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ABSTRACT 13 

Air pollution sensors are quickly proliferating for use in a wide variety of applications, with a low price 14 

point that supports use in high density networks, citizen science, and individual consumer use.  This 15 

emerging technology motivates the assessment under real-world conditions, including varying pollution 16 

levels and environmental conditions.  A seven-month, systematic field evaluation of low-cost air 17 

pollution sensors was performed in Denver, Colorado over 2015-2016; the location was chosen to 18 

evaluate the sensors in a high altitude, cool, and dry climate. A suite of particulate matter (PM), Ozone 19 

(O3), and nitrogen dioxide (NO2) sensors were deployed in triplicate, and were collocated with Federal 20 

Equivalent Method (FEM) monitors at an urban regulatory site. Sensors were evaluated for their data 21 

completeness, correlation with reference monitors, and ability to reproduce trends in pollution data, 22 

such as daily concentration values and wind-direction patterns. Most sensors showed high data 23 

completeness when data loggers were functioning properly. The sensors displayed a range of 24 

correlations with reference instruments, from poor to very high (e.g. hourly-average PM Pearson 25 

correlations with reference measurements varied from 0.01 to 0.86). Some sensors showed a change in 26 

response to laboratory audits/testing from before the sampling campaign to afterwards, such as the 27 

Aeroqual, where the O3 response slope changed from about 1.2 to 0.6. Some PM sensors measured 28 

wind-direction and time of day trends similar to those measured by reference monitors, while others did 29 

not. This study showed different results for sensor performance than previous studies performed by the 30 

U.S. EPA and others, which could be due to different geographic location, meteorology, and aerosol 31 

properties. These results imply that continued field testing is necessary to understand emerging air 32 

sensing technology.  33 
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1. INTRODUCTION 34 

Next generation air monitoring (NGAM) is a quickly evolving and expanding field. Low-cost air pollution 35 

sensors have improved the access for both citizens and researchers to obtain pollutant concentration 36 

data in more locations. Many new sensors are now sold and marketed to consumers, and come with 37 

messaging on implications for health. In addition to improving the accessibility of measurement data, air 38 

pollution sensors have been used to supplement ambient air monitoring by providing high spatial 39 

density and high time-resolution measurements (Mead et al., 2013; Snyder et al., 2013; Kaufman et al., 40 

2017). Low-cost air pollution sensors have the potential to be important enablers of smart cities and the 41 

Internet of things (IoT), especially in terms of forecasting and health messaging in megacities with 42 

significant variability in microenvironments (Mead et al., 2013; Kumar et al., 2015; Ramaswami et al, 43 

2016).  Sensors also enable new techniques for mobile monitoring. (McKercher and Vanos 2017; 44 

Woodall et al., 2017). However, without a proper understanding of sensor data quality and calibration, 45 

low-cost sensors have the potential to mislead interested community and research groups (Rai et al., 46 

2017). Evaluating how well these sensors perform in both laboratory and field environments is critical 47 

for understanding their possible uses in research, citizen science, and consumer use, for individual 48 

exposure assessment. 49 

Low-cost air pollution sensors, with purchase prices ranging from the low hundreds to the low 50 

thousands of dollars per pollutant, have been developed for both particulate and gas phase pollutants, 51 

including ozone (O3) and nitrogen dioxide (NO2). Particulate matter (PM) sensors typically measure 52 

particle counts using light scattering principles. By using light scattering to measure an ensemble of 53 

particles, sensors can be produced that are miniaturized, lower cost, and provide real-time data. 54 

However, this detection approach can result in bias and inaccuracy from measurement artifacts (Gao et 55 

al., 2015; Holstius et al., 2014). Some sensors, such as the OPC-N2 (Alphasense) measure single particles 56 

and allocate them into size bins. This approach is subject to measurement artifacts due to humidity 57 

effects, potential particle coincidence, and assumes particles are spherical and of a homogenous density 58 

(Mukherjee et al., 2017). Gas phase sensors produce a signal through the reaction of the target gases 59 

with electrochemical or metal oxide sensors. However, the reactive agents used in these types of 60 

sensors may degrade over time, and measurement artifacts may also exist, such as cross-interferences 61 

and impacts of temperature (Rai et al., 2017). Therefore, it is necessary to evaluate sensor performance 62 

in long-term, real-world study conditions (Alastair Lewis and Peter Edwards, 2016; Williams et al., 2014).  63 

The evaluation of low-cost air pollution sensors and their performance is continually evolving 64 

(McKercher et al., 2017b). Many sensors are evaluated in laboratory settings by exposure to known 65 

concentrations of gasses and PM, with PM often being evaluated by well-defined aerosol, such as 66 

polystyrene latex, in controlled conditions (Wang et al., 2015; Lewis et al., 2016; Manikonda et al., 67 

2016). In outdoor, field settings, sensors are often evaluated to determine their performance in 68 

comparison with reference methods (Borrego et al. 2016; Jiao et al., 2017; Crilley et al., 2017; 69 

Mukherjee et al., 2017; Hagan et al; 2018). Correlations of low-cost sensors have been found to vary 70 

from study to study, spanning from negligible to high correlations. Recent studies have shown the 71 

correlation between sensors and reference measurements can be improved by the application of 72 

correction factors for environmental conditions such as relative humidity (Crilley et al., 2017) or 73 

multivariate models and machine learning (Cross et al., 2017; Zimmerman et al, 2018; Hagan et al., 74 

2018). 75 
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There are relatively few efforts that exist to systematically examine air pollution sensor technology 76 

performance, that test a variety of replicate sensor types against reference monitors in a real-world 77 

environment.  In the United States, the U.S. EPA and the South Coast Air Quality Management District 78 

(SCAQMD) have developed field- and laboratory-testing programs for both gas and particulate matter 79 

sensors.  These efforts represent specific geographic locations and concentration ranges (U.S. EPA, 2017; 80 

SCAQMD, 2017).  For example, EPA’s Community Air Sensor Network (CAIRSENSE) project tested a 81 

variety of gas-phase and particulate matter sensors in Atlanta, GA, under conditions that were high 82 

temperature, high humidity, and fairly low ambient concentrations (e.g., hourly PM2.5 ranging 0 to 40 83 

µg/m³) (Jiao et al., 2016). The SCAQMD AQ-SPEC program similarly conducts field testing of sensor 84 

technology in Diamond Bar, California, at a near-road location nominally two months.  Evaluation of 85 

identical sensors by the EPA and SCAQMD has revealed that the sensor performance may vary by 86 

geographical region. For example, Jiao et al., (2016) found Airbeam sensor correlations to be moderate 87 

(r2 ≈ 0.43), SCAQMD (2017) reported much stronger correlations (r2 ≈ 0.74). This might be a result of 88 

from both different concentration ranges as well as the optical properties of the aerosol being 89 

measured.  90 

The Community Air Sensor Network (CAIRSENSE) project was a multi-year, multi-location project that 91 

focused on evaluating performance characteristics and limitations of low-costs sensors. A prior 92 

CAIRSENSE study in Atlanta, Georgia was conducted in 2014 and early 2015 (Jiao, et al., 2016). Atlanta 93 

was chosen to test the sensors’ performance in the face of higher temperatures and humidity. For the 94 

second part of the CAIRSENSE study, Denver Colorado was chosen to test the sensors’ performance 95 

under conditions of high altitude, dry and lower temperature conditions.  Beyond assessing sensor 96 

performance through correlation with a reference monitor, this study also investigates the degree to 97 

which data from sensors is able to produce similar temporal, wind-direction, and transient event trends 98 

in comparison to a high time-resolution reference monitors.   99 

 100 

2.  METHODS 101 

Sensors for this study were selected based on cost, commercial availability, market prevalence, 102 

capability, and applicability to EPA research objectives. Table 1 lists the sensors chosen for this study, 103 

pollutants measured by each sensor, and the measurement principle used by each sensor. Cost 104 

information for these sensors are published on the EPA’s Air Sensor Toolbox (U.S. EPA 2017). Two 105 

different Dylos units were used for this study. Unit 1 was a Dylos DC1100, while units 2 and 3 were Dylos 106 

DC1100 Pro models, where the Pro models are advertised to have increased sensitivity for smaller 107 

particles. The Shinyei, Dylos, Airbeam, Aeroqual, and Cairclip sensors were used in both the Denver and 108 

Atlanta studies (Jiao et al., 2016). Additionally, several of these sensors have been evaluated in 109 

laboratory or short term ambient settings (Air Sensor Toolbox reference; Sousan et al., 2016; SCAQMD 110 

2017; etc.).   111 

Air pollution sensors were acquired and deployed in triplicate. Before deployment, laboratory sensor 112 

response audits were performed for all of the available sensors. PM sensors were zero-checked in a 113 

clean room environment, all reporting <2 µg/m3 values under those conditions, except for the Air 114 

Assure. The software for the Air Assure performs its own zeroing, therefore they were operated ‘as-is’. A 115 

pre-deployment sensor response audit was not performed for the TZOA as it was received shortly 116 

before deployment. Sensor output was not adjusted based on the calibration audits in order to reflect  117 
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 their ‘out of the box’ performance. Sensor responses were also audited by either recording their 118 

responses to known concentrations (Aeroqual and CairClip sensors), or in a clean air environment (PM 119 

sensors) after the end of the measurement period, to evaluate possible sensor drift. Laboratory audit 120 

results are presented in the supplemental information. 121 

Sensors were deployed at the downtown Denver Continuous Ambient Monitoring Program (CAMP) 122 

regulatory monitoring site (Latitude: 39.751184; Longitude: -104.987625) from September 2015 to 123 

March 2016. The CAMP site was operated by the state of Colorado for the duration of the study. Sensors 124 

were placed in a ventilated, multi-level shelter designed to allow ambient air circulation and prevent 125 

intrusion from precipitation, as shown in Figure. 1. A full description of the shelter has been previously 126 

reported (Jiao, 2016). The sensors were connected to data loggers stored in weatherproof enclosures 127 

attached to the bottom of the shelter. Most of the sensors were connected to Arduino (single-board) 128 

microprocessors with either Ethernet (IEEE 802.3 standard) or Recommended Standard 232 (RS-232) 129 

serial communication cables. The OPC-N2 and Speck sensor data were logged using laptops, and the 130 

TZOA data was stored internally on secure digital (SD) cards. To comply with EPA data security 131 

requirements, the cloud based storage capability of the Air Assure sensors was disabled, and these units 132 

reported data locally via the Arduino microprocessors with onboard memory. The Cairclip sensor 133 

measures the combined signal from NO2 and O3. Therefore, both NO2 and O3 measurements from the 134 

Cairclip were determined by subtracting the opposite (collocated) reference measurement.  The Dylos 135 

units also measure multiple particle size fractions. In this study, the “small” particle size fraction, as 136 

described by the manufacturer, was used for PM2.5 comparisons. TZOA sensors did not have a real-time  137 

Table 1 Sensors used during the CAIRSENSE-Denver Study 

Sensor Pollutant(s) Measured Principle of Operation 

Aeroqual SM-50 O3 Electrochemical Sensor 

TSI Air Assure PM Light Scattering 

AirCasting AirBeam PM Light Scattering 

Cairpol Cairclip NO2 + O3 Electrochemical Sensor 

Dylos DC1100/DC1100 Pro PM Laser particle counter 

Alphasense OPC-N2 PM Laser particle counter 

Shinyei PMS-SYS-1 PM Light Scattering 

AirViz Speck PM Light Scattering 

TZOA PM Research Sensor PM Laser particle counter 
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 138 

Figure 1 Sensor deployment shelter 139 

clock, and only measured time as the elapsed number of milliseconds since the device was powered on. 140 

Therefore, field operators were required to accurately record start and end times as a means of 141 

establishing the sensor response time series. 142 

 143 

A total of four Arduino microprocessors and three laptops were used simultaneously for data logging. 144 

Between the data loggers, laptops and onboard data storage, there were many different sensor data 145 

output formats. Separate data scripts were developed to process each different data format into 146 

similarly formatted files for each air pollution sensor type.  Once data collections were initiated in 147 

September 2015, the sensors were operated with little or no intervention through the entirety of the 148 

study. Noted interventions included restarting data systems when they ‘locked up’, or removing snow 149 

from the shelves housing the sensors during a major winter snowstorm.  150 

Federal Equivalent Method (FEM) measurements at the Denver monitoring site were collected using a 151 

Teledyne 400E O3 monitor, Teledyne 200EU NO2 analyzer and a GRIMM EDM 180 Dust monitor, which 152 

measured PM2.5 and PM10 mass at one-minute intervals using optical detection.  All sensors and 153 

monitors collected pollutant data at one-minute intervals or less. One-minute values were used to 154 

generate concentrations at multiple time intervals, with primarily one-hour averages used for data 155 

analysis. All averaging and other data processing was performed using the following software: RStudio 156 

version 0.98.1103, R version 3.2.2, and the ggplot2, scales, plyr, lattice, corrplot, and ‘data.table’ 157 

(extension of ‘data.frame’) packages.  158 

Sensor data were recovered from the connected laptops and SD cards connected to the data loggers. 159 

Most sensors reported data in one-minute intervals. The Alphasense OPC-N2 units recorded 160 

concentrations every ten seconds. These measurements were used to calculate one-minute averages. 161 

The TZOA sensors reported data based on time elapsed from turning on each unit. The start times for 162 
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each unit and total elapsed time for each measurement were combined to generate 5-second time 163 

stamps for the TZOA measurements. These values were then used to calculate one-minute averages. 164 

In order to best replicate actual use by non-experts and avoid biasing the results towards a positive 165 

direction, minimal screening of data was performed. Quality assurance screening consisted primarily of 166 

removing data where there was a clear malfunction of the sensor, such as non-numeric data output, or 167 

when a sensor (e.g., Cairclip unit 1) became ‘stuck’, reporting a repeated, value (value = 255) for long 168 

time spans.  These types of errors had previously been identified for the output of this sensor type. The 169 

Aeroqual units had significant numbers of measurements that, for some reason, were reported as zero. 170 

These were possibly due to the inability of the sensor to detect trace concentrations, and were 171 

therefore not screened out of the data.  172 

Timestamps for all sensors except the TZOA were recorded in Mountain Standard Time. As previously 173 

mentioned, TZOA timestamps were generated by combining the initial recording time and the elapsed 174 

time reported by the sensors. One-minute measurements and averages were used to calculate 5-minute 175 

and hourly averages. Hourly averages were further used to calculate 12-hour and daily averages. FEM 176 

measurements from the State of Colorado instruments were also recorded at one-minute intervals and 177 

averaged in the same manner as the sensor data. Data from all sensors and reference instruments were 178 

stored in separate data files and combined based on timestamps for analyses using ‘R’ scripts. 179 

Sensors were also investigated for how well they replicated different trends in the regulatory monitor 180 

measurement data. The trends analyzed included average sensor responses based on time of day and 181 

wind direction. In order to evaluate these trends, different normalized sensor responses were used. The 182 

normalized average sensor response for the diel (daily, 24-hour) patterns was calculated as the average 183 

concentration for a given hour divided by the average concentration for the hour beginning at 12:00 PM. 184 

The normalized average sensor response for wind direction data was defined as the mean concentration 185 

for each 10-degree wind ‘bin’, divided by the average concentration of the 170 to 180-degree bin. The 186 

sensor response times were also analyzed by calculating the average one-minute relative sensor 187 

response, as defined by the distribution of the one-minute concentration differences divided by the 188 

average sensor response. 189 

 190 

3. RESULTS & DISCUSSION 191 

Table 2 shows a summary of data completeness from the air pollution sensors, including the total 192 

percentage of minutes measured, percentage of measurements missed, by not logging data, and the 193 

percentage of completely missing data. The majority of missing data was due to events where the 194 

sensor and data loggers were inoperative. The most significant of these events was due to snow 195 

intrusion into the monitoring platform in December 2015, which caused units to shut down. Most 196 

sensors had a very high data capture rate throughout the study when the units were on (and 197 

operational). The Cairclip units had significant amounts of missing data, likely due to data transmission 198 

errors from the universal asynchronous receiver-transmitter (UART) serial communication system. In the 199 

previous Atlanta study as well as in a Newark-based citizen science study (Kaufman et al., 2017), Cairclip 200 

units with identical sensors but different universal serial bus (USB) data connections were used and did 201 

not have significant amounts of missing data.  202 
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Table 2 Sensor Data Completeness 

Sensor Measurement % 
Sensor on and 
not Logging % 

Completely 
Missing % Comments 

Aeroqual 

82% 0% 18% 45% of logged values were 0 

73% 0% 27% 42% of logged values were 0 

81% 5% 13% 32% of logged values were 0 

 87% 0% 13%  
Air Assure 87% 0% 13%  

 87% 0% 13%  

 74% 0% 25%  
Airbeam 62% 6% 32%  

 62% 6% 32%  

 29% 53% 18% 56% of logged values were 255a 

Cairclip 63% 13% 24% No data before 10/8/15 

 63% 23% 13%  

 82% 0% 18%  
Dylos 82% 0% 18%  

 72% 1% 27%  
 77% 0% 23%  

OPC-N2 76% 0% 24%  

 71% 0% 29% 59% of logged values were 0 

 82% 0% 18%  
Shinyei 73% 0% 27%  

 87% 0% 13%  
 92% 0% 8%  

Speck 93% 0% 7%  

 96% 0% 4%  

 61% 0% 39%  

TZOA 47% 0% 53%  

 47% 0% 53%  
a255 represented a communication or other unknown sensor failure 203 

Measurements from air pollution sensors and regulatory monitors were time-averaged at multiple 204 

intervals for comparison. The time intervals included 5-minute, hourly, 12-hour, and daily averages. For 205 

each set of time averaging, regressions were calculated to evaluate sensor correlation and bias when 206 

compared to regulatory measurements. Additionally, intercomparisons were made between sensors of 207 

the same pollutant type (e.g., correlations between PM sensors). Table 3 displays a summary of 208 

regression statistics for sensors when compared to regulatory measurements as well as precision 209 

calculations for 1-hour time averages. The precision was calculated as the root mean square (RMS) of 210 

the hourly coefficients of variation. In general, correlations were greatest at the 1-hour time average. 211 

Correlations in general improved slightly with increasing length of the averaging period up to hourly 212 

averages. Reduced correlations for most sensors at the 12-hour and daily averages may be a result of a 213 

lower number of data points. In contrast to most other measurements, sensors that reported data for 214 

coarse PM (Dylos) or PM10 (OPC-N2) showed improved correlations with increasing averaging time for 215 

those measurements. The correlations for all the time averaging periods can be found in the  216 



9 
 

1Average Concentration calculated for hours with valid sampling data.  217 
2Correlation results not shown due to large amount of missing or invalid data 218 
a Shinyei Unit 3’s correlation improved to 0.84 when only considering data from October 16 and later 219 
bTZOA Unit 1 was excluded from RMS precision calculations  220 

 Table 3 Regression and Precision Results for CAIRSENSE sensors (1-hour time averaged) 

Sensor Pollutant 
Reference Average 
Concentration1 Slope Intercept 

Pearson 
Correlation, R 

RMS  
Precision  
(%) 

Number of 
Hourly 
Measurements 

Aeroqual SM-
50 

O3, ppb 18.8 ppb 

0.56 -0.004 0.93 

73 

3325 

0.58 -0.004 0.92 2963 

0.77 -0.004 0.96 3279 

TSI Air Assure PM, µg/m3 7.8 µg/m³ 

1.14 2.64 0.8 

41 

3486 

1.13 -0.04 0.78 3486 

1.19 -1.38 0.81 3486 

AirCasting 
AirBeam 

Particle Count, 
hundreds of 
particles per 

cubic foot 
(hppcf) 

7.8 µg/m³ 
273 -323 0.82 

6 
3028 

278 -124 0.84 2539 

322 -352 0.82 2532 

Cairpol 
Cairclip 

O3, ppb 18.8 ppb 

NA2 NA2 NA2 

NA2 

738 

-0.04 -23.6 -0.06 2831 

1.03 -39.0 0.46 2852 

Cairpol 
Cairclip 

NO2, ppb 26.8 ppb 

NA2 NA2 NA2 

NA2 

738 

0.65 -10 0.87 2831 

0.67 -15 0.84 2852 

Dylos 
DC1100/DC11

00 Pro 

"Small" Particle 
Count, hppcf 

7.8 µg/m³ 

64 -152 0.86 

15 

3324 

428 -1182 0.78 3324 

431 -941 0.73 2937 

Dylos 
DC1100/DC11

00 Pro 

"Large" Particle 
Count, hppcf 

12.0 µg/m³ 

1.3 5.5 0.40 

10 

3324 

5.7 73 0.33 3324 

4.9 84 0.27 2937 

Alphasense 
OPC-N2 

PM2.5, µg/m3 7.8 µg/m³ 

0.4 -0.30 0.45 

108 

2969 

0.49 -1.66 0.34 2939 

0.07 0.60 0.11 2735 

Alphasense 
OPC-N2 

PM10, µg/m3 19.6 µg/m³ 

0.45 2.98 0.47 

101 

2969 

0.54 -1.06 0.68 2939 

0.12 2.86 0.20 2735 

Shinyei PMS-
SYS-1 

PM2.5, µg/m3 7.8 µg/m³ 

0.58 0.24 0.71 

20 

3325 

0.54 0.8 0.72 2963 

0.42 4.35 0.01a 3486 

AirViz Speck PM2.5, µg/m3 7.8 µg/m³ 

0.76 13 0.24 

37 

3557 

0.74 15 0.40 3584 

0.62 10 0.35 3971 

TZOA PM 
Research 

Sensor 

Particle Count, 
hppcf 

7.8 µg/m³ 

NA2 NA2 NA2 

17b 

2341 

6.68 1.37 0.66 1838 

6.75 2.16 0.72 1836 
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supplemental information. Sensors that measured particle count had better precision than those 221 

measuring particle mass concentrations. Figure 2 shows a Pearson correlation (R) plot for 1-hour 222 

average reference (SoC) and PM sensor measurements.  The PM units show high correlation among 223 

sensors of the same model, except for when one sensor in a group had significant issues. Of the PM2.5 224 

sensors, the Air Assure, Airbeam, and Dylos (R = 0.73 to 0.86) units exhibited the highest correlation 225 

with reference measurements. Dylos unit 1 had the highest linearity, however it had the lowest particle 226 

count response, both of which are likely explained by not detecting the smallest particles as effectively 227 

as other units.  Cairclip unit 1 rarely properly transmitted data throughout the study, leading to its low 228 

correlations. Cairclip units 2 and 3 had more sporadic data transmission issues. All Cairclip units 229 

recovered data properly once returned to the lab after the field campaign where their internal data 230 

storage was used. The response from Shinyei unit 3 changed in mid- 231 

 232 

 233 

 234 

Figure 2 Correlation (r*100) plot for sensors measuring fine PM. Ellipses represent the overall scatter 235 

of the data (1-hour averaged measurements) 236 
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October. The correlation between the unit and the reference monitor was initially 0.01, then increased 237 

to 0.84 when comparing only the data starting October 16 and later.  238 

 239 

Several sensor models were used in both the Atlanta and Denver CAIRSENSE evaluation campaigns. Both 240 

studies deployed the Airbeam, Dylos, and Shinyei PM sensors. In all cases except for Shinyei unit 3, these 241 

sensors showed greater linearity in Denver than in Atlanta, when comparing 12-hour averages. When 242 

only considering data after October 16, Shinyei unit 3 also had higher correlation in Denver than in 243 

Atlanta. This may be due to less noise caused by lower humidity in Denver than in Atlanta. Aeroqual and 244 

Cairclip air pollution sensors were also deployed in both Atlanta and Denver. O3 measured by the 245 

Aeroqual units showed similar correlations in both locations (R2 = 0.82 to 0.94 in Atlanta, R2 = 0.85 to 246 

0.92 in Denver).  O3 measured by Cairclip units 2 and 3 in Denver showed poorer correlations than the 247 

Cairclip units used in Atlanta (R2 = 0.00 to 0.21 in Denver versus R2 = 0.68 to 0.88 in Atlanta). However, 248 

NO2 measured by Cairclip units 2 and 3 in Denver was more highly correlated than in Atlanta (R2 = 0.71 249 

to 0.76 in Denver versus 0.57 in Atlanta).   250 

While Denver is not necessarily known for high humidity, humidity artifacts were observed in some 251 

sensors. Figure 3a shows the PM2.5 concentrations measured by one of the OPC-N2 against relative 252 

humidity. At RH around 90%, the PM concentration spikes significantly, suggesting that humidity is 253 

interfering with the sensor response measurement. This behavior is similar to that observed by Sousan 254 

et al., (2016). Some other instruments also had different responses based on humidity. Figure 3b shows 255 

hourly particle counts measured by an Airbeam sensor against PM2.5 concentration measured by the 256 

reference instrument, stratified by relative humidity. There appear to be two separate relations 257 

between reference measured concentrations and sensor measured particle counts, with a greater 258 

particle count response occurring more at higher humidity. This relationship was observed in each of the 259 

Airbeam sensors. An example of humidity relationships from each sensor type can be found in the 260 

supplemental information. 261 

 262 

Figure 3 OPC 2 PM2.5 and Relative Humidity (a) and Hourly Average FRM PM2.5 concentration and 263 

Airbeam Particle count stratified by Relative Humidity (b) 264 

 265 
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In addition to understanding the precision of air pollution sensors and how well they correlate with 266 

reference measurements, it is also important to understand how well a sensor can capture trends and 267 

distributions of pollutant concentrations. There are many ways to examine these trends and 268 

distributions. Figure 4 shows the diel patterns of PM2.5 (a) and O3 (b) reference and sensor 269 

measurements respectively. The results, for each sensor, represent the measurements of the best 270 

performing unit for each sensor type/model, as determined by R-squared values. The various PM air 271 

pollution sensors have a wide range of comparisons to the reference monitor. Two sensors (TZOA and 272 

Airbeam) show similar patterns throughout the day, while some other sensors do not reflect the 273 

reference diel pattern at all (e.g., OPC, Speck, etc.). It is interesting to note that both the TZOA and 274 

Airbeam measure particle count; however, there is no basis to say why these sensors performed better 275 

than those measuring mass concentrations. The Aeroqual sensor diel pattern was similar to that of the 276 

reference O3 monitor.  The nature of the calculation of O3 and NO2 by subtraction, and missing data 277 

from the Cairclip sensors, prevented this analysis from providing meaningful results. 278 

 279 

Figure 4 Diel patterns for PM2.5 (a) O3 (b) sensor and reference measurements. 280 

Air quality measurements are also known to be dependent on wind direction, and it is important to 281 

know if these differences were reflected in the sensor measurements. Figure 5 shows the normalized 282 

average sensor response PM2.5 (a) and O3 (b) response of the sensors and the reference monitors 283 

respectively. The reference monitor response is represented by the black line. Both the highest 284 

concentrations and greatest variation from the reference monitor concentrations occurred when winds 285 

were from the north, where there are multiple large roadways and a railyard. However, there was no 286 

other evidence to suggest that these sources contributed to differences in the measurement trends. The 287 

sensors generally compared more favorably with the reference monitors when examining the wind 288 

direction dependence of concentration. This is most apparent in the OPC-N2 sensor, where the sensor 289 

trends track the trends measured by the reference monitor.  This increases the confidence that sensors 290 

may be useful in studies that pair wind direction with concentration to determine potential bearings or  291 
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 292 

Figure 5 Wind direction patterns for PM2.5 (a) O3 (b) sensor and reference measurements. 293 

locations of pollution sources to supplement source apportionment and receptor modeling. It also raises 294 

questions as to why an air pollution sensor would be able to reproduce wind direction trends but not 295 

necessarily reproduce daily concentration measurement patterns. We undertook exploration of this 296 

perplexing result, but were not able to determine a clearly identifiable cause. While RH and temperature 297 

do have time of day variation that is not reflected in wind direction, we were unable to use these 298 

parameters to explain the differences between time of day and wind direction trends. 299 

The high-time resolution data collected for this study allowed for the examination of air pollution sensor 300 

response trends compared to that of regulatory air pollution monitors. Figure 6 shows a cumulative 301 

distribution function (CDF) for the relative change in sensor and regulatory monitor response between 302 

1-minute measurements for PM2.5 (a) and O3 (b) sensor and reference measurements respectively. The 303 

relative response was calculated as the absolute value of the difference between consecutive one-304 

minute measurements divided by the mean measurement over the entire study period for each 305 

sensor/monitor. If the reference monitor were considered a perfect measurement, sensor curves to the 306 

left and above the reference monitor line have smaller relative changes than the reference monitor, 307 

indicating a slower response to changes in concentration, while curves below and to the right of the 308 

monitor line would signify larger measurement-to-measurement changes that the reference monitor, 309 

indicating potential high levels of measurement noise. Most PM monitors exhibited a slower response to 310 

changes in concentration than the reference monitor. The OPC-N2 and Airbeam sensors were the only 311 

ones with curves to the right of the reference monitor, suggesting that they may have more noise in 312 

their measurements. The Aeroqual sensor showed more O3 measurement noise when compared to the 313 

reference measurement. 314 
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 315 

Figure 6 Cumulative distribution functions for 1-minute response differences for PM2.5 (a) O3 (b) 316 

sensor and reference measurements. 317 

 318 

4. Conclusions 319 

Nine different air pollution sensor devices were deployed in triplicate with collocated air pollution 320 

reference monitors in Denver, CO over an extended operational timeline of longer than six months. The 321 

sensors showed a wide range of correlations with reference measurements, but tended to have high 322 

correlation with sensors of the same model. PM sensors deployed in both Denver and Atlanta had 323 

higher correlations with reference monitors in Denver than in Atlanta. This is likely due to less humidity 324 

related response in Denver. Aeroqual O3 measurements in Denver showed similar linearity to those 325 

measured in Atlanta. Cairclip O3 correlations were lower in Denver than in Atlanta, but NO2 correlations 326 

were higher. Sensors that have also been evaluated by the South Coast Air Quality Management District 327 

(SCAQMD) tended to show similar results in terms of correlation (SCAQMD, 2017). However, in all cases, 328 

sensors’ performance in this long-term field deployment was less than that of laboratory based 329 

comparisons performed in this study and others (U.S. EPA, 2017). It is not surprising that the results of 330 

this study for PM sensors varied from other studies, as the responses to optical measurement 331 

techniques used by these sensors are likely influenced by aerosol composition. This study demonstrates 332 

the need for long-term, real-world evaluation studies for current and future air pollution sensors, that 333 

should be performed in locations with different air pollutant concentration ranges and aerosol 334 

characteristics. 335 

 Several air pollution sensors were able to capture variations in important trends, such as diel patterns 336 

and wind direction dependence on concentration. However, the OPC-N2 units showed similar results as 337 

reference monitor measurement data when analyzing the wind direction trends, but not when analyzing 338 

‘time-of-day’ trends. These promising results show that sensors have the possibility for supplementing 339 
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measurement research capabilities when interested in air pollution trends such as those dependent on 340 

wind direction. Analyses of wind direction based air pollutant trends could be useful for possible 341 

identification of source locations or regions, especially with the use of a sensor-based network.  342 
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Data Availability 343 

The CAIRSENSE dataset will be available at the EPA environmental dataset gateway 344 

(https://edg.epa.gov) (EPA 2018) where the dataset can be retrieved by searching for “CAIRSENSE 345 

Denver.” Project data can also be requested from the corresponding author. 346 
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