) show misclassification of groups of 799 
particles. Colors: light green (fungal spores), blue (bacteria), pink (pollen), dark green (grouped 800 
biological), brown (all non-biological). 801 

Part A: Individual Clusters Part B: Grouped Clusters Part C: Summary
(Particle Number) (Particle Number) (Cluster Quality)

Mixture #1
Cluster F2 S4 D12 H2 Cluster Fungi Non-bio Total P. Miscl. Cat.

1 163 2 22 23 1 163 47 210 22.4% Fungi
2 7 1 123 67 2-4 7 463 470 1.5% Non-bio
3 0 0 21 80
4 0 167 4 0

Mixture #2
Cluster F2 S4 D12 WS Cluster Fungi Non-bio Total P. Miscl. Cat.

1 167 2 23 4 1 167 29 196 14.8% Fungi
2 2 3 88 10 2-4 3 481 484 0.6% Non-bio
3 1 0 55 156
4 0 165 4 0

Mixture #3
Cluster F2 B3 D12 H2 BC1 Cluster Fungi Bacteria Bio Non-bio Total P. Miscl. Cat.

1 0 197 0 0 0 1 0 197 0 227 11.9% Fungi
3 200 6 13 2 6 3 200 6 21 197 0.0% Bacteria
2 9 10 133 79 6 2,4,5 13 10 403 424 5.0% Bio
4 4 0 21 88 25 1,3 403 21 426 5.4% Non-bio
5 0 0 3 1 47

Mixture #4
Cluster F2 B3 S4 D12 H2 BC1 WS Cluster Fungi Bacteria Bio Non-bio Total P. Miscl. Cat.

1 0 0 0 10 15 20 0 7 112 5 13 130 13.8% Fungi
2 23 2 0 125 77 6 165 6 0 135 1 136 0.7% Bacteria
3 0 0 0 3 1 128 1 1-5 30 2 836 266 5.3% Bio
4 4 0 0 18 68 11 2 6,7 252 14 868 3.7% Non-bio
5 3 0 169 8 9 0 0
6 0 135 1 0 0 0 1
7 112 5 0 6 0 6 1

Mixture #5
Cluster P9 S4 D12 H2 BC1 WS Cluster Pollen Non-bio Total P. Miscl. Cat.

1 0 0 13 16 13 0 5 242 25 267 9.4% Pollen
2 2 0 28 83 15 1 1-4,6 13 570 583 2.2% Non-bio
3 0 0 4 1 51 1
4 6 2 113 70 0 79
6 5 77 3 0 0 0
5 242 6 9 0 6 4

Mixture #6
Cluster F2 B3 D12 H2 WT Cluster Fungi Bacteria Bio Non-bio Total P. Miscl. Cat.

1 160 7 13 0 31 1 160 7 44 211 24.2% Fungi
4 0 154 0 0 0 4 0 154 0 154 0.0% Bacteria
2 4 0 32 95 35 2,3,5 10 9 466 365 12.1% Bio
3 6 9 125 75 62 1,4 321 44 485 3.9% Non-bio
5 0 0 0 0 42
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