

1 August 13, 2018

2

3 Dear Editor,

4

5 Below is a composite file with point-by-point responses to all three anonymous referees and an additional
6 community member. Following that is the revised manuscript document with all changes tracked from the
7 originally submitted version. We are confident that you will find the revised document to be well
8 improved after systematic and comprehensive revisions following all the review period. Please let us
9 know if you have additional comments or questions.

10

11 Best regards,

12

13 Alex Huffman

14 **Point-by-point responses:**

15 **Anonymous Referee #1**

16 Received and published: 1 June 2018

17 Note regarding document formatting: black text shows original referee comment, blue text shows
18 author response, and red text shows quoted manuscript text. Changes to manuscript text are
19 shown as *italicized and underlined*. Bracketed comment numbers (e.g. [R1.1]) were added for
20 clarity. All line numbers refer to discussion/review manuscript.

21 [R1.0] This paper builds on existing literature examining unsupervised learning techniques to improve the
22 interpretation and classification of data obtained with WIBS UV-LIF spectrometers. As shown in
23 previous publications, Hierarchical Agglomerative Clustering (HAC) can serve as a robust data analysis
24 method for classification/interpretation of bioaerosol data but the accuracy of technique is highly sensitive
25 to the choice of clustering linkage and data pre-treatment (e.g., Crawford et al., 2015); this is further
26 explored in this paper which elucidates how data pre-treatment choices such as choice of fluorescent
27 threshold and log normalising data may influence clustering accuracy using laboratory samples of known
28 particle types (Savage et al., 2017) in various synthetic mixtures, and thus the authors present tentative
29 recommendations of data pretreatment regimes depending on the analysis goals. Overall the paper is well
30 written and the computational experiments well thought out. The findings here are useful and further
31 validate the usefulness of Hierarchical Agglomerative Clustering for interpretation of WIBS data. The
32 results also provide a useful framework for testing Hierarchical Agglomerative Clustering data pre-
33 treatment regimes for other atmospheric science data problems and neatly demonstrate the potential
34 pitfalls of not rigorously performing such tests. I recommend publication after the following comments
35 have been addressed.

36 [A1.0] Author response: We thank the referee for her/his positive summary of the manuscript and
37 recommendation to publish after comments are addressed.

38 Specific comments

39 [R1.1] L73-77: The authors have conflated some of the terminology relating to unsupervised and
40 supervised learning methods. I'm uncomfortable with the use of the term clustering when discussing
41 supervised methods as clustering specifically relates to cluster analysis. I suggest replacing "clustering
42 techniques" with "classification algorithms" and "(trains) the clustering algorithm" with "(trains) the
43 classification algorithm".

44 [A1.1] The referee raises a good point. We changed terminology on page 2 according the referee
45 suggestions, as listed below:

- L68: "*Classification algorithms, including several* clustering techniques in particular, have
46 shown successful results ..."
- L73: "*Clustering techniques Classification algorithms* can be divided ..."
- L76: "*This type of method enhances (trains) the clustering-classification* algorithm in that the
47 output *cluster classes groups* are predetermined ..."

48 [R1.2] L120: Please state the bands and what they relate to.

49 [A1.2] Additional text was added, as shown below:

50 "The WIBS collects 3 channels of fluorescence intensity information (FL1, FL2, and FL3),
51 particle size, and particle asymmetry for each interrogated particle. *The bands of excitation and*
52 *fluorescence emission are: FL1 (λ_{ex} = 280 nm, λ_{em} = 310 – 400 nm), FL2 (λ_{ex} = 280 nm, λ_{em} = 420*

64 – 650 nm), and FL3 ($\lambda_{ex} = 370$ nm, $\lambda_{em} = 420 – 650$ nm). The excitation and emission
65 wavelengths chosen for each of the 3 fluorescence channels were designed to maximize the
66 information gained about key biological fluorophores present in a broad range of bioparticles
67 (Kaye et al., 2005; Pöhlker et al., 2012). Early generations of UV-LIF bioaerosol spectrometers
68 were often interpreted to be able to detect proteins via channels similar to FL1 and products of
69 active cellular metabolism (i.e. riboflavin and NAD(P)H) via channels similar to FL3, but these
70 approximations are gross simplifications that confound more detailed investigation of particle
71 types.”

72
73 [R1.3] L198: Can the authors please clarify why they have used log spaced bins. Do you mean that you
74 have taken a log of the data and it is binned naturally by the discrete nature of the detector resolution (i.e.,
75 fine bins) or have you binned the data into specific (coarse) log bins? If it is the latter can you please state
76 what the bins are and can you comment on how forcing the data to in bins may influence the clustering?
77 My concern here is that too coarsely binning the data may create artificial hotspots due to reduced
78 resolution and bias the clustering, reducing the capacity to differentiate between particles with similar
79 properties. Can the authors comment on this and demonstrate the effect this may have by providing an
80 example for comparison where the data is converted to log space and not binned. I also wonder if the bins
81 should be normalised by the bin width to further complicate matters.

82
83 [A1.3] Aspects of this discussion are presented in L209-212. To summarize in different words,
84 the data values from a given channel were either used as recorded (i.e. “value”) or as
85 logarithmically transformed (i.e. “log(value”)), depending on the Scenario. The values were not
86 forced into specific bins, but rather input into the cluster algorithm using the exact value in either
87 of these forms. The reason that logged values can provide different results by HAC is that the
88 distance between points is different in linear space or log space, because the cluster process does
89 not independently take into account whether a value is as recorded or as log(value). Because
90 many real-world particle variables can present normal distributions only in log space (i.e.
91 lognormal size distributions), we explored inputting values in both raw and log forms.

92
93 The following sentence was added to the manuscript at L211 for clarity:
94 “By this process, data values were input into the algorithm as log(value), but without additional
95 binning.”

96
97 [R1.4] L254: Can the authors comment on the environmental applicability of the chosen ratios. I would
98 suspect that in an urban environment you may expect something closer to a ratio of 1:99 fungal to diesel
99 particles with the converse being true in a forest environment. How does the clustering perform under
100 such extreme mismatches?

101
102 [A1.4] We originally explored three different ratios of particle concentrations (80:20, 50:50, and
103 20:80) for each of the three match-ups discussed in Figure 3 in order to show that input ratio can
104 be important to how the algorithm responds. This was certainly not intended to be exhaustive, and
105 one could additionally explore more extreme ratios. So to limit the scope of the analysis here, we
106 chose to present evidence only that the ratio matters, without trying in all cases to predict ratios
107 that could be relevant to a wider range of ambient environments.

108
109 The question the referee brings up is interesting, however, and so we explored 1:99 ratios of each
110 of the three particle type combinations presented in Figure 3, where the bioparticle is the minority
111 concentration in each experiment. The results are shown below in a plot/table form identical to
112 how they are presented in Figure 5. The Bacteria:Diesel and Fungi:Dust separations still
113 performed quite well (6.6% and 13.5% misclassification, respectively), even with the extreme
114 mismatch of input concentrations. The Fungi:Diesel separation was poor, however, in a 2-factor

115 solution, because the Diesel particles split into both clusters, and the Fungi particles were likely
 116 too low in concentration to influence the cluster properties. We added text including a summary
 117 of these new experiments to the manuscript at L304:

118 *“To extend the investigation of particle input ratio, the three match-ups presented in Figure 3
 119 were investigated using Scenario B with 1% bioparticles and 99% non-bioparticles in each
 120 respective case. In these experiments the Bacteria:Diesel and Fungi:Dust particles separated
 121 relatively well (6.6% and 13.5% misclassification, respectively). The Fungi:Diesel separation
 122 was poor, however, because the Diesel particles were nearly evenly split into both clusters, and
 123 the Fungi particles were too low in concentration to influence the cluster properties. More
 124 investigation is needed to explore how extreme disparities in particle ratio could negatively
 125 influence cluster quality in real-world settings.”*

126 **Part A: Individual Clusters**

(Particle Number)

Cluster	B3	F2	S4	D12
1	-	37	2588	-
2	-	0	1111	-

Cluster	B3	F2	S4	D12
1	57	-	4	-
2	0	-	5653	-

Cluster	B3	F2	S4	D12
1	-	45	-	7
2	-	12	-	5650

Part B: Grouped Clusters

(Particle Number)

Cluster	Bio	Non-bio
1	37	2588
2	0	1111

Cluster	Bio	Non-bio
1	57	4
2	0	5653

Cluster	Bio	Non-bio
1	45	7
2	12	5650

Part C: Summary

(Cluster Quality)

Total P.	Miscl.	Cat.
2625	98.6%	Fungi
1111	0.0%	Diesel

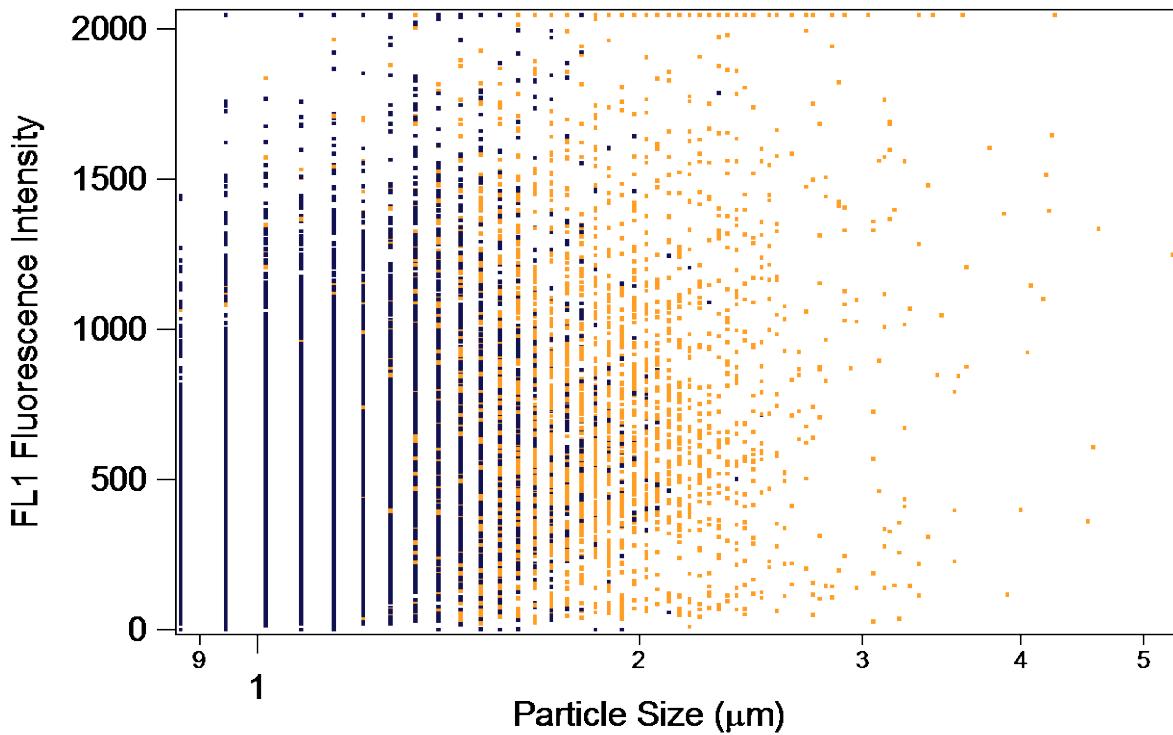
Total P.	Miscl.	Cat.
61	6.6%	Bacteria
5653	0.0%	Diesel

Total P.	Miscl.	Cat.
52	13.5%	Fungi
5662	0.2%	Dust

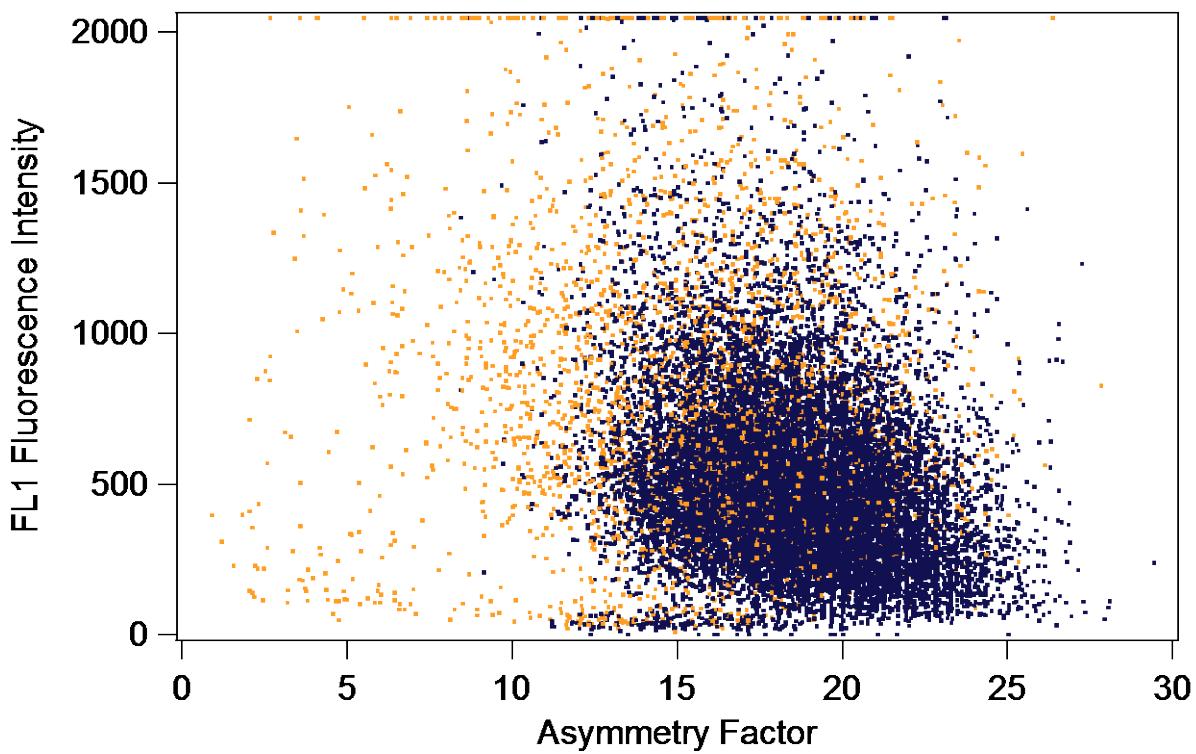
127 [R1.5] L238: Would it be possible to show examples of the cluster centroids for a case where there is
 128 significant misclassification? This may illuminate why the algorithm is failing to correctly attribute
 129 particles. It may also be useful to examine the fluorescence/AF characteristics of each cluster as a
 130 function of size here. A 2D histogram or color density plot could show distinct hot spots that haven't been
 131 separated correctly and could provide a basis for manual separation based on sensible thresholds.

132 [A1.5] To address the referee's suggestion, we included an additional set of plots here as
 133 suggested. The results below correspond to the match-up between Bacteria 1 and Bacteria 3 using
 134 Scenario B and the 3-sigma threshold, which corresponds to Experiment 22 from Table 2 (65%
 135 misclassification). The two colors of dots in the plots represent clusters 1 and 2. In this case it is
 136 still unclear how to utilize a single threshold to separate between the two particle types here.

137 In the process of analyzing results of this study we produced countless plots and tables, each of
 138 which showed slightly different angles of the same story. We chose to simplify the results in
 139 many cases to make the manuscript shorter and more manageably readable. We find that the table
 140 of fluorescence intensity and AF median values (Table 2 from original data published in Savage
 141 et al., 2017) often summarizes the differences in the particle types rather well and so were rarely
 142 able to separate using 2D histograms as the referee suggests. One example of these two additional
 143 plots is included here for reference, however.



148
149



150

151

152 [R1.6] L312-315: Can you describe the method for producing the soot as they seem rather large as
153 compared to that in the study of Toprak and Schnaiter (2013) which were also coincidentally found to be
154 weakly fluorescent in FL1. Perhaps the soot used in this study is larger and more fluorescent than we may

155 expect of ambient/urban soot which may cause some of the difficulty in correctly attributing in in some
156 cases?

157
158 [A1.6] The method for aerosolization of particle types discussed was presented in Section 3.2 of
159 the associated Savage et al., 2017. Specifically, the aerosolization details related to soot are
160 copied here:

161
162 From Page 4284, Section 3.2.3 of Savage et al., 2017: “Dry powders were aerosolized by
163 mechanically agitating material by one of several methods mentioned below and passing
164 filtered air across a vial containing the powder. For each method, approximately 2.5–5.0
165 g of sample was placed in a 10 mL glass vial. For most samples (method P1), a stir bar
166 was added, and the vial was placed on a magnetic stir plate. Two tubes were connected
167 through the lid of the vial. The first tube connected a filter, allowing particle-free air to
168 enter the vessel. The second tube connected the vial through approximately 33 cm of
169 conductive tubing (0.25 in. inner diam.) to the WIBS for sample collection.”

170
171 The referee is correct that the method of producing/aerosolizing particles, including soot, will
172 bear heavily on the fluorescent properties observed. In particular, different aerosolization
173 methods are likely to produce very different size distributions, which then will dictate the overall
174 fluorescence properties. For this reason, we included the following statements in the Savage et al.,
175 2017 paper:

176
177 From Page 4292, Section 4.3: “It is important to note, however, that the method chosen
178 for particle generation in the laboratory strongly impacts the size distribution of
179 aerosolized particles. For example, higher concentrations of an aqueous suspension of
180 particle material generally produce larger particles, and the mechanical force used to
181 agitate powders or aerosolize bacteria can have strong influences on particle viability and
182 physical agglomeration or fragmentation of the aerosol (Mainelis et al., 2005). So, while
183 the absolute size of particles shown here is not a key message, the relative fluorescence at
184 a given size can be informative.”

185
186 The referee points out that the work by Toprak and Schnaiter (2013) presented small soot
187 particles that also exhibited relatively weaker fluorescence in FL1. This is consistent with the
188 expectation that fluorescence intensity will scale strongly with particle size. Differences in
189 particle size could also impact clustering separation properties somewhat, and so further
190 investigation of clustering using multiple narrow size ranges of different types of particles could
191 further explore this process. This exhaustive process was beyond the scope of this work, however.

192
193 To make sure these points are clear in the revised manuscript we have added the following text at
194 L327:

195 “It is also important to note here that the method of aerosolization for each particle type plays an
196 important role in the observed size distribution and so results involving laboratory particles
197 should be interpreted with this in mind. Observed fluorescence properties, in contrast, are
198 expected to be conserved at a given particle size and intrinsically related to particle
199 composition.”

200
201 [R1.7] L384: Would we expect to be able to differentiate between 2 different particles of the same type
202 with such coarse spectral resolution?

203
204 [A1.7] The referee’s implied point is correct. No, we would not expect to be able to separate
205 between very similar types of particles using such coarse resolution as is available in the WIBS.

206 Frankly, the fact that HAC paired with WIBS data was able to separate as well as it did was
207 somewhat remarkable and surprising. To make the point clearer, we added text at the end of that
208 paragraph as follows at L390:

209 “...separating more finely to quantify differences between types of individual biological particles
210 is ~~likely to be~~ significantly more challenging and not likely to be possible in most situations.”

212 [R1.8] L415: Again I wonder if the use of too coarsely separated bins may compromise the 9-sigma
213 thresholding and cause misclassification?

214 [A1.8] This question also loops back to [R1.3] and stems from a miscommunication. Values of
215 the five WIBS data parameters were not separately binned (either during the logging process or
216 when used as recorded), but are input into the cluster algorithm in the same spacing provided in
217 the raw output of the instrument. The bin resolution is therefore limited by the WIBS optics and
218 PMT settings.

219 Further, fluorescence intensity is relayed by a integer units between 0 and 2047, and resolution is
220 not a limiting factor. For example, see Figure 5 of the Savage et al. 2017 paper. Biological
221 particles typically exhibit median fluorescence intensity much higher than non-biological
222 particles, thus using different threshold strategies can help separate particle classes from one
223 another by this strategy.

224 [R1.9] L514: Can the authors comment on the applicability of their findings to new high resolution UV-
225 LIF instruments that are beginning to become commercially available. Some of these new instruments
226 have significantly more channels/greater fluorescent resolution than the WIBS.

227 [A1.9] This is a helpful suggestion. To extend the applicability of results, the text was amended
228 as follows:

229 “Results here are ~~only~~ generally extendable to other UV-LIF instruments, however, whether they
230 offer single or many channels of emission spectral resolution, in that the methods of particle pre-
231 paration and the impact of particle number ratio are likely to relay similar effects on
232 clustering strategy.”

233 [R1.10] Technical corrections

234 L63: instruments, not instrument.

235 L370: grains, not gains.

236 L112: Suggest “Experimental and Computational Methods”

237 L131: “each of the three”

238 L181: “was the best”

239 [A1.10] All typos corrected.

246 **Anonymous Referee #2**

247 Received and published: 3 June 2018

249 Note regarding document formatting: black text shows original referee comment, blue text shows
250 author response, and red text shows quoted manuscript text. Changes to manuscript text are
251 shown as *italicized and underlined*. Bracketed comment numbers (e.g. [R1.1]) were added for
252 clarity. All line numbers refer to discussion/review manuscript.

253 [R2.0] This manuscript discusses application of Hierarchical Agglomerative Clustering (HAC) to analysis
254 of data collected using the Wideband Integrated Bioaerosol Sensor (WIBS4A). While real-time detection
255 of bioaerosols has been quite well controlled, the analysis and classification is still challenging and vital
256 problem. Therefore, investigation and improvements in this area are very important and crucial for
257 understanding the abilities and limitations of LIF aerosol detectors. The manuscript is well written and in
258 detail reveals important problems of fluorescence data analysis of bioaerosols. I recommend presented
259 manuscript to publication, however some corrections and further explanations to the following remarks
260 will be appreciated:

262 [A2.0] Author response: We thank the referee for her/his positive summary of the manuscript and
263 recommendation to publish after comments are addressed.

265 [R2.1] 1. The techniques of single particle detection using LIF devices, like WIBS, reached relatively
266 high reliability and perfection. The device collects data in real time, on the other hand the presented
267 results are offline. The data analysis takes a long time. Finally, the standard methods like particle
268 collection on tape is still competitive with LIF. My question is: Did the authors try or are going to apply
269 real-time aerosol data analysis?

271 [A2.1] I think the statement that “LIF devices … reached relatively high reliability and
272 perfection” is already an very optimistic statement, but I agree that when operated and analyzed
273 properly the data can often be useful. The referee’s suggestion about real-time data analysis is an
274 interesting idea that has been discussed. We are working on this type of analysis from a different
275 angle and with respect to a different class of instruments, but we have not had the ability to
276 investigate real-time analysis strategies with respect to WIBS data. This would be a worthwhile
277 project, but is outside the scope of what we were aiming to accomplish in this study and would
278 likely require dedicated project funding.

280 [R2.2] 2. L67 - principle or principal component analysis?

282 [A2.2] In this case the word “principal” is the correct one. I often get this word confused with
283 “principle” and have to look up the definitions to make sure I’m correct.

285 [R2.3] 3. L116 – “The WIBS collects

286 3 channels of fluorescence intensity. . . .” – collect channels or collects fluorescence intensity in 3
287 channels?

289 [A2.3] This was indeed poor grammatical construction. The sentence has been changed to:
290 “The WIBS collects information about 3 channels of fluorescence intensity information in three
291 channels . . .”

293 [R2.4] 4. L170 – “. . .both saturating and non-fluorescent particles were retained. . . .” – Did authors collect
294 the particles?

296
297 [A2.4] We did not physically collect the particles. The wording here was unfortunately confusing.
298 In this case we have “retained” the data in the analysis process by not removing particles based
299 on certain attributes. To clarify, the word “retained” was changed to “analyzed” as shown here:
300 “... both saturating and non-fluorescent particles were analyzed retained ...”
301
302 [R2.5] 5. L370 – “. . .gains. . .” or grains?
303
304 [A2.5] This is a typo; “gains” was corrected to “grains”.
305
306 [R2.6] 6. L494 - ..fluorescence and non-fluorescent particles.. - The phenomenon should not be compared
307 with the property.
308
309 [A2.6] This typo was changed for the discussion version of the manuscript to be “fluorescent and
310 non-fluorescent particles.”
311
312 [R2.7] 7. L 424 and further – I think that term “synthetic mixtures” for recorded numerical data is
313 confusing and should be corrected. Firstly, it sounds like a chemical synthesis process. Secondly, the final
314 result of clustering should be the same and independent whether the particle data are sorted or not.
315 Otherwise, the order (sequence) of detected particles would change final result. I think that actual
316 meaning of used data is well described in L298-300 (“...subset taken from the pool of particles..”).
317
318 [A2.7] The term “synthetic mixtures” is indeed confusing terminology, and this is a point raised
319 also by Referee #3 (i.e. [R3.1], [R3.3], and [R3.6]). Referee #3 suggested the term
320 “computational simulations” or “simulated mixtures” among several possibilities, and we have
321 changed the text in a variety of places through-out the manuscript to reflect this new terminology.
322
323 [R2.8] 8. L 426 – “analytically synthesized” – analysis has opposite meaning to synthesis should be
324 corrected
325
326 [A2.8] Here the term was changed to “computationally simulated.”
327
328 [R2.9] 9. L 428, 431, 434, 436, – “. . .mixture synthesized. . .” – see point 7.
329
330 [A2.9] The word “synthesized” was changed to “simulated” in each of these cases and all others
331 within the manuscript.
332
333 [R2.10] 10. The authors compared clustering ability using selected small groups of substances. It would
334 be interesting to see the clustering output for all 14 types together. Why it was not presented?
335
336 [A2.10] This additional experiment might be interesting, but it is unlikely to add anything to the
337 general nature of the conclusions. The 14 types of particles assembled for these match-up
338 experiments (i.e. Sections 4.1 – 4.3) were meant to be individually instructive, but not to
339 represent the entirety of the types of particles one might see in a more complex, ambient
340 environment. So collecting all 14 into one experiment would represent another experimental
341 combination, but would in itself not be any more relevant than the individual simulations already
342 discussed.

343 **Anonymous Referee #3**

344 Received and published: 9 May 2018

345
346 Note regarding document formatting: black text shows original referee comment, blue text shows
347 author response, and red text shows quoted manuscript text. Changes to manuscript text are
348 shown as *italicized and underlined*. Bracketed comment numbers (e.g. [R1.1]) were added for
349 clarity. All line numbers refer to discussion/review manuscript.350
351 [R3.0] This paper describes methods and results which should help improve the interpretation and use of
352 data obtained with UV-LIF instruments such as the WIBS. The WIBS measures light scattering, a light
353 scattering asymmetry factor, and fluorescence in three channels. Fielded instruments with data rates that
354 can exceed hundreds of particles per minute are available. This paper uses a large set of WIBS data
355 measured for individual materials (Savage et al. 2017) to evaluate different preprocessing procedures for
356 analysis of such data. Mathematical simulations of externally mixed particles of known composition are
357 studied. The findings should be useful not only for understanding WIBS data, but more broadly in
358 applying Hierarchical Agglomerative Clustering to some other problems in aerosol analytical chemistry. I
359 recommend publication. However, I request that several confusing items be made less confusing.360
361 [A3.0] Author response: We thank the referee for her/his positive summary of the manuscript and
362 recommendation to publish after comments are addressed.363
364 [R3.1] The use of the term “synthetic mixtures” (L31-32, L424, 707, L734) is confusing. Chamber studies
365 with synthetic mixtures of real aerosols and real gases are not uncommon in aerosol science. A google
366 search of “synthetic mixture” provides discussions of various real “synthetic mixtures.” I only looked at
367 the first 8 or so items in that search, but I saw none with the meaning used in this paper. The online
368 dictionaries I saw do not indicate this use of “synthetic” (which as far as I can tell indicates something
369 about numerical or computational). Synthetic organic chemists make real chemicals. If “synthetic
370 mixtures” is used for the simulated data investigated here, what terminology is left for researchers to use
371 when they make real synthetic mixtures of aerosols in a chamber and investigate changes in clusters as
372 time passes and as particles agglomerate? I do not see how a reader can see from the abstract or even well
373 into this paper that “synthetic” is being used in this highly non-standard way, and that Savage et al., 2017
374 did not measure mixtures of particles. The “synthetic mixtures” are actually numerical (or mathematical)
375 simulations of the WIBS the data that should be obtained for dilute mixtures of particles. Real mixtures of
376 particles can form agglomerates, and some may agglomerate quickly unless they are sufficiently dilute.377
378 [A3.1] This is a good point that we had not previously considered. The same point was raised by
379 Referee #2 [R2.7, R.2.8, and R2.9]. We removed all use of the term “synthetic mixtures” and
380 changed most instances of the term to “simulated mixtures.” Note that this comment also impacts
381 comments [R3.3] and [R3.6].382
383 [R3.2] L 20-22 (Abstract). “Here we show for the first time a systematic application of HAC to a
384 comprehensive set of laboratory data collected using the wideband integrated bioaerosol sensor (WIBS-
385 4A) (Savage et al., 2017).” Suggest change to: “Here we show for the first time a systematic application
386 of HAC to a comprehensive set of laboratory data collected for individual particle types using the
387 wideband integrated bioaerosol sensor (WIBS-4A) (Savage et al., 2017). Here the WIBS data for single-
388 composition aerosols is combined numerically to generate data to simulate WIBS values for mixtures of
389 aerosol.”390
391 [A3.2] The text of the abstract was modified as suggested.

392

393 [R3.3] L31-32 (Abstract): “Lastly, six synthetic mixtures of four to seven components were analyzed.”
394 Might be changed to: “Numerical simulations of mixtures of four to seven components were HAC
395 analyzed.”

396
397 [A3.3] The text of the abstract was changed as requested to:
398 “Lastly, six numerical simulations of synthetic-mixtures of four to seven components were
399 analyzed using HAC.”

400
401 [R3.4] L424: “Investigating cluster ability to separate complex synthetic mixtures” Might be changed to:
402 Investigating the capability to separate particles in simulations of complex synthetic mixtures

403
404 [A3.4] The sub-title was changed along the suggested lines to:
405 “Investigating the capability-cluster ability to separate particles in simulations of complex
406 synthetic-mixtures”

407
408 [R3.5] L426-429: “To better simulate real-world scenarios, we analytically synthesized six mixtures of
409 particles by pooling existing data from selected particle types in prescribed ratios. Each mixture was
410 synthesized to roughly represent a different hypothetical mixture of particles that might be expected.”
411 “Analytically” suggests equations or functions were used in obtaining the data for the mixtures. Isn’t
412 “numerically” or “computationally” what is meant?

413
414 [A3.5] The word “analytically” was changed to “computationally.”

415
416 [R3.6] L426-429 might be changed to: “To better simulate real-world scenarios, we numerically
417 simulated six mixtures of particles by pooling existing WIBS data from selected particle types in
418 prescribed ratios. Each simulated mixture was assembled to roughly represent a different hypothetical
419 mixture of particles that might be expected. Also, the particles in each simulated mixture are assumed to
420 be so dilute that any agglomeration is negligible.” Also, a significant fraction of readers read the abstract
421 and then look at the figures to see what the results will be. Adding clarifying words to the figure captions
422 and tables would be useful.

423
424 [A3.6] These are good suggestions that add clarity to the text. The section was re-written with the
425 suggested text. Words “computational” or “numerical” added to captions of several figures and
426 tables to increase clarity, as suggested.

427
428 [R3.7] [a] I don’t know what “normalized to particle size” means here. Please clarify, possibly with an
429 equation. Please also give the ranges of error in particle sizes expected. [b] Why is scenario D worse than
430 B? I think it is because D adds noise to the FL signals, making them less informative by decreasing the
431 S/N. This added noise occurs in the elastic scattering measurements, and also results from the
432 approximations used in estimating solutions to the inverse problem for size (with unknown shape,
433 orientation and refractive index). If the scattering measurement and the solution to the inverse problem
434 were perfect, then D and B should give very similar results, at least for spherical particles and some
435 methods of normalizing to particle size and shape. It may be useful to cite a paper or data with WIBS
436 measurements of size and fluorescence for uniformly-sized fluorescent PSL. For a single size of PSL, do
437 plots of the WIBS-measured scattering and fluorescence fall on a line or are they spread more randomly?
438 Even for a spherical PSL particle, with known refractive index, would you suspect that the noise is large
439 enough to make D less useful than B?

440
441 [A3.7] To clarify the first question [a], additional text was added to L207:
442 “...fluorescence intensity was normalized to particle size (by dividing fluorescence intensity value
443 by light scattering signal when a particle interacts with the diode laser beam) in order to ...”

444
445 With respect to the second question [b], the referee is likely correct that results for Scenario D
446 (fluorescence normalized) are worse than for Scenario B (fluorescence not normalized), because
447 for Scenario D additional uncertainty with respect to size is propagated into the intensity value.
448 Normalizing in this way would also propagate uncertainty for field measurements, and so given
449 the poorer results of the tests analyses represented here we chose not to further explore
450 parameters represented by Scenario D.

451
452 [R3.8] Can the authors say anything about the length of times bacteria or fungal spores might last in an
453 urban environment before a significant fraction of the bioparticles combine with soot, and how that might
454 affect the usefulness of the WIBS? I'll be very interested to see the results when (sometime in the future)
455 the authors inject bacteria or fungal spores into a chamber, add soot particles, use the WIBS to sample
456 with time, and then repeat the some of the analyses in this paper with the results given as a function of
457 time.

458
459 [A3.8] This an interesting question, but we do not have a good answer to the hypothetical thought
460 about atmospheric lifetimes of these particles at this point. It would be great to explore external
461 mixing of different particles types in the future in order to see how these mixtures could further
462 influence fluorescence and particle size properties observed by instruments like the WIBS. This is
463 beyond the scope of the experimental process for now.

464
465 [R3.9] L23: In abstract: "ratio" of what? In the text, "ratio" first appears in "distance ratio." Suggest
466 change first use of "ratio" in abstract to "ratio of particle concentrations."

467
468 [A3.9] Text edited as requested.

469
470 [R3.10] L117: please add wavelength ranges of FL1 to FL3. Aim for a little broader set of readers.

471
472 [A3.10] This was also requested by Referee #1. Additional text was added, as shown here:
473 "The WIBS collects 3 channels of fluorescence intensity information (FL1, FL2, and FL3),
474 particle size, and particle asymmetry for each interrogated particle. The bands of excitation and
475 fluorescence emission are: FL1 ($\lambda_{ex} = 280$ nm, $\lambda_{em} = 310 - 400$ nm), FL2 ($\lambda_{ex} = 280$ nm, $\lambda_{em} = 420$
476 - 650 nm), and FL3 ($\lambda_{ex} = 370$ nm, $\lambda_{em} = 420 - 650$ nm)."

477
478 [R3.11] L171: replace "will be" with "were".

479
480 [A3.11] The phrase "will be" changed to "is" to match correct tense.

481
482 [R3.12] L199: Suggest change to: Ambient particle number vs size distributions can often be well
483 approximated by lognormal distributions (citation), although specific subsets of particles, such as
484 bacteria, pollens or fungal spores, may not exhibit lognormal distributions.

485
486 [A3.12] Text revised as suggested.

487
488 [R3.13] L245: "placed into a conceptual pool"? How about, "A subset of the particles were selected
489 randomly for analysis"?

490
491 [A3.13] Text was changed, as suggested, to:

492 "For each trial, a subset given number of particles from each material type was selected randomly
493 for HAC analysis placed into a conceptual pool before running through the algorithm to organize
494 elusters."

495
496 [R3.14] L258-259: “diesel soot particles . . . commonly observed . . .” Is this referring to WIBS
497 measurements? Please provide a citation(s).

498
499 [A3.14] The text as originally written was indeed over-stated and confusing. The text has been
500 revised to the following:
501 “The first two trials include diesel soot particles, because light-absorbing carbon aerosol ~~they are~~
502 commonly observed in ~~almost all aerosol~~ atmospheric samples with even minimal anthropogenic
503 influence (Bond et al., 2013) . . .”

504
505 [R3.15] L299-300: Do you mean: “In each case the input particles are a random subset . . .”

506
507 [A3.15] Yes, the words “number of” was inserted incorrectly here and the typo was corrected as
508 suggested by the referee.

509

510 Public Comment- Simon Ruske (simon.ruske@student.manchester.ac.uk)
511 Received and published: 3 June 2018

512
513 Note regarding document formatting: black text shows original referee comment, blue text shows
514 author response, and red text shows quoted manuscript text. Changes to manuscript text are
515 shown as *italicized and underlined*. All line numbers refer to discussion/review manuscript.

516
517 [Public Comment] The study presented is an extremely well structured and written investigation into the
518 use of Hierarchical Agglomerative Clustering for classification of biological aerosol using a UV-LIF
519 sensor, and will make an excellent addition to the literature upon publication.

520
521 [Author Response] Simon, thanks for taking the time to read and comment on the manuscript. We
522 appreciate the useful comments, which will help improve the quality of the manuscript. We
523 respond to each comment in detail below.

524
525 However, the authors may have made a small error [L161-L162] where they state that the conclusions for
526 Ruske et al. (2017) were for ambient data, whereas in the abstract they correctly state that the study was
527 on standardised laboratory particles [L19-L20]. Please could you correct this prior to final publication.

528
529 I apologize for this mistake. I am not sure where this error came in our writing process, but I
530 removed the incorrect statement, as requested: “**Their conclusions, however, were based on**
531 **ambient field data using unknown particle types and did not investigate laboratory generated**
532 **particles of known origin.**”

533
534 In addition the authors may wish to consider the following comments prior to publication.

535 [L78-L79] Would it be possible to clarify the starting conditions for supervised learning you are referring
536 to? Hyper-parameter selection is an extremely important consideration for neural networks, but other
537 supervised techniques such as decision trees and ensemble methods do exist where low classification
538 error can be attained without providing the algorithm with any initial conditions other than the training
539 data.

540
541 This may have been a bit of a miscommunication. We do not deal with any supervised learning
542 methods in this manuscript. We trust your team as the experts in this area. Nicole simply wanted
543 to provide a few sentences of general contrast between supervised and unsupervised methods.
544 That is also why we pointed to your 2017 paper in this section. We have also included citation of
545 your manuscript currently being reviewed in AMT.

546
547 [L84-L85] Is it necessary to apply unsupervised techniques to assess the advantages of supervised
548 methods? Do you mean that supervised techniques require laboratory data of known types to assess their
549 advantages? A very important disadvantage of supervised techniques is that they rely on adequate training
550 data, and it is not clear at this point how much training data will be required to adequately represent an
551 ambient environment, which is the point I think you are alluding to here.

552
553 This is the way I understand some of the pros/cons of supervised and unsupervised. I agree that
554 the community (probably you first) will continue to lean about how this all works together and
555 how well lab-generated data can be useful to train supervised data algorithms. As you well know,
556 the differences between nicely behaving lab particles and more complicated particles collected in
557 the field confounds most areas of aerosol science to some degree. So these problems will not
558 necessarily be trivial to solve, but I think collectively we are all learning little pieces that will
559 help.

560
561 [L186 - 187] Does the z-score rely on the assumption of normality? The z-scores of a normal random
562 variable will be normally distributed whereas the z-scores of a non-normal random variable will be non-
563 normally distributed. **Applied to any data set, regardless of distribution, the resultant variables after**
564 **z-scoring will have mean of 0 and standard deviation of 1.** Is the purpose of standardising the data to
565 prevent one of the variables from dominating in the analysis or to produce normally distributed data?
566

567 Thanks to your prompting, we looked into these details and learned a bit more, which has been
568 helpful to us. You are right that the way we characterized the z-scoring process was not correct.
569 Talking back and forth with the university statistician, we now understand that values can indeed
570 be input scaled to a normal distribution or not. We chose to standardize our variables to a mean of
571 0 and a variance of 1 so that the output variables would be on comparable scales, but this is also
572 not the same as rigorously normalizing them in the rigorous sense. As a result, we have removed
573 the statement you correctly indicated was inaccurate and updated the sentence as follows:
574

575 Original text: “Standardization using the z-score method compares results to a normal (Gaussian)
576 population, ~~and therefore relies on the assumption that input data can be described by a normal~~
577 ~~distribution (Gordon, 2006).~~”
578

579 Updated text: “Standardization using the z-score method compares results to a normal (Gaussian)
580 population, and we have chosen to standardize our variables to a mean of 0 and a variance of 1 so
581 that the output variables would be on comparable scales.”
582

583 [L203] It would be worth noting that in Crawford et al., 2015, there are particles for which negative
584 measurement of fluorescence was recorded. The option of logtransformations may have been overlooked,
585 as the logarithm is undefined for negative values. This was not intended to imply an assumption of
586 normality, although this assumption has been stated explicitly in Robinson et al., 2013. In these cases
587 would you recommend translating the fluorescence measurements to a range bounded below by 1, or
588 alternatively would it be more appropriate to reject measurements for which the fluorescence produced
589 was negative? It is also important to note that even if the data is log transformed, the data will still have a
590 finite range due to the saturation point on the detector, and hence the data will have a truncated normal
591 distribution rather than a normal distribution, and depending on how often saturation occurred there may
592 still be a peak to the right hand side of the distribution. It is however, perfectly acceptable to apply HAC
593 when the assumptions for best performance are not met as stated in Norusis, 2011.
594

595 My understanding is that negative fluorescence values can be observed after subtracting some
596 threshold value from the fluorescence intensity data. Instead of subtracting the data and looking
597 only at positive values, we did the same thing by filtering the data at several discreet thresholds.
598 This gets around the problem of negative values. In any case, we looked at three thresholding
599 scenarios (Table 3), i.e. no threshold, 3 sigma, and 9 sigma. The ultimate result is that we found
600 the most consistently positive results to be as a result of 3 sigma filtering, but this could be
601 different in other situations. You are correct about the fact that particles that exhibit saturation of
602 the detector in any channel will truncate a normal distribution.
603

604 [L222] How often did the CH index conclude that there were 2 clusters? When the CH index concluded a
605 number of clusters other than 2, how much of an impact did this have on the quality of the results? Were
606 the two cluster solutions always the best solution?
607

608 We did not explore solutions that had more than 2 solutions, simply as a matter of limited time.
609 There are certainly many scenarios in which individual bioparticle types (i.e. pollen, in many
610 instances) can split into two reasonable clusters by themselves, and so independently allowing 3

611 or more cluster solutions could significantly improve results in many cases. We just didn't have
612 the time to do this systematically, and so we chose to limit analysis to only 2 clusters in all cases.
613 To help clarify this point, we added text at:

614
615 L227: "In order to reduce the length and complexity of discussion, analysis of results in Sections
616 4.1-4.3 was limited to using cluster products only from the 2-cluster solution. In some cases a 3-
617 cluster solution may have produced higher quality results, but these cases were not investigated."
618

619 [L267-270 & Figure 3] The HAC algorithm may not necessarily output clusters in the same order that
620 they were inputted as demonstrated in Figure 5. In Figure 3 for preparation strategy A for bacteria and
621 diesel for the 80:20 ratio, is it possible to attain 80% misclassification for a two cluster solution? Perhaps
622 I have misunderstood, but would this not mean that there were more diesel particles in the bacterial
623 cluster and more bacterial particles in the diesel cluster, and hence a better classification error could be
624 attained simply by swapping the labels on the clusters?

625
626 You are correct that the order of cluster numbering is unrelated to the order of particles input and
627 so the source of individual particles must be known already, but it is not possible to improve the
628 results by swapping labels in the way you suggest. We independently tracked the source of each
629 particle assigned to each cluster so we can rigorously calculate which particles were incorrectly
630 assigned. The numbering of the clusters is arbitrary and the naming was assigned simply as a
631 function of which particle was assigned in the largest concentration.

632
633 [Figure 3 & Table 2] Could you extend the results presented in Figure 3 to include at least one biological
634 versus biological matchup? I notice when considering matching ups which contained only biological
635 material the classification error is much higher. I believe that by not standardising the data this would
636 cause the fluorescence to dominate more in the analysis. In the case of attempting to discriminate between
637 fluorescent and non-fluorescent particles, this may be advantageous. However, in the case of attempting
638 to discriminate between two different types of biological particle, it may be advantageous to give the size
639 and shape measurements more weight, and hence it would be better in these cases to standardise the data.
640 In addition other instruments such as the WIBS-NEO will have fluorescence measurements over a much
641 larger range and fluorescent measurements are recorded often above 10000. What would the implication
642 then be when not standardising the data in this case?

643
644 This is another interesting idea, but it was beyond the scope of what we were able to accomplish
645 in the relatively short time we had available for this project. We chose to focus on the ability to
646 separate bio from non-bio particles. While we didn't explore all Scenarios (e.g. A-F) for
647 biological particles, we chose to look at bio-bio separations using Scenario B (i.e. Tables 2 and
648 3).

1 **Title:** Evaluation of a Hierarchical Agglomerative Clustering Method Applied to WIBS
2 Laboratory Data for Improved Discrimination of Biological Particles by Comparing Data
3 Preparation Techniques

4
5 NICOLE SAVAGE^{1#}, J Alex Huffman¹

6 *¹ University of Denver, Department of Chemistry and Biochemistry, Denver, USA*

7 *# Now at Aerosol Devices, Inc.*

8
9 *Correspondence to:* J. Alex Huffman (alex.huffman@du.edu)

10
11 Running Title: Evaluation of clustering applied to WIBS bioaerosol data

12
13 Keywords: Clustering, Thresholding, Ward's linkage, Bioaerosols, Fluorescence, Laboratory
14 characterization

15
16 **Abstract**

17 Hierarchical agglomerative clustering (HAC) analysis has been successfully applied to
18 several sets of ambient data (e.g. Crawford et al., 2015; Robinson et al., 2013) and with respect
19 to standardized particles in the laboratory environment (Ruske et al., 2017; Ruske et al., 2018).
20 Here we show for the first time a systematic application of HAC to a comprehensive set of
21 laboratory data collected for many individual particle types using the wWideband iIntegrated
22 bBioaerosol sSensor (WIBS-4A) (Savage et al., 2017). The impact of particle-ratio of particle
23 concentrations on HAC results was investigated, showing that clustering quality can vary
24 dramatically as a function of ratio. Six strategies for particle pre-processing were also compared,
25 concluding that using raw fluorescence intensity (without normalizing to particle size) and
26 inputting all data in logarithmic bins consistently produced the highest quality results for the
27 particle types analyzed. A total of 23 one-on-one matchups of individual particles types were
28 investigated. Results showed cluster misclassification of <15% for 12 of 17 numericalanalytical
29 experiments using one biological and one non-biological particle type each. Inputting
30 fluorescence data using a baseline + 3σ threshold produced lower misclassification than when
31 inputting either all particles (without fluorescence threshold) or a baseline + 9σ threshold. Lastly,
32 six numerical simulations of synthetic mixtures of four to seven components were analyzed using
33 HAC. These results show that a range of 12-24% of fungal clusters were consistently
34 misclassified by inclusion of a mixture of non-biological materials, whereas bacteria and diesel
35 soot were each able to be separated with nearly 100% efficiency. The study gives significant
36 support to the application of clustering analysis to data from commercial UV-LIF instruments
37 being commonly used for bioaerosol research across the globe and provides practical tools that
38 will improve clustering results within scientific studies as a part of diverse research disciplines.
39

40 **1. Introduction**

41 Particles of biological origin, or bioaerosols, make up a substantial fraction of atmospheric
42 aerosol and have the potential to influence environmental processes and to negatively impact
43 human health (Després et al., 2012; Douwes et al., 2003; Fröhlich-Nowoisky et al., 2016;
44 Shiraiwa et al., 2017). In order to understand the impact bioaerosols, such as pollen, spores, and
45 bacteria, play on various systems, it is important to be able to identify and characterize these
46 biological particles in the atmosphere. One common method for the detection of bioaerosols is
47 ultraviolet laser/light-induced fluorescence (UV-LIF), because it can provide particle detection in
48 near real-time and at high particle size resolution (Fennelly et al., 2017; Huffman and Santarpia,
49 2017; Sodeau and O'Connor, 2016). Many commercial UV-LIF instruments have become
50 available for bioaerosol detection, but all of these techniques are challenged with the need to
51 differentiate between small differences in fluorescence properties in order to identify and
52 quantify biological aerosols from non-biological material. Recently commercialized instruments
53 show improved ability to discriminate between particle types, for example by utilizing multiple
54 excitation sources or other particle data (e.g. size and shape). UV-LIF techniques are inherently
55 limited, however, by the broad nature of fluorescence spectra and so instruments face a
56 ubiquitous problem of poor selectivity between particle types. By applying improved data
57 thresholding and particle classification techniques, particle characterization can be further
58 improved, but important limitations still remain (Hernandez et al., 2016; Huffman et al., 2012;
59 Perring et al., 2015; Savage et al., 2017; Toprak and Schnaiter, 2013; Wright et al., 2014). One
60 strategy to improving quality of differentiation between particles types has been to collect full,
61 resolved emission spectra, each at multiple excitation wavelengths. This can leads to high
62 instrumental purchase cost, and such instruments have not been widely applied or
63 commercialized (Huffman et al., 2016; Kiselev et al., 2013; Pan et al., 2009b; Ruske et al., 2017;
64 Swanson and Huffman, 2018). Most commercial UV-LIF instruments for bioaerosol detection
65 utilize 1-2 excitation wavelengths and integrate fluorescence signals into a small number of
66 emission bands. To extend the improvements in particle classification for these commercial UV-
67 LIF instruments, a number of multivariate analysis techniques have been applied to ambient
68 particle analysis. The most common of these techniques include principal component analysis,
69 factor analysis, and cluster analysis strategies. Classification algorithms, including several
70 clustering techniques, in particular, have shown successful results in providing unbiased
71 insights to the classification of bioaerosols (Crawford et al., 2015; Pinnick et al., 2013; Robinson
72 et al., 2013; Swanson and Huffman, 2018).

73 Cluster analysis is a broad class of data mining methods in which data objects placed in the
74 same group (or cluster) are more similar to one another than to those objects placed in other
75 groups. Classification algorithms clustering techniques can be divided into two central models:
76 (1) supervised and (2) unsupervised learning. Both models have associated advantages and
77 disadvantages. Supervised learning methods allow the “training” of data and grouping to better
78 reflect the data observations (Eick et al., 2004; Ruske et al., 2017; Ruske et al., 2018). This type
79 of method enhances (trains) the classification clustering algorithm in that the output cluster
80 classes groups are pre-determined rather than discovered, as is the case for unsupervised methods.
81 Supervision requires the user to have appropriate starting conditions to put into the model, which
82 are often difficult or impossible to determine. Supervised training methods are also much more
83 time-efficient compared to unsupervised methods, which is important when analyzing ambient
84 datasets where particle counts (individual objects) can be greater than 10^6 (Ruske et al., 2017). In
85 contrast, unsupervised training methods present less bias and can adapt to unique situations,

86 because the resultant clusters are based on models that have not been previously trained. To
87 access some of the advantages of supervised methods, however, it is importanteritical to first
88 apply unsupervised models to wide collections of laboratory data of known particle types in
89 order to gain insight on how these models interpret data inputs and to learn how algorithms can
90 best be trained (Ruske et al., 2017).

91 Hierarchical agglomerative clustering (HAC) is an unsupervised learning method that has
92 been most commonly applied for bioaerosol related studies (e.g. Crawford et al., 2016; Crawford
93 et al., 2015; Gosselin et al., 2016; Pan et al., 2009a; Pan et al., 2007; Pinnick et al., 2013; Pinnick
94 et al., 2004; Robinson et al., 2013; Ruske et al., 2017; Ruske et al., 2018). Other unsupervised
95 clustering techniques, such as the k-means clustering method, have shown poor results when
96 applied to ambient data sets because the number of clusters used to represent the data are
97 required a priori, and this information is usually unknown prior to analysis (Ruske et al., 2017).
98 There are several different HAC methods or linkages including: Single, Complete, Average,
99 Weighted, Ward's, Centroid, and Median (Crawford et al., 2015; Müllner, 2013). Ruske et al.
100 (2017) compared a variety of HAC linkages and determined that Ward's linkage had a higher
101 percentage of correctly classifying particles, in comparison to other HAC methods.

102 Recently, Savage et al. (2017) published a comprehensive laboratory study applying the
103 wWideband integrated bBioaerosol sSensor (WIBS-4A) to a large and diverse set of biological
104 and non-biological aerosol types. Following on that work, the study presented here utilizes those
105 data as inputs to evaluate and challenge the HAC strategy of particle differentiation using the
106 Ward's linkage of unsupervised clustering. Previous HAC studies have focused primarily on (a)
107 the analysis of simple particle standards (i.e. fluorescent microbeads) and (b) clustering of
108 particles from ambient data sets. There have been relatively few published attempts to
109 differentiate between biological particles and interfering particles by clustering methods using
110 controlled laboratory UV-LIF data or to separate different kinds of biological particles from one
111 another. Presented here are results of the HAC method applied to data from a comprehensive
112 WIBS laboratory study showing that clustering can dramatically improve removal of non-
113 biological particle types from data sets if operated under appropriate conditions.

115 **2. Experimental and Computational Methods**

116 The WIBS-4A (Droplet Measurement Techniques, Longmont, CO) is a commonly used UV-
117 LIF based instrument for the detection and characterization of biological particles. The
118 instrument collects particles in the size range 0.8 – 20 μm and interrogates them in real-time as
119 particles flow through the path between optical sources. The WIBS collects information about 3
120 channels of fluorescence intensity information in three channels (FL1, FL2, and FL3), particle
121 size, and particle asymmetry for each interrogated particle. The bands of excitation and
122 fluorescence emission are: FL1 ($\lambda_{\text{ex}} = 280 \text{ nm}$, $\lambda_{\text{em}} = 310 - 400 \text{ nm}$), FL2 ($\lambda_{\text{ex}} = 280 \text{ nm}$, $\lambda_{\text{em}} =$
123 420 – 650 nm), and FL3 ($\lambda_{\text{ex}} = 370 \text{ nm}$, $\lambda_{\text{em}} = 420 - 650 \text{ nm}$). The excitation and emission
124 wavelengths chosen for each of the 3 fluorescence channels were designed to maximize the
125 information gained about key biological fluorophores present in a broad range of bioparticles
126 (Kaye et al., 2005; Pöhlker et al., 2012). Early generations of UV-LIF bioaerosol spectrometers
127 were often interpreted to be able to detect proteins via channels similar to FL1 and products of
128 active cellular metabolism (i.e. riboflavin and NAD(P)H) via channels similar to FL3, but these
129 approximations are gross simplifications that confound more detailed investigation of particle
130 types.

For more information on the design, operation, and calibration of this instrument see e.g.
the manuscripts listed here and references therein (Foot et al., 2008; Healy et al., 2012a; Healy et

132 al., 2012b; Hernandez et al., 2016; Kaye et al., 2005; Perring et al., 2015; Robinson et al., 2017;
133 Savage et al., 2017; Stanley et al., 2011).

134 All aerosol materials utilized have been listed previously in Table 2 shown by Savage et al.
135 (2017), where an overview of size and fluorescence properties of particles utilized for this study
136 are also reported. No additional laboratory experiments were performed here beyond the results
137 presented previously.

138 The fluorescence threshold applied to the differentiation of fluorescent from non-fluorescent
139 particles is a key step in UV-LIF data analysis. Traditionally a fluorescence threshold has been
140 determined as the average baseline fluorescence intensity measured in each of the three channels
141 during the forced trigger (FT) mode when no particles are present, plus three times the standard
142 deviation (σ) of that measurement (i.e. $FT + 3\sigma$) (Gabey et al., 2010). Savage et al. (2017) also
143 reported that additional particle discrimination is possible by using $FT + 9\sigma$ as the threshold.
144 Both threshold definitions will be discussed here. After choosing a threshold of minimum
145 fluorescence, the fluorescence characteristics of a particle can be classified into 7 different
146 particle types introduced by Perring et al. (2015) and as summarized in Figure 1 shown by
147 Savage et al. (2017).

149 **3. Clustering Strategy**

150 Hierarchical clustering methods work by grouping objects from the bottom up, meaning that
151 each object (particle) starts as its own “cluster,” and clusters are merged together based on
152 similarities until a greatly reduced number of clusters are presented as a final solution. Ward’s
153 method for clustering is among the most popular approaches for HAC and is the only method
154 based on a classical sum-of-squares criterion, minimizing the within-group sum of squares (or
155 variance) (Müllner, 2013). The WIBS-4A used here for data collection provides 5 parameters of
156 information for each individual particle detected (3 fluorescence channels, size and asymmetry
157 factor:AF), resulting in 5 dimensions of data.

158 The clustering analysis was performed using the open-source software R package
159 ‘fastercluster’ (Müllner, 2013) using a Dell Latitude E7450 laptop computer with an Intel®
160 Core™ Processor (i7-5600U CPU @ 2.60 GHz, 16 GB RAM).

162 **3.1 Data Preparation**

163 Saturation of fluorescence intensity occurs at 2047 analog-to-digital counts (ADC) for each
164 of the three FL channels in the WIBS-4A, at which point the photomultiplier tube (PMT) reaches
165 its upper limit of detection. A study by Ruske et al. (2017) investigated whether non-fluorescent
166 (in that case, particles below the $FT + 3\sigma$ fluorescence threshold) and/or saturating data points
167 included in the clustering analysis hindered the efficiency of the cluster output. The authors
168 determined that removing both saturating and non-fluorescent particles before HAC analysis
169 resulted in a better clustering performance in terms of correctly classifying ambient particles.

170 ~~Their conclusions, however, were based on ambient field data using unknown particles types and
171 did not investigate laboratory generated particles of known origin.~~ The quality of the clustering
172 results ~~is~~ are likely to be impacted by types of particles involved and the assumptions placed on
173 those. As shown by Savage et al. (2017), many biological particles present a large fraction that
174 saturate one or more of the fluorescence detectors. Conversely, many non-biological particles
175 present a large fraction of very weakly fluorescent particles with intensity below a given
176 threshold and thus that are classified as non-fluorescent. To limit pre-modification of particle
177 populations before clustering, the only filter applied before clustering was to remove particles

178 smaller than the lower particle size detection limit of the WIBS-4A (0.8 μm), similar to Ruske et
179 al. (2017). In contrast, both saturating and non-fluorescent particles were ~~analyzed~~retained and
180 the clustering results will be evaluated. Figure 1 outlines the data preparation process, including
181 the conceptual process of normalization, clustering, and validation of data, which ~~is~~will be
182 explained in detail below.

183

184 **3.2 Data Normalization**

185 Normalization of the raw data is necessary before executing the clustering algorithm,
186 because data parameters delivered from the instrument are measured on different respective
187 scales. For example, fluorescent intensity values range from 0 to 2047 ADC ~~(analog to digital~~
188 counts), size from 0 to $\sim 20 \mu\text{m}$, and AF from 0 to 100 arbitrary units. Crawford et al. (2015)
189 performed analysis on polystyrene latex spheres (PSLs) using several different normalization
190 techniques, concluding that z-score normalization ~~is~~was the best technique when looking at
191 cluster performance using Ward's linkage for the separation of PSLs. As a result, we utilize the
192 z-score normalization of Ward's linkage HAC for the presented study. By this type of
193 normalization, the mean value of all data points is subtracted from each individual data point,
194 and then each data point is divided by the standard deviation of all points. Standardization using
195 the z-score method compares results to a normal (Gaussian) population, and we have chosen to
196 standardize our variables to a mean of 0 and a variance of 1 so that the output variables would be
197 on comparable scales, and it therefore relies on the assumption that input data can be described
198 by a normal distribution.

199

200 **3.3 HAC Scenarios**

201 Hierarchical agglomerative clustering performs optimally if all variables (1) are independent
202 of one another and (2) can be described well by a normal (Gaussian) distribution (Norusis,
203 2011). To achieve meaningful results from the clustering analysis data values must, therefore, be
204 input into the clustering algorithm with ~~an~~careful understanding of how specific preparatory
205 conditions can significantly impact results. To investigate optimal input conditions a total of 6
206 clustering scenarios were explored, with conditions summarized in Table 1. The impact of two
207 separate variables were explored within these scenarios by varying: (i) whether fluorescence
208 intensity were pre-normalized by particle size and (ii) whether the data values were input ~~in~~after
209 logarithmic transformationally spaced bins to produce a normal distribution.

210 Ambient particle number vs size distributions ~~can often be~~are well approximated by~~known~~
211 ~~to exhibit~~ lognormal distributions, although specific groups of particles, including some bacteria,
212 spores, and pollen, may not always exhibit lognormal distribution. Further, fluorescence intensity
213 has been shown to scale with particle size (e.g. Hill et al., 2001; Sivaprakasam et al., 2011).
214 Several previous studies attempted to utilize HAC for ambient lognormally-distributed particle
215 size data (Crawford et al., 2014; Crawford et al., 2015; Robinson et al., 2013), but applied the
216 assumption that particle fluorescence is normally distributed in a group of particles. If this
217 assumption does not hold to be correct, however, weakly fluorescing particles are likely to be
218 grouped into a single cluster based on the high abundance of these particles (Robinson et al.,
219 2013). Scenarios C, D, and E (Table 1) utilize data input to the clustering algorithm after
220 fluorescence intensity was normalized to particle size (by dividing fluorescence intensity value
221 by light scattering signal when a particle interacts with the diode laser beam) in order to explore
222 whether the assumption that laboratory data should be treated like previously explored ambient
223 data sets and not logged. Scenarios B and D take into account the logging of all parameters,

224 producing normal distributions of all variables (AF, particle size, 3 channels of fluorescence). By
225 this process, data values were input into the algorithm as log(value) without separately binning
226 the points. For comparison, scenarios E and F explore log-spaced distributions of size and AF,
227 while retaining the assumption that the fluorescence output is normally distributed. Scenario A
228 data is neither logged nor normalized. For comparison, Scenario F represents the input
229 conditions that have been used frequently (e.g. Crawford et al., 2015; Ruske et al., 2017).
230

231 **3.4 Cluster Validation**

232 An important feature of HAC is that it provides clusters in an unsupervised manner, and the
233 user must determine the number of clusters that makes physical sense. One useful tool to
234 systematically determine the optimal number of final clusters is the Calinski-Harabasz (CH)
235 index, which uses the interclass-intraclass distance ratio (Liu et al., 2010). For each clustering
236 output the CH index was calculated for cluster solutions with one through ten clusters, and the
237 solution with the highest CH value was generally determined to be the optimal number of
238 clusters. Figure 2 shows an example CH versus cluster number plot for a mixture of *Aspergillus*
239 *niger* fungal spores mixed with diesel soot particles. The curve suggests the optimal result to be a
240 2-cluster solution for this trial, as was generally the case for investigations where two particle
241 types were mixed before clustering. In order to reduce the length and complexity of
242 discussionanalysis, analysis of results in Sections 4.1-4.3 was limited to using cluster products
243 only from the 2-cluster solutionall cases presented. In some cases a 3-cluster solution may have
244 produced higher quality results, but these cases were not investigated. in Sections 4.1-4.3 are
245 products of a 2-cluster solution.

246 **4 Results and Discussion**

247 The analysis of clustering quality was performed systematically and with increasing
248 complexity. Section 4.1 utilizes three pairs of particles types to explore the effect of particle ratio
249 and normalization strategies on cluster performance. Using conclusions from this section,
250 Section 4.2 then expands the exploration to 20 additional pairs of particle types. Section 4.3
251 explores the effect of three different fluorescence thresholding strategies on cluster output.
252 Finally, Section 4.4 investigates the ability of HAC analysis to separate particle types from
253 mixed populations of particle types.
255

256 **4.1 Investigating pre-normalization scenarios and particle input ratio**

257 To explore the ability to separate two distinct populations of particles from one another, three
258 different clustering trials are presented in this section as one-on-one match-ups: (1) *Aspergillus*
259 *niger* (fungal spores, F2) vs. NIST diesel soot (S4), (2) *Pseudomonas stutzeri* (bacteria, B3) vs.
260 NIST diesel soot (S4), and (3) *Aspergillus niger* (fungal spores, F2) vs. California sand (mineral
261 dust, D12). These four particle materials were chosen to represent key classes of coarse particles
262 observed in ambient air. For each trial, a subsetgiven number of particles from each material type
263 was selected randomly for HAC analysisplaced into a conceptual pool before running through
264 the algorithm to organize clusters. The clustering process includes: (i) evaluation of cluster
265 performance based on particle assignment and cluster composition, and (ii) visual representations
266 of cluster outputs using particle type classification introduced by Perring et al. (2015). For each
267 of these three trials, the clustering process was run separately using each of the six scenarios A-F
268 described in Table 1. Additionally, while exploring the optimal data pre-processing scenario, the
269 influence that different concentration ratios of particle types could play in the clustering output

270 was also explored. The cluster process for each trial was performed using ~~three four~~ different
271 ratios of particles in each particle set including ~~situations with~~ an equal ratio ~~(50:50)~~ and
272 ~~situations~~ where the concentration of each particle type was significantly mismatched ~~(80:20 and~~
273 ~~20:80)~~. In total, this section represents 5~~74~~ individual clustering experiments (3 trials x 6
274 scenarios x 3 particle ratios ~~+ 3 additional ratio trials~~) exploring three independent input
275 variables. The results will be utilized to explore many more individual particle type match-ups in
276 the following sections.

277 The first two trials include diesel soot particles, because ~~light-absorbing carbon aerosol~~~~they~~
278 are commonly observed in ~~almost all aerosol~~~~atmospheric~~ samples with ~~even minimal~~
279 anthropogenic influence (Bond et al., 2013), and because they ~~can~~ have fluorescence
280 characteristics difficult to distinguish from small biological particles (e.g. Huffman et al., 2010;
281 Pan et al., 2012; Savage et al., 2017; Yu et al., 2016). For example, when excited by photons
282 with a wavelength of 280 nm, diesel soot can be misinterpreted as single bacterial cells using the
283 WIBS, and so we explored here whether the two particle types could be clustered separately
284 (Pöhlker et al., 2012). The three trials include two examples of biological particles, both
285 exhibiting fluorescent properties, but with different excitation-emission characteristics and with
286 different average particle size.

287 The output of the algorithm reports the particle type from which each particle was input in
288 order to evaluate the accuracy of the clustering. The resulting output of each particle with an
289 assigned cluster number is then compared to the originating particle type to determine
290 classification accuracy. Figure 3 summarizes the relative accuracy of individual clustering
291 experiments by representing the percent of particles misclassified with respect to known input
292 identities (blue bar corresponding to correct classification, red bar and overlaid value
293 corresponding to incorrect classification). The clustering process was generally effective for
294 separating particles correctly when two particle types were considered, but results vary widely
295 across the six scenarios. Several previous studies that used HAC to separate particles within an
296 ambient data set assumed that particle fluorescence is already normally distributed (Crawford et
297 al., 2014; Crawford et al., 2015; Robinson et al., 2013). As a result, these previous studies did
298 not normalize fluorescence data and thus used data preparation scenario F in their clustering
299 analysis. For comparison, scenarios B and D were explored to test whether the clustering
300 efficiency would be improved or hindered by fluorescence normalization. Scenarios A and F
301 produced inconsistent results, with some experiments (i.e. 50:50 ratio of fungal spores:diesel)
302 producing misclassification <1.1%, whereas other experiments (i.e. 20:80 ratio of
303 bacterial:diesel) producing misclassification ~~up to~~ 80%. In contrast, scenarios B and D
304 produced consistently more accurate results. Scenario B, in particular, consistently exhibited the
305 most accurate classification of particles for almost every individual experiment. No experiment
306 involving scenario B produced greater than 9% misclassification of particles, regardless of
307 particle input ratio, and most experiments produced results with 0.1 - 3% error. These
308 observations taken together suggest that particle fluorescence properties may not be well
309 described by normal distributions and that normalizing fluorescence data prior to analysis may
310 be more effective.

311 The results of these experiments also highlight how important the ratio of input particles can
312 be. While scenario B was relatively consistent, varying only between 0.1 and 3.8% error for
313 different ratios of the fungal spore versus diesel match-up, other experiments depended strongly
314 on particle ratio. It is clear that the input ratio of particle types cannot be controlled during an
315 ambient study, and so these results suggest that it is important to keep the possibility of varying

316 concentration ratios in mind when interpreting time- or air mass-associated changes in cluster
317 composition or when relaying the relative confidence in clustering results. For the remainder of
318 the discussion, experiments will be limited to a 50:50 ratio following scenario B. In each case the
319 **number** of input particles **are** **represents** a random subset taken from the pool of particles in the
320 experimental data. As a result, individual samples selected from the same experiments (i.e. Fig.
321 4a, Fig 4e) can show slightly different average properties. In some cases (i.e. **D**diesel soot, Fig.
322 4d) the number of particles originally analyzed was small and so to keep the input particle ratio
323 50:50 the corresponding particle type was also limited to small numbers.

324 **To extend the investigation of particle input ratio, the three match-ups presented in Figure 3**
325 **were investigated using Scenario B with 1% bioparticles and 99% non-bioparticles in each**
326 **respective case. In these experiments the bacteria:diesel soot and fungal spores:dust particles**
327 **separated relatively well (6.6% and 13.5% misclassification, respectively). The fungal**
328 **spores:diesel soot separation was poor, however, because the diesel soot particles were nearly**
329 **evenly split into both clusters, and the fungal spore particles were too low in concentration to**
330 **influence the cluster properties. More investigation is needed to explore how extreme disparities**
331 **in particle ratio could negatively influence cluster quality in real-world settings.**

332 An important tool readily applied to analysis of ambient data is the categorization of particles
333 into 8 fluorescent particle types (Perring et al., 2015). Thus, to further investigate the quality of
334 cluster accuracy, Figure 4 shows inputs and cluster outputs from three clustering experiments
335 stacked as a function of fluorescence particle type and particle size. The top row of Figure 4
336 shows the input data for *Aspergillus niger* and diesel soot (Fig. 4a-b) paired with the outputs of
337 the 2-cluster solution (Fig. 4g-h). It can be seen that both particle materials have predominantly
338 particle type-A characteristics, meaning that they are fluorescent only in channel FL1. The
339 fungal material also presents roughly a third AB (green) and a small minority of non-fluorescent
340 (gray) characteristics. The size distribution of the fungal spores peaks at $\sim 3 \mu\text{m}$, whereas diesel
341 soot peaks at $\sim 1 \mu\text{m}$ in size. While not shown in this plot style, the spores exhibit moderately
342 higher FL1 channel fluorescence, with a median of 543 ADC, whereas diesel soot exhibits a
343 median of 751 ADC in this channel (see Savage et al., 2017; Table 2). Both particle types show
344 almost no fluorescent characteristics in either FL2 or FL3. In summary, the particle distributions
345 are relatively similar in fluorescence particle type and their differences are largely related to
346 particle size, so separation of these particles through Trial 1 was hypothesized to represent a
347 relatively challenging initial exercise. The clustering outputs presented in Figures 4g-h, however,
348 visually highlight the conclusion represented by Figure 3, which is that the particles in this trial
349 separated very well. Cluster 1 was comprised predominantly of fungal particles and presented
350 fluorescence and size traits qualitatively similar to the input fungal particles, whereas cluster 2
351 was comprised predominantly of diesel soot particles. Results from the 50:50 ratio of the
352 scenario B experiments for the other two trials are also shown in the last two rows of Figure 4. In
353 each case, the qualitative properties of the input particles are extremely well represented by the
354 corresponding output cluster, corroborating the conclusion from Figure 3 that the scenario B
355 cases accurately separated the particle groups investigated through these experiments. **It is also**
356 **important to note here that the method of aerosolization for each particle type plays an important**
357 **role in the observed size distribution and so results involving laboratory particles should be**
358 **interpreted with this in mind. Observed fluorescence properties, in contrast, are expected to be**
359 **conserved at a given particle size and intrinsically related to particle composition.**

360
361 **4.2 Investigating cluster quality without fluorescence threshold**

362 After concluding that scenario B exhibited the most consistently accurate clustering results
363 using 2-cluster solutions from mixtures comprised of 2 particle type inputs, the analysis was
364 expanded to include a broader range of particle types. Using 50:50 ratios of two types of input
365 particles, prepared using scenario B (leaving fluorescence data un-normalized and forcing all
366 five data parameters into logarithmically spaced bins), 20 new individual experiments were
367 performed. The results of all 23 experiments (3 from Section 4.1 and 20 introduced in Section
368 4.2) are summarized in Table 2 as the percentage of particle misclassification. These trials were
369 chosen to represent a broad range of individual match-ups that might be expected in ambient air.
370 From the original 69 types of particles analyzed by Savage et al. (2017), 14 were used in
371 experiments here: 8 types of non-biological particles and 6 types of biological particles (2 each
372 of fungal spores, bacteria, and pollen species). Supplemental Figure S4 from Savage et al. (2017)
373 shows size distributions stacked by fluorescence particle type for each of the particle species
374 discussed.

375 Table 2a organizes clustering results into three rows, showing misclassification of F2
376 (*Aspergillus niger* fungal spore), B3 (*Pseudomonas stutzeri* bacteria), and P9 (*Phelum pratense*
377 pollen) particles, respectively, with respect to a variety of other particle types represented by
378 table column. Of the 15 cluster experiments between fungal spore or bacteria and non-biological
379 material (top two table rows), only 3 showed misclassification greater than 7.5% (bold text), and
380 7 were less than 3%. The three outliers were: experiment (7) F2 vs BC3 (glyoxal + ammonium
381 sulfate brown carbon aerosol), (8) F2 vs WT (white t-shirt particles), and (14) B3 vs WT.
382 Looking first at experiment (7), F2 particles show A-type fluorescence characteristics and are
383 dominated by a mode between 1.5 and 4 μm . BC3 particles are primarily non-fluorescent <1.5
384 μm , but are primarily A-type between 1.5 and 3 μm , suggesting similar size and fluorescence
385 properties. The white t-shirt particles separated poorly (~41% misclassification) from both the
386 fungal spore and bacterial particles. All three particle types (WT, F2, and B3) exhibit medium
387 fluorescent intensity in the FL1 channel. The poor ability to separate WT from both F2 and B3
388 was surprising, however, given that WT exhibited significantly higher mean fluorescence in each
389 of the FL2 and FL3 channels. As first mentioned by Savage et al. (2017), great care should be
390 taken when interpreting fluorescent particle results from indoor environments where increased
391 concentrations of bleached fibers from clothing, bedding, paper, and cleaning products may be
392 present.

393 While the results show that the spores and bacterial particles investigated could generally be
394 well separated from most potentially interfering non-biological species, the results were much
395 less successful for differentiation from pollen. P9 pollen particles separated poorly in all
396 experiments (versus D12, H2, or P5), with rate of misclassification ranging from 22 to 47%. It is
397 important to keep in mind, however, that the WIBS was operated using a standard gain setting
398 that limits analysis of particle size to below approximately 20 μm . As a result, the WIBS is
399 insensitive to whole pollen grains and so most of the particles observed during pollen
400 experiments are small pollen fragments. Any intact pollen grains that navigate the flow system to
401 be detected are likely to be binned together in the channel representing the largest particles.
402 Clustering results including pollen should be interpreted accordingly. Pollen grains can fragment
403 in ambient air as function of increased relative humidity (Miguel et al., 2006; Suphioglu et al.,
404 1992; Taylor et al., 2004), but the relative ratio of whole/fragmented particles is hard to predict
405 under ambient conditions. Smaller fragments can also exhibit different fluorescent properties
406 than whole grains (Pöhlker et al., 2013). O'Connor et al. (2014) operated a WIBS-4 (Univ.

407 Hertfordshire) at lower gain in order to improve pollen detection efficiency, but these results are
408 not explored directly here.

409 The WIBS instrument is frequently used to differentiate between airborne biological particles
410 and material of non-biological origin. A secondary goal of differentiating more finely between
411 types of biological aerosols is also frequently pursued. To investigate this goal, six additional
412 experiments were conducted by pairing two different types of non-biological particles (Table
413 2b). In contrast to the results shown in Table 2a, the clustering algorithm showed generally poor
414 ability to separate between two biological particle types. Only one of the six experiments
415 resulted in error <15% (F2 vs B3, 10.3% error), whereas error for the other five experiments
416 ranged from 18% to 65%. The worst accuracy was demonstrated by experiments (22) B1 vs B3
417 and experiment (23) P5 vs P9. Both of these experiments attempted to separate between different
418 species of a single particle type (i.e. between two bacteria or two pollen, respectively). Overall,
419 these results suggest that the clustering strategy may be quite useful at aiding the differentiation
420 of biological material from non-biological material, but that separating more finely to quantify
421 differences between types of individual biological particles is likely to be significantly more
422 challenging and not likely to be possible in most situations.

424 **4.3 Investigating impact of fluorescence thresholding strategy on cluster quality**

425 In previously published studies, removing particles from clustering analysis that exhibited
426 particle fluorescence intensity below the threshold (i.e. non-fluorescent) or at the saturating point
427 improved the efficiency of clustering (Crawford et al., 2015; Ruske et al., 2017). In Sections 4.1-
428 4.2, particles with either of these characteristics were left in the analysis to prevent the
429 underestimation of particles clustered. In this section, however, we investigated whether
430 removing non-fluorescent particles could improve cluster accuracy for the experiments that
431 performed poorly in Section 4.2. Of the 23 trials represented in Table 2, 10 experiments
432 exhibited 15% or greater misclassification and were subjected to further analysis in order to
433 investigate whether using a more discriminating fluorescence thresholding strategy could
434 improve cluster results. In all 10 cases fluorescence saturating particles were retained, and three
435 separate thresholding conditions were compared by: (I) keeping all non-fluorescent and
436 saturating particles, (II) removing non-fluorescent particles by applying a fluorescence threshold
437 of FT baseline + 3 σ , and (III) removing non-fluorescent particles by applying a fluorescence
438 threshold of FT baseline + 9 σ . Savage et al. (2017) showed evidence that applying a FT + 9 σ
439 improved WIBS results by removing a higher fraction of non-biological material from analysis
440 than by applying the more commonly used FT + 3 σ , without negatively impacting observations
441 of biological particles. Table 3 shows the percentage of particles misclassified in each of three
442 scenarios investigated here (Table 3a) as well as the number of particles subjected to the
443 clustering algorithm (Table 3b).

444 Each scenario, with exception of the B3 vs B9 experiment (21), shows a decrease in particle
445 misclassification from scenario I (no fluorescence threshold applied) to scenario II (FT + 3 σ). In
446 contrast, eight of the ten scenarios *increase* in particle misclassification when raising the
447 fluorescence threshold from 3 σ (II) to 9 σ (III). The exceptions to this trend are experiments (8)
448 F2 vs WT and (19) F2 vs P9, which show nominal improvement in error (2-4% reduction) with
449 increased threshold. We hypothesize that the 9 σ results degrade, in most cases, because the
450 threshold becomes high enough that most weakly fluorescing particles have been removed from
451 analysis. This reduces the ability of the cluster to group into low and high fluorescence
452 categories, and so remaining particles are separated less efficiently. Secondly, removing particles

453 at higher fluorescence thresholds leads to increasingly poor counting statistics, as represented in
454 Table 3b by the number of particles included in each experiment. Overall, these results suggest
455 that inputting particles into the clustering analysis with at least a nominal fluorescence threshold
456 (i.e. $FT + 3\sigma$) can improve the clustering results in many cases, however, increasing the
457 threshold further may decrease cluster quality.

458

459 **4.4 Investigating the capability cluster ability to separate particles in simulations of** 460 **complex-synthetic mixtures**

461 To this point, our investigation has focused on a variety of individual match-ups between two
462 distinct particle types. To better simulate real-world scenarios, we computationallyanalytically
463 simulatedsynthesized six mixtures of particles by pooling existing WIBS data from selected
464 particle types in prescribed ratios. Each simulated mixture was assembledsynthesized to roughly
465 represent a different hypothetical mixture of particles that might be expected. Also, the particles
466 in each simulated mixture are assumed to be so dilute that any agglomeration is negligible. Table
467 4 provides an overview of the percentage of each particle type included as well as the total
468 number of particles in the mixture. Mixtures 1 and 2 were simulatedsynthesized arbitrarily to test
469 if a minority (25%) of one type of fungal spores (F2) could be separated from a majority (75%)
470 of a mixture of three different non-biological materials. Mixtures 3 and 4 synthesized arbitrary
471 mixtures of two types of bioaerosol (F2 and B3) with three or five types of non-biological
472 particles, respectively. Mixture 5 was simulatedsynthesized to examine the separation of pollen
473 (P9) from a set of five non-biological particles. Mixture 6 was simulatedsynthesized to simulate
474 be similar to an indoor environment that might have a mixture of biological particles (F2 and B3)
475 with non-biological materials, including bleached fibers (WT). These mixtures are not intended
476 to closely mimic any set of individual ambient conditions, but are rather used as very rough
477 synthetic scenariossimulations used for discussion and to prompt discussion related to future
478 experiments within the community. In a real-world sampling environment one would also expect
479 a high concentration of non-fluorescent particles as well (e.g. most organic aerosols, sea salt,
480 dusts), but these were generallylargely not sampled as a part of the Savage et al. (2017) study,
481 which focused on fluorescent particles. As a result, relatively non-fluorescent particles like D12
482 and H2 were included here as “fillers” in most mixtures as surrogates for other types of non-
483 fluorescent particles. Clustering analysis was performed using the ratios listed in Table 4, the B
484 scenario of pre-normalization conditions, and filtering non-fluorescent particles below the $FT +$
485 3σ threshold. In all cases, the number of clusters retrieved after HAC was pre-defined to be the
486 same as the number of particle types input.

487 Cluster results from all six mixtures are summarized in Figure 5. Figure 5 (Part A) shows the
488 number of particles from each type assigned to each cluster, and Parts B and C show results
489 grouped by general particle classification (brown for non-biological and dark green for
490 biological). Overall, the ability of the HAC analysis to separate the biological particles from the
491 non-biological particles was high. In some cases, the quality of separation of one or two
492 biological species from a mixture of non-biological materials was even higher than the 2-
493 material match-ups shown in Sections 4.1-4.3. The two 4-component mixtures showed 22.4%
494 and 14.8% misclassification of fungal spores. In both cases, a small fraction of each of the non-
495 biological materials were mixed into the spore cluster, whereas almost none (1.5% and 0.6%) of
496 the spores were incorrectly mixed into the sum of the non-biological clusters.

497 Mixtures 3 and 4 showed similar misclassification for fungal spores (11.9% and 13.8%,
498 respectively), whereas the bacterial particles clustered with amazing quality. For Mixture 3, no

499 particles other than bacterial particles were grouped into Cluster 1, and only 16 of 213 bacterial
500 particles were assigned to other clusters. For Mixture 4, 135 of 137 particles in Cluster 6 were
501 bacterial in origin and 135 of 142 bacterial particles were assigned to the cluster. The
502 combination of fungal and bacterial particles in Mixtures 3 and 4 resulted in a total of 5.0% and
503 5.3% misclassification of all biological particles.

504 In contrast to the poor separation of pollen from other particle types discussed in Section 4.2,
505 Mixture 5 showed a higher quality of separation between pollen (9.4% misclassified) and the
506 sum of five other non-biological particle types. Lastly, the mixture designed to roughly mimic an
507 indoor environment including white t-shirt particles. In this mixture the WT particles confounded
508 the spore separation, but the bacterial separation was nearly flawless.

509 Another surprising observation from the analysis of these simulatedsynthetic mixtures was
510 that the diesel soot particles (Mixtures 1, 2, 4, and 5) separated into their own cluster in almost
511 all cases with very high quality (1.8%, 2.9%, 0.6%, and 9.4%, respectively, of diesel soot
512 particles misclassified into a different cluster). The quality of separation of bacterial particles and
513 diesel soot (Mixture 4) was especially amazing, given the qualitative similarity of the two
514 particle populations. For example, size-distributions of each particle type show primarily A-type
515 particles with similar mean fluorescent intensity values in FL1, FL2, and FL3 (Savage et al.,
516 2017).

517 5. Conclusions

518 Application of results from a recent set of systematic laboratory experiments (Savage et al.,
519 2017) by the commonly used hierarchical agglomerative clustering analysis helps to reveal areas
520 where the tool can be used well and other areas where it struggles. First (Section 4.1) it was
521 observed that differing ratios of particle input into the clustering algorithm can produce
522 dramatically different results. It will be important for anyone applying HAC to ambient particle
523 sets where particle ratios are not independently verified to interpret results somewhat loosely. In
524 Section 4.1 the clustering quality of scenario B, where fluorescence intensity was not normalized
525 to particle size and where all input variables were binned into log space, was determined to
526 consistently demonstrate the highest quality results. Further, the ability to the HAC analysis to
527 separate between two groups of individual particle types using no fluorescence threshold
528 (Section 4.2) and comparing three separate threshold strategies (Section 4.3) was shown to be
529 relatively high in many cases, but confounded in others. Lastly, Section 4.4 explored the ability
530 of HAC analysis to separate biological components from more complex mixtures of four to
531 seven types of input particles.

532 A standard fluorescence threshold of $FT + 3\sigma$ has been commonly applied during WIBS
533 analysis to separate between fluorescent and non-fluorescent particles. Savage et al. (2017)
534 concluded that application of a more aggressive threshold strategy ($FT + 9\sigma$) could help
535 discriminate between biological and non-biological particles more successfully in many
536 circumstances, however certain types of interfering, non-biological particle species can still
537 confound WIBS analysis irrespective of the threshold. Here we have investigated an orthogonal
538 strategy to separate particle types by subjecting particles to HAC computer analysis. By
539 comparing the results of the HAC analysis with raw separation based on fluorescence
540 thresholding alone, the HAC analysis can clearly increase quality of differentiation. Interestingly,
541 while Savage et al. (2017) reported that the $FT + 9\sigma$ strategy helped improved differentiation,
542 using the same threshold in conjunction with HAC analysis actually degraded results. We
543 therefore conclude that if HAC analysis is to be performed, the standard $FT + 3\sigma$ threshold is

545 likely to produce the highest quality results, however if HAC is not to be applied that the FT +
546 9σ threshold is probably a better choice the most likely to enable investigation of biological
547 particles while computationally filtering reduce a large fraction of non-biological particles.

548 The overall message here is that HAC can be applied successfully to differentiate particle
549 types sampled by WIBS instruments and that it is most successful at separating biological
550 species (i.e. fungal spores and bacteria) from non-biological particles. In all cases the HAC
551 method allows separation of particles at least at the order-of-magnitude level, and often with
552 misclassification of <5%. As mentioned by Savage et al. (2017), however, it should always be en
553 kept in mind that different instruments may produce slightly different signals due to physical
554 differences between instruments (i.e. fluorescence calibration, tuning, and detector gain
555 sensitivity) and between calibration strategies (Könemann et al., 2018; Robinson et al., 2017).
556 and that rResults here are only also generally extendable to other UV-LIF instruments, whether
557 they offer single or many channels of emission spectral resolution, in that the methods of particle
558 pre-preparation and the impact of particle number ratio are likely to relay similar effects on
559 clustering strategy. -Subtle differences in particles observed in a real-world environment may
560 also complicate HAC analysis or the extension of results presented here. The UV-LIF
561 community is encouraged to continue laboratory investigations, including detailed interrogation
562 of clustering analytical techniques, to further understand limitations to better differentiating
563 between particles.

564

565 **6. Acknowledgments**

566 The authors acknowledge the University of Denver for financial support from the faculty
567 start-up fund. Nicole Savage acknowledges financial support from the Phillipson Graduate
568 Fellowship at the University of Denver. Martin Gallagher, and David Topping, and Simon
569 Ruske in the School of Earth and Environmental Sciences at the University of Manchester are
570 acknowledged for initial discussion regarding clustering strategy. Cathy Durso at the University
571 of Denver Center for Statistics and Visualization is acknowledged for help running clustering
572 algorithms. All contributors to the Savage et al. (2017) paper, in which all experimental data
573 discussed here were originally presented, are acknowledged for their contributions.

574 **7. References**

575

576 Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner,
577 M. G., Ghan, S., Karcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C.,
578 Schultz, M. G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda,
579 S. K., Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P.,
580 Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C. S.: Bounding the role of black carbon
581 in the climate system: A scientific assessment, *J. Geophys. Res.-Atmos.*, 118, 5380-5552, 2013.

582 Crawford, I., Lloyd, G., Herrmann, E., Hoyle, C. R., Bower, K. N., Connolly, P. J., Flynn, M. J.,
583 Kaye, P. H., Choularton, T. W., and Gallagher, M. W.: Observations of fluorescent aerosol-cloud
584 interactions in the free troposphere at the High-Altitude Research Station Jungfraujoch,
585 *Atmospheric Chemistry and Physics*, 16, 2273-2284, 2016.

586 Crawford, I., Robinson, N. H., Flynn, M. J., Foot, V. E., Gallagher, M. W., Huffman, J. A.,
587 Stanley, W. R., and Kaye, P. H.: Characterisation of bioaerosol emissions from a Colorado pine
588 forest: results from the BEACHON-RoMBAS experiment, *Atmos. Chem. Phys.*, 14, 8559-8578,
589 2014.

590 Crawford, I., Ruske, S., Topping, D. O., and Gallagher, M. W.: Evaluation of hierarchical
591 agglomerative cluster analysis methods for discrimination of primary biological aerosol, *Atmos.*
592 *Meas. Tech.*, 8, 4979-4991, 2015.

593 Després, V. R., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A. S., Buryak, G. A.,
594 Fröhlich-Nowoisky, J., Elbert, W., Andreae, M. O., Pöschl, U., and Jaenicke, R.: Primary
595 Biological Aerosol Particles in the Atmosphere: A Review, *Tellus Series B-Chemical and*
596 *Physical Meteorology*, 64, 15598, 2012.

597 Douwes, J., Thorne, P., Pearce, N., and Heederik, D.: Bioaerosol health effects and exposure
598 assessment: Progress and prospects, *Annals of Occupational Hygiene*, 47, 187-200, 2003.

599 Eick, C. F., Zeidat, N., and Zhao, Z.: Supervised clustering-algorithms and benefits, 2004, 774-
600 776.

601 Fennelly, M. J., Sewell, G., Prentice, M. B., O'Connor, D. J., and Sodeau, J. R.: The Use of
602 Real-Time Fluorescence Instrumentation to Monitor Ambient Primary Biological Aerosol
603 Particles (PBAP), *Atmosphere*, 9, 1, 2017.

604 Foot, V. E., Kaye, P. H., Stanley, W. R., Barrington, S. J., Gallagher, M., and Gabey, A.: Low-
605 cost real-time multi-parameter bio-aerosol sensors, *Proceedings of the SPIE - The International*
606 *Society for Optical Engineering*, 7116, 711601, 2008.

607 Fröhlich-Nowoisky, J., Kampf, C. J., Weber, B., Huffman, J. A., Pöhlker, C., Andreae, M. O.,
608 Lang-Yona, N., Burrows, S. M., Gunthe, S. S., Elbert, W., Su, H., Hoor, P., Thines, E.,
609 Hoffmann, T., Després, V. R., and Pöschl, U.: Bioaerosols in the Earth system: Climate, health,
610 and ecosystem interactions, *Atmospheric Research*, 182, 346-376, 2016.

611 Gabey, A. M., Gallagher, M. W., Whitehead, J., Dorsey, J. R., Kaye, P. H., and Stanley, W. R.:
612 Measurements and comparison of primary biological aerosol above and below a tropical forest
613 canopy using a dual channel fluorescence spectrometer, *Atmospheric Chemistry and Physics*, 10,
614 4453-4466, 2010.

615 Gosselin, M. I., Rathnayake, C. M., Crawford, I., Pohlker, C., Frohlich-Nowoisky, J., Schmer,
616 B., Despres, V. R., Engling, G., Gallagher, M., Stone, E., Poschl, U., and Huffman, J. A.:
617 Fluorescent bioaerosol particle, molecular tracer, and fungal spore concentrations during dry and
618 rainy periods in a semi-arid forest, *Atmospheric Chemistry and Physics*, 16, 15165-15184, 2016.

619 Healy, D. A., O'Connor, D. J., Burke, A. M., and Sodeau, J. R.: A laboratory assessment of the
620 Waveband Integrated Bioaerosol Sensor (WIBS-4) using individual samples of pollen and fungal
621 spore material, *Atmospheric Environment*, 60, 534-543, 2012a.

622 Healy, D. A., O'Connor, D. J., and Sodeau, J. R.: Measurement of the particle counting
623 efficiency of the "Waveband Integrated Bioaerosol Sensor" model number 4 (WIBS-4), *Journal*
624 *of Aerosol Science*, 47, 94-99, 2012b.

625 Hernandez, M., Perring, A. E., McCabe, K., Kok, G., Granger, G., and Baumgardner, D.:
626 Chamber catalogues of optical and fluorescent signatures distinguish bioaerosol classes,
627 *Atmospheric Measurement Techniques*, 9, 3283-3292, 2016.

628 Hill, S. C., Pinnick, R. G., Niles, S., Fell, N. F., Pan, Y. L., Bottiger, J., Bronk, B. V., Holler, S.,
629 and Chang, R. K.: Fluorescence from airborne microparticles: dependence on size, concentration
630 of fluorophores, and illumination intensity, *Applied Optics*, 40, 3005-3013, 2001.

631 Huffman, D. R., Swanson, B. E., and Huffman, J. A.: A wavelength-dispersive instrument for
632 characterizing fluorescence and scattering spectra of individual aerosol particles on a substrate,
633 *Atmos. Meas. Tech.*, 9, 3987-3998, 2016.

634 Huffman, J. A. and Santarpia, J.: Online Techniques for Quantification and Characterization of
635 Biological Aerosols. In: *Microbiology of Aerosols*, John Wiley & Sons, Inc., 2017.

636 Huffman, J. A., Sinha, B., Garland, R. M., Snee-Pollmann, A., Gunthe, S. S., Artaxo, P., Martin,
637 S. T., Andreae, M. O., and Poeschl, U.: Size distributions and temporal variations of biological
638 aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS
639 fluorescence techniques during AMAZE-08, *Atmospheric Chemistry and Physics*, 12, 11997-
640 12019, 2012.

641 Huffman, J. A., Treutlein, B., and Pöschl, U.: Fluorescent biological aerosol particle
642 concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer
643 (UV-APS) in Central Europe, *Atmospheric Chemistry and Physics*, 10, 3215-3233, 2010.

644 Kaye, P. H., Stanley, W. R., Hirst, E., Foot, E. V., Baxter, K. L., and Barrington, S. J.: Single
645 particle multichannel bio-aerosol fluorescence sensor, *Optics Express*, 13, 3583-3593, 2005.

646 Kiselev, D., Bonacina, L., and Wolf, J.-P.: A flash-lamp based device for fluorescence detection
647 and identification of individual pollen grains, *Review of Scientific Instruments*, 84, 2013.

648 Könemann, T., Savage, N. J., Huffman, J. A., and Pöhlker, C.: Characterization of steady-state
649 fluorescence properties of polystyrene latex spheres using off- and online spectroscopic methods,
650 *Atmospheric Measurement Techniques*, 11, 3987-4003, 2018.

651 Liu, Y., Li, Z., Xiong, H., Gao, X., and Wu, J.: Understanding of internal clustering validation
652 measures, 2010, 911-916.

653 Miguel, A. G., Taylor, P. E., House, J., Glovsky, M. M., and Flagan, R. C.: Meteorological
654 influences on respirable fragment release from Chinese elm pollen, *Aerosol Sci. Technol.*, 40,
655 690-696, 2006.

656 Müllner, D.: fastcluster: Fast hierarchical, agglomerative clustering routines for R and Python,
657 *Journal of Statistical Software*, 53, 1-18, 2013.

658 Norusis, M.: Cluster Analysis. In: *IBM SPSS Statistics 19 Guide to Data Analysis*, Norusis &
659 SPSS Inc., 2011.

660 O'Connor, D. J., Healy, D. A., Hellebust, S., Buters, J. T. M., and Sodeau, J. R.: Using the
661 WIBS-4 (Waveband Integrated Bioaerosol Sensor) Technique for the On-Line Detection of
662 Pollen Grains, *Aerosol Sci. Technol.*, 48, 341-349, 2014.

663 Pan, Y.-L., Pinnick, R. G., Hill, S. C., and Chang, R. K.: Particle-Fluorescence Spectrometer for
664 Real-Time Single-Particle Measurements of Atmospheric Organic Carbon and Biological
665 Aerosol, *Environ. Sci. Technol.*, 43, 429-434, 2009a.

666 Pan, Y. L., Huang, H., and Chang, R. K.: Clustered and integrated fluorescence spectra from
667 single atmospheric aerosol particles excited by a 263-and 351-nm laser at New Haven, CT, and
668 Adelphi, MD, *Journal of Quantitative Spectroscopy & Radiative Transfer*, 113, 2213-2221,
669 2012.

670 Pan, Y. L., Pinnick, R. G., Hill, S. C., and Chang, R. K.: Particle-Fluorescence Spectrometer for
671 Real-Time Single-Particle Measurements of Atmospheric Organic Carbon and Biological
672 Aerosol, *Environ. Sci. Technol.*, 43, 429-434, 2009b.

673 Pan, Y. L., Pinnick, R. G., Hill, S. C., Rosen, J. M., and Chang, R. K.: Single-particle laser-
674 induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere:
675 Measurements at New Haven, Connecticut, and Las Cruces, New Mexico, *J. Geophys. Res.-*
676 *Atmos.*, 112, D24S19, 2007.

677 Perring, A. E., Schwarz, J. P., Baumgardner, D., Hernandez, M. T., Spracklen, D. V., Heald, C.
678 L., Gao, R. S., Kok, G., McMeeking, G. R., McQuaid, J. B., and Fahey, D. W.: Airborne
679 observations of regional variation in fluorescent aerosol across the United States, *J. Geophys.*
680 *Res.-Atmos.*, 120, 1153-1170, 2015.

681 Pinnick, R. G., Fernandez, E., Rosen, J. M., Hill, S. C., Wang, Y., and Pan, Y. L.: Fluorescence
682 spectra and elastic scattering characteristics of atmospheric aerosol in Las Cruces, New Mexico,
683 USA: Variability of concentrations and possible constituents and sources of particles in various
684 spectral clusters, *Atmospheric Environment*, 65, 195-204, 2013.

685 Pinnick, R. G., Hill, S. C., Pan, Y. L., and Chang, R. K.: Fluorescence spectra of atmospheric
686 aerosol at Adelphi, Maryland, USA: measurement and classification of single particles
687 containing organic carbon, *Atmospheric Environment*, 38, 1657-1672, 2004.

688 Pöhlker, C., Huffman, J. A., Förster, J.-D., and Pöschl, U.: Autofluorescence of atmospheric
689 bioaerosols: spectral fingerprints and taxonomic trends of pollen, *Atmospheric Measurement
690 Techniques*, 13, 3369-3392, 2013.

691 Pöhlker, C., Huffman, J. A., and Pöschl, U.: Autofluorescence of atmospheric bioaerosols -
692 fluorescent biomolecules and potential interferences, *Atmospheric Measurement Techniques*, 5,
693 37-71, 2012.

694 Robinson, E. S., Gao, R.-S., Schwarz, J. P., Fahey, D. W., and Perring, A. E.: Fluorescence
695 calibration method for single-particle aerosol fluorescence instruments, *Atmospheric
696 Measurement Techniques*, 10, 1755, 2017.

697 Robinson, N. H., Allan, J. D., Huffman, J. A., Kaye, P. H., Foot, V. E., and Gallagher, M.:
698 Cluster analysis of WIBS single-particle bioaerosol data, *Atmospheric Measurement Techniques*,
699 6, 337-347, 2013.

700 Ruske, S., Topping, D. O., Foot, V. E., Kaye, P. H., Stanley, W. R., Crawford, I., Morse, A. P.,
701 and Gallagher, M. W.: Evaluation of machine learning algorithms for classification of primary
702 biological aerosol using a new UV-LIF spectrometer, *Atmospheric Measurement Techniques*,
703 10, 695, 2017.

704 Ruske, S., Topping, D. O., Foot, V. E., Morse, A. P., and Gallagher, M. W.: Machine learning
705 for improved data analysis of biological aerosol using the WIBS, *Atmospheric Measurement
706 Techniques Discussions*, In Review, 2018.

707 Savage, N. J., Krentz, C. E., Könemann, T., Han, T. T., Mainelis, G., Pöhlker, C., and Huffman,
708 J. A.: Systematic characterization and fluorescence threshold strategies for the wideband
709 integrated bioaerosol sensor (WIBS) using size-resolved biological and interfering particles,
710 *Atmos. Meas. Tech.*, 10, 4279-4302, 2017.

711 Shiraiwa, M., Ueda, K., Pozzer, A., Lammel, G., Kampf, C. J., Fushimi, A., Enami, S., Arangio,
712 A. M., Frohlich-Nowoisky, J., Fujitani, Y., Furuyama, A., Lakey, P. S. J., Lelieveld, J., Lucas,
713 K., Morino, Y., Poschl, U., Takaharna, S., Takami, A., Tong, H. J., Weber, B., Yoshino, A., and
714 Sato, K.: Aerosol Health Effects from Molecular to Global Scales, *Environ. Sci. Technol.*, 51,
715 13545-13567, 2017.

716 Sivaprakasam, V., Lin, H.-B., Huston, A. L., and Eversole, J. D.: Spectral characterization of
717 biological aerosol particles using two-wavelength excited laser-induced fluorescence and elastic
718 scattering measurements, *Optics Express*, 19, 6191-6208, 2011.

719 Sodeau, J. R. and O'Connor, D. J.: Chapter 16 - Bioaerosol Monitoring of the Atmosphere for
720 Occupational and Environmental Purposes. In: *Comprehensive Analytical Chemistry*, de la
721 Guardia, M. and Armenta, S. (Eds.), Elsevier, 2016.

722 Stanley, W. R., Kaye, P. H., Foot, V. E., Barrington, S. J., Gallagher, M., and Gabey, A.:
723 Continuous bioaerosol monitoring in a tropical environment using a UV fluorescence particle
724 spectrometer, *Atmospheric Science Letters*, 12, 195-199, 2011.

725 Suphioglu, C., Singh, M. B., Taylor, P., Knox, R. B., Bellomo, R., Holmes, P., and Puy, R.:
726 Mechanism of grass-pollen-induced asthma, *The Lancet*, 339, 569-572, 1992.

727 Swanson, B. E. and Huffman, J. A.: Development and characterization of an inexpensive single-
728 particle fluorescence spectrometer for bioaerosol monitoring, *Optics Express*, 26, 3646-3660,
729 2018.

730 Taylor, P. E., Flagan, R. C., Miguel, A. G., Valenta, R., and Glovsky, M. M.: Birch pollen
731 rupture and the release of aerosols of respirable allergens, *Clin. Exp. Allergy*, 34, 1591-1596,
732 2004.

733 Toprak, E. and Schnaiter, M.: Fluorescent biological aerosol particles measured with the
734 Waveband Integrated Bioaerosol Sensor WIBS-4: laboratory tests combined with a one year
735 field study, *Atmospheric Chemistry and Physics*, 13, 225-243, 2013.

736 Wright, T. P., Hader, J. D., McMeeking, G. R., and Petters, M. D.: High Relative Humidity as a
737 Trigger for Widespread Release of Ice Nuclei, *Aerosol Sci. Technol.*, 48, i-v, 2014.

738 Yu, X. W., Wang, Z. B., Zhang, M. H., Kuhn, U., Xie, Z. Q., Cheng, Y. F., Poschl, U., and Su,
739 H.: Ambient measurement of fluorescent aerosol particles with a WIBS in the Yangtze River
740 Delta of China: potential impacts of combustion-related aerosol particles, *Atmospheric
741 Chemistry and Physics*, 16, 11337-11348, 2016.

742

743 **Tables**

744

745 Table 1. Six scenarios explored, with varying combinations of pre-analysis treatment. (1)
746 Fluorescence normalization refers to whether fluorescence intensity was normalized to particle
747 size. (2) Variables logged refers to whether data was manipulated to produce a normal
748 distribution.

749

Parameters	A	B	C	D	E	F
1. Fluorescence Normalization	1. No	1. No	1. Yes	1. Yes	1. Yes	1. No
2. Variables Logged	2. No	2. Yes	2. No	2. Yes	2. Yes, only AF/Size variables	2. Yes, only AF/Size variables

750

751 **Table 2.** Misclassification of 2-cluster solutions for 23 match-ups of two individual particle types
 752 (equal ratio of particle number, B-scenario) [computationally combined before clustering](#)
 753 [analysis](#). Misclassification calculated as the sum percentage of particles misclassified in each
 754 cluster divided by the total number of particles. Three biological particle types (F2, B3, P9)
 755 compared separately to (a) non-biological particle materials and (b) biological particle materials.
 756 Particle number input was a subset of total population of particles experimentally analyzed.

(a)	Non-biological particle materials							
	Diesel soot (Soot 4)	California sand (Dust 2)	Arizona Test Dust (Dust 12)	Suwannee River Humic Acid (HULIS 2)	Methyl- glyoxal + glycine aerosol (Brown carbon 1)	Glyoxal + amm. sulfate aerosol (Brown carbon 3)	White t-shirt (Misc. 2)	Wood smoke (Soot 6)
	S4	D2	D12	H2	BC1	BC3	WT	WS
<i>Aspergillus niger</i> (Fungi 2)	(1) 0.1%	(3) 2.6%	(4) 6.1%	(5) 4.8%	(6) 2.5%	(7) 23.0%	(8) 40.5%	(9) 7.2%
<i>P. stutzeri</i> (Bacteria 3)	(2) 1.2%		(10) 1.9%	(11) 1.2%	(12) 1.3%	(13) 6.1%	(14) 41.7%	(15) 4.7%
<i>Phelum pretense</i> (Pollen 9)			(16) 22.7%	(17) 23.2%				

(b)	Biological particle materials				
	<i>S. cerevisiae</i> (Fungi 4)	<i>Phelum pretense</i> (Pollen 9)	<i>P. stutzeri</i> (Bacteria 3)	<i>Taxus baccata</i> (Pollen 5)	<i>B. atropphaeus</i> (Bacteria 1)
	F4	P9	B3	P5	B1
<i>Aspergillus niger</i> (Fungi 2)	(18) 27.9%	(19) 36.4%	(20) 10.3%		
<i>P. stutzeri</i> (Bacteria 3)		(21) 18.3%			(22) 65.4%
<i>Phelum pratense</i> (Pollen 9)				(23) 46.8%	

758 **Table 3.** Further exploration of 2-cluster solutions for the 10 match-ups of two individual particle
 759 types shown in Table 2 with misclassification >15%. Each match-up shown using three separate
 760 fluorescence threshold strategies in advance of particle input into cluster algorithm: (I) all
 761 particles included (no fluorescence threshold), (II) particles with fluorescence intensity $< FT + 3\sigma$
 762 removed, and (III) particles with fluorescence intensity $< FT + 9\sigma$ removed. (a) Particle
 763 misclassification. (b) Total particle number used for clustering experiment.

764

Percent misclassified	(a)	Bio + Non-bio	Input	(7) F2 + BC3	(8) F2 + WT	(14) B3 + WT	(16) P9 + D12	(17) P9 + H2
		(I) All particles	23.0%	40.5%	41.7%	22.7%	23.2%	
		(II) Fluor. $> FT + 3\sigma$	10.3%	36.2%	24.3%	19.3%	3.4%	
	(b)	(III) Fluor. $> FT + 9\sigma$	41.4%	32.6%	31.8%	45.3%	14.0%	
		Bio + Bio	Input	(18) F2 + F4	(19) F2 + P9	(21) B3 + P9	(22) B1 + B3	(23) P9 + P5
		(I) All particles	27.9%	36.4%	18.8%	65.4%	46.8%	
	Number of particles	(II) Fluor. $> FT + 3\sigma$	13.3%	31.0%	20.0%	77.5%	24.9%	
		(III) Fluor. $> FT + 9\sigma$	29.0%	28.6%	29.0%	66.7%	33.9%	
		Bio + Non-bio	Input	(7) F2 + BC3	(8) F2 + WT	(14) B3 + WT	(16) P9 + D12	(17) P9 + H2
	(b)	(I) All particles	1,959	565	565	10,359	8,902	
		(II) Fluor. $> FT + 3\sigma$	1,000	393	393	171	207	
		(III) Fluor. $> FT + 9\sigma$	471	319	319	38	37	
	Number of particles	Bio + Bio	Input	(18) F2 + F4	(19) F2 + P9	(21) B3 + P9	(22) B1 + B3	(23) P9 + P5
		(I) All particles	10,000	8,900	10,000	10,000	10,000	
		(II) Fluor. $> FT + 3\sigma$	9,600	8,500	9,800	10,000	10,000	
		(III) Fluor. $> FT + 9\sigma$	9,200	8,100	9,700	10,000	7,895	

765

766

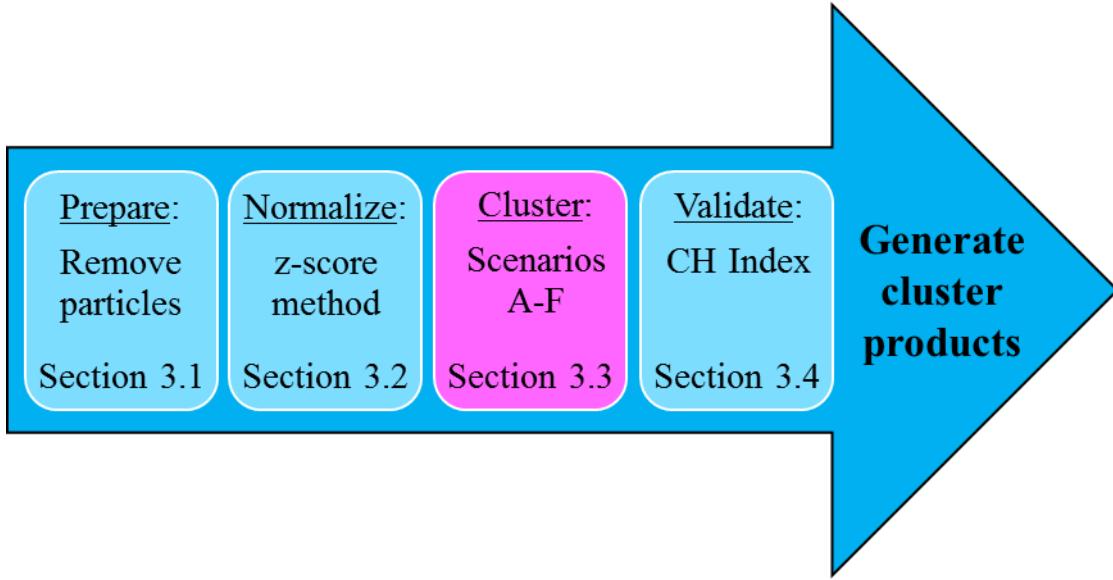
767 **Table 4.** Particle fraction for each type and total particle number used as inputs for
768 **simulated****synthetic** mixtures.

769

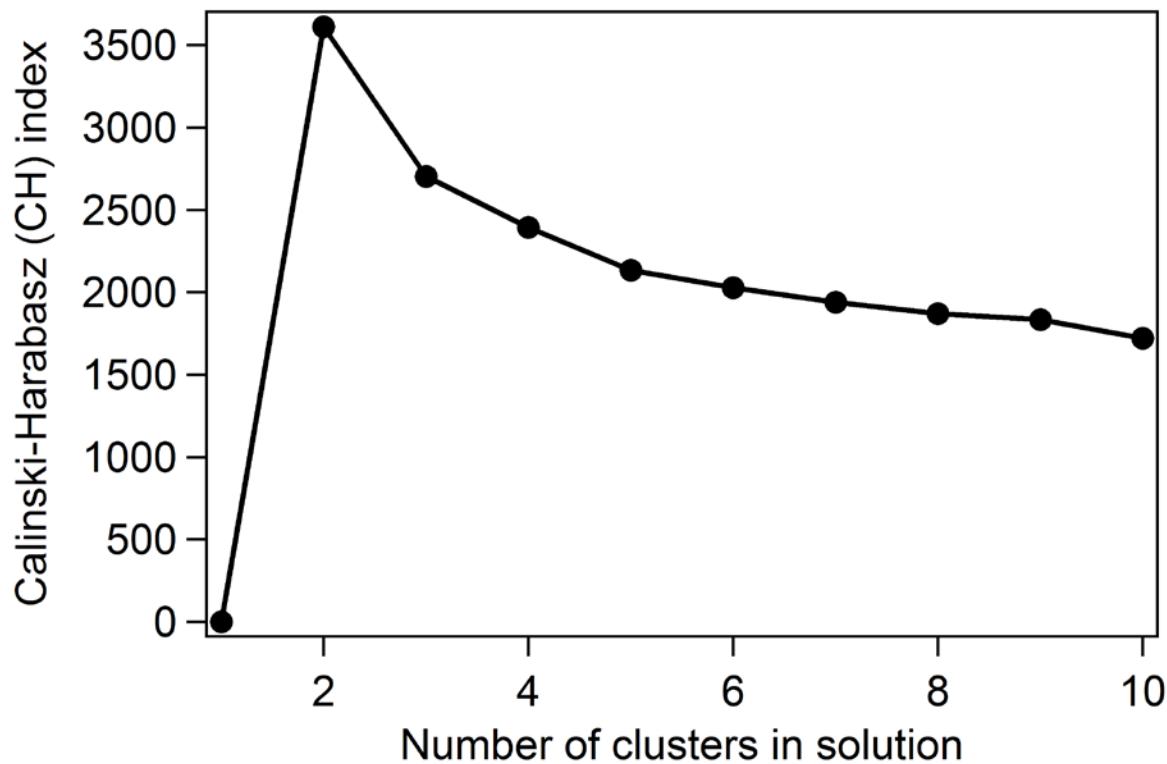
Mixture Number	Mixture Name	F2 <i>Asp. niger</i> (Fungi)	B3 <i>P. stutzeri</i> (Bacteria)	P9 <i>Phelum pretense</i> (Pollen)	S4 Diesel soot	D12 AZ Test Dust	H2 Suwannee River Humic Acid	BC1 Brown Carbon 1	WS Wood smoke	WT White t-shirt	Total Particle Number
1	4-Comp. A	25%			25%	25%	25%				680
2	4-Comp. B	25%			25%	25%			25%		680
3	High PBAP	25%	25%			20%	20%	10%			850
4	Low PBAP	12.5%	12.5%		15%	15%	15%	15%	15%		1134
5	Pollen			30%	10%	20%	20%	10%	10%		850
6	Indoor Air	20%	20%			20%	20%			20%	850

770
771

772 **Figures**
773



774
775 Figure 1. Schematic diagram showing the data preparation process resulting in the generated
776 clustering products. Parameters within the pink box are the focus of this manuscript.



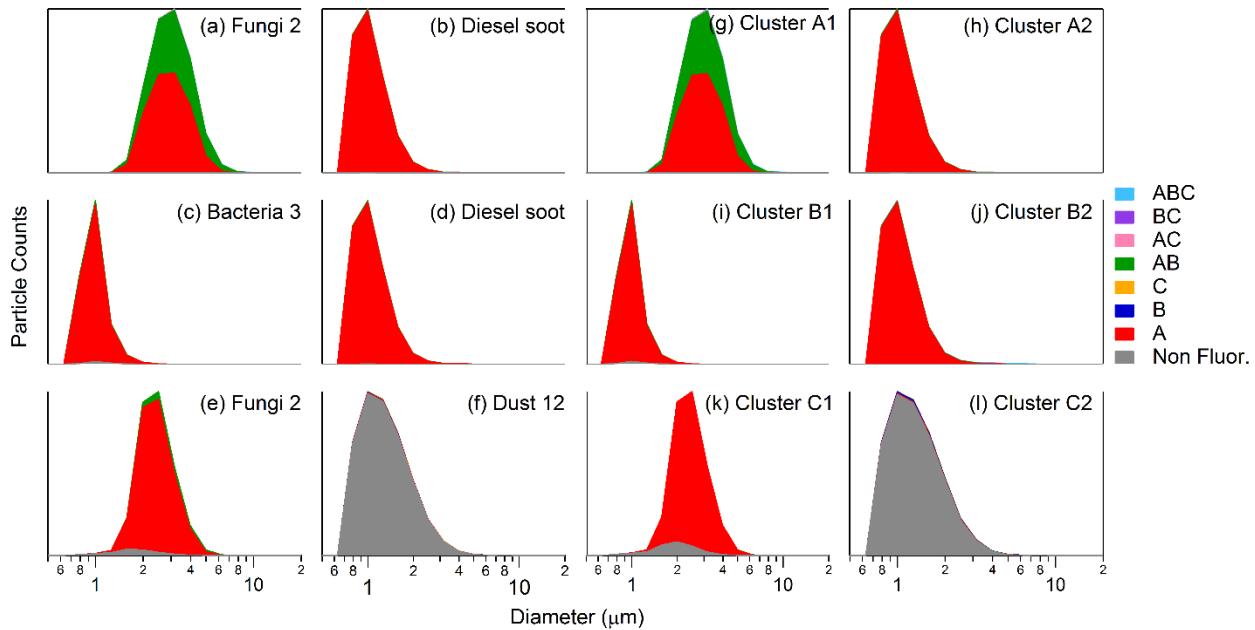
777

778 Figure 2. Example of Calinski-Harabasz Index plot for cluster experiment with input of
779 *Aspergillus niger* and diesel soot (50:50 ratio). Optimal number of clusters is determined by the
780 highest CH value.

	A	B	C	D	E	F
Fungi : Diesel						
50:50 Ratio	1.1	0.9	7.2	4.5	3.6	0.8
80:20 Ratio	64.8	4.1	4.5	2.9	3.8	76.5
20:80 Ratio	2.1	3.8	68.5	6.0	19.5	2.1
Bacteria : Diesel						
50:50 Ratio	50.0	1.2	6.8	4.5	31.6	50.0
80:20 Ratio	0.2	0.2	0.7	1.0	0.9	0.2
20:80 Ratio	80.0	0.3	68.2	0.3	43.7	80.0
Fungi : Dust						
50:50 Ratio	12.7	2.6	24.3	23.5	18.4	30.6
80:20 Ratio	76.6	9.0	20.0	25.4	25.4	29.3
20:80 Ratio	35.9	1.5	55.7	23.4	44.6	58.6

781

782 **Figure 3.** Cluster misclassification shown for three computational combinations of fungal spores
783 (F2), bacteria (B3), ~~and~~ diesel soot (S4), and mineral dust (D12). Each combination explored
784 with respect to ratio of input particle number using the scenario B and a 2-cluster solution for
785 each experiment. Scenario letter A-F refers to scenarios summarized in Table 1. Red shaded
786 region (and values) indicates the percent of particles misclassified. Blue shaded region represents
787 the percentage of particles correctly classified.



788
789
790
791
792

Figure 4. Particle type stacked category size distributions for input and output clustering results, using $FT + 3\sigma$ threshold definition. Each experiment (row) shows match-ups of two particle types computationally mixed using 50:50 ratios, scenario B, and 2 cluster solutions. Left two columns show properties of input particles, right two columns show properties of cluster outputs.

Part A: Individual Clusters (Particle Number)							Part B: Grouped Clusters (Particle Number)							Part C: Summary (Cluster Quality)						
Mixture #1: 4 Comp. - A	Cluster	F2	S4	D12	H2		Cluster	Fungi					Non-bio	Mixture #1	Total P.	Miscl.	Cat.			
	1	163	2	22	23		1	163					47		210	22.4%	Fungi			
	2	7	1	123	67		2-4	7					463		470	1.5%	Non-bio			
	3	0	0	21	80															
	4	0	167	4	0															
Mixture #2: 4 Comp. - B	Cluster	F2	S4	D12	WS		Cluster	Fungi					Non-bio	Mixture #2	Total P.	Miscl.	Cat.			
	1	167	2	23	4		1	167					29		196	14.8%	Fungi			
	2	2	3	88	10		2-4	3					481		484	0.6%	Non-bio			
	3	1	0	55	156															
	4	0	165	4	0															
Mixture #3: High PBAP	Cluster	F2	B3	D12	H2	BC1	Cluster	Fungi	Bacteria		Bio	Non-bio		Mixture #3	Total P.	Miscl.	Cat.			
	1	0	197	0	0	0	1	0	197			0			227	11.9%	Fungi			
	3	200	6	13	2	6	3	200	6			21			197	0.0%	Bacteria			
	2	9	10	133	79	6	2,4,5	13	10			403			424	5.0%	Bio			
	4	4	0	21	88	25	1,3				403	21			426	5.4%	Non-bio			
	5	0	0	3	1	47														
Mixture #4: Low PBAP	Cluster	F2	B3	S4	D12	H2	BC1	WS	Cluster	Fungi	Bacteria		Bio	Non-bio	Mixture #4	Total P.	Miscl.	Cat.		
	1	0	0	0	10	15	20	0	7	112	5			13		130	13.8%	Fungi		
	2	23	2	0	125	77	6	165	6	0	135			1		136	0.7%	Bacteria		
	3	0	0	0	3	1	128	1	1-5	30	2			836		266	5.3%	Bio		
	4	4	0	0	18	68	11	2	6,7				252	14		868	3.7%	Non-bio		
	5	3	0	169	8	9	0	0												
	6	0	135	1	0	0	0	1												
	7	112	5	0	6	0	6	1												
Mixture #5: Pollen	Cluster	P9	S4	D12	H2	BC1	WS		Cluster			Pollen		Non-bio	Mixture #5	Total P.	Miscl.	Cat.		
	1	0	0	13	16	13	0		5			242		25		267	9.4%	Pollen		
	2	2	0	28	83	15	1		1-4,6			13		570		583	2.2%	Non-bio		
	3	0	0	4	1	51	1													
	4	6	2	113	70	0	79													
	6	5	77	3	0	0	0													
	5	242	6	9	0	6	4													
Mixture #6: Indoor Air	Cluster	F2	B3	D12	H2	WT		Cluster	Fungi	Bacteria		Bio	Non-bio	Mixture #6	Total P.	Miscl.	Cat.			
	1	160	7	13	0	31		1	160	7			44		211	24.2%	Fungi			
	4	0	154	0	0	0		4	0	154			0		154	0.0%	Bacteria			
	2	4	0	32	95	35		2,3,5	10	9			466		365	12.1%	Bio			
	3	6	9	125	75	62		1,4				321	44			485	3.9%	Non-bio		
	5	0	0	0	0	42														

793
794
795
796
797
798
799
800
801

Figure 5. Overview of [computationally simulated synthetic](#) mixtures. Six mixtures shown as groups of rows, with input particle fractions defined in Table 4. Part A (left columns) show particle number retrieved by each individual cluster and categorized by each input particle type. Part B (middle columns) show particle number categorized and grouped by particle classes (i.e. non-biological and biological). Part C (right columns) show misclassification of groups of particles. Colors: light green (fungal spores), blue (bacteria), pink (pollen), dark green (grouped biological), brown (all non-biological).