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Abstract. Low-cost particulate matter (PM) sensors are promising tools for supplementing existing air quality monitoring 

networks. However, the performance of the new generation of low-cost PM sensors under field conditions is not well 

understood. In this study, we characterized the performance capabilities of a new low-cost PM sensor model (Plantower 

model PMS3003) for measuring PM2.5 at 1 min, 1 h, 6 h, 12 h and 24 h integration times. We tested the PMS3003s in both 

low concentration suburban regions (Durham and Research Triangle Park (RTP), NC, US) with 1 h PM2.5 (mean ± Std.Dev) 15 

of 9 ± 9 µg m-3 and 10 ± 3 µg m-3 respectively, and a high concentration urban location (Kanpur, India) with 1 h PM2.5 of 36 

± 17 µg m-3 and 116 ± 57 µg m-3 during monsoon and post-monsoon seasons, respectively. In Durham and Kanpur, the 

sensors were compared to a research-grade instrument (environmental b-attenuation monitor (E-BAM)) to determine how 

these sensors perform across a range of PM2.5 concentrations and meteorological factors (e.g., temperature and relative 

humidity (RH)). In RTP, the sensors were compared to three Federal Equivalent Methods (FEMs) including two Teledyne 20 

Model T640s and a ThermoScientific Model 5030 SHARP to demonstrate the importance of the type of reference monitor 

selected for sensor calibration. The decrease of 1 h mean errors of the calibrated sensors using univariate linear models from 

Durham (201 %) to Kanpur monsoon (46 %) and to post-monsoon (35 %) season showed that PMS3003 performance 

generally improved as ambient PM2.5 increased. The precision of reference instruments (T640: ±0.5 µg m-3 for 1 h; SHARP: 

±2 µg m-3 for 24 h, better than the E-BAM) is critical in evaluating sensor performance and b-attenuation-based monitors 25 

may not be ideal for testing PM sensors at low concentrations, as underscored by 1) the less dramatic error reduction over 

averaging times in RTP against optical-based T640 (from 27 % for 1 h to 9 % for 24 h) than in Durham (from 201 % to 15 

%); 2) the lower errors in RTP than Kanpur post-monsoon season (from 35 % to 11 %); 3) the higher T640–PMS3003s 

correlations (R2 ³ 0.63) than SHARP–PMS3003s (R2 ³ 0.25). A major RH influence was found in RTP (1 h RH = 64 ± 22 

%) due to the relatively high precision of the T640 measurements that can explain up to ~30 % of the variance in 1 min to 6 30 

h PMS3003 PM2.5 measurements. When proper RH corrections are made by empirical non-linear equations after using a 

more precise reference method to calibrate the sensors, our work suggests that the PMS3003s can measure PM2.5 

concentrations within ~10 % of ambient values. We observed that PMS3003s appeared to exhibit a non-linear response when 
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ambient PM2.5 exceeded ~125 µg m-3 and found that the quadratic fit is more appropriate than the univariate linear model to 

capture this nonlinearity and can further reduce errors by up to 11 %. Our results have substantial implications for how 

variability in ambient PM2.5 concentrations, reference monitor types, and meteorological factors can affect PMS3003 

performance characterization. 

1 Introduction 5 

Exposure to particulate matter (PM) is associated with cardiopulmonary morbidity and mortality. Multiple complex 

pathophysiological or mechanistic pathways have been identified as the underlying cause of this association (Pope and 

Dockery, 2006). Fine particles (PM2.5, with a diameter of 2.5 µm and smaller) pose a greater threat to human health than 

their larger and coarser counterparts due to their higher levels of toxicity, stronger tendency towards deposition deep in the 

lungs, and longer lifetime in the lungs (Pope and Dockery, 2006). From an environmental perspective, PM2.5 contributes to 10 

decreased visibility, environmental damages such as depletion of soil nutrients, acid rain effects, and material damages such 

as discoloration of the Taj Mahal (US Environmental Protection Agency (US EPA), 2016a; Bergin et al., 2015). 

 

In the US, PM2.5 is regulated and monitored under the National Ambient Air Quality Standards (NAAQS) (US EPA, 2016b). 

The NAAQS compliance monitoring approves the use of both the Federal Reference Methods (FRMs) and the Federal 15 

Equivalent Methods (FEMs) to accurately and reliably measure PM2.5 in outdoor air (US EPA, 2017). While these kinds of 

instruments provide measurements of decision-making quality, they require skilled staff, close oversight, regular 

maintenance, and stringent environmental operating conditions (Chow, 1995). The personnel, infrastructure, and financial 

demands of running a regulatory PM2.5 monitor make it impractical to deploy them in a dense monitoring network and make 

it consequently hard to gather high temporally and spatially resolved air quality information. The lack of fine-grained PM2.5 20 

monitoring data hinders the characterization of urban PM2.5 gradients/distributions (Kelly et al., 2017), and prohibits 

exposure scientists from adequately quantifying the relationship between air pollution exposures and health effects (Holstius 

et al., 2014). The lack of finely resolved ambient PM2.5 data also restricts prompt empirical verifications of emission-

reduction policies and inhibits rapid screening for urban “hot spots” (Holstius et al., 2014). 

 25 

These conventional techniques’ deficiencies in measuring PM2.5 along with the technological advancements in multiple areas 

of electrical engineering (Snyder et al., 2013) foster a paradigm shift to the use of small, portable, inexpensive, and real-time 

sensor packages for air quality measurement. As these sensors can provide almost instantaneous feedback about changes in 

air quality and at a low cost, citizens may be more willing to be part of “participatory measurement” including determining if 

they are in areas with high levels of pollution and exploring how to decrease their exposure. Air pollution control agencies 30 

such as the South Coast Air Quality Management District (SCAQMD) have already been researching ways of empowering 
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local communities to answer questions about their specific air quality issues with sensors and potentially engaging them in 

future projects (US EPA, 2016c). 

 

Previous evaluations of numerous low-cost PM sensor models have demonstrated promising results in comparison with 

FEMs or research-grade instruments in some field studies. These models include Shinyei PPD20V (Johnson et al., 2018), 5 

Shinyei PPD42NS (Holstius et al., 2014; Gao et al., 2015), Shinyei PPD60PV (SCAQMD, 2015a; Jiao et al., 2016; 

Mukherjee et al., 2017; Johnson et al., 2018), AlphaSense OPC-N2 (SCAQMD, 2015b; Mukherjee et al., 2017; Crilley et al., 

2018), Plantower PMS1003 (Kelly et al., 2017; SCAQMD, 2017b), Plantower PMS3003 (SCAQMD, 2017a), and Plantower 

PMS5003 (SCAQMD, 2017c). Currently, all Plantower PMS models have only been tested at low to moderately high 

ambient PM2.5 concentrations in US. Kelly et al. (2017) assessed the performance of Plantower PMS1003 against an FRM, 10 

two FEMs, and a research-grade instrument in a 41-day field campaign in the southeast region of Salt Lake City during 

winter. They reported both high 1 h PMS–FEMs PM2.5 correlations (R2 = 0.83–0.92) and high 24 h PMS–FRM PM2.5 

correlations (R2 > 0.88). The SCAQMD’s Air Quality Sensor Performance Evaluation Center (AQ-SPEC) has field-tested 

Laser Egg Sensor (Plantower PMS3003 sensors), PurpleAir (Plantower PMS1003 sensors), and PurpleAir PA-II (Plantower 

PMS5003 sensors) with triplicates per model located next to FEMs at ambient monitoring sites in Southern California for a 15 

roughly 2-month period (SCAQMD, 2017a, 2017b, 2017c). Even though the evaluation results are still preliminary, they 

filled in gaps in the documentation of the performance of the new generation of low-cost PM sensors. The SCAQMD found 

that both PMS1003 and PMS5003 raw PM2.5 measurements correlated very well with the corresponding FEM GRIMM 

Model 180 (R2 > 0.90 and R2 > 0.93, respectively) and FEM BAM-1020 (R2 > 0.78 and R2 > 0.86, respectively). The 

SCAQMD, however, reported a moderate correlation between 1 h raw PMS3003 PM2.5 measurements and the corresponding 20 

FEM BAM-1020 (R2 ~ 0.58). 

 

Despite the favorable correlation of these sensors in comparison with reference monitors during these field evaluations, 

considerable challenges have also been acknowledged. To date, there is only limited understanding of the performance 

specifications of these emerging low-cost PM sensor models (Lewis and Edwards, 2016). This situation is further 25 

confounded by the fact that a model’s agreement with reference instruments, and the corresponding calibration curves 

established vary with the operating conditions (RH, temperature, and PM2.5 mass concentrations), the aerosol properties 

(aerosol composition, size distribution, and the resulting light scattering efficiency), and the choice of reference instruments 

(Holstius et al., 2014; Gao et al., 2015; Kelly et al., 2017). Artifacts such as varying RH and temperature significantly 

interfere with accurate reporting of PM2.5 results from low-cost PM sensors. To the best of our knowledge, only Crilley et al. 30 

(2018) have adequately compensated for the RH bias in low-cost PM sensor measurements based on 𝜅-Köhler theory and 

they found a roughly 1 order of magnitude improvement in the accuracy of sensor measurements after correcting for RH 

bias. Also, US EPA FEMs are required to provide results comparable to the FRMs only for a 24 h but not a 1 h sampling 
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period. An inappropriate selection of reference monitors in field tests (especially in low PM2.5 concentration environments) 

might prejudice the overall performance of low-cost sensors’ short-term measurements. 

 

These limitations in the previous scientific work warrant more testing under diverse ambient environmental conditions 

alongside various reference monitors, and more rigorous methods (statistical and calibration) to characterize a particular low-5 

cost sensor model’s performance. It is of paramount importance to quantify the accuracy and precision of these sensors, as 

the value of the rest of the related work such as data analyses, sensor network establishment, and citizen engagement is 

conditional on this. This paper focuses on 1) comparing a new low-cost PM sensor model (Plantower PMS3003) to different 

reference monitors (including a newly designated US EPA PM2.5 FEM, i.e., Teledyne API T640 PM mass monitor) in both 

high (Kanpur, Uttar Pradesh, India 1 h PM2.5 average ³ 36 µg m-3) and relatively low (Durham and Research Triangle Park, 10 

NC, US 1 h PM2.5 average £ 10 µg m-3) ambient PM2.5 concentration environments; 2) calculating metrics including mean of 

ratios and error in addition to correlation coefficient (R2) to more rigorously interpret low-cost sensors’ performance 

capabilities as a function of averaging timescales; 3) conducting appropriate RH and temperature adjustments when possible 

to sensor PM2.5 responses in order to account for systematic meteorology-induced influences and consequently to present 

PM2.5 measurements with relatively high accuracy and precision at a low cost. To our knowledge, this is the first study to 15 

evaluate such a low-cost PM sensor model under high ambient conditions during two typical and distinct seasons (i.e., 

monsoon and post-monsoon) in India, and the first to use the T640 PM mass monitor (Teledyne API) as a reference monitor 

to examine sensor performance. 

2 Materials and methods 

2.1 Sensor configuration 20 

The low-cost sensors evaluated in the present study are Plantower particulate matter sensors (model PMS3003). The 

Plantower PMS3003 sensors were chosen because 1) they are priced at a small fraction of the cost of reference monitors 

(approximately USD 30) and 2) their manufacturer reported maximum errors are relatively low (±10 µg m-3 in the 0–100 µg 

m-3 range, and ±10 % in the 100–500 µg m-3 range). Unlike their PMS1003 and PMS5003 counterparts, the PMS3003s are 

not designed as single particle counters. The sensors employ a light-scattering approach to measure PM1, PM2.5, and PM10 25 

mass concentrations in real-time and are believed to apportion light scattering to PM1, PM2.5, and PM10 based on a 

confidential proprietary algorithm (Kelly et al., 2017). Ambient air laden with different-sized particles is drawn into the 

sensor measurement volume where the particles are illuminated with a laser beam, and the resulting scattered light is 

measured perpendicularly by a recipient photo-diode detector. These raw light signals are filtered and amplified via 

electronic filters and circuitry before being converted to mass concentrations. The manufacturer datasheet indicates that the 30 

measurement range of this specific sensor model spans from 0.3 µm to 10 µm. The configuration of the PMS3003 sensors 
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suggests that their detection approach is volume scattering of the particle population rather than light scattering at the single 

particle level. This volume scattering detection approach results in PM measurements that are independent of flow rate. PM 

mass concentration measurements either with or without a manufacturer “atmospheric” calibration are available from the 

Plantower sensor outputs. Nevertheless, the manufacturer did not provide any documentation to elaborate on how the 

calibration algorithm was derived. The influence of meteorological factors (e.g., RH, temperature) was likely not accounted 5 

for in the manufacturer calibrations. Therefore, we used the sensor reported PM concentration estimates without an 

“atmospheric” calibration in the current study. Prior to field deployment, no attempt was made to calibrate these sensors 

under laboratory conditions due to a potentially marked discrepancy in particle size, composition, and optical properties of 

field and laboratory conditions. 

  10 

The Plantower PMS3003 sensor (dimension: 5.0 cm L × 4.3 cm W × 2.1 cm H; weight: 40 g) along with a Sparkfun SHT15 

RH and temperature sensor, a Teensy 3.2 USB-based microcontroller, a ChronoDot V2.1 high precision real-time clock, a 

microSD card adapter, a Pololu 5V S7V7F5 voltage regulator, a DC barrel jack connector, and a basic 5 mm LED was 

connected to a custom designed printed circuit board (PCB), shown in Fig. 1a. We programmed the Teensy 3.2 

microcontroller to measure PM mass concentrations (µg m-3) every second and to store the time-stamped 1 min averaged 15 

measurements to text files on a microSD card. To protect sensors from rain and direct sunlight, all components were housed 

in a 20.50 cm L × 9.95 cm W × 6.70 cm H, 363 g lightweight NEMA (National Electrical Manufacturers Association) 

electrical box (Bud Industries NBF32306) as shown in Fig. 1b. The inlet of the Plantower sensor was aligned with a hole 

drilled in the electrical box to ensure unrestricted airflow into the sensor. Each Duke PM air quality monitoring package is 

estimated to weigh ~430 g in total and was continuously powered up by a 5V 1A USB wall charger. The total material costs 20 

for one PM monitoring package including the Plantower PMS3003 sensor (~ USD 30), the supporting circuitry (~ USD 140 

including PCB with almost all components), the enclosure (~ USD 20), and additional power cords (~ USD 20) are 

approximately USD 210. More detailed instructions on how to assemble the sensor packages and information on how to use 

their data can be found on our webpage (http://dukearc.com).  

2.2 Field deployment 25 

Three field campaigns were conducted to evaluate the performance characteristics of Plantower PMS3003 sensors and to 

explore the potential impacts from artifacts such as RH and temperature on sensors’ PM2.5 measurements (Table 1). Two 

sites were in Durham County, NC, representing suburban environments with low ambient PM2.5 concentrations. The other 

study site was in Kanpur, Uttar Pradesh, India, representing an urban-influenced environment. The data from Kanpur were 

subset into the monsoon season with moderately high PM2.5 concentrations, and the post-monsoon season with high PM2.5 30 

concentrations. 
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2.2.1 Low concentration region: Durham and Research Triangle Park (RTP), NC 

The first measurement campaign in the low concentration region was on the rooftop of the Fitzpatrick Center, a three-story 

building located on the Duke University West Campus in Durham, NC (Latitude: 36.003350, Longitude: -78.940259). The 

sampling location lies in close proximity to the 7,052-acre Duke Forest and approximately 3.5 km from the Durham 

downtown and 4.5 km from the Durham National Guard Armory monitoring station (Latitude: 36.0330, Longitude: -5 

78.9043). This study location is also about 950 m southwest of the Durham Freeway, which had an annual average daily 

traffic of 43,000 vehicles as of 2015 (North Carolina Department of Transportation, 2015). No known principle point source 

emissions are located in the surrounding area. The 3-year average (2013–2015) for PM2.5 concentrations reported by the 

Durham National Guard Armory monitoring station was 12 µg m-3, and the reported 98th percentile daily average from 2013 

to 2015 was 18 µg m-3 (North Carolina Department of Environmental Quality, 2017). At the Duke site, five Plantower 10 

PMS3003 sensors (labeled PMS3003-1 through -5) were compared to a collocated Environmental b-Attenuation Monitor E-

BAM-9800 (Met One Instruments). Unlike its more advanced counterpart BAM-1020 (Met One Instruments), the E-BAM-

9800 is not currently a US EPA designated FEM for PM2.5 mass concentration continuous monitoring, although it is ideal for 

rapid deployment because of its portability and its ability to accurately track FRM or FEM results with proper operation and 

regular maintenance (Met One Instruments, 2008). The hourly values reported by the E-BAM (in mg m-3) were used in the 15 

analyses. The E-BAM’s sporadic negative values caused by low actual ambient concentrations (such as below 3 µg m-3) 

were replaced with 0 µg m-3 in this study. The sensor packages were strapped to the E-BAM tripod and operated in a 

collocated manner for a period of 50 days from February 1, 2017 to March 31, 2017 (all the sensor packages and the E-BAM 

were shut down between March 3 and March 12 for maintenance). Over the course of the deployment, PMS3003-1 was 

disconnected between February 14 and February 21 because of power supply issues, and this situation rendered PMS3003-1 20 

data 86 % complete. 

 

The second ambient test in the low concentration region was performed at the US EPA’s Ambient Air Innovation Research 

Site (AIRS) on its RTP campus, NC (Latitude: 35.882816, Longitude: -78.874471) about 16 km southeast of the Duke site. 

The ambient PM2.5 mass concentrations in the RTP region are normally well under 12 µg m-3 (Williams et al., 2003). A 25 

Thermo Scientific 5030 SHARP (Synchronized Hybrid Ambient Real-time Particulate Monitor) monitor (US EPA PM2.5 

FEM) was operated by the US EPA Office of Research and Development (ORD) and two Teledyne API T640 PM mass 

monitors (US EPA PM2.5 FEM) were operated by the US EPA Office of Air Quality Planning and Standards (OAQPS). The 

SHARP monitor is a hybrid of a high sensitivity nephelometer using 880 nm Infrared Light Emitting Diodes (IREDs) and a 

BAM. The SHARP continuously calculates the ratios of dynamically time-averaged beta concentrations to dynamically 30 

time-averaged nephelometer concentrations, and continuously employs these ratios as correction factors to adjust the raw 1 

min averaged nephelometer readings. The corrected nephelometric concentrations are reported as 1 min SHARP 

measurements in µg m-3 (Thermo Fisher Scientific, 2007). The T640 monitor, first introduced in 2016, is one of the latest 
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additions to the list of approved US EPA PM2.5 FEM monitors. The T640 is essentially an optical aerosol spectrometer that 

uses light scattering to measure particle diameters in 256 particle size classes over 0.18–20 µm range at the single particle 

level. The 256 size classes are subsequently combined into 64 channels for mass calculation with proprietary algorithms. The 

light source used by the T640 monitor is polychromatic (broadband) light. Compared to traditional monochromatic laser 

scattering approaches, the polychromatic light approach provides more robust and accurate measurements with significantly 5 

less noise especially over the particle size range of 1 µm to 10 µm (Teledyne Advanced Pollution Instrumentation, 2016). 

The T640 reports 1 min resolution results in µg m-3. The SHARP and one of the T640 units (T640_Shelter) were installed 

inside an ORD mobile laboratory and an OAQPS shelter, respectively with roof penetration while the other T640 unit 

(T640_Roof) was installed inside an outdoor enclosure with heating, ventilation and air conditioning (HVAC) control on the 

rooftop of the OAQPS shelter. Three PMS3003 sensor packages from the Duke site (labeled PMS3003-1 through -3) were 10 

attached to the rail on top of the ORD mobile laboratory approximately 3 to 4 m above ground. The SHARP inlet and the 

sensor packages’ inlets were only a few feet apart. The two T640 inlets were situated on the rooftop of the OAQPS shelter, 

within about 30 m of the sensor packages’ inlets. The inlets of these instruments were positioned roughly at the same height 

above ground. Over the course of the 32-day field project (June 30, 2017 to July 31, 2017), all the instruments’ data 

completeness was 100 % except the SHARP (99 %). The slightly incomplete SHARP data stemmed from the removal of 15 

midnight concentration spikes (at approximately 01:00 to 01:10 am) due to the daily filter tape advancement. 

2.2.2 High concentration location: Indian Institute of Technology Kanpur (IIT Kanpur) study site 

Identical to the set-up at the Duke site, the third field evaluation involving two PMS3003 sensors (labeled PMS3003-6 and -

7) alongside an E-BAM was carried out on the rooftop of the Center for Environmental Science and Engineering inside the 

campus of IIT Kanpur (Latitude: 26.515818, Longitude: 80.234337). The Center is a two-story building (roughly 12 m 20 

above the ground level) that lies approximately 15 km northwest of downtown Kanpur city. The institute is located upwind 

of Kanpur city and away from major roadways, industrial sites, and dense residential communities, therefore it has 

comparatively low PM2.5 concentrations (Villalobos et al., 2015). Kanpur is a heavily polluted industrial city on the Indo-

Gangetic Plain with a large urban area of dense population (approximately 2.7 million) (Villalobos et al., 2015). Various 

small-scale industries, a coal-fired power plant (Panki Thermal Power Station), indoor and outdoor biomass burning, heavy 25 

vehicles on the Grand Trunk Road (a major national highway) running through Kanpur city, fertilizer plants, and refineries 

are the prime contributors to air pollution (Shamjad et al., 2015; Villalobos et al., 2015). The local climate is primarily 

defined as humid subtropical with extremely hot summers and cold winters (Ghosh et al., 2014). The monsoon season (June 

to September) is documented to have lower PM2.5 concentrations than the post-monsoon season (October and November) 

(Bran and Srivastava, 2017). The two sensor packages were first deployed at the study site on June 8, 2017 for 30 

approximately 22 days (early monsoon), and then on October 23, 2017 for approximately 25 days (post-monsoon). Since 

these two sensor units were not embedded with temperature and RH sensors, the temperature and RH data (available as 15 

min averages) were simultaneously collected from an automatic weather station, roughly 500 m away from the study site and 
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2 to 3 m above ground. Throughout the sampling periods, error-flagged E-BAM measurements (including delta temperature 

setpoint exceeded, flow failure, abnormal flow rate, beta count failure) during the operation were excluded from the analyses 

for quality assurance purposes, and this caused the E-BAM data to be 85 % and 93 % complete for monsoon and post-

monsoon seasons, respectively. The two sensor packages had data completeness close to 100 % for both monsoon and post-

monsoon seasons. The temperature and RH data from the automatic weather station were only occasionally missing due to 5 

power supply issues with an overall 93 % and 99 % completeness for monsoon and post-monsoon seasons, respectively. 

2.3 Sensor calibrations 

Sensor PM2.5 measurement adjustments/corrections were made as described in the following three subsections. First, we 

evaluated the dependence of sensor response on RH (Sect. 2.3.1), if this was significant we adjusted sensor PM2.5 values for 

RH. Next, we investigated the sensor response dependency on temperature (Sect. 2.3.2), if this was significant we 10 

simultaneously adjusted sensor PM2.5 values for temperature and calibrated sensor values based on reference monitors. If this 

was not significant, we simply applied a calibration based on the reference PM2.5 values and corrected for any non-linear 

performance (Sect. 2.3.3). The calibration strategy is shown graphically in Fig. 2. 

2.3.1 RH adjustment to sensor PM2.5 measurements 

FEMs and research-grade PM analyzers typically control for RH by dynamically heating the sample air inlet. Our sensor 15 

packages, similar to many low-cost designs, are not equipped with any heaters/conditioners to reduce RH impact. Therefore, 

the RH can significantly bias the PM2.5 mass concentrations reported by our sensor packages. The effect of RH on the mass 

of atmospheric aerosol particles has been well-documented for decades. Sinclair et al. (1974) showed that there was a 2 to 6-

fold increase in the mass of particles, depending on the properties of the particles, as the RH reached 100 %. Waggoner et al. 

(1981) also showed that RH above roughly 70 % can enhance scattering coefficients of hygroscopic or deliquescent particles 20 

in various locations in the west and mid-west US due to the growth of these particles associated with water uptake. Zhang et 

al. (1994) described the calculated scattering efficiencies of ammonium sulfate in the Grand Canyon as a function of RH 

with empirical Eq. (1). This equation was later employed by Chakrabarti et al. (2004) to predict the effect of RH on the 

relationship between the nephelometric personal monitors’ PM2.5 mass concentration measurements and the results of a 

reference monitor (BAM). They found that the model agreed quite well with the field data both collected from their study 25 

and from a previous study (Day and Malm, 2000). An identical equation was also among a wide variety of approaches 

assessed by Soneja et al. (2014) to adjust nephelometric personal monitor PM2.5 readings for the RH impact. We believe 

lessons learned from these previous studies can be directly applied to RH adjustments for low-cost nephelometric sensors’ 

PM2.5 measurements in the present study by using Eq. (1): 

RH correction factor = scattering efficiency (for a given RH)
scattering efficiency (RH=30	%)

= raw PMS3003 PM2.5 conc. (for a given RH)
reference PM2.5 conc. (for a given RH)

= 𝑎 + 𝑏 × RH2

1-RH
  (1) 30 
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Ordinary least squares (OLS) regressions were conducted to obtain the empirical regression parameters 𝑎 and 𝑏 in Eq. (1), 

where the dependent variable was the RH correction factors calculated as the ratio of PMS3003 PM2.5 mass concentrations 

averaged across all the sensor package units to the corresponding reference monitor concentrations at each point in time at a 

sampling location, and the independent variable was the entire RH2 / (1 - RH) term. The RH was the measurements averaged 

across all the embedded Sparkfun SHT15 RH and temperature sensors at each point in time for the calibration models of 5 

Duke University and EPA RTP study sites, and the measurements from the automatic weather station for the models of IIT 

Kanpur study site. The empirical equations derived were used to compute the RH correction factor for a given RH at the 

sampling sites. The RH interferences were compensated for by dividing each individual raw PMS3003 PM2.5 mass 

concentration for a given RH by the RH correction factor yielded for that RH (Eq. (2)): 

RH adjusted PMS3003 PM2.5 conc. = raw PMS3003 PM2.5 conc. (for a given RH) 
RH correction factor (for a given RH)

       (2) 10 

 

We only performed the RH adjustments when the fitted models for any of the sampling locations over any time averaging 

interval had at least a moderate coefficient of determination (R2 ³ 0.40). The slightly high correlation cut-off value was 

implemented in this study to ensure that the RH corrections can effectively lower the error of the low-cost sensor PM2.5 

measurements. Despite the similarity of the general shape of correction factor curves in different studies, the detailed 15 

behaviors of aerosols diverged greatly due to considerable difference in particle chemical composition and diameter 

(Waggoner et al., 1981; Zhang et al., 1994; Day and Malm, 2000; Chakrabarti et al., 2004; Soneja et al., 2014). In a previous 

study (Day and Malm, 2000), aerosol mass at some locations increased continuously above a relatively low RH (such as 20 

%), whereas at other locations it exhibited a distinct deliquescent behavior (i.e., aerosols water uptake occurred at a relatively 

high RH). Even for aerosols showing deliquescent behavior, the observed deliquescence RH (RH threshold) varies from 20 

study to study. Soneja et al. (2014) also found underestimation of PM concentrations (correction factors less than 1) below 

40 % RH. Because of these uncertainties, we conducted RH adjustments across the entire range of recorded RH without 

incorporating an RH threshold. Additionally, the RH adjustments in this study were always performed separately from and 

prior to either temperature adjustments or reference monitor adjustments. 

2.3.2 Temperature adjustment to sensor PM2.5 measurements 25 

The Akaike’s Information Criterion (AIC) is a widely used tool for model selection to address the fact that including 

additional predictors may overfit the data (Crawley, 2017a). It was used to determine the significance of the temperature 

term in the PMS3003 calibration models for all the study locations at various averaging times. The AIC penalizes more 

complex models based on the number of parameters fit in that model. A lower AIC when comparing two models for the 

same data set indicates a better fitting model. In a linear regression model, an AIC difference between two models of less 30 

than or equal to 2 indicates that the more complex model does not improve predictive performance. Therefore, the simpler 

model should be adopted. We specifically compared the AIC value of a multiple linear regression model, which included 
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both the reference monitor measurement and temperature as predictor variables and without considering an interaction term 

(i.e., Eq. (3)) to the value of a univariate linear regression model with only the reference monitor measurement as a predictor 

variable (i.e., Eq. (4)). We performed the temperature adjustments using Eq. (5) only when the AIC indicated that the 

temperature predictor was significant in the calibration model (i.e., AIC Eq. (4) - AIC Eq. (3) > 2).  

[raw (or RH adjusted) PMS3003 PM2.5 conc.] =	𝛽) 	+	𝛽*	´	reference PM2.5 conc.	 + 	𝛽+	´	temperature   (3) 5 

 

[raw (or RH adjusted) PMS3003 PM2.5 conc.]	 = 	𝛽) 	+	𝛽*	´	reference PM2.5 conc.	    (4) 

 

[temperature and reference monitor (and RH)	adjusted PMS3003 PM2.5 conc.]	 =

	[raw (or RH adjusted)	PMS3003 PM2.5 conc.]	.	/0	.	/1	´ temperature
/2

         (5) 10 

 

The temperature was the measurements averaged across all the embedded Sparkfun SHT15 RH and temperature sensors at 

each point in time for the models of Duke University and EPA RTP study sites, and the measurements from the automatic 

weather station for the models of IIT Kanpur study site. Since the RH adjustments in this study were always performed first, 

the PMS3003 PM2.5 conc. in Eq. (3) and Eq. (4) were RH adjusted PMS3003 PM concentrations when RH adjustments were 15 

significant, and were otherwise raw PMS3003 PM2.5 concentrations. Additionally, temperature adjustments and reference 

monitor adjustments were always conducted simultaneously when the temperature predictor was significant because Eq. (3) 

consists of both the reference monitor concentration and temperature terms as independent variables. The AIC values for 

models with 24 h data are not reported in the present study as 24 h observations generally have limited statistical power to 

determine the significance of temperature in the models. 20 

2.3.3 PM2.5 sensor calibrations based on reference monitor values 

The most basic calibration is a direct comparison with reference monitor measurements. We derived reference instrument 

calibration equations (Eq. (4)) by fitting a linear least squares regression model to each pair of PMS3003 (dependent 

variable) and collocated reference instrument’s PM2.5 mass concentrations (independent variable). The PMS3003 PM2.5 

values were RH adjusted concentrations when RH adjustments were significant and were otherwise raw concentrations. Each 25 

PMS3003 measurement was subsequently calibrated using Eq. (6). 

 

When the relationship between PM2.5 mass concentrations of reference monitors and PMS3003 sensors was non-linear, PM2.5 

sensor calibration equations based on reference monitor values in a quadratic form (Eq. (7)) were used to describe the non-

linear performance and each PMS3003 measurement was subsequently calibrated using Eq. (8) since calibrated values 30 

should always be on the left side of the axis of symmetry of the parabola with 𝑎+ < 0. The AIC values (discussed in Sect. 
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2.3.2), and the root mean square errors (RMSE) (Eq. (9)) were used in combination to assess the goodness of fit and 

accuracy of the two model approaches (i.e., univariate linear and quadratic models) as a function of integration times. 

[reference monitor (and RH) adjusted PMS3003 PM2.5 conc.] =	 [raw (or RH adjusted) PMS3003 PM2.5 conc.]		.	/0	
/2

   (6) 

 

[raw (or RH adjusted) PMS3003 PM2.5 conc.] = 𝑎) + 𝑎* × 	reference PM2.5 conc.+	𝑎+ ×	(reference PM2.5 conc.)2 (7) 5 

 

[reference monitor (and RH) adjusted PMS3003 PM2.5 conc.] = 

.52	6	7521	.	851	×	(50	.	 [raw (or RH adjusted) PMS3003 PM2.5 conc.]	)
251

        (8) 

 

RMSE =	9*
:
∑ (𝑦=>:
>?* − 𝑦>)+           (9) 10 

where n is the number of observations, 𝑦=> is the calibrated PMS3003 PM2.5 mass concentrations, and 𝑦> is the reference 

monitor PM2.5 mass concentrations. 

2.4 Sensor performance metrics 

Metrics such as the intercept, slope, and coefficient of determination (R2) obtained from OLS models of sensor outputs with 

reference instrument measurements are widely used to evaluate sensor performance (Holstius et al., 2014; Gao et al., 2015; 15 

Wang et al., 2015; Jiao et al., 2016; Cross et al., 2017; Kelly et al., 2017; Zimmerman et al., 2018). In this study, all the R2 in 

figures represent regression coefficients of the (calibration) equations while all the R2 in tables represent regression 

coefficients between the calibrated sensor and reference measurements. To date, only a few studies have attempted to 

compute parameters other than R2 to gauge the overall performance of low-cost sensor technologies. They typically focus on 

the RMSE (Holstius et al., 2014; Cross et al., 2017; Zimmerman et al., 2018), the mean absolute error (MAE) and the mean 20 

bias error (MBE) (Cross et al., 2017; Zimmerman et al., 2018), and normalized residuals (Sousan et al., 2017; Kelly et al., 

2017). In addition to the intercept, slope, and R2, we also used ratios of the calibrated PMS3003 PM2.5 mass concentrations 

to reference monitor values to examine sensors’ post-calibration performance. From this set of ratios, we calculated an 

average ratio and 1 standard deviation (Std.Dev), which are defined as mean of ratios and error for each sensor unit, 

respectively. The mean of ratios should be close to 1 after calibration, and we would expect the error of any PM2.5 mass 25 

concentration reported by a particular PMS3003 unit to be within ± 1 Std.Dev × 100 % for 68 % of the time. Knowing the 

performance of calibrated PMS3003 sensors is particularly important for understanding these sensors’ potential for future 

applications such as investigating the source and transport patterns of PM in an urban environment or examining the 

effectiveness of certain PM abatement strategies.  

 30 
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While longer averaging times (i.e., ³ 24 hours) typically smooth out noisy signals and result in enhanced sensors 

performance, shorter averaging times (i.e., hours or minutes) are of growing interest particularly in the field of exposure 

assessment (Williams et al., 2017). Similar to Williams et al. (2017), we also evaluated sensor performance over a wide 

range of time averaging intervals, namely 1 min (for the EPA RTP – the only site where 1 min reference data were 

available), 1 h, 6 h, 12 h, and 24 h. The purpose of such an examination is to better understand the trade-off between errors 5 

and averaging times when using this type of sensor so that data accuracy and precision can be weighed against the need for 

highly time-resolved data for various desirable research or citizen science applications. 

3 Results and discussion 

3.1 Duke University rooftop low ambient PM2.5 concentration environment with E-BAM as the reference monitor 

3.1.1 PM2.5 concentration, RH, and temperature on 1 h scale 10 

Table 1 shows the summary statistics for 1 h averaged measurements at Duke University from February 1, 2017 to March 

31, 2017. The 1 h E-BAM PM2.5 measurements averaged 9 ± 9 µg m-3. The hourly PM2.5 averages of the uncalibrated sensors 

were close to that of the E-BAM and had little intra-sensor variability. We calculated the coefficient of variation (defined as 

the ratio of the Std.Dev and the mean of the PM2.5 readings from the five replicate PMS3003 sensors) as an indicator of 

sensor precision which yielded 10 %, indicating the relatively high precision of the PMS3003 model. RH and temperature 15 

averaged 45 ± 19 % and 15 ± 8 °C, respectively. Figure 3 compares the 1 h E-BAM PM2.5 mass concentrations to the results 

of the five uncalibrated sensors. Overall, the uncalibrated PMS3003 measurements followed the trend in ambient PM2.5 

concentrations and were very responsive to most sudden spikes in concentrations. However, the sensors tended not to track 

the E-BAM well below ~10 µg m-3. 

3.1.2 PMS3003 performance characteristics on various timescales 20 

Correlations among the five uncalibrated PMS3003 units were high (R2 = 0.98–1.00) on 1 h timescale even under low 

ambient PM2.5 concentrations with slopes averaging 1 ± 0.1 and negligible intercepts averaging 0.3 ± 0.3 (Fig. S1), 

suggesting excellent intra-PMS3003 precision. Regressions of the uncalibrated 1 h and 24 h PM2.5 measurements from the 

five PMS3003 units versus the corresponding E-BAM PM2.5 values indicate that different PMS3003 sensor units generally 

had similar calibration factors (i.e., intercept and slope values) on the same timescale (Fig. 4). Comparing across the time 25 

averaging interval spectrum (Table 2), the calibration factors on different timescales were consistent with the exception of 1 

h results. Raw 1 h aggregated PMS3003 PM2.5 concentration measurements correlated only moderately with the 

corresponding E-BAM data with a mean R2 of 0.40 (range: 0.36–0.41). When the averaging time increased from 1 h to 6 h, 

the R2 showed a marked improvement (mean: 0.80, range: 0.77–0.82). When the averaging time further rose to 12 h and 
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from 12 h to 24 h, although still accompanied by improvements in R2 (mean: 0.84 and 0.93, respectively), the magnitudes of 

the improvements were considerably smaller than the one seen from 1 h to 6 h. 

 

The SCAQMD (2017a) also field-tested three Plantower PMS3003 units (Laser Egg sensors) alongside an FEM (BAM-

1020, Met One Instruments) over a study period of similar length (roughly 2 months) with similar ambient PM2.5 5 

concentrations (1 h PM2.5 range: 0–40 µg m-3) in Riverside, CA, although the data were presented differently (with reference 

and sensor measurements on y- and x-axis, respectively) and thus the values of calibration factors cannot be directly 

compared to our study. The SCAQMD study demonstrated the calibration factors on 1 h scale (intercept: 5.9–6.3, slope: 

0.50–0.57) were virtually the same as the values on 24 h scale (intercept: 6.0–6.3, slope: 0.48–0.57). This observation is in 

contrast to our finding where 1 h results (intercept: 3.2–4.1, slope: 0.64–0.79) differed dramatically from the 24 h values 10 

(intercept: -4.6–-3.6, slope: 1.5–1.8). This discrepancy might stem from the use of different reference instruments in the two 

studies. While both instruments use beta attenuation as the measurement principle, the accuracy of BAM-1020 (FEM) for 1 h 

measurements in the SCAQMD study is significantly better than that of the E-BAM-9800 (research-grade) in our study. This 

may also account for the higher R2 on 1 h scale in the SCAQMD study (around 0.58). 

 15 

Table 2 shows that the pattern of errors was aligned with our expectation, with each of the four time integration values 

having successively more accurate post-calibration PMS3003 PM2.5 concentrations than all the previous time integration 

values (i.e., the error decreased as the averaging time increased). Furthermore, the steep gradient at which the mean error 

reduced over averaging time (from 201 % for 1 h to 15 % for 24 h) was unusual and most likely caused by E-BAM’s poor 

signal-to-noise ratio in low concentrations with short real-time average periods. This finding points out that the precision of 20 

reference monitors is a critical factor in sensor evaluation, as discussed in detail in Sect. 3.2.2. It should be noted that the 

strong correlation on 6 h scale (R2 mean = 0.8) did not translate into a low error (mean: 53 %). This observation emphasizes 

the downside of overreliance on the correlation in the examination of sensor performance. 

 

Figure S2 displays the relationship between PMS3003-to-E-BAM PM2.5 ratio and RH on 1 h scale at Duke University. There 25 

was no apparent pattern of fractional increase in PM2.5 weight measured by uncalibrated PMS3003 sensors with RH. Fitting 

the empirical RH correction factor model (i.e., Eq. (1) in Sect. 2.3.1) to these field data resulted in an R2 close to 0. 

Examination of patterns and model fitting at longer averaging time intervals (i.e., 6 h, 12 h, and 24 h) yielded comparable 

results (not shown). These findings are indicative of the negligible impact of RH on PMS3003 PM2.5 responses at Duke 

University. This lack of RH interference is believed to stem from a combination of infrequently high RH conditions during 30 

the winter months (only 12.5 % and 4.0 % of the entire time greater than 70 % and 80 %, respectively) and large 

measurement error inherent in the E-BAM under low PM2.5 concentrations. 
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Table S1 demonstrates that the AIC differences between the calibration models with only a true PM2.5 concentration term 

and the models incorporating an additional temperature term were greater than 2 for only the 1 h aggregated data, implying 

the calibration model with an added temperature term was significantly better than its simpler counterpart only on the 1 h 

scale. Therefore, the temperature adjustment was performed only for 1 h averaged PMS3003 responses at the Duke 

University study site. Counterintuitively, Table 2 shows that the temperature correction worsened the sensor performance by 5 

bringing the mean of ratios down from 0.97 to 0.90, and by bringing the error up from 201 % to 207 %. The deterioration in 

performance was likely to arise from large measurement error inherent in the E-BAM under low PM2.5 concentrations. 

3.2 RTP low ambient PM2.5 concentration environment with SHARP and T640 as the reference monitors 

Following sampling on the rooftop at Duke, we moved three PMS3003 units (labeled PMS3003-1 through -3) from the Duke 

University study site to the US EPA AIRS on its RTP campus and further compared these three units to the more accurate 10 

and precise regulatory FEMs (i.e., SHARP and two T640s). This allowed us to determine whether much of the poor 

performance of the Plantower PMS3003 sensors, the indistinct RH effects on the PMS3003 PM2.5 measurements, and the 

unsuccessful temperature corrections to the PMS3003 PM2.5 values, were attributable to the inferior precision of the E-BAM. 

3.2.1 PM2.5 concentration, RH, and temperature on 1 h scale 

Fig. 5a shows 1 h time series data from all the reference monitors including the SHARP’s embedded nephelometer and Fig. 15 

5b juxtaposes the T640_Roof and the three uncalibrated PMS3003 units PM2.5 measurements at 1 h time resolution. Table 1 

indicates that the 1 h averaged ambient PM2.5 levels at the US EPA RTP (9–10 µg m-3) matched those at Duke University (9 

µg m-3). However, Fig. 5a depicts smaller ranges of ambient PM2.5 concentrations than were measured at Duke University. 

Table 1 indicates that the Std.Dev (less than 4 µg m-3) and maximum PM2.5 concentration (less than 20 µg m-3) at the EPA 

RTP were significantly lower than at Duke University (9 µg m-3 and 62 µg m-3 for Std.Dev and maximum, respectively). 20 

These comparisons imply that the RTP sampling location had overall lower ambient PM2.5 concentrations and was 

consequently more challenging for low-cost sensors than the Duke University sampling site. During the measurement period, 

the mean RH and temperature were 64 ± 22 % and 30 ± 7 °C, respectively. The higher average RH level at the EPA RTP 

than at Duke University (45 ± 19 %) accentuated the RH interference in the PMS3003 PM2.5 measurements, as seen in Sect. 

3.2.3. 25 

3.2.2 PMS3003 performance characteristics on various timescales prior to adjustment for meteorological parameters 

Figures 6a–b summarize graphically and statistically the pairwise correlations between all the instruments’ 1 min aggregated 

and 1 h aggregated PM2.5 mass concentrations, respectively. The R2 and calibration factors between all the instruments on 1 

min and 1 h scale were similar. The PMS3003 sensors were well correlated with one another (R2 = 0.97), the two T640s (R2 

³ 0.63) and the SHARP’s embedded nephelometer (R2 ³ 0.49) even for 1 min aggregated data at exceptionally low ambient 30 
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PM2.5 levels. In contrast, the 1 min or 1 h PMS3003–SHARP correlations (R2 ³ 0.25) were poor and worse than the 1 h 

PMS3003–E-BAM correlations (R2 ³ 0.36) at the Duke site. Additionally, the SHARP had only moderate correlations with 

the two T640s (R2 £ 0.58) or the SHARP’s embedded nephelometer (R2 = 0.59) even though both the SHARP and T640 are 

US-designated PM2.5 FEMs and the SHARP readings take into account its raw nephelometer values. 

 5 

While the common optical-based principles of operation shared by T640 (and nephelometer) and PMS3003 could partially 

explain the stark performance contrast between the SHARP and T640 (and nephelometer), the lower reported precision of 

the beta-attenuation-based approach with a 24 h average of ±2 µg m-3 for SHARP than the T640 with an 1 h average of ±0.5 

µg m-3 in low ambient PM2.5 concentration environments appears to be the root cause (Thermo Fisher Scientific, 2007; 

Teledyne Advanced Pollution Instrumentation, 2016). A previous study by Holstius et al. (2014) demonstrated the poor 10 

performance of BAM-1020 in a comparably low concentration environment in Oakland, CA. They have used both statistical 

simulation based on the true ambient PM2.5 distribution and the measurement uncertainty of BAM-1020 (1 h average: ±2.0–

2.4 µg m-3) provided by the manufacturer (Met One Instruments) and field test results to show that an R2 of ~0.59 is as 

correlated as one would expect from the 1 h measurements of a pair of collocated BAM-1020s. In contrast to the moderate 

intra-BAM-1020 correlation (~0.59) reported by Holstius et al. (2014), the two collocated T640s yielded an ideal R2 of 0.95 15 

(Fig. 6), which suggests a significantly smaller measurement error in the T640 than in the BAM-1020. The SHARP is known 

to derive its reported values by dynamically adjusting its embedded nephelometer readings based on its BAM measurements. 

In other words, the SHARP performance was adversely affected by the low precision of its embedded BAM at low ambient 

PM2.5 levels. All these observations seem to imply that beta-attenuation-based monitors might be unfavorable for low-cost 

particle sensor evaluation at the low concentrations typically present in the US. US EPA FEMs are valid for 24 h PM2.5 20 

measurements rather than for 1 h measurements (Jiao et al., 2016). An inappropriate selection of reference monitors might 

prejudice the overall performance of low-cost sensors particularly for time resolutions finer than 24 h. 

 

The T640 sitting on the roof (T640_Roof) was chosen over the SHARP and the other T640 unit (T640_Shelter) as the 

reference monitor because 1) the T640 as a US-designated PM2.5 FEM is better for sensor evaluation at low concentrations 25 

than a SHARP; 2) the T640_Roof had slightly lower correlations with the sensors than the T640_Shelter, therefore giving 

conservative estimates of PMS3003 performance. Similar to the Duke University results, comparisons of the data using 

regression between the same set of instruments in Figs. 7a–d present similar calibration factors across the sensors on the 

same timescale, therefore indicating the excellent precision of the PMS3003 model. Unlike the analysis of the Duke 

University data, the calibration factors (prior to adjustments for meteorological parameters) varied little from one averaging 30 

timescale to another (Table 3). Despite an appreciable improvement in R2 compared to the Duke University site being found 

only on the 1 h scale, the accuracy of the T640 calibrated PMS3003 units substantially outperformed their E-BAM calibrated 

counterparts across the entire averaging time spectrum (Table 3) with the most pronounced difference on 1 h scale (27 % vs. 
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201 %). A less dramatic mean error drop from 1 h to 24 h scale at the EPA RTP (27 % to 9 %) compared to what was seen at 

the Duke University site (201 % to 15 %) highlights the inferior precision of the E-BAM and further undermines its 

credibility as a reference sensor at low PM2.5 concentrations. It should be noted that the non-normally distributed residuals on 

1 min, 1 h and 6 h scales in Figs. 7a–c indicate that the true ambient PM2.5 concentration term alone was not sufficient to 

explain the variation of PMS3003 measurements, therefore revealing the likely existence of RH or temperature impacts. 5 

3.2.3 RH adjustment to sensor PM2.5 measurements 

Figures 7e–g display the regressions of PM2.5 measurements from the RH adjusted PMS3003 units versus the T640_Roof on 

1 min to 6 h timescales. The empirical equations of the RH correction factors (i.e., Eq. (1)) on the corresponding timescales 

are shown in Fig. 8 and they fitted well with the 1 min to 6 h aggregated data (R2 ³ 0.48). The RH adjustment was not 

implemented to the 12 h and 24 h aggregated data because the equation regression fit statistics degraded when evaluating 10 

these data, likely because of an insufficient number of observations and stronger smoothing effects at longer averaging time 

intervals. Aerosols at the EPA RTP generally exhibited smooth and continuous growth above the lowest collected RH rather 

than distinct deliquescence behavior (Fig. 8). The RH correction factors were roughly 20 to 30 % above 1 even at the lowest 

RH (below 30 %), which justifies the decision of conducting RH adjustments across the entire range of recorded RH without 

incorporating an RH threshold. Despite the promising descriptions of correction factors as a function of RH, wide divergence 15 

in the magnitude of correction factors for a given RH exists. This divergence is likely the result of substantial day-to-day 

variation in the chemical composition of the aerosols (Day and Malm, 2000). A higher fraction of soluble inorganic 

compounds can contribute to a larger magnitude of RH correction factors (Day and Malm, 2000). 

 

The RH corrections brought the PMS–T640 correlations to above 0.90 for all 1 min, 1 h, and 6 h aggregated data (see Figs. 20 

7e–g). This significant improvement in R2 implies a major RH influence that can explain up to nearly 30 % of the variance in 

1 min and 1 h PMS3003 PM2.5 measurements in addition to the true ambient PM2.5 concentration variable. Figure S3 

demonstrates that the PMS3003-to-T640 ratios after the RH corrections were also considerably closer to a strict normal 

distribution than those with only the FEM corrections (Fig. S4). However, Figs. 7e–g suggest that the PMS3003 PM2.5 

measurements were still not in complete agreement with the T640 readings even after the RH adjustments. This discrepancy 25 

might stem from variations in aerosol composition described previously or impacts of particle size biases (Chakrabarti et al., 

2004), therefore warranting a further step of FEM conversion (adjustment). According to Table 3, the combination of RH 

and FEM corrections were able to substantially improve the accuracy of PMS3003 PM2.5 measurements by reducing the 

mean errors to within 12 % even for data at 1 min time resolution. The ideal normal distribution of PMS3003-to-T640 ratios 

in combination with the high accuracy and precision of the finest-grained data proves especially beneficial for minimization 30 

of exposure measurement errors in short-term PM2.5 health effect studies (Breen et al., 2015) or mapping of intra-urban PM2.5 

exposure gradients (Zimmerman et al., 2018). 
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3.2.4 Temperature adjustment to sensor PM2.5 measurements 

The decision to conduct the temperature adjustments to 1 min, 1 h, 6 h, and 12 h aggregated PMS3003 PM2.5 measurements 

was based on the AIC results in Table S1. Table S1 demonstrates that the AIC values of the calibration models incorporating 

an additional temperature term were substantially lower than those of the models including only a true PM2.5 concentration 

term at these levels of temporal resolution, therefore indicating the significance of the temperature variable in the calibration 5 

models. The 24 h AIC values are not reported as 24 h observations generally have limited statistical power to determine the 

significance of temperature in the models. 

 

As shown in Table 3, the temperature corrections (when available) could further reduce the mean PMS3003 PM2.5 

measurement errors by no more than 4 %, with the largest reduction in mean errors found in the 12 h averaged data. This 10 

marginal improvement stands in marked contrast to that brought about by the RH corrections (up to 17 %), suggesting the 

triviality of temperature adjustments in the entire suite of calibrations. Nevertheless, the addition of the temperature 

adjustments succeeded in lowering the mean errors to within 10 % at 1 min, 1 h, and 6 h time resolutions, which were 

comparable to the value at 24 h time resolution (9 %). Figure S5d also depicts the PMS3003-to-T640 ratios at 12 h averaging 

interval after the temperature corrections and shows that these ratios were slightly more normally distributed than those with 15 

only the FEM corrections (Fig. S4). As a result, whether to conduct temperature adjustments is contingent upon the error 

targets, which are further dependent on the performance goals for the desired applications. 

3.3 IIT Kanpur high ambient PM2.5 concentration environment with E-BAM as the reference monitor 

Low-cost particle sensors are commonly known to exhibit an upward trend in accuracy with increasing ambient PM2.5 

concentrations (Williams et al., 2017; Johnson et al., 2018). Moreover, Kanpur presents distinct seasonal variations in the 20 

particle size distribution. During the early stage of the monsoon season (June), coarse mode aerosols are predominant due to 

the transport of dry dust particles from the western Thar Desert or arid regions to Kanpur. In contrast, during the post-

monsoon season, anthropogenic accumulation mode aerosols transported from the north and northwest dominate over 

Kanpur (Sivaprasad and Babu, 2014; Li et al., 2015; Bran and Srivastava, 2017). We explored how the variability in the 

ambient PM2.5 concentrations and the particle size distribution affected the low-cost PM sensors’ performance and 25 

calibration curves relative to the reference monitor (E-BAM in our study). 

3.3.1 PM2.5 concentration, RH, and temperature on 1 h scale 

Table 1 shows that Kanpur had significantly higher ambient PM2.5 levels for a 1 h averaging period during the post-monsoon 

season (116 ± 57 µg m-3) than during the monsoon season (36 ± 17 µg m-3). This seasonal increase in ambient PM2.5 

concentrations is aligned with our expectation and can be attributed to diminished wet scavenging by precipitation, a shallow 30 

boundary layer (mixing height), and lower ventilation coefficients (wind speed) during the post-monsoon season (Gaur et al., 
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2014). While only moderately high ambient PM2.5 levels were found during the Kanpur monsoon season, they were 

substantially higher than those measured at the Duke University site (9 ± 9 µg m-3). The field tests in this study provided a 

wide range of ambient PM2.5 levels spanning from high (Kanpur post-monsoon season), moderate (Kanpur monsoon season), 

to low (Duke University site). This PM2.5 concentration range coupled with the same type of reference monitor (E-BAM) is 

ideal for constructing empirical error curves to investigate the sensor performance within each individual concentration class 5 

as a function of averaging time period (as discussed in Sect. 3.3.4). The RH values during the monsoon season (62 ± 15 %) 

were comparable to those during the post-monsoon season (63 ± 16 %). These RH values measured in Kanpur were also 

similar to those at the EPA RTP site (64 ± 22 %). The temperature during the monsoon season (33 ± 5 °C) was considerably 

higher than that during the post-monsoon season (22 ± 4 °C). 

3.3.2 Comparing calibrations across locations 10 

As with the two field tests in the low concentration region, the two PMS3003 units were highly correlated with each other 

during both the monsoon (R2 = 0.99) and post-monsoon seasons (R2 = 0.93) in Kanpur (Fig. S6). This good agreement is also 

reflected in Fig. 9, which displays that the two sensors were in sync and tracked reasonably well with the E-BAM. However, 

there was a minor decrease in the intra-sensor correlation from the monsoon to post-monsoon seasons that might signal a 

performance change of the two PMS3003 sensors either due to minor deterioration or a change in the pollutant source. 15 

Figure S6 illustrates that the magnitude of the deviation from the regression line during the monsoon season was likely 

irrelevant to the deployment time (measured by the number of hours past the beginning of the Kanpur study, i.e., 2017 June 

08 00:00). In contrast, the extent of the divergence was somewhat larger for the longer deployment time near the high end of 

the PM2.5 range over the post-monsoon period. One plausible explanation for the distinguishable post-monsoon (but not 

monsoon season) change is the routine exposure (for nearly a month) of the sensors to high concentrations of accumulation 20 

mode aerosols. This may be especially detrimental to PM sensors; all the more so because the foggy condition during post-

monsoon and winter over Kanpur may further exacerbate the accumulation of aerosol particles at lower surfaces and 

therefore the deposition of particles within the sensors (Li et al., 2015; Bran and Srivastava, 2017). This constant exposure 

possibly caused disproportionately large detection errors primarily near the upper end of the PM2.5 range. The effect of PM 

deposition on the low-cost PM sensor performance and calibration particularly in areas of high ambient PM concentrations 25 

(e.g., Kanpur) was not evaluated as part of this work. Future studies will present how preventive maintenance of low-cost 

sensors including periodic cleaning can benefit their performance. Another possible explanation is the change of dominant 

pollutant source from the early stage of monsoon (long-range transport of mineral dust from Iran, Afghanistan, Pakistan, and 

the Thar Desert) to post-monsoon (local impact of biomass burning emissions) season (Ram et al., 2010). Sensors are likely 

to respond differently to different varieties of aerosols and the change in sensor responses might be most pronounced near 30 

the upper end of the PM2.5 range. Figure 9b substantiates the potential change by showing that the two uncalibrated 

PMS3003s were unable to match the local minima of the E-BAM (even local minima below 40 µg m-3) throughout the post-

monsoon season, as they were during the monsoon season in Fig. 9a. 
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Despite the slight potential change, higher PMS3003–E-BAM correlations were found in the post-monsoon season than the 

monsoon season over all time averaging intervals (Table 4). Figure 10 displays the 1 h and 24 h average regression plots for 

the two uncalibrated sensors against the E-BAM during the monsoon and post-monsoon seasons. Similar to the Durham and 

EPA RTP field tests, different PMS3003 units had similar calibration factors over the same averaging timescales during both 5 

seasons. Comparable to the EPA RTP evaluation, the sensor units at or in the same study location or season were roughly 

similar in sensitivity and baseline regardless of averaging time periods (Fig. 10 and Table 4). Figure 10 also shows a distinct 

baseline drift of the PMS3003s from the monsoon to the post-monsoon season regime. This appreciable drift in baseline 

agreed with the sensors being incapable of reaching the local minima of true ambient PM2.5 concentrations. This may also 

suggest a performance change or may be a reflection of a different calibration regime. 10 

 

Figure 11 depicts a heat map of mean errors in calibrated PMS3003 PM2.5 measurements with respect to averaging 

timescales and calibration methods across varied sampling locations or seasons. Even though the EPA RTP sampling 

location had the lowest ambient PM2.5 level among the three study locations, it achieved the highest accuracy over each 

averaging time period, therefore reiterating a vital role the precision of reference instruments plays in evaluating sensor 15 

performance. For the remaining two sampling sites with an E-BAM as the reference monitor, lower errors were generally 

found in higher PM2.5 concentration environments. The exceptions to this rule were observed at 12 h (Kanpur post-monsoon 

error > monsoon error) and 24 h (Kanpur monsoon error > Duke University site error) time intervals. The occurrence of 

these anomalies can be explained by stronger smoothing effects than PM2.5 concentration effects over longer averaging 

times. Table 4 details the errors in calibrated PMS3003 PM2.5 measurements during the monsoon and post-monsoon seasons 20 

in Kanpur. The appreciably narrower reductions in mean errors from 1 h to 24 h scale during both seasons in Kanpur 

(monsoon: 46 % to 17 %, post-monsoon: 35 % to 11 %) compared to the reduction at Duke University site (201 % to 15 %) 

underscore the inferior precision of E-BAM at low ambient PM2.5 concentrations. 

 

The lack of requirement for RH corrections during both testing seasons in Kanpur paralleled the outcomes of the Duke 25 

University field test. Figure S7 shows that the empirical RH correction equation fitted poorly with the widely scattered data 

from both monsoon (R2 £ 0.13) and post-monsoon seasons (R2 £ 0.03). We speculate that the E-BAM’s low precision might 

be responsible for the failure to establish the impact of RH on PMS3003 responses, considering that the T640 measurements 

resulted in a significant RH relationship under similar conditions. We attempted to apply the empirical RH adjustment 

equations derived at the EPA RTP testing site to the Kanpur and Duke University data sets. However, no improvements in 30 

correlations or errors were found, indicating RH correction function appears to be highly specific to study sites because of its 

great reliance on particle chemical, microphysical, and optical properties (Laulainen, 1993). The temperature variable was 

found statistically significant and therefore incorporated in the calibration models at time resolutions finer than 6 h for the 

Kanpur monsoon data, and finer than 12 h for the post-monsoon data (Table S1). Overall, the temperature adjustments can 
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scale the PMS3003 PM2.5 measurement errors down by no more than 7 %, with the 6 h averaged data during the post-

monsoon season marking the greatest improvement (Table 4). These marginal improvements were comparable to those 

observed at the EPA RTP testing site (within 4 %). 

3.3.3 Comparing between the methods for calibrating the Kanpur post-monsoon measurements 

We observed a relatively pronounced non-linear relationship between the raw PMS3003 and the E-BAM PM2.5 responses 5 

over the full concentration range examined during the post-monsoon season at IIT Kanpur (Fig. 10). In previous research, 

similar nonlinearity was ubiquitously characterized by attenuated responses towards the upper end of low-cost sensors’ 

operation range in both field campaigns (Gao et al., 2015; Kelly et al., 2017; Johnson et al., 2018) and laboratory settings 

(Austin et al., 2015; Wang et al., 2015). The shape of calibration curves is dependent on varied factors such as type of low-

cost sensor, range of true ambient PM2.5 concentrations, particle size and particle composition (Wang et al., 2015). Without 10 

additional information, we are unable to parse out the exact reasons for the occurrence of this nonlinearity in our data during 

the Indian post-monsoons season. Nevertheless, we speculate that the comparatively high concentration range along with the 

prevalence of small particles encountered during the post-monsoon season might account for this nonlinearity (Kelly et al., 

2017). In the present study, the PMS3003 responses were well characterized by a linear model below ~125 µg m-3, which 

was close to the highest 1 h PM2.5 concentration during the monsoon season. This threshold was around 3 times greater than 15 

that reported by Kelly et al. (2017), who field-tested PMS1003s under an ammonium nitrate dominated, moderately high 

PM2.5 concentration condition (1 h PM2.5 mean: up to 20 µg m-3, range: 10–70.6 µg m-3). 

 

Researchers have used higher-order polynomial (Austin et al., 2015; Gao et al., 2015), penalized spline (Austin et al., 2015), 

and exponential functions (Kelly et al., 2017) to capture non-linear responses of low-cost sensors. In this study, we explored 20 

the quadratic model to describe the full range response of the PMS3003s during the Kanpur post-monsoon season. The 

quadratic model was chosen because it is straightforward to understand, interpret, disseminate, and use. The time series of 

the 1 h and 24 h averages of the calibrated PMS3003 PM2.5 responses using the two calibration models (i.e., simple linear 

and quadratic models) can be found in Fig. S8. Figure S8 shows that the quadratic model might suit the post-monsoon 1 h 

aggregated data better than the simple linear model as the simple linear model failed to capture the local minima of the E-25 

BAM throughout the post-monsoon period. The two models only differed little for the 24 h aggregated data. This is expected 

as Fig. 10 and Fig. S9 display that the strength of nonlinearity declined as the averaging times increased because longer 

averaging times reduced the number of relatively low concentration observations (such as below ~100 µg m-3). Table S2 

summarizes the goodness of fit and accuracy estimates for the two model types as a function of time averaging intervals 

during the post-monsoon season. Table S2 indicates that the quadratic fit appeared to have better goodness of fit and 30 

accuracy estimates for the current post-monsoon data set than the simple linear fit with both lower AIC and RMSE values at 

all time resolutions. Compared to the simple linear model, the quadratic model could further improve the mean accuracy of 

PMS3003 PM2.5 responses by up to 11 % (Table 4). Even when the nonlinearity was not strong enough to make the simple 
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linear fit statistically different from the quadratic fit (i.e., the quadratic term 𝑎+ in the quadratic fit (Eq. (7)) not significantly 

different from 0 with p>0.1) at 24 h integration time, the quadratic fit can still reduce the mean error and the range of RMSEs 

by 2 % (Table 4), and 3 µg m-3 (Table S2), respectively. This might also shed some light on the choice of calibration 

methods for PMS3003 PM2.5 responses in future deployments. The quadratic model should be chosen over the simple linear 

model as the starting point (default approach) to PMS3003 PM2.5 responses calibration since the quadratic model can always 5 

be of larger benefit to the accuracy of PMS3003 measurements than the simple linear model even when the nonlinearity is 

weak at low ambient PM2.5 concentrations or at longer time averaging intervals. 

3.3.4 Empirical error curves for PMS3003 PM2.5 measurements with E-BAM as the reference monitor 

Empirical error curves for PMS3003 PM2.5 measurements by calibration method and averaging time are presented in Fig. 12 

by combining the results of all the field tests with E-BAM as the reference monitor (i.e., Duke University and IIT Kanpur 10 

data sets). These curves are useful for easy reference to the magnitude of errors for a given concentration range at a given 

temporal resolution. Overall, regardless of the averaging times, the largest errors were found below 20 µg m-3, particularly in 

the range of 0 to 10 µg m-3. Although further work is required to improve the error curves by collecting more data points 

especially near the upper end of the PM2.5 distributions, we would presume calibrated PMS3003 PM2.5 responses to be 

relatively stable and consistent above ~70 µg m-3 for 1 h aggregated data and above ~50 µg m-3 for 6 h to 24 h aggregated 15 

data with uncertainties roughly confined within 25 %, particularly when the quadratic calibration models are employed. 

 

Given the broad range in PM2.5 concentrations, Fig. 12 seems to demonstrate that the quadratic calibration method performed 

better than their simple linear counterpart at all time intervals with steadier mean of ratios lines (remaining more constantly 

at 1 regardless of concentration classes) and relatively low uncertainties. The quadratic model outperformed the simple linear 20 

model particularly over the moderately high concentration range (i.e., ~60–140 µg m-3). Although a lesser improvement than 

over the moderately high concentration range, the quadratic fit still managed to slightly tighten the shaded uncertainty region 

over the range of ~30–60 µg m-3, where few differences existed between the two calibration curves. Table S3 shows that the 

quadratic fit had smaller AIC and RMSE values than the simple linear fit at all time intervals. Figure S10 further shows that 

the quadratic models fitted remarkably better than the simple linear model to the data. These observations support using the 25 

quadratic rather than the simple linear method as the general approach in calibrating PMS3003 PM2.5 responses. 

4 Conclusions 

This study comprised three distinct field campaigns in both an urban-influenced setting in Kanpur, India during both 

monsoon (1 h averages: [PM2.5] = 36 ± 17 µg m-3; RH = 62 ± 15 %; temperature = 33 ± 5 °C) and post-monsoon seasons 

([PM2.5] = 116 ± 57 µg m-3; RH = 63 ± 16 %; temperature = 22 ± 4 °C) and two suburban settings in Durham ([PM2.5] = 9 ± 30 

9 µg m-3; RH = 45 ± 19 %; temperature = 15 ± 8 °C) and RTP, NC, US ([PM2.5] = 10 ± 3 µg m-3; RH = 64 ± 22 %; 
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temperature = 30 ± 7 °C). The goal is to provide the adequate range of conditions to characterize how variability in ambient 

PM2.5 concentrations, meteorological factors (such as temperature and RH), and reference monitor types (Durham and 

Kanpur: E-BAM; RTP: T640 and SHARP) can affect the performance of low-cost Plantower PMS3003 sensors’ PM2.5 

measurements against reference instruments at 1 min, 1 h, 6 h, 12 h and 24 h integration times. This information is ultimately 

important for identifying suitable research or citizen science applications for these sensors given their quantified capabilities. 5 

 

The lower mean errors of PMS3003s at the EPA RTP site (from 27 % for 1 h to 9 % for 24h) than those at the remaining 

sites (Duke: from 201 % to 15 %; Kanpur monsoon: from 46 % to 17 %; Kanpur post-monsoon: from 35 % to 11 %) 

underscores the critical role the precision of reference instruments (T640: ±0.5 µg m-3 for 1 h; SHARP: ±2 µg m-3 for 24 h, 

better than the E-BAM) plays in evaluating sensor performance and the potential unfavorability of beta-attenuation-based 10 

monitors for testing sensors at low concentrations. Nonetheless, longer averaging times (such as 24 hours) typically 

smoothed out noisy signals and resulted in similar levels of error, indicating the feasibility of calibrating sensors using 

suboptimal reference analyzers as long as an appropriate averaging time is chosen. Even though the RH correction factor 

models might be highly location-specific, it is striking to see that they were capable of explaining up to nearly 30 % of the 

variance in 1 min, 1 h and 6 h aggregated sensor measurements and reducing mean errors down from ~22–27 % to roughly 15 

10 % even at the finest 1 min time resolution. Compared to the RH corrections, temperature corrections were found to be 

relatively small and can only scale uncertainties down by 7 % at most; however, in addition to the other corrections this may 

help to achieve the highest possible accuracy level. It is important to note that the success of both RH and temperature 

corrections relies on the precision of reference instruments. Properly accounting for these systematic meteorology-induced 

influences is helpful in making high quality PM2.5 measurements at a low cost. Additionally, we observed that PMS3003s 20 

exhibited non-linear PM2.5 responses relative to an E-BAM when ambient PM2.5 levels exceeded ~125 µg m-3. We found that 

the quadratic model is more suitable than the simple linear regression model for effectively capturing this nonlinearity and 

can further reduce mean errors by up to 11 %. Furthermore, we demonstrated that the quadratic model should be chosen over 

the simple linear model as the starting point (default approach) in calibrating PMS3003 PM2.5 responses since the quadratic 

model can always be of larger benefit to the accuracy of PMS3003 measurements than the simple linear model even when 25 

the nonlinearity is weak at low ambient PM2.5 concentrations or at longer time averaging intervals. The empirical error 

curves constructed by pooling the results of all the field tests with E-BAMs as the reference monitor were indicative of 

relatively stable and consistent calibrated responses above ~70 µg m-3 for 1 h aggregated data and above ~50 µg m-3 for 6 h 

to 24 h aggregated data with uncertainties roughly confined within 25 %, particularly when the quadratic calibration models 

are employed.  30 

 

Overall, we conclude that appropriate calibration models using ideal reference monitors and dynamic adjustments for 

meteorological parameters are an essential prerequisite for the Plantower PMS3003 sensors to achieve high accuracy and 

precision over a wide range in PM2.5 concentration typically encountered in the ambient monitoring. After proper calibration, 
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the Plantower PMS3003 low-cost PM sensors are promising monitors for dense, wireless, real-time PM sensor network 

development in hazy urban areas such as Delhi and Mumbai, India to complement the existing networks by better 

approximating the location of major PM2.5 sources (local vs. regional) and by advancing our understanding of the influence 

of meteorology such as specific wind patterns on the resulting regional PM2.5 levels in order to guide local and regional air 

quality management (Hagler et al., 2006). 5 

Data availability 

The data are available upon request to Tongshu Zheng (tongshu.zheng@duke.edu). 

Competing interests 

The authors declare that they have no conflict of interest. 

Disclaimer 10 

The US Environmental Protection Agency (EPA) through its Office of Research and Development participated in this 

research. The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of 

EPA. It has been subjected to EPA Agency review and approved for publication. Mention of trade names or commercial 

products does not constitute endorsement or recommendation for use. 

Acknowledgments 15 

Sachchida N. Tripathi, Shilpa Shirodkar, and Ronak Sutaria are supported under the Research Initiative for Real-time River 

Water and Air Quality Monitoring program funded by the Department of Science and Technology, Government of India and 

Intel Corporation, and administered by the Indo-US Science and Technology Forum. The authors would like to thank Tim 

Hanley at EPA OAQPS for providing the raw 1 min data from the T640 PM mass monitors used in the current study. The 

authors are also grateful to Christina Norris at Duke University for her insightful advice and comments on the paper. 20 

References 

Austin, E., Novosselov, I., Seto, E. and Yost, M. G.: Laboratory evaluation of the Shinyei PPD42NS low-cost particulate 

matter sensor, PLoS One, 10(9), 1–17, doi:10.1371/journal.pone.0137789, 2015. 



24 
 

Bergin, M. H., Tripathi, S. N., Jai Devi, J., Gupta, T., Mckenzie, M., Rana, K. S., Shafer, M. M., Villalobos, A. M. and 

Schauer, J. J.: The discoloration of the Taj Mahal due to particulate carbon and dust deposition, Environ. Sci. Technol., 

49(2), 808–812, doi:10.1021/es504005q, 2015. 

Bran, S. H. and Srivastava, R.: Investigation of PM2.5 mass concentration over India using a regional climate model, Environ. 

Pollut., 224, 484–493, doi:10.1016/j.envpol.2017.02.030, 2017. 5 

Breen, M. S., Long, T. C., Schultz, B. D., Williams, R. W., Richmond-Bryant, J., Breen, M., Langstaff, J. E., Devlin, R. B., 

Schneider, A., Burke, J. M., Batterman, S. A. and Meng, Q. Y.: Air Pollution Exposure Model for Individuals (EMI) in 

Health Studies: Evaluation for Ambient PM 2.5 in Central North Carolina, Environ. Sci. Technol., 49(24), 14184–14194, 

doi:10.1021/acs.est.5b02765, 2015. 

Chakrabarti, B., Fine, P. M., Delfino, R. and Sioutas, C.: Performance evaluation of the active-flow personal DataRAM 10 

PM2.5 mass monitor (Thermo Anderson pDR-1200) designed for continuous personal exposure measurements, Atmos. 

Environ., 38(20), 3329–3340, doi:10.1016/j.atmosenv.2004.03.007, 2004. 

Chow, J. C.: Measurement methods to determine compliance with ambient air quality standards for suspended particles, J. 

Air Waste Manag. Assoc., 45(5), 320–382, doi:10.1080/10473289.1995.10467369, 1995. 

Crawley, M. J.: 9. Statistical Modelling, in: The R Book, 2nd ed., John Wiley & Sons, UK, 388-448, 2017a. 15 

Crilley, L. R., Shaw, M., Pound, R., Kramer, L. J., Price, R., Young, S., Lewis, A. C. and Pope, F. D.: Evaluation of a low-

cost optical particle counter (Alphasense OPC-N2) for ambient air monitoring, Atmos. Meas. Tech., 11(2), 709–720, 

doi:10.5194/amt-11-709-2018, 2018. 

Cross, E. S., Williams, L. R., Lewis, D. K., Magoon, G. R., Onasch, T. B., Kaminsky, M. L., Worsnop, D. R. and Jayne, J. 

T.: Use of electrochemical sensors for measurement of air pollution: Correcting interference response and validating 20 

measurements, Atmos. Meas. Tech., 10(9), 3575–3588, doi:10.5194/amt-10-3575-2017, 2017. 

Day, D. E. and Malm, W. C.: Aerosol light scattering measurements as a function of relative humidity: A comparison 

between measurements made at three different sites, Atmos. Environ., 35(30), 5169–5176, doi:10.1016/S1352-

2310(01)00320-X, 2001. 

Gao, M., Cao, J. and Seto, E.: A distributed network of low-cost continuous reading sensors to measure spatiotemporal 25 

variations of PM2.5 in Xi’an, China, Environ. Pollut., 199, 56–65, doi:10.1016/j.envpol.2015.01.013, 2015. 

Gaur, A., Tripathi, S. N., Kanawade, V. P., Tare, V. and Shukla, S. P.: Four-year measurements of trace gases (SO2, NOx, 

CO, and O3) at an urban location, Kanpur, in Northern India, J. Atmos. Chem., 71(4), 283–301, doi:10.1007/s10874-014-

9295-8, 2014. 

Ghosh, S., Gupta, T., Rastogi, N., Gaur, A., Misra, A., Tripathi, S. N., Paul, D., Tare, V., Prakash, O., Bhattu, D., Dwivedi, 30 

A. K., Kaul, D. S., Dalai, R. and Mishra, S. K.: Chemical characterization of summertime dust events at Kanpur: Insight into 

the sources and level of mixing with anthropogenic emissions, Aerosol Air Qual. Res., 14(3), 879–891, 

doi:10.4209/aaqr.2013.07.0240, 2014. 



25 
 

Hagler, G. S. W., Bergin, M. H., Salmon, L. G., Yu, J. Z., Wan, E. C. H., Zheng, M., Zeng, L. M., Kiang, C. S., Zhang, Y. 

H., Lau, A. K. H. and Schauer, J. J.: Source areas and chemical composition of fine particulate matter in the Pearl River 

Delta region of China, Atmos. Environ., 40(20), 3802–3815, doi:10.1016/j.atmosenv.2006.02.032, 2006. 

Holstius, D. M., Pillarisetti, A., Smith, K. R. and Seto, E.: Field calibrations of a low-cost aerosol sensor at a regulatory 

monitoring site in California, Atmos. Meas. Tech., 7(4), 1121–1131, doi:10.5194/amt-7-1121-2014, 2014. 5 

Jiao, W., Hagler, G., Williams, R., Sharpe, R., Brown, R., Garver, D., Judge, R., Caudill, M., Rickard, J., Davis, M., 

Weinstock, L., Zimmer-Dauphinee, S. and Buckley, K.: Community Air Sensor Network (CAIRSENSE) project: Evaluation 

of low-cost sensor performance in a suburban environment in the southeastern United States, Atmos. Meas. Tech., 9(11), 

5281–5292, doi:10.5194/amt-9-5281-2016, 2016. 

Johnson, K. K., Bergin, M. H., Russell, A. G. and Hagler, G. S. W.: Field Test of Several Low-Cost Particulate Matter 10 

Sensors in High and Low Concentration Urban Environments, Aerosol Air Qual. Res., 18(3), 565–578, 

doi:10.4209/aaqr.2017.10.0418, 2018. 

Kelly, K. E., Whitaker, J., Petty, A., Widmer, C., Dybwad, A., Sleeth, D., Martin, R. and Butterfield, A.: Ambient and 

laboratory evaluation of a low-cost particulate matter sensor, Environ. Pollut., 221, 491–500, 

doi:10.1016/j.envpol.2016.12.039, 2017. 15 

Laulainen, N. S.: Summary of conclusions and recommendations from a visibility science workshop; technical basis and 

issues for a national assessment for visibility impairment, National Center for Atmospheric Research, Boulder, Colorado, 35 

pp., available at: http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=10149541, last access: 10 Jan 2018, 1993. 

Lewis, A. and Edwards, P.: Validate personal air-pollution sensors, Nature, 535, 29–31, 2016. 

Li, Z., Li, L., Zhang, F., Li, D., Xie, Y. and Xu, H.: Comparison of aerosol properties over Beijing and Kanpur: Optical, 20 

physical properties and aerosol component composition retrieved from 12 years ground-based Sun-sky radiometer remote 

sensing data, J. Geophys. Res. Atmos., 120, 1520–1535, doi: 10.1002/2014JD022593, 2015. 

Met One Instruments: E-BAM-9800 Operation Manual Rev L, available at: 

http://www.equipcoservices.com/pdf/manuals/met_one_e-bam.pdf, last access: 10 Jan 2018, 2008. 

Mukherjee, A., Stanton, L. G., Graham, A. R. and Roberts, P. T.: Assessing the utility of low-cost particulate matter sensors 25 

over a 12-week period in the Cuyama valley of California, Sensors (Switzerland), 17(8), doi:10.3390/s17081805, 2017. 

North Carolina Department of Environmental Quality: PM2.5 Average Values, available at: 

https://deq.nc.gov/about/divisions/air-quality/air-quality-data/nata-epa-national-air-toxics-assessment-for-north-

carolina/data-archives-statistical-summaries/design-value-summaries/pm25-average-values, last access: 10 Jan 2018, 2017. 

North Carolina Department of Transportation: Urban-Area Traffic Volume Maps, available at: 30 

https://xfer.services.ncdot.gov/imgdot/DOTTSUMaps/AADT_URBANS/DURHAM_URBAN/2015/Durham.pdf, last 

access: 10 Jan 2018, 2015. 

Pope, C. A. and Dockery, D. W.: Health effects of fine particulate air pollution: Lines that connect, J. Air Waste Manag. 

Assoc., 56(6), 709–742, doi:10.1080/10473289.2006.10464485, 2006. 



26 
 

Ram, K., Sarin, M. M. and Tripathi, S. N.: A 1 year record of carbonaceous aerosols from an urban site in the Indo-Gangetic 

Plain: Characterization, sources, and temporal variability, J. Geophys. Res. Atmos., 115(24), doi:10.1029/2010JD014188, 

2010. 

Scott, D. W.: On Optimal and Data-Based Histograms, Biometrika, 66(3), 605, doi:10.2307/2335182, 1979. 

Shamjad, P. M., Tripathi, S. N., Pathak, R., Hallquist, M., Arola, A. and Bergin, M. H.: Contribution of Brown Carbon to 5 

Direct Radiative Forcing over the Indo-Gangetic Plain, Environ. Sci. Technol., 49(17), 10474–10481, 

doi:10.1021/acs.est.5b03368, 2015. 

Sinclair, D., Countess, R. J. and Hoopes, G. S.: Effect of relative humidity on the size of atmospheric aerosol particles, 

Atmos. Environ., 8(11), 1111–1117, doi:10.1016/0004-6981(74)90045-6, 1974. 

Sivaprasad, P. and Babu, C. A.: Seasonal variation and classification of aerosols over an inland station in India, Meteorol. 10 

Appl., 21(2), 241–248, doi:10.1002/met.1319, 2014. 

Snyder, E. G., Watkins, T. H., Solomon, P. A., Thoma, E. D., Williams, R. W., Hagler, G. S. W., Shelow, D., Hindin, D. A., 

Kilaru, V. J. and Preuss, P. W.: The Changing Paradigm of Air Pollution Monitoring, Environ. Sci. Technol., 47(20), 11369–

11377, doi:10.1021/es4022602, 2013. 

Soneja, S., Chen, C., Tielsch, J. M., Katz, J., Zeger, S. L., Checkley, W., Curriero, F. C. and Breysse, P. N.: Humidity and 15 

gravimetric equivalency adjustments for nephelometer-based particulate matter measurements of emissions from solid 

biomass fuel use in cookstoves, Int. J. Environ. Res. Public Health, 11(6), 6400–6416, doi:10.3390/ijerph110606400, 2014. 

South Coast Air Quality Management District (SCAQMD): Field Evaluation AirBeam PM Sensor, available at: 

http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/airbeam---field-evaluation.pdf?sfvrsn=4, last access: 10 

Jan 2018, 2015a. 20 

South Coast Air Quality Management District (SCAQMD): Field Evaluation AlphaSense OPC-N2 Sensor, available at: 

http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/alphasense-opc-n2---field-evaluation.pdf?sfvrsn=0, last 

access: 10 Jan 2018, 2015b. 

South Coast Air Quality Management District (SCAQMD): Field Evaluation Laser Egg PM Sensor, available at: 

http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/laser-egg---field-evaluation.pdf, last access: 10 Jan 25 

2018, 2017a. 

South Coast Air Quality Management District (SCAQMD): Field Evaluation Purple Air PM Sensor, available at: 

http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/purpleair---field-evaluation.pdf, last access: 10 Jan 

2018, 2017b. 

South Coast Air Quality Management District (SCAQMD): Field Evaluation Purple Air (PA-II) PM Sensor, available at: 30 

http://www.aqmd.gov/docs/default-source/aq-spec/field-evaluations/purple-air-pa-ii---field-evaluation.pdf?sfvrsn=2, last 

access: 10 Jan 2018, 2017c. 

Sousan, S., Koehler, K., Hallett, L. and Peters, T. M.: Evaluation of consumer monitors to measure particulate matter, J. 

Aerosol Sci., 107(October 2016), 123–133, doi:10.1016/j.jaerosci.2017.02.013, 2017. 



27 
 

Thermo Fisher Scientific: Model 5030 SHARP Monitor Instruction Manual, available at: 

http://unitylabservices.info/content/dam/tfs/ATG/EPD/EPD%20Documents/Product%20Manuals%20&%20Specifications/A

ir%20Quality%20Instruments%20and%20Systems/Particulate/EPM-manual-Model%205030%20SHARP.pdf, last access: 

10 Jan 2018, 2007. 

Teledyne Advanced Pollution Instrumentation (API): Teledyne API T640 PM Mass Monitor User Manual, available at: 5 

http://www.teledyne-api.com/manuals/T640_User_Manual.pdf, last access: 10 Jan 2018, 2016. 

US EPA: Health and Environmental Effects of Particulate Matter (PM), available at: https://www.epa.gov/pm-

pollution/health-and-environmental-effects-particulate-matter-pm, last access: 10 Jan 2018, 2016a. 

US EPA: NAAQS Table, available at: https://www.epa.gov/criteria-air-pollutants/naaqs-table, last access: 10 Jan 2018, 

2016b. 10 

US EPA: US EPA awards $750,000 for air monitoring sensors in Southern California, available at: 

https://19january2017snapshot.epa.gov/newsreleases/us-epa-awards-750000-air-monitoring-sensors-southern-

california_.html, last access: 10 Jan 2018, 2016c. 

US EPA: EPA scientists develop Federal Reference & Equivalent Methods for measuring key air pollutants, available at: 

https://www.epa.gov/air-research/epa-scientists-develop-federal-reference-equivalent-methods-measuring-key-air, last 15 

access: 10 Jan 2018, 2017. 

Villalobos, A. M., Amonov, M. O., Shafer, M. M., Devi, J. J., Gupta, T., Tripathi, S. N., Rana, K. S., Mckenzie, M., Bergin, 

M. H. and Schauer, J. J.: Source apportionment of carbonaceous fine particulate matter (PM2.5) in two contrasting cities 

across the Indo–Gangetic Plain, Atmos. Pollut. Res., 6(3), 398–405, doi:10.5094/APR.2015.044, 2015. 

Waggoner, A. P., Weiss, R. E., Ahlquist, N. C., Covert, D. S., Will, S. and Charlson, R. J.: Optical characteristics of 20 

atmospheric aerosols, Atmos. Environ., 15(10–11), 1891–1909, doi:10.1016/0004-6981(81)90224-9, 1981. 

Wang, Y., Li, J., Jing, H., Zhang, Q., Jiang, J. and Biswas, P.: Laboratory Evaluation and Calibration of Three Low-Cost 

Particle Sensors for Particulate Matter Measurement, Aerosol Sci. Technol., 49(11), 1063–1077, 

doi:10.1080/02786826.2015.1100710, 2015. 

Williams, R., Suggs, J., Rea, A., Leovic, K., Vette, A., Croghan, C., Sheldon, L., Rodes, C., Thornburg, J., Ejire, A., Herbst, 25 

M. and Sanders, W.: The Research Triangle Park particulate matter panel study: PM mass concentration relationships, 

Atmos. Environ., 37(38), 5349–5363, doi:10.1016/j.atmosenv.2003.09.019, 2003. 

Williams, R., Conner, T., Clements, A., Foltescu, V., Nthusi, V., Jabbour, J., Nash, D., Rice, J., Kaufman, A., Rourk, A. and 

Srivastava, M.: Performance Evaluation of the United Nations Environment Programme Air Quality Monitoring Unit, 

EPA/600/R-17/171, available at: https://www.epa.gov/sites/production/files/2017-07/documents/un_pod_report-7-12-17.pdf, 30 

last access: 10 Jan 2018, 2017. 

Zhang, X., Turpin, B. J., McMurry, P. H., Hering, S. V. and Stolzenburg, M. R.: Mie theory evaluation of species 

contributions to 1990 wintertime visibility reduction in the grand canyon, Air Waste, 44(2), 153–162, 

doi:10.1080/1073161X.1994.10467244, 1994. 



28 
 

Zimmerman, N., Presto, A. A., Kumar, S. P. N., Gu, J., Hauryliuk, A., Robinson, E. S. and Robinson, A. L.: A machine 

learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring, 

Atmos. Meas. Tech., 11(1), 291–313, doi:10.5194/amt-11-291-2018, 2018.  

  



29 
 

 
Figure 1: (a) The custom-designed printed circuit board (PCB) and its components for the Plantower PMS3003 sensor packages. 
(b) Electrical box housing all components for outdoor sampling. 
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Figure 2: Flow path for sensor calibrations. Note raw sensor PM2.5 measurements are uncalibrated sensor PM2.5 measurements. 



31 
 

 
Figure 3: Comparison of hourly PM2.5 mass concentrations between the E-BAM and the five uncalibrated PMS3003 sensor 
packages between February 1, 2017 and March 31, 2017 at Duke University. 

 

 5 
Figure 4: Linear regressions between aggregated PM2.5 mass concentrations (µg m-3) of the E-BAM and the five uncalibrated 
PMS3003s at 1 h and 24 h time intervals from February 1, 2017 to March 31, 2017 at Duke University (6 h and 12 h results not 
shown). Marginal rugs were added to better visualize the distribution of data on each axis. 
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Figure 5: Comparison of hourly aggregated PM2.5 mass concentrations (in µg m-3) a) between the SHARP, the SHARP’s 
nephelometer, the two T640s (one unit sitting on the roof “T640_Roof”, the other unit installed in the OAQPS shelter 
“T640_Shelter”), from June 30, 2017 to July 31, 2017 at US EPA RTP, b) between the T640 sitting on the roof (T640_Roof) and 
the three uncalibrated PMS3003 sensor packages during the same period at the same location. 5 



33 
 

 

Figure 6: Pairwise correlations between (a) 1 min aggregated PM2.5 mass concentrations (µg m-3) (b) 1 h aggregated PM2.5 mass 
concentrations (µg m-3) of the SHARP, the SHARP’s nephelometer, the two T640s, and the three uncalibrated PMS3003 sensor 
packages between June 30, 2017 and July 31, 2017 at US EPA RTP. In both (a) and (b), the upper-right set of panels includes the 
intercept, slope, and R2 of linear regression models using the ordinary least squares (OLS) method; the lower-left set of panels 5 
shows the linear regression lines superimposed on pairwise plots. 
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Figure 7: Linear regressions between aggregated PM2.5 mass concentrations (µg m-3) of the T640 sitting on the roof (T640_Roof) 
and the three PMS3003s from June 30, 2017 to July 31, 2017 at US EPA RTP. In a–d, the PMS3003 readings are raw values at 1 
min, 1 h, 6 h, and 24 h, respectively (12 h results are not shown). In e–g, the PMS3003 readings are RH-adjusted values at 1 min, 1 
h, and 6 h, respectively. Marginal rugs were added to better visualize the distribution of data on each axis. Note the rug on the y 5 
axis in a is sparse because 1 min raw PMS3003 PM2.5 measurements are recorded as integers. 

 

 
Figure 8: Fractional increase in PM2.5 weight measured by the uncalibrated PMS3003 sensors with respect to RH at 1 min, 1 h, 
and 6 h time intervals from June 30, 2017 to July 31, 2017 at US EPA RTP. RH (%) and PMS3003 PM2.5 concentrations (µg m-3) 10 
are arithmetic means averaged across all the three PMS3003 sensor packages at each point in time. The fitted RH adjustment 
equations and curves were superimposed on the plots. Marginal rugs were added to better visualize the distribution of data on 
each axis. The results of 12 h and 24 h aggregated data are not shown as their patterns are relatively indistinct. 
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Figure 9: Comparison of hourly PM2.5 mass concentrations between the E-BAM and the two uncalibrated PMS3003 sensor 
packages a) from June 8, 2017 to June 29, 2017 (monsoon season), and b) from Oct 23, 2017 to Nov 16, 2017 (post-monsoon season) 
at IIT Kanpur. 
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Figure 10: Linear regressions between aggregated PM2.5 mass concentrations (µg m-3) of the E-BAM and the two uncalibrated 
PMS3003s at 1 h and 24 h time intervals during the monsoon season (from June 8, 2017 to June 29, 2017), and the post-monsoon 
season (from Oct 23, 2017 to Nov 16, 2017) at IIT Kanpur (6 h and 12 h results are shown in Fig. S9). The fit coefficients for the 
calibration models are provided. Marginal rugs were added to better visualize the distribution of data on each axis.  5 
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Figure 11: Heat map of the mean errors of the calibrated PMS3003 PM2.5 measurements with respect to averaging timescales and 
calibration methods across study sites or sampling seasons. The mean and Std.Dev of the true ambient PM2.5 concentrations 
reported by the corresponding reference instrument (Ref) for each location or season were overlaid on the heat map. Note the 
errors of the 1 h E-BAM calibrated, and the combination of E-BAM and temperature (T) calibrated PMS3003 PM2.5 5 
measurements at the Duke study site were 201 % and 207 %, respectively. They are represented by dark brown and black, 
respectively to improve the visual contrast in errors. 
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Figure 12: Empirical error curves for the E-BAM calibrated Plantower PMS3003 PM2.5 measurements at 1 h, 6 h, 12 h, and 24 h 
time intervals by two different calibration methods (i.e., simple linear and quadratic equations). The curves were generated from 
the combination of the Duke University and IIT Kanpur data sets. The points and lines represent the means of ratios of E-BAM-
calibrated-PMS3003 to E-BAM PM2.5 measurements in different concentration classes, each of which spans a 10 µg m-3 interval. 5 
The shaded region represents the corresponding magnitudes of errors of PMS3003 PM2.5 measurements after the E-BAM 
calibration. The concentration classes are color coded by the number of data points in each class. Note the shaded region is 
generally absent from near the upper end of the PM2.5 ranges due to insufficient observations for the error evaluation. The red 
dashed line indicates ratio of 1, while the two orange dashed lines indicate ratio of 0.75 and 1.25, respectively. 
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Table 1: Summary statistics for 1 h averaged measurements [mean ± Std.Dev (range)] at the three sampling locations. Reference 
monitors at the sampling locations are indicated with shading. 

Location Date Instruments 
PM2.5 RH Temperature Data 

(µg m-3) (%) (°C) completeness 

Duke rooftop 2/1/2017– PMS3003-1 9±9 (0–49)   86 % 

(36.003350˚ N, 3/31/2017* PMS3003-2 10±10 (0–51)   100 % 

78.940259˚ W)  PMS3003-3 11±10 (0–52)   100 % 

  PMS3003-4 9±9 (0–46)   100 % 

  PMS3003-5 11±11 (0–55)   100 % 

  E-BAM 9±9 (0–62)   100 % 

  Average Sparkfun SHT15  45±19 (9–87) 15±8 (0–36) 100 % 

US EPA RTP 6/30/2017– PMS3003-1 15±7 (0–35)   100 % 

(35.882816˚ N, 7/31/17 PMS3003-2 15±7 (0–36)   100 % 

78.874471˚ W)  PMS3003-3 16±8 (0–39)   100 % 

  SHARP 7±4 (0–19)   99 % 

  SHARP Nephelometer 9±5 (0–22)   99 % 

  T640_Roof 10±3 (3–20)   100 % 

  T640_Shelter 9±3 (2–18)   100 % 

  Average Sparkfun SHT15  64±22 (27–93) 30±7 (14–45) 100 % 

IIT Kanpur rooftop 6/8/2017– PMS3003-6 55±31 (7–173)   100 % 

(26.515818˚ N, 6/29/17 PMS3003-7 49±29 (7–170)   100 % 

80.234337˚ E) (monsoon) E-BAM 36±17 (0–127)   85 % 

  Weather station  62±15 (30–88) 33±5 (24–43) 93 % 

       

 10/23/2017– PMS3003-6 237±88 (57–523)   98 % 

 11/16/17 PMS3003-7 219±91 (47–574)   98 % 

 (post-monsoon) E-BAM 116±57 (19–347)   93 % 

  Weather station  63±16 (19–88) 22±4 (14–35) 99 % 
*All the PMS3003 sensor packages and the E-BAM were shut down between March 3 and March 12 for maintenance. 
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Table 2: Summary of sensor performance characteristics for the five PMS3003 PM2.5 measurements at 1 h, 6 h, 12 h, and 24 h time 
intervals from February 1, 2017 to March 31, 2017 at Duke University. The fit coefficients for the calibration models are provided. 
The R2, mean of ratios, and error are performance characteristics for the calibrated sensor PM2.5 measurements in comparison 
with reference values. The results are displayed in mean (range) format. Note the mean statistics were obtained by fitting the 
models to the PMS3003 PM2.5 measurements averaged across all five sensor package units at each point in time. 5 

Performance characteristics 1 h 6 h 12 h 24 h 

adjustment E-BAM E-BAM, T E-BAM E-BAM E-BAM 

𝛃0 3.7 (3.2–4.1) 4.5 (4.1–5.1) -1.9 (-2.3–-1.4) -2.4 (-2.8–-1.8) -4.2 (-4.6–-3.6) 

𝛃1 0.7 (0.6–0.8) 0.7 (0.7–0.8) 1.4 (1.2–1.5) 1.4 (1.3–1.5) 1.6 (1.5–1.8) 

𝛃2 - -0.06 (-0.07–-0.05) - - - 

R2 0.40 (0.36–0.41) 0.41 (0.36–0.42) 0.80 (0.77–0.82) 0.84 (0.81–0.86) 0.93 (0.90–0.94) 

mean of ratios1 0.97 (0.96–0.97) 0.90 (0.90–0.91) 1.05 (1.04–1.06) 1.01 (1.01–1.02) 1 (1–1.01) 

error2 201 % (195–223 %) 207 % (201–229 %) 53 % (50–55 %) 35 % (33–39 %) 15 % (13–18 %) 

𝛃0 = intercept. 𝛃1 = coefficient for E-BAM. 𝛃2 = coefficient for temperature (T). 1Mean of ratios of calibrated PMS3003 to E-BAM PM2.5 

conc.. 2Defined as 1 Std.Dev of ratios of calibrated PMS3003 to E-BAM PM2.5 conc.. 

 
Table 3: Summary of sensor performance characteristics for the three PMS3003 PM2.5 measurements at 1min, 1 h, 6 h, 12 h, and 
24 h time intervals. The three PMS3003s were compared to the T640 sitting on the roof from June 30, 2017 to July 31, 2017 at US 10 
EPA RTP. The temperature (T) correction is only valid for the 1 min to 12 h aggregated data and the RH correction is only valid 
for the 1 min to 6 h aggregated data. The fit coefficients for the calibration models are provided. The R2, mean of ratios, and error 
are performance characteristics for the calibrated PMS3003 PM2.5 measurements after the entire suite of indicated adjustments in 
comparison with reference values. The results are displayed in mean (range) format. Note the mean statistics were obtained by 
fitting the models to the PMS3003 PM2.5 measurements averaged across all the three sensor package units at each point in time. 15 

Performance characteristics 1 min 1 h 6 h 12 h 24 h 

adjustments T640 RH, T640 
RH, T640, 

T640 RH, T640 
RH, T640, 

T640 RH, T640 
RH, T640, 

T640 T640, T T640 
T T T 

𝛃0 
-2.1 -3.5 -1.5 -2.1 -3.5 -1.4 -2.4 -3.2 -0.3 -3.4 8.7 -4.1 

(-2.6–-1.9) (-3.9–-3.3) (-1.9–-1.0) (-2.6–-1.8) (-3.9–-3.3) (-1.8–-1.0) (-2.9–-2.1) (-3.6–-3) (-0.6–0.1) (-3.9–-3) (8.6–8.7) (-4.6–-3.6) 

𝛃1 
1.8 1.4 1.5 1.8 1.4 1.5 1.8 1.4 1.5 1.9 2.2 2 

(1.7–1.9) (1.4–1.5) (1.4–1.6) (1.7–1.9) (1.4–1.5) (1.4–1.6) (1.7–2) (1.3–1.5) (1.4–1.6) (1.8–2.1) (2.1–2.4) (1.9–2.1) 

𝛃2 - - 
-0.09 

- - 
-0.09 

- - 
-0.13 

- 
-0.49 

- 
(-0.1–-0.07) (-0.1–-0.08) (-0.14–-0.11) (-0.51–-0.47) 

R2 
0.66 0.93 0.94 0.66 0.93 

0.95 
0.73 0.92 0.95 

(0.95–0.96) 

0.84 0.93 0.94 

(0.63–0.67) (0.90–0.93) (0.93–0.94) (0.64–0.68) (0.92–0.94) (0.71–0.74) (0.91–0.93) (0.82–0.85) (0.92–0.94) (0.93–0.94) 

mean of ratios1 0.99 1 1 0.99 1 1 1 1 1 1 
1 

1 
(0.99–1) 

error2 
27 % 11 % 9 % 27 % 10 % 8 % 22 % 10 % 8 % 15 % 11 % 

9 % 
(27–30 %) (11–12 %) (9–10 %) (26–28 %) (9–11 %) (8–9 %) (21–24 %) (10–11 %) (8–9 %) (15–16 %) (10–12 %) 

𝛃0 = intercept. 𝛃1 = coefficient for T640. 𝛃2 = coefficient for temperature (T). 1Mean of ratios of calibrated PMS3003 to E-BAM PM2.5 conc.. 2Defined as 1 Std.Dev of ratios of calibrated PMS3003 to E-BAM 

PM2.5 conc.. 

Intercept and slope under the T640 adjustment define the linear relationship between the raw PMS3003 (y-axis) and T640 PM2.5 measurements (x-axis) while under the RH and T640 adjustments define the 

linear relationship between the RH-adjusted PMS3003 (y-axis) and T640 PM2.5 measurements (x-axis). 
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Table 4: Summary of sensor performance characteristics for the two PMS3003 PM2.5 measurements at 1 h, 6 h, 12 h, and 24 h time 
intervals during the monsoon season (Mon, June 8, 2017 to June 29, 2017), and by two different calibration methods (i.e., simple 
linear and quadratic equations) during the post-monsoon season (PoM, Oct 23, 2017 to Nov 16, 2017) at IIT Kanpur. The fit 
coefficients are provided for only the linear regression calibration models. The R2, mean of ratios, and error are performance 
characteristics for the calibrated PMS3003 PM2.5 measurements after the entire suite of indicated adjustments in comparison with 5 
reference values. The results are displayed in mean (range) format. Note the mean statistics were obtained by fitting the models to 
the PMS3003 PM2.5 measurements averaged across all the two sensor package units at each point in time. 

Characteristics Method Season 1 h 6 h 12 h 24 h 

adjustment   E-BAM E-BAM, T E-BAM E-BAM, T E-BAM E-BAM, T E-BAM 

𝛃0 Linear 
Mon 5.1 (3.8–6.6) 88 (87–88) -5.8 (-6.7–-4.7) 47 (46–49) -6.5 (-7.4–-5.5) NA4 -4.5 (-4.9–-3.8) 

PoM 74 (62–86) 276 (275–277) 65 (53–77) 248 (246–249) 74 (63–86) 330 (293–366) 82 (71–93) 

𝛃1 Linear 
Mon 1.4 (1.4–1.5) 1.2 (1.2–1.3) 1.7 (1.6–1.8) 1.6 (1.5–1.6) 1.7 (1.7–1.8) NA4 1.7 (1.6–1.7) 

PoM 1.4 (1.3–1.4) 1.1 1.4 1.2 (1.1–1.2) 1.3 1 1.2 (1.2–1.3) 

𝛃2 Linear 
Mon 

- 
-2.3 (-2.3–-2.2) 

- 
-1.4 (-1.5–-1.4) 

- 
NA4 1.7 (1.6–1.7) 

PoM -7.9 (-8.4–-7.4) -7.0 (-7.5–-6.5) -10 (-12–-8.1) 1.2 (1.2–1.3) 

R2 
Linear 

Mon 0.61 0.61 (0.60–0.62) 0.80 (0.79–0.81) 0.81 (0.79–0.82) 0.84 (0.83–0.85) NA4 0.78 (0.77–0.79) 

PoM 0.75 (0.73–0.75) 0.78 (0.74–0.79) 0.87 (0.84–0.87) 0.90 (0.85–0.90) 0.88 (0.86–0.88) 0.89 (0.84–0.89) 0.93 (0.89–0.93) 

Quadratic PoM 0.74 (0.71–0.74) NA3 0.86 (0.83–0.87) NA3 0.86 (0.81–0.86) NA3 0.93 (0.89–0.93) 

mean of ratios1 
Linear 

Mon 1.01 1.01 (0.97–1.01) 1.01 1.01 (0.97–1.01) 1 NA4 1 

PoM 0.96 (0.96–0.97) 0.99 (0.98–1.01) 0.98 (0.97–0.98) 0.99 (0.99–1.01) 0.98 1 (0.97–1) 0.99 

Quadratic PoM 1 NA3 1 NA3 1 NA3 1 (0.99–1) 

error2 
Linear 

Mon 46 % 46 % (44–46 %) 32 % 30 % (29–30 %) 18 % (18–19 %) NA4 17 % (17–18 %) 

PoM 35 % (33–39 %) 30 % (30–34 %) 25 % (23–28 %) 18 % (18–22 %) 19 % (18–22 %) 17 % (17–20 %) 11 % (11–14 %) 

Quadratic PoM 24 % (24–25 %) NA3 16 % (16–17 %) NA3 12 % (12–14 %) NA3 9 % (9–11 %) 

𝛃0 = intercept. 𝛃1 = coefficient for E-BAM. 𝛃2 = coefficient for temperature (T). 1Mean of ratios of calibrated PMS3003 to E-BAM PM2.5 conc.. 2Defined as 1 Std.Dev of ratios of 

calibrated PMS3003 to E-BAM PM2.5 conc.. 3No attempt was made to incorporate a temperature variable in quadratic models. 4Temperature variable was not statistically 

significant at the 12 h time resolution for the monsoon data set. 10 
 
 


