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Abstract 17 
Hierarchical agglomerative clustering (HAC) analysis has been successfully applied to 18 

several sets of ambient data (e.g. Crawford et al., 2015; Robinson et al., 2013) and with respect 19 
to standardized particles in the laboratory environment (Ruske et al., 2017; Ruske et al., 2018). 20 
Here we show for the first time a systematic application of HAC to a comprehensive set of 21 
laboratory data collected for many individual particle types using the Wideband Integrated 22 
Bioaerosol Sensor (WIBS-4A) (Savage et al., 2017). The impact of ratio of particle 23 
concentrations on HAC results was investigated, showing that clustering quality can vary 24 
dramatically as a function of ratio. Six strategies for particle pre-processing were also compared, 25 
concluding that using raw fluorescence intensity (without normalizing to particle size) and 26 
inputting all data in logarithmic bins consistently produced the highest quality results for the 27 
particle types analyzed. A total of 23 one-on-one matchups of individual particles types were 28 
investigated. Results showed cluster misclassification of <15% for 12 of 17 numerical 29 
experiments using one biological and one non-biological particle type each. Inputting 30 
fluorescence data using a baseline + 3σ threshold produced lower misclassification than when 31 
inputting either all particles (without fluorescence threshold) or a baseline + 9σ threshold. Lastly, 32 
six numerical simulations of mixtures of four to seven components were analyzed using HAC. 33 
These results show that a range of 12-24% of fungal clusters were consistently misclassified by 34 
inclusion of a mixture of non-biological materials, whereas bacteria and diesel soot were each 35 
able to be separated with nearly 100% efficiency. The study gives significant support to the 36 
application of clustering analysis to data from commercial UV-LIF instruments being commonly 37 
used for bioaerosol research across the globe and provides practical tools that will improve 38 
clustering results within scientific studies as a part of diverse research disciplines.  39 
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1. Introduction 40 
Particles of biological origin, or bioaerosols, make up a substantial fraction of atmospheric 41 

aerosol and have the potential to influence environmental processes and to negatively impact 42 
human health (Després et al., 2012; Douwes et al., 2003; Fröhlich-Nowoisky et al., 2016; 43 
Shiraiwa et al., 2017). In order to understand the impact bioaerosols, such as pollen, spores, and 44 
bacteria, play on various systems, it is important to be able to identify and characterize these 45 
biological particles in the atmosphere. One common method for the detection of bioaerosols is 46 
ultraviolet laser/light-induced fluorescence (UV-LIF), because it can provide particle detection in 47 
near real-time and at high particle size resolution (Fennelly et al., 2017; Huffman and Santarpia, 48 
2017; Sodeau and O'Connor, 2016). Many commercial UV-LIF instruments have become 49 
available for bioaerosol detection, but all of these techniques are challenged with the need to 50 
differentiate between small differences in fluorescence properties in order to identify and 51 
quantify biological aerosols from non-biological material. Recently commercialized instruments 52 
show improved ability to discriminate between particle types, for example by utilizing multiple 53 
excitation sources or other particle data (e.g. size and shape). UV-LIF techniques are inherently 54 
limited, however, by the broad nature of fluorescence spectra and so instruments face a 55 
ubiquitous problem of poor selectivity between particle types. By applying improved data 56 
thresholding and particle classification techniques, particle characterization can be further 57 
improved, but important limitations still remain (Hernandez et al., 2016; Huffman et al., 2012; 58 
Perring et al., 2015; Savage et al., 2017; Toprak and Schnaiter, 2013; Wright et al., 2014). One 59 
strategy to improving quality of differentiation between particles types has been to collect full, 60 
resolved emission spectra, each at multiple excitation wavelengths. This can lead to high 61 
instrumental purchase cost, and such instruments have not been widely applied or 62 
commercialized (Huffman et al., 2016; Kiselev et al., 2013; Pan et al., 2009b; Ruske et al., 2017; 63 
Swanson and Huffman, 2018). Most commercial UV-LIF instruments for bioaerosol detection 64 
utilize 1-2 excitation wavelengths and integrate fluorescence signals into a small number of 65 
emission bands. To extend the improvements in particle classification for these commercial UV-66 
LIF instruments, a number of multivariate analysis techniques have been applied to ambient 67 
particle analysis. The most common of these techniques include principal component analysis, 68 
factor analysis, and cluster analysis strategies. Classification algorithms, including several 69 
clustering techniques in particular, have shown successful results in providing unbiased insights 70 
to the classification of bioaerosols (Crawford et al., 2015; Pinnick et al., 2013; Robinson et al., 71 
2013; Swanson and Huffman, 2018). 72 

Cluster analysis is a broad class of data mining methods in which data objects placed in the 73 
same group (or cluster) are more similar to one another than to those objects placed in other 74 
groups. Classification algorithms can be divided into two central models: (1) supervised and (2) 75 
unsupervised learning. Both models have associated advantages and disadvantages. Supervised 76 
learning methods allow the “training” of data and grouping to better reflect the data observations 77 
(Eick et al., 2004; Ruske et al., 2017; Ruske et al., 2018). This type of method enhances (trains) 78 
the classification algorithm in that the output groups are pre-determined rather than discovered, 79 
as is the case for unsupervised methods. Supervision requires the user to have appropriate 80 
starting conditions to put into the model, which are often difficult or impossible to determine. 81 
Supervised training methods are also much more time-efficient compared to unsupervised 82 
methods, which is important when analyzing ambient datasets where particle counts (individual 83 
objects) can be greater than 106 (Ruske et al., 2017). In contrast, unsupervised training methods 84 
present less bias and can adapt to unique situations, because the resultant clusters are based on 85 
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models that have not been previously trained. To access some of the advantages of supervised 86 
methods, however, it is important to first apply unsupervised models to wide collections of 87 
laboratory data of known particle types in order to gain insight on how these models interpret 88 
data inputs and to learn how algorithms can best be trained (Ruske et al., 2017).  89 

Hierarchical agglomerative clustering (HAC) is an unsupervised learning method that has 90 
been most commonly applied for bioaerosol related studies (e.g. Crawford et al., 2016; Crawford 91 
et al., 2015; Gosselin et al., 2016; Pan et al., 2009a; Pan et al., 2007; Pinnick et al., 2013; Pinnick 92 
et al., 2004; Robinson et al., 2013; Ruske et al., 2017; Ruske et al., 2018). Other unsupervised 93 
clustering techniques, such as the k-means clustering method, have shown poor results when 94 
applied to ambient data sets because the number of clusters used to represent the data are 95 
required a priori, and this information is usually unknown prior to analysis (Ruske et al., 2017). 96 
There are several different HAC methods or linkages including: Single, Complete, Average, 97 
Weighted, Ward’s, Centroid, and Median (Crawford et al., 2015; Müllner, 2013). Ruske et al. 98 
(2017) compared a variety of HAC linkages and determined that Ward’s linkage had a higher 99 
percentage of correctly classifying particles, in comparison to other HAC methods.  100 

Recently, Savage et al. (2017) published a comprehensive laboratory study applying the 101 
Wideband Integrated Bioaerosol Sensor (WIBS-4A) to a large and diverse set of biological and 102 
non-biological aerosol types. Following on that work, the study presented here utilizes those data 103 
as inputs to evaluate and challenge the HAC strategy of particle differentiation using the Ward’s 104 
linkage of unsupervised clustering. Previous HAC studies have focused primarily on (a) the 105 
analysis of simple particle standards (i.e. fluorescent microbeads) and (b) clustering of particles 106 
from ambient data sets. There have been relatively few published attempts to differentiate 107 
between biological particles and interfering particles by clustering methods using controlled 108 
laboratory UV-LIF data or to separate different kinds of biological particles from one another. 109 
Presented here are results of the HAC method applied to data from a comprehensive WIBS 110 
laboratory study showing that clustering can dramatically improve removal of non-biological 111 
particle types from data sets if operated under appropriate conditions.  112 

 113 
2. Experimental and Computational Methods 114 
The WIBS-4A (Droplet Measurement Techniques, Longmont, CO) is a commonly used UV-115 

LIF based instrument for the detection and characterization of biological particles. The 116 
instrument collects particles in the size range 0.8 – 20 µm and interrogates them in real-time as 117 
particles flow through the path between optical sources. The WIBS collects information about 118 
fluorescence intensity in three channels (FL1, FL2, and FL3), particle size, and particle 119 
asymmetry for each interrogated particle. The bands of excitation and fluorescence emission are: 120 
FL1 (λex = 280 nm, λem = 310 – 400 nm), FL2 (λex = 280 nm, λem = 420 – 650 nm), and FL3 (λex 121 
= 370 nm, λem = 420 – 650 nm). The excitation and emission wavelengths chosen for each of the 122 
3 fluorescence channels were designed to maximize the information gained about key biological 123 
fluorophores present in a broad range of bioparticles (Kaye et al., 2005; Pöhlker et al., 2012). 124 
Early generations of UV-LIF bioaerosol spectrometers were often interpreted to be able to detect 125 
proteins via channels similar to FL1 and products of active cellular metabolism (i.e. riboflavin 126 
and NAD(P)H) via channels similar to FL3, but these approximations are gross simplifications 127 
that confound more detailed investigation of particle types. For more information on the design, 128 
operation, and calibration of this instrument see e.g. the manuscripts listed here and references 129 
therein (Foot et al., 2008; Healy et al., 2012a; Healy et al., 2012b; Hernandez et al., 2016; Kaye 130 
et al., 2005; Perring et al., 2015; Robinson et al., 2017; Savage et al., 2017; Stanley et al., 2011).  131 
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All aerosol materials utilized have been listed previously in Table 2 shown by Savage et al. 132 
(2017), where an overview of size and fluorescence properties of particles utilized for this study 133 
are also reported. No additional laboratory experiments were performed here beyond the results 134 
presented previously.  135 

The fluorescence threshold applied to the differentiation of fluorescent from non-fluorescent 136 
particles is a key step in UV-LIF data analysis. Traditionally a fluorescence threshold has been 137 
determined as the average baseline fluorescence intensity measured in each of the three channels 138 
during the forced trigger (FT) mode when no particles are present, plus three times the standard 139 
deviation (σ) of that measurement (i.e. FT + 3σ) (Gabey et al., 2010). Savage et al. (2017) also 140 
reported that additional particle discrimination is possible by using FT + 9σ as the threshold. 141 
Both threshold definitions will be discussed here. After choosing a threshold of minimum 142 
fluorescence, the fluorescence characteristics of a particle can be classified into 7 different 143 
particle types introduced by Perring et al. (2015) and as summarized in Figure 1 shown by 144 
Savage et al. (2017).  145 
 146 

3. Clustering Strategy 147 
Hierarchical clustering methods work by grouping objects from the bottom up, meaning that 148 

each object (particle) starts as its own “cluster,” and clusters are merged together based on 149 
similarities until a greatly reduced number of clusters are presented as a final solution. Ward’s 150 
method for clustering is among the most popular approaches for HAC and is the only method 151 
based on a classical sum-of-squares criterion, minimizing the within-group sum of squares (or 152 
variance) (Müllner, 2013). The WIBS-4A used here for data collection provides 5 parameters of 153 
information for each individual particle detected (3 fluorescence channels, size and asymmetry 154 
factor:AF), resulting in 5 dimensions of data. 155 

The clustering analysis was performed using the open-source software R package 156 
‘fastercluster’ (Müllner, 2013) using a Dell Latitude E7450 laptop computer with an Intel® 157 
Core™ Processor (i7-5600U CPU @ 2.60 GHz, 16 GB RAM). 158 

 159 
3.1 Data Preparation 160 
Saturation of fluorescence intensity occurs at 2047 analog-to-digital counts (ADC) for each 161 

of the three FL channels in the WIBS-4A, at which point the photomultiplier tube (PMT) reaches 162 
its upper limit of detection. A study by Ruske et al. (2017) investigated whether non-fluorescent 163 
(in that case, particles below the FT + 3σ fluorescence threshold) and/or saturating data points 164 
included in the clustering analysis hindered the efficiency of the cluster output. The authors 165 
determined that removing both saturating and non-fluorescent particles before HAC analysis 166 
resulted in a better clustering performance in terms of correctly classifying ambient particles. 167 
The quality of the clustering results is likely to be impacted by types of particles involved and 168 
the assumptions placed on those. As shown by Savage et al. (2017), many biological particles 169 
present a large fraction that saturate one or more of the fluorescence detectors. Conversely, many 170 
non-biological particles present a large fraction of very weakly fluorescent particles with 171 
intensity below a given threshold and thus that are classified as non-fluorescent. To limit pre-172 
modification of particle populations before clustering, the only filter applied before clustering 173 
was to remove particles smaller than the lower particle size detection limit of the WIBS-4A (0.8 174 
µm), similar to Ruske et al. (2017). In contrast, both saturating and non-fluorescent particles 175 
were analyzed and the clustering results will be evaluated. Figure 1 outlines the data preparation 176 
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process, including the conceptual process of normalization, clustering, and validation of data, 177 
which is explained in detail below.  178 

 179 
3.2 Data Normalization 180 
 Normalization of the raw data is necessary before executing the clustering algorithm, 181 

because data parameters delivered from the instrument are measured on different respective 182 
scales. For example, fluorescent intensity values range from 0 to 2047 ADC, size from 0 to ~20 183 
µm, and AF from 0 to 100 arbitrary units. Crawford et al. (2015) performed analysis on 184 
polystyrene latex spheres (PSLs) using several different normalization techniques, concluding 185 
that z-score normalization was the best technique when looking at cluster performance using 186 
Ward’s linkage for the separation of PSLs. As a result, we utilize the z-score normalization of 187 
Ward’s linkage HAC for the presented study. By this type of normalization, the mean value of all 188 
data points is subtracted from each individual data point, and then each data point is divided by 189 
the standard deviation of all points. Standardization using the z-score method compares results to 190 
a normal (Gaussian) population, and we have chosen to standardize our variables to a mean of 0 191 
and a variance of 1 so that the output variables would be on comparable scales.  192 

 193 
3.3 HAC Scenarios 194 
Hierarchical agglomerative clustering performs optimally if all variables (1) are independent 195 

of one another and (2) can be described well by a normal (Gaussian) distribution (Norusis, 196 
2011). To achieve meaningful results from the clustering analysis data values must, therefore, be 197 
input into the clustering algorithm with an understanding of how specific preparatory conditions 198 
can significantly impact results. To investigate optimal input conditions a total of 6 clustering 199 
scenarios were explored, with conditions summarized in Table 1. The impact of two separate 200 
variables were explored within these scenarios by varying: (i) whether fluorescence intensity 201 
were pre-normalized by particle size and (ii) whether the data values were input after logarithmic 202 
transformation to produce a normal distribution.  203 

Ambient particle number vs size distributions can often be well approximated by lognormal 204 
distributions, although specific groups of particles, including some bacteria, spores, and pollen, 205 
may not always exhibit lognormal distribution. Further, fluorescence intensity has been shown to 206 
scale with particle size (e.g. Hill et al., 2001; Sivaprakasam et al., 2011). Several previous studies 207 
attempted to utilize HAC for ambient lognormally-distributed particle size data (Crawford et al., 208 
2014; Crawford et al., 2015; Robinson et al., 2013), but applied the assumption that particle 209 
fluorescence is normally distributed in a group of particles. If this assumption does not hold to be 210 
correct, however, weakly fluorescing particles are likely to be grouped into a single cluster based 211 
on the high abundance of these particles (Robinson et al., 2013). Scenarios C, D, and E (Table 1) 212 
utilize data input to the clustering algorithm after fluorescence intensity was normalized to 213 
particle size (by dividing fluorescence intensity value by light scattering signal when a particle 214 
interacts with the diode laser beam) in order to explore whether the assumption that laboratory 215 
data should be treated like previously explored ambient data sets and not logged. Scenarios B 216 
and D take into account the logging of all parameters, producing normal distributions of all 217 
variables (AF, particle size, 3 channels of fluorescence). By this process, data values were input 218 
into the algorithm as log(value) without separately binning the points. For comparison, scenarios 219 
E and F explore log-spaced distributions of size and AF, while retaining the assumption that the 220 
fluorescence output is normally distributed. Scenario A data is neither logged nor normalized. 221 
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For comparison, Scenario F represents the input conditions that have been used frequently (e.g. 222 
Crawford et al., 2015; Ruske et al., 2017). 223 

 224 
3.4 Cluster Validation 225 
An important feature of HAC is that it provides clusters in an unsupervised manner, and the 226 

user must determine the number of clusters that makes physical sense. One useful tool to 227 
systematically determine the optimal number of final clusters is the Calinski-Harabasz (CH) 228 
index, which uses the interclass-intraclass distance ratio (Liu et al., 2010). For each clustering 229 
output the CH index was calculated for cluster solutions with one through ten clusters, and the 230 
solution with the highest CH value was generally determined to be the optimal number of 231 
clusters. Figure 2 shows an example CH versus cluster number plot for a mixture of Aspergillus 232 
niger fungal spores mixed with diesel soot particles. The curve suggests the optimal result to be a 233 
2-cluster solution for this trial, as was generally the case for investigations where two particle 234 
types were mixed before clustering. In order to reduce the length and complexity of discussion, 235 
analysis of results in Sections 4.1-4.3 was limited to using cluster products only from the 2-236 
cluster solution. In some cases a 3-cluster solution may have produced higher quality results, but 237 
these cases were not investigated.  238 

 239 
4 Results and Discussion 240 

The analysis of clustering quality was performed systematically and with increasing 241 
complexity. Section 4.1 utilizes three pairs of particles types to explore the effect of particle ratio 242 
and normalization strategies on cluster performance. Using conclusions from this section, 243 
Section 4.2 then expands the exploration to 20 additional pairs of particle types. Section 4.3 244 
explores the effect of three different fluorescence thresholding strategies on cluster output. 245 
Finally, Section 4.4 investigates the ability of HAC analysis to separate particle types from 246 
mixed populations of particle types. 247 

 248 
4.1 Investigating pre-normalization scenarios and particle input ratio 249 

To explore the ability to separate two distinct populations of particles from one another, three 250 
different clustering trials are presented in this section as one-on-one match-ups: (1) Aspergillus 251 
niger (fungal spores, F2) vs. NIST diesel soot (S4), (2) Pseudomonas stutzeri (bacteria, B3) vs. 252 
NIST diesel soot (S4), and (3) Aspergillus niger (fungal spores, F2) vs. California sand (mineral 253 
dust, D12). These four particle materials were chosen to represent key classes of coarse particles 254 
observed in ambient air. For each trial, a subset of particles from each material type was selected 255 
randomly for HAC analysis. The clustering process includes: (i) evaluation of cluster 256 
performance based on particle assignment and cluster composition, and (ii) visual representations 257 
of cluster outputs using particle type classification introduced by Perring et al. (2015). For each 258 
of these three trials, the clustering process was run separately using each of the six scenarios A-F 259 
described in Table 1. Additionally, while exploring the optimal data pre-processing scenario, the 260 
influence that different concentration ratios of particle types could play in the clustering output 261 
was also explored. The cluster process for each trial was performed using four different ratios of 262 
particles in each particle set including situations with an equal ratio and where the concentration 263 
of each particle type was significantly mismatched. In total, this section represents 57 individual 264 
clustering experiments (3 trials x 6 scenarios x 3 particle ratios + 3 additional ratio trials) 265 
exploring three independent input variables. The results will be utilized to explore many more 266 
individual particle type match-ups in the following sections. 267 
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The first two trials include diesel soot particles, because light-absorbing carbon aerosol are 268 
commonly observed in aerosol samples with anthropogenic influence (Bond et al., 2013), and 269 
because they can have fluorescence characteristics difficult to distinguish from small biological 270 
particles (e.g. Huffman et al., 2010; Pan et al., 2012; Savage et al., 2017; Yu et al., 2016). For 271 
example, when excited by photons with a wavelength of 280 nm, diesel soot can be 272 
misinterpreted as single bacterial cells using the WIBS, and so we explored here whether the two 273 
particle types could be clustered separately (Pöhlker et al., 2012). The three trials include two 274 
examples of biological particles, both exhibiting fluorescent properties, but with different 275 
excitation-emission characteristics and with different average particle size.  276 

The output of the algorithm reports the particle type from which each particle was input in 277 
order to evaluate the accuracy of the clustering. The resulting output of each particle with an 278 
assigned cluster number is then compared to the originating particle type to determine 279 
classification accuracy. Figure 3 summarizes the relative accuracy of individual clustering 280 
experiments by representing the percent of particles misclassified with respect to known input 281 
identities (blue bar corresponding to correct classification, red bar and overlaid value 282 
corresponding to incorrect classification). The clustering process was generally effective for 283 
separating particles correctly when two particle types were considered, but results vary widely 284 
across the six scenarios. Several previous studies that used HAC to separate particles within an 285 
ambient data set assumed that particle fluorescence is already normally distributed (Crawford et 286 
al., 2014; Crawford et al., 2015; Robinson et al., 2013). As a result, these previous studies did 287 
not normalize fluorescence data and thus used data preparation scenario F in their clustering 288 
analysis. For comparison, scenarios B and D were explored to test whether the clustering 289 
efficiency would be improved or hindered by fluorescence normalization. Scenarios A and F 290 
produced inconsistent results, with some experiments (i.e. 50:50 ratio of fungal spores:diesel) 291 
producing misclassification <1.1%, whereas other experiments (i.e. 20:80 ratio of 292 
bacterial:diesel) producing misclassification up to 80%. In contrast, scenarios B and D produced 293 
consistently more accurate results. Scenario B, in particular, consistently exhibited the most 294 
accurate classification of particles for almost every individual experiment. No experiment 295 
involving scenario B produced greater than 9% misclassification of particles, regardless of 296 
particle input ratio, and most experiments produced results with 0.1 - 3% error. These 297 
observations taken together suggest that particle fluorescence properties may not be well 298 
described by normal distributions and that normalizing fluorescence data prior to analysis may 299 
be more effective.  300 

The results of these experiments also highlight how important the ratio of input particles can 301 
be. While scenario B was relatively consistent, varying only between 0.1 and 3.8% error for 302 
different ratios of the fungal spore versus diesel match-up, other experiments depended strongly 303 
on particle ratio. It is clear that the input ratio of particle types cannot be controlled during an 304 
ambient study, and so these results suggest that it is important to keep the possibility of varying 305 
concentration ratios in mind when interpreting time- or air mass-associated changes in cluster 306 
composition or when relaying the relative confidence in clustering results. For the remainder of 307 
the discussion, experiments will be limited to a 50:50 ratio following scenario B. In each case the 308 
input particles are a random subset taken from the pool of particles in the experimental data. As a 309 
result, individual samples selected from the same experiments (i.e. Fig. 4a, Fig 4e) can show 310 
slightly different average properties. In some cases (i.e. diesel soot, Fig. 4d) the number of 311 
particles originally analyzed was small and so to keep the input particle ratio 50:50 the 312 
corresponding particle type was also limited to small numbers. 313 
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To extend the investigation of particle input ratio, the three match-ups presented in Figure 3 314 
were investigated using Scenario B with 1% bioparticles and 99% non-bioparticles in each 315 
respective case. In these experiments the bacteria:diesel soot and fungal spores:dust particles 316 
separated relatively well (6.6% and 13.5% misclassification, respectively). The fungal 317 
spores:diesel soot separation was poor, however, because the diesel soot particles were nearly 318 
evenly split into both clusters, and the fungal spore particles were too low in concentration to 319 
influence the cluster properties. More investigation is needed to explore how extreme disparities 320 
in particle ratio could negatively influence cluster quality in real-world settings. 321 

An important tool readily applied to analysis of ambient data is the categorization of particles 322 
into 8 fluorescent particle types (Perring et al., 2015). Thus, to further investigate the quality of 323 
cluster accuracy, Figure 4 shows inputs and cluster outputs from three clustering experiments 324 
stacked as a function of fluorescence particle type and particle size. The top row of Figure 4 325 
shows the input data for Aspergillus niger and diesel soot (Fig. 4a-b) paired with the outputs of 326 
the 2-cluster solution (Fig. 4g-h). It can be seen that both particle materials have predominantly 327 
particle type-A characteristics, meaning that they are fluorescent only in channel FL1. The 328 
fungal material also presents roughly a third AB (green) and a small minority of non-fluorescent 329 
(gray) characteristics. The size distribution of the fungal spores peaks at ~3 µm, whereas diesel 330 
soot peaks at ~1 µm in size. While not shown in this plot style, the spores exhibit moderately 331 
higher FL1 channel fluorescence, with a median of 543 ADC, whereas diesel soot exhibits a 332 
median of 751 ADC in this channel (see Savage et al., 2017; Table 2). Both particle types show 333 
almost no fluorescent characteristics in either FL2 or FL3. In summary, the particle distributions 334 
are relatively similar in fluorescence particle type and their differences are largely related to 335 
particle size, so separation of these particles through Trial 1 was hypothesized to represent a 336 
relatively challenging initial exercise. The clustering outputs presented in Figures 4g-h, however, 337 
visually highlight the conclusion represented by Figure 3, which is that the particles in this trial 338 
separated very well. Cluster 1 was comprised predominantly of fungal particles and presented 339 
fluorescence and size traits qualitatively similar to the input fungal particles, whereas cluster 2 340 
was comprised predominantly of diesel soot particles. Results from the 50:50 ratio of the 341 
scenario B experiments for the other two trials are also shown in the last two rows of Figure 4. In 342 
each case, the qualitative properties of the input particles are extremely well represented by the 343 
corresponding output cluster, corroborating the conclusion from Figure 3 that the scenario B 344 
cases accurately separated the particle groups investigated through these experiments. It is also 345 
important to note here that the method of aerosolization for each particle type plays an important 346 
role in the observed size distribution and so results involving laboratory particles should be 347 
interpreted with this in mind. Observed fluorescence properties, in contrast, are expected to be 348 
conserved at a given particle size and intrinsically related to particle composition. 349 

 350 
4.2 Investigating cluster quality without fluorescence threshold 351 

After concluding that scenario B exhibited the most consistently accurate clustering results 352 
using 2-cluster solutions from mixtures comprised of 2 particle type inputs, the analysis was 353 
expanded to include a broader range of particle types. Using 50:50 ratios of two types of input 354 
particles, prepared using scenario B (leaving fluorescence data un-normalized and forcing all 355 
five data parameters into logarithmically spaced bins), 20 new individual experiments were 356 
performed. The results of all 23 experiments (3 from Section 4.1 and 20 introduced in Section 357 
4.2) are summarized in Table 2 as the percentage of particle misclassification. These trials were 358 
chosen to represent a broad range of individual match-ups that might be expected in ambient air. 359 



Page 9 of 27 
 

From the original 69 types of particles analyzed by Savage et al. (2017), 14 were used in 360 
experiments here: 8 types of non-biological particles and 6 types of biological particles (2 each 361 
of fungal spores, bacteria, and pollen species). Supplemental Figure S4 from Savage et al. (2017) 362 
shows size distributions stacked by fluorescence particle type for each of the particle species 363 
discussed.  364 

Table 2a organizes clustering results into three rows, showing misclassification of F2 365 
(Aspergillus niger fungal spore), B3 (Pseudomonas stutzeri bacteria), and P9 (Phelum pratense 366 
pollen) particles, respectively, with respect to a variety of other particle types represented by 367 
table column. Of the 15 cluster experiments between fungal spore or bacteria and non-biological 368 
material (top two table rows), only 3 showed misclassification greater than 7.5% (bold text), and 369 
7 were less than 3%. The three outliers were: experiment (7) F2 vs BC3 (glyoxal + ammonium 370 
sulfate brown carbon aerosol), (8) F2 vs WT (white t-shirt particles), and (14) B3 vs WT. 371 
Looking first at experiment (7), F2 particles show A-type fluorescence characteristics and are 372 
dominated by a mode between 1.5 and 4 µm. BC3 particles are primarily non-fluorescent <1.5 373 
µm, but are primarily A-type between 1.5 and 3 µm, suggesting similar size and fluorescence 374 
properties. The white t-shirt particles separated poorly (~41% misclassification) from both the 375 
fungal spore and bacterial particles. All three particle types (WT, F2, and B3) exhibit medium 376 
fluorescent intensity in the FL1 channel. The poor ability to separate WT from both F2 and B3 377 
was surprising, however, given that WT exhibited significantly higher mean fluorescence in each 378 
of the FL2 and FL3 channels. As first mentioned by Savage et al. (2017), great care should be 379 
taken when interpreting fluorescent particle results from indoor environments where increased 380 
concentrations of bleached fibers from clothing, bedding, paper, and cleaning products may be 381 
present.  382 

While the results show that the spores and bacterial particles investigated could generally be 383 
well separated from most potentially interfering non-biological species, the results were much 384 
less successful for differentiation from pollen. P9 pollen particles separated poorly in all 385 
experiments (versus D12, H2, or P5), with rate of misclassification ranging from 22 to 47%. It is 386 
important to keep in mind, however, that the WIBS was operated using a standard gain setting 387 
that limits analysis of particle size to below approximately 20 µm. As a result, the WIBS is 388 
insensitive to whole pollen grains and so most of the particles observed during pollen 389 
experiments are small pollen fragments. Any intact pollen grains that navigate the flow system to 390 
be detected are likely to be binned together in the channel representing the largest particles. 391 
Clustering results including pollen should be interpreted accordingly. Pollen grains can fragment 392 
in ambient air as function of increased relative humidity (Miguel et al., 2006; Suphioglu et al., 393 
1992; Taylor et al., 2004), but the relative ratio of whole/fragmented particles is hard to predict 394 
under ambient conditions. Smaller fragments can also exhibit different fluorescent properties 395 
than whole grains (Pöhlker et al., 2013). O’Connor et al. (2014) operated a WIBS-4 (Univ. 396 
Hertfordshire) at lower gain in order to improve pollen detection efficiency, but these results are 397 
not explored directly here. 398 

The WIBS instrument is frequently used to differentiate between airborne biological particles 399 
and material of non-biological origin. A secondary goal of differentiating more finely between 400 
types of biological aerosols is also frequently pursued. To investigate this goal, six additional 401 
experiments were conducted by pairing two different types of non-biological particles (Table 402 
2b). In contrast to the results shown in Table 2a, the clustering algorithm showed generally poor 403 
ability to separate between two biological particle types. Only one of the six experiments 404 
resulted in error <15% (F2 vs B3, 10.3% error), whereas error for the other five experiments 405 
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ranged from 18% to 65%. The worst accuracy was demonstrated by experiments (22) B1 vs B3 406 
and experiment (23) P5 vs P9. Both of these experiments attempted to separate between different 407 
species of a single particle type (i.e. between two bacteria or two pollen, respectively). Overall, 408 
these results suggest that the clustering strategy may be quite useful at aiding the differentiation 409 
of biological material from non-biological material, but that separating more finely to quantify 410 
differences between types of individual biological particles is significantly more challenging and 411 
not likely to be possible in most situations. 412 

 413 
4.3 Investigating impact of fluorescence thresholding strategy on cluster quality 414 
In previously published studies, removing particles from clustering analysis that exhibited 415 

particle fluorescence intensity below the threshold (i.e. non-fluorescent) or at the saturating point 416 
improved the efficiency of clustering (Crawford et al., 2015; Ruske et al., 2017). In Sections 4.1-417 
4.2, particles with either of these characteristics were left in the analysis to prevent the 418 
underestimation of particles clustered. In this section, however, we investigated whether 419 
removing non-fluorescent particles could improve cluster accuracy for the experiments that 420 
performed poorly in Section 4.2. Of the 23 trials represented in Table 2, 10 experiments 421 
exhibited 15% or greater misclassification and were subjected to further analysis in order to 422 
investigate whether using a more discriminating fluorescence thresholding strategy could 423 
improve cluster results. In all 10 cases fluorescence saturating particles were retained, and three 424 
separate thresholding conditions were compared by: (I) keeping all non-fluorescent and 425 
saturating particles, (II) removing non-fluorescent particles by applying a fluorescence threshold 426 
of FT baseline + 3σ, and (III) and removing non-fluorescent particles by applying a fluorescence 427 
threshold of FT baseline + 9σ. Savage et al. (2017) showed evidence that applying a FT + 9σ  428 
improved WIBS results by removing a higher fraction of non-biological material from analysis 429 
than by applying the more commonly used FT + 3σ, without negatively impacting observations 430 
of biological particles. Table 3 shows the percentage of particles misclassified in each of three 431 
scenarios investigated here (Table 3a) as well as the number of particles subjected to the 432 
clustering algorithm (Table 3b).  433 

Each scenario, with exception of the B3 vs B9 experiment (21), shows a decrease in particle 434 
misclassification from scenario I (no fluorescence threshold applied) to scenario II (FT + 3σ). In 435 
contrast, eight of the ten scenarios increase in particle misclassification when raising the 436 
fluorescence threshold from 3σ (II) to 9σ (III). The exceptions to this trend are experiments (8) 437 
F2 vs WT and (19) F2 vs P9, which show nominal improvement in error (2-4% reduction) with 438 
increased threshold. We hypothesize that the 9σ results degrade, in most cases, because the 439 
threshold becomes high enough that most weakly fluorescing particles have been removed from 440 
analysis. This reduces the ability of the cluster to group into low and high fluorescence 441 
categories, and so remaining particles are separated less efficiently. Secondly, removing particles 442 
at higher fluorescence thresholds leads to increasingly poor counting statistics, as represented in 443 
Table 3b by the number of particles included in each experiment. Overall, these results suggest 444 
that inputting particles into the clustering analysis with at least a nominal fluorescence threshold 445 
(i.e. FT + 3σ) can improve the clustering results in many cases, however, increasing the 446 
threshold further may decrease cluster quality. 447 
 448 
4.4 Investigating the capability to separate particles in simulations of complex mixtures 449 

To this point, our investigation has focused on a variety of individual match-ups between two 450 
distinct particle types. To better simulate real-world scenarios, we computationally simulated six 451 
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mixtures of particles by pooling existing WIBS data from selected particle types in prescribed 452 
ratios. Each simulated mixture was assembled to roughly represent a different hypothetical 453 
mixture of particles that might be expected. Also, the particles in each simulated mixture are 454 
assumed to be so dilute that any agglomeration is negligible. Table 4 provides an overview of the 455 
percentage of each particle type included as well as the total number of particles in the mixture. 456 
Mixtures 1 and 2 were simulated arbitrarily to test if a minority (25%) of one type of fungal 457 
spores (F2) could be separated from a majority (75%) of a mixture of three different non-458 
biological materials. Mixtures 3 and 4 synthesized arbitrary mixtures of two types of bioaerosol 459 
(F2 and B3) with three or five types of non-biological particles, respectively. Mixture 5 was 460 
simulated to examine the separation of pollen (P9) from a set of five non-biological particles. 461 
Mixture 6 was simulated to be similar to an indoor environment that might have a mixture of 462 
biological particles (F2 and B3) with non-biological materials, including bleached fibers (WT). 463 
These mixtures are not intended to closely mimic any set of individual ambient conditions, but 464 
are rather used as very rough simulations used for discussion and to prompt discussion related to 465 
future experiments within the community. In a real-world sampling environment one would also 466 
expect a high concentration of non-fluorescent particles as well (e.g. most organic aerosols, sea 467 
salt, dusts), but these were generally not sampled as a part of the Savage et al. (2017) study, 468 
which focused on fluorescent particles. As a result, relatively non-fluorescent particles like D12 469 
and H2 were included here as “fillers” in most mixtures as surrogates for other types of non-470 
fluorescent particles. Clustering analysis was performed using the ratios listed in Table 4, the B 471 
scenario of pre-normalization conditions, and filtering non-fluorescent particles below the FT + 472 
3σ threshold. In all cases, the number of clusters retrieved after HAC was pre-defined to be the 473 
same as the number of particle types input. 474 

Cluster results from all six mixtures are summarized in Figure 5. Figure 5 (Part A) shows the 475 
number of particles from each type assigned to each cluster, and Parts B and C show results 476 
grouped by general particle classification (brown for non-biological and dark green for 477 
biological). Overall, the ability of the HAC analysis to separate the biological particles from the 478 
non-biological particles was high. In some cases, the quality of separation of one or two 479 
biological species from a mixture of non-biological materials was even higher than the 2-480 
material match-ups shown in Sections 4.1-4.3. The two 4-component mixtures showed 22.4% 481 
and 14.8% misclassification of fungal spores. In both cases, a small fraction of each of the non-482 
biological materials were mixed into the spore cluster, whereas almost none (1.5% and 0.6%) of 483 
the spores were incorrectly mixed into the sum of the non-biological clusters.  484 

Mixtures 3 and 4 showed similar misclassification for fungal spores (11.9% and 13.8%, 485 
respectively), whereas the bacterial particles clustered with amazing quality. For Mixture 3, no 486 
particles other than bacterial particles were grouped into Cluster 1, and only 16 of 213 bacterial 487 
particles were assigned to other clusters. For Mixture 4, 135 of 137 particles in Cluster 6 were 488 
bacterial in origin and 135 of 142 bacterial particles were assigned to the cluster. The 489 
combination of fungal and bacterial particles in Mixtures 3 and 4 resulted in a total of 5.0% and 490 
5.3% misclassification of all biological particles.  491 

In contrast to the poor separation of pollen from other particle types discussed in Section 4.2, 492 
Mixture 5 showed a higher quality of separation between pollen (9.4% misclassified) and the 493 
sum of five other non-biological particle types. Lastly, the mixture designed to roughly mimic an 494 
indoor environment including white t-shirt particles. In this mixture the WT particles confounded 495 
the spore separation, but the bacterial separation was nearly flawless. 496 
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Another surprising observation from the analysis of these simulated mixtures was that the 497 
diesel soot particles (Mixtures 1, 2, 4, and 5) separated into their own cluster in almost all cases 498 
with very high quality (1.8%, 2.9%, 0.6%, and 9.4%, respectively, of diesel soot particles 499 
misclassified into a different cluster). The quality of separation of bacterial particles and diesel 500 
soot (Mixture 4) was especially amazing, given the qualitative similarity of the two particle 501 
populations. For example, size-distributions of each particle type show primarily A-type particles 502 
with similar mean fluorescent intensity values in FL1, FL2, and FL3 (Savage et al., 2017).  503 

 504 
5. Conclusions 505 

Application of results from a recent set of systematic laboratory experiments (Savage et al., 506 
2017) by the commonly used hierarchical agglomerative clustering analysis helps to reveal areas 507 
where the tool can be used well and other areas where it struggles. First (Section 4.1) it was 508 
observed that differing ratios of particle input into the clustering algorithm can produce 509 
dramatically different results. It will be important for anyone applying HAC to ambient particle 510 
sets where particle ratios are not independently verified to interpret results somewhat loosely. In 511 
Section 4.1 the clustering quality of scenario B, where fluorescence intensity was not normalized 512 
to particle size and where all input variables were binned into log space, was determined to 513 
consistently demonstrate the highest quality results. Further, the ability to the HAC analysis to 514 
separate between two groups of individual particle types using no fluorescence threshold 515 
(Section 4.2) and comparing three separate threshold strategies (Section 4.3) was shown to be 516 
relatively high in many cases, but confounded in others. Lastly, Section 4.4 explored the ability 517 
of HAC analysis to separate biological components from more complex mixtures of four to 518 
seven types of input particles. 519 

A standard fluorescence threshold of FT + 3σ has been commonly applied during WIBS 520 
analysis to separate between fluorescent and non-fluorescent particles. Savage et al. (2017) 521 
concluded that application of a more aggressive threshold strategy (FT + 9σ) could help 522 
discriminate between biological and non-biological particles more successfully in many 523 
circumstances, however certain types of interfering, non-biological particle species can still 524 
confound WIBS analysis irrespective of the threshold. Here we have investigated an orthogonal 525 
strategy to separate particle types by subjecting particles to HAC computer analysis. By 526 
comparing the results of the HAC analysis with raw separation based on fluorescence 527 
thresholding alone, the HAC analysis can clearly increase quality of differentiation. Interestingly, 528 
while Savage et al. (2017) reported that the FT + 9σ strategy helped improved differentiation, 529 
using the same threshold in conjunction with HAC analysis actually degraded results. We 530 
therefore conclude that if HAC analysis is to be performed, the standard FT + 3σ threshold is 531 
likely to produce the highest quality results, however if HAC is not to be applied that the FT + 532 
9σ threshold is probably a better choice to enable investigation of biological particles while 533 
computationally filtering non-biological particles.  534 

The overall message here is that HAC can be applied successfully to differentiate particle 535 
types sampled by WIBS instruments and that it is most successful at separating biological 536 
species (i.e. fungal spores and bacteria) from non-biological particles. In all cases the HAC 537 
method allows separation of particles at least at the order-of-magnitude level, and often with 538 
misclassification of <5%. As mentioned by Savage et al. (2017), however, it should always be 539 
kept in mind that different instruments may produce slightly different signals due to physical 540 
differences between instruments (i.e. fluorescence calibration, tuning, and detector gain 541 
sensitivity) and between calibration strategies (Könemann et al., 2018; Robinson et al., 2017). 542 
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Results here are also generally extendable to other UV-LIF instruments, whether they offer 543 
single or many channels of emission spectral resolution, in that the methods of particle pre-544 
preparation and the impact of particle number ratio are likely to relay similar effects on 545 
clustering strategy. Subtle differences in particles observed in a real-world environment may also 546 
complicate HAC analysis or the extension of results presented here. The UV-LIF community is 547 
encouraged to continue laboratory investigations, including detailed interrogation of clustering 548 
analytical techniques, to further understand limitations to better differentiating between particles. 549 

 550 
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Tables 729 
 730 

Table 1. Six scenarios explored, with varying combinations of pre-analysis treatment. (1) 731 
Fluorescence normalization refers to whether fluorescence intensity was normalized to particle 732 
size. (2) Variables logged refers to whether data was manipulated to produce a normal 733 
distribution. 734 
 735 

Parameters A B C D E F 

1. Fluorescence 
Normalization 

2. Variables 
Logged 

1. No 
 

2. No  

1. No 
 

2. Yes 

1. Yes 
 

2. No 

1. Yes 
 

2. Yes 

1. Yes 
 

2. Yes, only 
AF/Size variables  

1. No 
 

2. Yes, only AF/Size 
variables 

  736 



Page 20 of 27 
 

Table 2. Misclassification of 2-cluster solutions for 23 match-ups of two individual particle types 737 
(equal ratio of particle number, B-scenario) computationally combined before clustering 738 
analysis. Misclassification calculated as the sum percentage of particles misclassified in each 739 
cluster divided by the total number of particles. Three biological particle types (F2, B3, P9) 740 
compared separately to (a) non-biological particle materials and (b) biological particle materials. 741 
Particle number input was a subset of total population of particles experimentally analyzed. 742 

  743 

(a)

Diesel soot 
(Soot 4)

California 
sand 

(Dust 2)

Arizona 
Test Dust 
(Dust 12)

Suwannee 
River Humic 

Acid 
(HULIS 2)

Methyl-
glyoxal + 
glycine 
aerosol 
(Brown 

carbon 1)

Glyoxal + 
amm. sulfate 

aerosol 
(Brown 

carbon 3)

White  
t-shirt 

(Misc. 2)

Wood 
smoke 

(Soot 6)
S4 D2 D12 H2 BC1 BC3 WT WS
(1) (3) (4) (5) (6) (7) (8) (9)

0.1% 2.6% 6.1% 4.8% 2.5% 23.0% 40.5% 7.2%
(2) (10) (11) (12) (13) (14) (15)

1.2% 1.9% 1.2% 1.3% 6.1% 41.7% 4.7%
(16) (17)

22.7% 23.2%

(b)
S. 

cerevisiae 
(Fungi 4)

Phelum 
pretense 
(Pollen 9)

P. stutzeri 
(Bacteria 3)

Taxus 
baccata 
(Pollen 5)

B. 
atrophaeus 
(Bacteria 1)

F4 P9 B3 P5 B1
(18) (19) (20)

27.9% 36.4% 10.3%
(21) (22)

18.3% 65.4%
(23)

46.8%

P. stutzeri 
(Bacteria 3)

Phelum pratense 
(Pollen 9)

Non-biological particle materials

Aspergillus 
niger  (Fungi 2)

P. stutzeri 
(Bacteria 3)

Phelum pretense 
(Pollen 9)

Biological particle materials

Aspergillus 
niger  (Fungi 2)
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Table 3. Further exploration of 2-cluster solutions for the 10 match-ups of two individual particle 744 
types shown in Table 2 with misclassification >15%. Each match-up shown using three separate 745 
fluorescence threshold strategies in advance of particle input into cluster algorithm: (I) all 746 
particles included (no fluorescence threshold), (II) particles with fluorescence intensity < FT + 747 
3σ removed, and (III) particles with fluorescence intensity < FT + 9σ removed. (a) Particle 748 
misclassification. (b) Total particle number used for clustering experiment. 749 

 750 

 751 

  752 

(a) Input
(7)

F2 + BC3
 (8)

F2 + WT 
(14)

B3 + WT
(16)

P9 + D12
(17)

P9 + H2
(I) All particles 23.0% 40.5% 41.7% 22.7% 23.2%

(II) Fluor. > FT + 3σ 10.3% 36.2% 24.3% 19.3% 3.4%
(III) Fluor. > FT + 9σ 41.4% 32.6% 31.8% 45.3% 14.0%

Input
(18)

F2 + F4
(19)

F2 + P9
(21)

B3 + P9 
(22)

B1 + B3
(23)

P9 + P5
(I) All particles 27.9% 36.4% 18.8% 65.4% 46.8%

(II) Fluor. > FT + 3σ 13.3% 31.0% 20.0% 77.5% 24.9%
(III) Fluor. > FT + 9σ 29.0% 28.6% 29.0% 66.7% 33.9%

(b) Input
(7)

F2 + BC3
 (8)

F2 + WT 
(14)

B3 + WT
(16)

P9 + D12
(17)

P9 + H2
(I) All particles 1,959 565 565 10,359 8,902

(II) Fluor. > FT + 3σ 1,000 393 393 171 207
(III) Fluor. > FT + 9σ 471 319 319 38 37

Input
(18)

F2 + F4
(19)

F2 + P9
(21)

B3 + P9 
(22)

B1 + B3
(23)

P9 + P5
(I) All particles 10,000 8,900 10,000 10,000 10,000

(II) Fluor. > FT + 3σ 9,600 8,500 9,800 10,000 10,000
(III) Fluor. > FT + 9σ 9,200 8,100 9,700 10,000 7,895

B
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 +
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io
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io
 +

 B
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Table 4. Particle fraction for each type and total particle number used as inputs for simulated 753 
mixtures.  754 
 755 

 756 
  757 

F2 B3 P9 S4 D12 H2 BC1 WS WT

Mixture 
Number

Mixture 
Name

Asp. niger 
(Fungi)

P. stutzeri 
(Bacteria)

Phelum 
pretense 
(Pollen)

Diesel 
soot

AZ Test 
Dust

Suwannee 
River 
Humic 
Acid

Brown 
Carbon 1

Wood 
smoke

White 
t-shirt

Total 
Particle 
Number

1 4-Comp. A 25% 25% 25% 25% 680
2 4-Comp. B 25% 25% 25% 25% 680
3 High PBAP 25% 25% 20% 20% 10% 850
4 Low PBAP 12.5% 12.5% 15% 15% 15% 15% 15% 1134
5 Pollen 30% 10% 20% 20% 10% 10% 850
6 Indoor Air 20% 20% 20% 20% 20% 850
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Figures 758 
 759 

 760 
Figure 1. Schematic diagram showing the data preparation process resulting in the generated 761 
clustering products. Parameters within the pink box are the focus of this manuscript.  762 
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 763 

Figure 2. Example of Calinski-Harabasz Index plot for cluster experiment with input of 764 
Aspergillus niger and diesel soot (50:50 ratio). Optimal number of clusters is determined by the 765 
highest CH value.   766 
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 767 
Figure 3. Cluster misclassification shown for three computational combinations of fungal spores 768 
(F2), bacteria (B3), diesel soot (S4), and mineral dust (D12). Each combination explored with 769 
respect to ratio of input particle number using the scenario B and a 2-cluster solution for each 770 
experiment. Scenario letter A-F refers to scenarios summarized in Table 1. Red shaded region 771 
(and values) indicates the percent of particles misclassified. Blue shaded region represents the 772 
percentage of particles correctly classified.   773 
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 774 
Figure 4. Particle type stacked category size distributions for input and output clustering results, 775 
using FT + 3σ threshold definition. Each experiment (row) shows match-ups of two particle 776 
types computationally mixed using 50:50 ratios, scenario B, and 2 cluster solutions. Left two 777 
columns show properties of input particles, right two columns show properties of cluster outputs.  778 
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 779 
 780 
Figure 5. Overview of computationally simulated mixtures. Six mixtures shown as groups of 781 
rows, with input particle fractions defined in Table 4. Part A (left columns) show particle number 782 
retrieved by each individual cluster and categorized by each input particle type. Part B (middle 783 
columns) show particle number categorized and grouped by particle classes (i.e. non-biological 784 
and biological). Part C (right columns) show misclassification of groups of particles. Colors: 785 
light green (fungal spores), blue (bacteria), pink (pollen), dark green (grouped biological), brown 786 
(all non-biological). 787 

Part A: Individual Clusters Part B: Grouped Clusters Part C: Summary
(Particle Number) (Particle Number) (Cluster Quality)

Mixture #1
Cluster F2 S4 D12 H2 Cluster Fungi Non-bio Total P. Miscl. Cat.

1 163 2 22 23 1 163 47 210 22.4% Fungi
2 7 1 123 67 2-4 7 463 470 1.5% Non-bio
3 0 0 21 80
4 0 167 4 0

Mixture #2
Cluster F2 S4 D12 WS Cluster Fungi Non-bio Total P. Miscl. Cat.

1 167 2 23 4 1 167 29 196 14.8% Fungi
2 2 3 88 10 2-4 3 481 484 0.6% Non-bio
3 1 0 55 156
4 0 165 4 0

Mixture #3
Cluster F2 B3 D12 H2 BC1 Cluster Fungi Bacteria Bio Non-bio Total P. Miscl. Cat.

1 0 197 0 0 0 1 0 197 0 227 11.9% Fungi
3 200 6 13 2 6 3 200 6 21 197 0.0% Bacteria
2 9 10 133 79 6 2,4,5 13 10 403 424 5.0% Bio
4 4 0 21 88 25 1,3 403 21 426 5.4% Non-bio
5 0 0 3 1 47

Mixture #4
Cluster F2 B3 S4 D12 H2 BC1 WS Cluster Fungi Bacteria Bio Non-bio Total P. Miscl. Cat.

1 0 0 0 10 15 20 0 7 112 5 13 130 13.8% Fungi
2 23 2 0 125 77 6 165 6 0 135 1 136 0.7% Bacteria
3 0 0 0 3 1 128 1 1-5 30 2 836 266 5.3% Bio
4 4 0 0 18 68 11 2 6,7 252 14 868 3.7% Non-bio
5 3 0 169 8 9 0 0
6 0 135 1 0 0 0 1
7 112 5 0 6 0 6 1

Mixture #5
Cluster P9 S4 D12 H2 BC1 WS Cluster Pollen Non-bio Total P. Miscl. Cat.

1 0 0 13 16 13 0 5 242 25 267 9.4% Pollen
2 2 0 28 83 15 1 1-4,6 13 570 583 2.2% Non-bio
3 0 0 4 1 51 1
4 6 2 113 70 0 79
6 5 77 3 0 0 0
5 242 6 9 0 6 4

Mixture #6
Cluster F2 B3 D12 H2 WT Cluster Fungi Bacteria Bio Non-bio Total P. Miscl. Cat.

1 160 7 13 0 31 1 160 7 44 211 24.2% Fungi
4 0 154 0 0 0 4 0 154 0 154 0.0% Bacteria
2 4 0 32 95 35 2,3,5 10 9 466 365 12.1% Bio
3 6 9 125 75 62 1,4 321 44 485 3.9% Non-bio
5 0 0 0 0 42
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