
Anonymous	Referee	#1	
	
The	 paper	 by	 Sheng	 et	 al.	 examines	 the	 information	 content	 on	methane	 (CH4)	 emis-	 sions	
contained	 in	column-average	concentration	measurements	by	 three	satellite	con-	 figurations.	
These	 configurations	 reflect	 the	 TROPOMI	 mission	 in	 low-Earth-orbit	 and	 the	 GeoCarb	 and	
GeoCAPE	missions	 in	geostationary	orbit.	The	 information	content	 is	estimated	by	a	Bayesian	
inversion	for	simulated	measurements	above	the	Southeast	US	for	a	week	in	summer.	
	
The	 paper	 is	 well	 written	 and	 interesting	 for	 the	 readers	 of	 Atmospheric	 Measurement	
Techniques	in	particular	since	the	study	can	serve	as	reference	for	how	to	size	future	satellite	
techniques	in	terms	of	spatiotemporal	resolution.	Therefore,	I	recommend	publishing	the	paper	
after	considering	my	comments	below:	
	
The	paper	is	a	case	study	for	1	week	of	CH4	emissions	in	the	Southeast	USA.	How	representative	
is	this	case	study	for	the	overall	challenge	of	inversely	estimating	methane	emissions	on	regional	
scales	globally	for	all	seasons?	The	study	would	gain	scientific	mass	by	extending	to	other	regions	
and	other	seasons.	
We	 choose	 Southeast	 US	 and	 the	 time	 period	 because	 we	 took	 advantage	 of	 the	 previous	
SEAC4RS	 study	 (in	 order	 to	 compare	 DOFS	 from	 satellites	 with	 that	 from	 SEAC4RS	 aircraft	
campaign).	We	 think	 the	 region	 is	 representative	because	 it	 accounts	 for	more	 than	50%	US	
methane	emissions	with	mixed	sources	from	wetlands,	oil/gas,	coal	mines,	agriculture,	and	waste.	
Summer	is	when	wetlands	emissions	are	highest	(anthropogenic	emissions	are	unlikely	to	have	
large	seasonality).	We	updated	the	abstract	and	text	accordingly.	
	
The	 Bayesian	 inversion	 essentially	 is	 controlled	 by	 the	weighting	 between	 the	measurement	
uncertainty	 and	 the	 a	 priori	 uncertainty.	While	 the	 assumed	measurement	 uncertainties	 are	
described	in	quite	some	detail,	the	text	is	sparse	for	the	a	priori	un-	certainties.	I	recommend	
elaborating	in	more	detail	how	large	the	assumed	a	priori	uncertainties	are,	e.g.	a	map	would	
help.	Is	the	uncertainty	relative	to	the	a	priori	fluxes	i.e.	vanishing	a	priori	fluxes	remain	zero?	
Likewise,	it	would	be	helpful	to	illustrate	the	effect	of	Gaussian	Mixture	Model	used	for	spatial	
binning.	This	information	should	be	included	even	if	it	is	redundant	with	previous	publications.	
We	updated	 Fig.	 1	 showing	 prior	 uncertainties,	 and	we	 also	 expanded	 the	 discussion	 on	 the	
Gaussian	mixture	model,	and	added	a	figure	showing	the	state	vector	elements.	
	
The	 performance	 analysis	 focusses	 on	 the	DOF	which	 is	 a	 very	 condensed	measure.	 I	would	
recommend	extending	the	analysis	to	the	a	posteriori	flux	errors	(or	the	error	reductions	wrt.	the	
a	priori).	Could	it	be	enlightening	to	plot	the	averaging	kernel	matrix	for	cloudy	and	less	cloudy	
conditions	to	illustrate	the	effects	of	clouds	on	the	information	content?	
The	concept	of	DOFS	 is	analogue	to	relative	reductions	 in	error	variances	for	the	state	vector	
elements.	We	now	add	this	in	the	text,	and	also	add	a	figure	showing	average	kernels	(diagonal	
elements)	under	zero-cloudy	vs	cloudy	conditions.	
	
The	assumed	ground-pixel	sizes	(table	1)	are	valid	for	the	sub-satellite	point	(to	the	best	of	my	
knowledge).	For	wide-swath	LEO	missions	such	as	TROPOMI,	ground-	pixels	grow	substantially	



toward	the	outer	parts	of	the	swath.	Likewise	for	GEO,	ground-	pixel	sizes	grow	with	latitude	and	
longitude	away	from	the	sub-satellite	point.	In	that	sense,	the	study	is	too	optimistic	with	respect	
to	the	real	satellite	performance	(cloud	contamination,		measurement		density).	
We	now	mention	this	limitation	in	the	text.	
	
Figure	2,	right	panel:	The	inset	is	somewhat	misleading	since	intuitively	one	would	expect	the	
inset	 to	 show	 kind	 of	 the	 same	 quantity	 as	 the	main	 figure.	 But,	 in	 fact,	 it	 is	 TCCON-model	
departures	in	the	main	figure	and	cloud	cover	in	the	inset.	It	took	me	a	while	to	get	it.	Consider	
making	it	separate	figures.	
We	separate	the	figures	now.	
	
The	 most	 recent	 publication	 for	 TROPOMI	 CH4	 (real	 data)	 is	 Hu	 et	 al.,	
https://doi.org/10.1002/2018GL077259,	2018	
We	now	add	Hu	et	al.	(2018).	
	
	
	
J.	Marshall	(Referee	#2)	
	
This	paper	presents	 in	a	 very	 compact	nature	a	methodology	 for	 comparing	 three	differ-	ent	
satellite	missions	working	to	constrain	methane	fluxes	using	Degrees	of	Freedom	for	Signal	(DOFS)	
as	a	metric	of	the	resolvable	information	content.	This	methodology	is	applied	in	OSSEs	looking	
at	the	relative	performance	of	TROPOMI,	GeoCARB,	and	GEO-CAPE.	The	approach	is	interesting,	
and	provides	a	slightly	different	assessment	than	the	usual	reduction	of	posterior	uncertainty.	
Nonethesless,	I	have	a	few	concerns	regarding	some	of	the	assumptions	made	(particularly	with	
respect	to	the	influence	of	cloud	cover	on	measurement	yield)	and	the	presentation	of	the	results.	
While	the	writ-	ing	is	quite	clear	and	free	from	errors,	some	additional	information	is	required	to	
help	the	reader	truly	understand	the	approach.	(Perhaps	the	manuscript	is	a	bit	too	com-	pact?)	
Even	after	reading	some	of	the	referenced	papers	in	a	search	for	explanation,	the	interpretation	
of	the	results	was	somewhat	difficult.	As	such,	some	additional	 infor-	mation	 is	requested,	as	
outlined	below.	If	these	points	are	addressed,	I	would	consider	the	paper	suitable	for	publication	
in	AMT.	
	
In	 particular,	 some	 physical	 interpretation	 of	 the	 state	 vector	 elements	 developed	 using	 the	
Gaussian	Mixture	Method	(GMM)	with	Radial	Basis	Functions	(RBFs)	would	be	helpful.		The	paper	
in	which	this	method	was	developed	(Turner	and	Jacob,		2015)	is	mathematically	rather	dense,	
but	does	provide	some	information	about	what	these	functions	look	like	for	California.	Having	
some	idea	about	the	relevant	processes	and	the	spatial	distributions	that	might	be	resolved	in	
the	study	domain	used	here	would	be	useful.	Was	temporal	aggregation	performed	as	well,	over	
the	week,	or	was	a	stationary	solution	assumed?	How	would	this	methodology	be	extended	to	
different	time	periods	or	regions?	Would	the	state	vector	have	significantly	more	or	less	elements	
for	other	similarly-sized	domains?	
We	only	focus	on	spatial	aggregation	and	assume	the	state	vector	has	no	temporal	dimension.	
We	added	a	new	figure	and	expanded	the	discussion	in	the	text	(also	see	response	to	review	#1)	



	
	
P3,	 L7-9:	 I	 disagree	 with	 the	 statement	 that	 the	 assumption	 of	 randomness	 in	 the	 noise	 of	
synthetic	measurements	does	not	affect	a	comparative	analysis	of	different	instru-	ments.	This	is	
true	if	the	instruments	which	are	being	compared	are	expected	to	have	similarly	correlated	or	
uncorrelated	errors	in	their	actual	measurements,	but	this	may	well	not	be	the	case.	An	example	
of	 this	 is	 active	 vs.	 passive	 sensors,	 where	 the	 former	 is	 expected	 to	 have	 considerably	 less	
correlation	between	individual	measure-	ments.	While	such	an	assumption	has	often	been	made	
in	 the	 past,	 more	 experience	 with	 satellite	measurements	 have	 proven	 time	 and	 again	 that	
systematic	(correlated)	errors	are	incredibly	important	when	trying	to	interpret	signals,	and	they	
are	not	identical	across	instruments.	Please	discuss	explicitly	the	limitations	of	this	assumption.	
We	removed	the	statement	and	mentioned	this	limitation	in	the	text.	
	
P4,	L3-10:	In	the	discussion	of	the	model	transport	error	variance,	the	approach	seems	valid,	but	
I	wonder	about	its	broader	applicability	over	the	full	domain.	Other	studies	(using	in	situ	data)	
have	shown	that	the	uncertainty	dominated	by	transport	errors	tends	to	be	proportional	to	the	
mean	mixing	ratios	for	a	given	period	(see	e.g.	Jeong	et	al.,	JGR,	2013).	How	representative	are	
the	signals	at	Lamont	for	the	whole	domain?	
We	think	it’s	representative	because	it’s	consistent	with	other	studies	using	real	GOSAT	data	in	
different	regions	(California	and	the	North	America).	We	updated	the	text	accordingly.	
	
P4,	L11-17:	In	this	discussion	of	the	temporal	correlation	of	the	measurements,	please	explain	
the	increase	at	around	12	hours	seen	in	the	second	panel	of	Figure	2.	Does	this	have	something	
to	with	the	fact	that	the	TCCON	measurements	are	made	only	during	the	day,	and	as	such	there	
are	 fewer	 samples	 at	 around	 12	 hours?	Or	 is	 this	 the	 result	 of	 the	well-known	 smily/frowny	
tendencies	of	some	TCCON	sites	at	high	solar	zenith	angles?	Or	an	airmass	dependency	that	is	
not	properly	accounted	for	when	comparing	the	modelled	fields	to	the	TCCON	data?	This	peak	in	
correlation	 at	 12	 hours	 could	 be	 the	 result	 of	 neglecting	 to	 apply	 the	 (solar-zenith-angle-
dependent)	averaging	kernels	to	the	modelled	fields	before	performing	the	comparison.	Was	this	
done?	Some	more	detail	is	needed	here.	
This	increase	may	be	due	to	several	reasons	as	mentioned	above,	but	it’s	not	our	main	interest.	
We	used	an	exponential	fit	(largely	driven	by	the	first	12	hours)	to	compute	the	correlation	time	
scale,	and	this	increase	around	12	hour	has	little	impact	on	our	results.	We	now	explain	this	in	
the	text.	
	
P4,	 L22-P5,	 L7:	 The	 discussion	 of	 the	 cloud	 cover	 is	 probably	 the	 most	 critical	 point	 in	 this	
manuscript,	upon	which	many	of	the	conclusions	rest.	I	expect	that	the	estimation	of	number	of	
successful	retrievals	is	overestimated	for	partially	cloudy	conditions.	The	methodology	of	Remer	
et	al.	(2012)	required	only	that	the	specific	1-km	pixels	making	up	a	given	measurement	footprint	
were	cloud-free.	In	practice,	if	there	is	a	single	gap	in	the	clouds	of	exactly	7	km	x	7	km,	it	is	highly	
unlikely	that	TROPOMI	would	be	able	to	get	a	successful	retrieval.	Yes,	it	is	officially	"cloud-free",	
but	this	is	treating	clouds	like	a	2D	mask,	when	in	reality	they	are	3-dimensional,	with	multiple	
layers,	 and	 the	 sun	 is	 very	 rarely	 exactly	 at	 nadir,	 in	 fact	 never	 for	 this	 domain,	 and	 the	
geostationary	imagers	are	likewise	observing	at	an	angle.	Thus	the	light	path	requires	a	larger	



cloud-	 free	area	than	the	ground	footprint	would	suggest.	Most	retrieval	 teams	find	that	 it	 is	
difficult	to	get	good	retrievals	from	very	small	gaps	in	clouds	due	to	these	problems	as	well	as	
light	 path	 effects	 related	 to	 nearby	 clouds	 and	 cloud	 shadows	 that	 decrease	 the	 amount	 of	
reflected	light	from	the	ground,	reducing	the	signal	to	noise.	Perhaps	some	of	these	effects	are	
less	 critical	 for	 aerosol	 retrievals,	 the	 focus	 of	 Remer	 et	 al.	 (2012),	 but	 for	 highly	 exacting	
retrievals	of	greenhouse	gases	they	can	be	critical.	
We	now	acknowledge	this	limitation	in	the	text,	but	we	don’t	think	they	can	be	critical	for	our	
results.	Actually	we	did	a	sensitive	test	using	different	cloudy	conditions	(cloud	fraction	from	0.5	
to	0.8).	As	we	shown	in	Fig.	6,	geostationary	instruments	are	insensitive	to	cloudy	conditions	on	
the	 regional	 scale	 (~25km),	 though	 TROPOMI	 is	 sensitive.	 Our	 retrieval	 rate	 for	 synthetic	
TROPOMI	(7x7	km2)	is	similar	to	that	of	GOSAT	full-physic	retrievals.	We	now	explicitly	discuss	
this	in	the	text.	
	
In	addition	to	this,	the	footprints	given	are	all	at	nadir,	and	in	fact	they	may	be	somewhat	larger	
depending	on	the	viewing	angle.	This	simple	geometry	requires	a	larger	gap	in	the	clouds	than	
the	footprint	alone	suggests.	It	seems	the	numbers	used	in	this	study	are	taken	from	Figure	6	in	
Remer	et	al.,	(2012);	Figure	7	of	the	same	paper	addresses	the	off-nadir	difference	for	spring,	
which	results	 in	a	 reduction	of	4%	for	4	km	x	4	km	footprints	 (from	0.31	to	0.27	 for	MAM,	a	
relative	decrease	of	13%	).	Thus	the	effective	gap	size	needed	for	a	3	km	x	3	km	instrument	may	
well	end	up	being	closer	to	8	km	x	8	km.	This	inflation	of	the	footprint	size	is	particularly	important	
for	single	measurments	in	broken	cloud	conditions	-	this	extra	padding	has	its	greatest	impact	
around	the	edge	of	a	cloud-free	area.	This	suggest	that	the	number	of	cloud-free	soundings	is	
likely	overestimated.	The	fact	that	the	median	number	of	observations	per	model	pixel	is	only	3	
for	TROPOMI	suggests	that	even	a	slight	reduction	in	acceptable	pixels	might	have	very	serious	
effects	on	the	information	content	for	this	 instrument.	The	greater	"oversampling"	relative	to	
the	model	 resolution	 for	 the	other	 instruments	means	 that	 this	will	 likely	have	a	 less	 serious	
effect.	This	is	consistent	with	the	information	in	Figure	4.	
We	now	mention	this	limitation	of	footprint	size	in	the	text	(also	see	response	to	Review	#1).	
	
One	 final	 facet	 to	 this	 discussion	 that	 may	 be	 worth	 mentioning	 is	 the	 fact	 that	 the	 actual	
footprint	of	TROPOMI	may	well	be	3.5	km	x	7	km	in	the	end,	due	to	sampling	changes	to	deal	
with	 saturation	of	 the	optical	 channels,	which	only	 became	apparent	 post-launch.	While	 this	
reduction	 in	 footprint	 also	 results	 in	 a	 smaller	 signal	 to	 noise	 (and	 presumably	 a	 larger	
measurement	uncertainty),	the	conclusions	on	P5,	L5-7	suggest	that	this	will	likely	not	degrade	
the	result	significantly.	 I	would	not	redo	any	of	 the	analysis	based	upon	this	 information,	but	
simply	mention	it	in	the	discussion.	
The	footprint	size	for	CH4	might	be	further	reduced	to	~5.5km	x	7	km	in	the	final	product	(Ilse	
Aben,	personal	communication,	2018).	We	now	mention	it	in	the	text.	
	
Minor	comment:	
	
Figure	2:	The	inclusion	of	the	temporal	correlation	of	cloud	cover	map	in	the	temporal	correlation	
of	modelling	error	is	unnecessarily	confusing.	Both	plots	are	relevant	and	worth	including,	but	
they	should	be	separated.	



We	have	separated	the	figure.	
	
Figure	 3:	 The	 three	 GeoCARB	 points	 should	 be	 labelled	 with	 x1/day,	 x2/day,	 x4/day.	 The	
information	is	contained	on	the	y-axis,	but	adding	this	information	would	make	the	figure	easier	
to	interpret.	
We	updated	the	figure.	
	
Figure	3&4:	replot	with	harmonized	colours,	so	that	the	same	colour	always	represents	
e.g.	GEO-CAPE,	TROPOMI,	GeoCARB	1/day,	etc.	
We	updated	the	figures.	
	
Watch	that	the	capitalization	of	GeoCARB	is	consistent,	see	e.g.	title	and	legend	in	Figure	4	
We	corrected	it.	
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Abstract. We conduct observing system simulation experiments (OSSEs) to compare the ability of future satellite measure-

ments of atmospheric methane columns (TROPOMI, GeoCARB, GEO-CAPE) for constraining methane emissions down to

the 25 km scale through inverse analyses. The OSSE uses the GEOS-Chem chemical transport model (0.25◦ × 0.3125◦ grid

resolution) in a 1-week simulation for the Southeast US with 216 emission elements to be optimized through inversion of

synthetic satellite observations. Clouds contaminate 73-91% of the viewing scenes depending on pixel size. Comparison of5

GEOS-Chem to TCCON surface-based methane column observations indicates a model transport error standard deviation of

12 ppb, larger than the instrument errors when aggregated on the 25 km model grid scale, and with a temporal error correlation

of 6 hours. We find that TROPOMI (7×7 km2 pixels, daily return time) can provide a coarse regional optimization of methane

emissions,
:::::::::
comparable

::
to

::::::
results

::::
from

:::
an

::::::
aircraft

::::::::
campaign

:::::::::::
(SEAC4RS), and is highly sensitive to cloud cover. The geostation-

ary instruments can do much better and are less sensitive to cloud cover, reflecting both their finer pixel resolution and more10

frequent observations. The information content from GeoCARB toward constraining methane emissions increases by 20-25%

for each doubling of the GeoCARB measurement frequency. Temporal error correlation in the transport model moderates but

does not cancel the benefit of more frequent measurements for geostationary instruments. We find that GeoCARB observing

twice a day would provide 70% of the information from the nominal GEO-CAPE mission considered
::::::::::::
pre-formulated

:
by NASA

in response to the Decadal Survey of the US National Research Council.15

1 Introduction

Methane is the second most important anthropogenic greenhouse gas after CO2 (Myhre et al., 2013), and plays a key role in tro-

pospheric and stratospheric chemistry (Thompson, 1992; West and Fiore, 2005; Solomon et al., 2010). The contributions from

different source sectors and regions to the atmospheric methane budget remain highly uncertain (Kirschke et al., 2013; Saunois

et al., 2016; Turner et al., 2017). Satellite observations of atmospheric methane columns in the shortwave infrared (SWIR) are a20

promising resource for constraining
:::::::::
quantifying emissions through inverse analyses (Jacob et al., 2016; Houweling et al., 2017)

but can be limited by instrument precision, sampling frequency, pixel resolution, cloud cover, and model transport error. Here

1



we apply an Observing System Simulation Experiment (OSSE) for the Southeast US to compare the ability of new satellite

instruments to characterize methane emissions down to the 25-km scale, using as reference results from the recent SEAC4RS

aircraft campaign in the region (Sheng et al., 2018).

SWIR methane observations from space have so far been mainly from the SCIAMACHY instrument (2003-2013; Franken-

berg et al., 2006) and the GOSAT instrument (2009-2016; Kuze et al., 2009, 2016). These data have proven useful for opti-5

mizing methane emissions on regional scales down to ∼100 km when averaged over several years (Bergamaschi et al., 2013;

Fraser et al., 2013; Monteil et al., 2013; Wecht et al., 2014b; Turner et al., 2015; Alexe et al., 2015; Feng et al., 2017), but

they are too sparse to constrain methane emissions on finer spatial or temporal scales. Our ability to observe methane from

space should be considerably improved with the recent launch (October 2017) of the SWIR TROPOMI instrument, providing

daily global coverage with 0.6% precision and 7×7 km2 nadir resolution (Butz et al., 2012)
::::::::::::::::::::::::::::
(Butz et al., 2012; Hu et al., 2018)10

. The GeoCARB geostationary mission to be launched in the
::::
early 2020s will

::::
plans

::
to observe methane columns over North

and South America with 0.6% precision and 3× 3 km2 resolution (Polonsky et al., 2014; O’Brien et al., 2016). The observing

frequency of GeoCARB is not finalized yet and could be 1-4 times per day. Other geostationary instruments still at the pro-

posal stage offer improved combinations of pixel size, precision, and observing frequency, including GEO-CAPE (Fishman

et al., 2012), GeoFTS (Xi et al., 2015), G3E (Butz et al., 2015), and CHRONOS (Edwards et al., 2018). GEO-CAPE has been15

pre-formulated by NASA as a recommended mission from the US National Research Council (2007) Decadal Survey on Earth

Science and Applications from Space.

OSSEs are standard approaches to assess the utility of future satellite instruments to deliver on a specific objective, here

the mapping of methane emissions. OSSEs at 50 km spatial resolution have been conducted to evaluate the potential of future

satellite observations for quantifying methane emissions over California (Wecht et al., 2014a) and North America (Bousserez20

et al., 2016). Bousserez et al. (2016) in particular assessed the benefit of geostationary multi-spectral (SWIR + thermal infrared)

measurements. Turner et al. (2018) conducted a kilometer-resolution OSSE to explore the potential of different satellite observ-

ing configurations to resolve the distribution of methane emissions on the scale of an oil/gas field,
::::
and

:::::::::::::::::::
Cusworth et al. (2018)

:::::::
extended

::::
that

::::
work

::
to

::::::::
examine

:::
the

:::::
ability

::
of

:::
the

::::::::
satellites

::
to

:::::
detect

:::::::::
anomalous

:::::::::
high-mode

:::::
point

::::::
source

:::::::
emitters.

Here we conduct a comparative analysis of TROPOMI, GeoCARB, and GEO-CAPE for constraining the spatial distribu-25

tion of methane emissions at a fine regional scale (25 km), and we investigate more generally how the information content

from different satellite observing configurations depends on pixel size, observing frequency, and cloud contamination. Of par-

ticular interest is to define observing frequency requirements for GeoCARB to resolve regional-scale methane sources. We

focus on the Southeast US, which is a major source region for methane including large contributions from oil/gas production

and wetlands
:::::::
accounts

:::
for

:::::
about

::::
50%

:::
of

:::
US

::::::::
methane

::::::::
emissions

:::::::::
including

:::::
mixed

::::::::::::
contributions

::::
from

:::::::::
wetlands,

:::::
fossil

:::::
fuels,30

:::::::::
agriculture,

::::
and

:::::
waste

:
(Maasakkers et al., 2016; Bloom et al., 2017). Sheng et al. (2018) previously used boundary layer

methane observations from the NASA SEAC4RS aircraft campaign (Toon et al., 2016) in August-September 2013 to optimize

methane emissions over the Southeast US. This offers an opportunity to directly compare the observing power of satellite

instruments to that from a dedicated aircraft campaign.

2



2 Observing system simulation experiments

Our OSSE framework is shown in Figure 1. We build on the previous work of Sheng et al. (2018), who conducted a Bayesian

inverse analysis of the SEAC4RS aircraft observations with the GEOS-Chem chemical transport model (CTM) at 0.25◦ ×
0.3125◦ resolution. They used the SEAC4RS data together with prior estimates and error statistics from the gridded EPA

inventory of Maasakkers et al. (2016) and the WetCHARTs extended ensemble wetland inventory of Bloom et al. (2017),5

to optimize the spatial distribution of methane emissions in the Southeast US for August-September 2013. We follow the

same analytical inversion framework as Sheng et al. (2018) for our OSSE. We first simulate a methane column concentration

field using the GEOS-Chem CTM with prior emission estimates (base simulation). We then sample this field following the

specifications of the different satellite instruments (Table 1), accounting for instrument random noise and cloud contamination

(discussed below).10

:::
For

:::::::::
TROPOMI

:::
we

:::::::
assume

::
a

:::::
7× 7

::::
km2

::::
pixel

:::::
size,

:::::
which

::
is
:::

the
::::::

design
:::::

nadir
:::::
value

:::::::::::::::
(Butz et al., 2012)

:
;
:::::
actual

:::::
pixel

:::::
sizes

::::
grow

::::::
toward

:::
the

:::::
outer

:::::
parts

::
of

:::
the

::::::::::
cross-track

:::::
swath.

::::
On

:::
the

::::
other

::::::
hand,

::::
there

:::
are

:::::
plans

::
to
:::::::

deliver
:::::::::
TROPOMI

::::
data

::
at
:::::

finer

::::::
5.5× 7

::::
km2

::::
pixel

:::::::::
resolution

::::
(Ilse

:::::
Aben,

::::::
SRON,

:::::::
personal

::::::::::::::
communication).

::::
The

:::::
3× 3

:::
and

:::::
4× 4

::::
km2

::::
pixel

:::::::::
resolutions

::::::::
assumed

::
for

::::::::::
GeoCARB

:::
and

:::::::::::
GEO-CAPE

:::
are

:::::::
generic

::::::
values

:::
for

:::
the

:::::::::
contiguous

:::
US

:::
in

:::
the

::::::
current

:::::::
designs.

:
Randomness in the noise

of synthetic observations is a standard OSSE assumption (e.g., Wecht et al., 2014a; Bousserez et al., 2016) and
:::
but may15

overestimate the absolute DOFS of an instrument but does not affect a comparative analysis of different instruments
::::::::::
information

::
in

:::
the

:::::::::::
observations

::
if

:::::
some

::
of

:::
the

:::::
actual

:::::
noise

:
is
:::::::::
systematic

:::::::::::::::::::
(Bousquet et al., 2018).

The sampled synthetic observations define the observation vector y for the inversion. The sensitivity of these observations

to the distribution of methane emissions over the domain (arranged as a state vector x) is defined by the Jacobian matrix

K = ∂y/∂x, where the ith column of K (∂y/∂xi) is constructed from GEOS-Chem by perturbing individual state vector20

elements xi to compute the resulting perturbation ∆y (relative to the base simulation). We then use this Jacobian matrix

together with prior and observational error statistics (error covariance matrices SA and SO) to quantify the information content

of observations toward constraining emissions. The OSSE is conducted for the one-week period of August 8-14, 2013. All

observations use a mean SWIR averaging kernel from GOSAT with uniform near-unit sensitivity in the troposphere (Worden

et al., 2015).
:::
The

::::::
OSSE

::
is

:::::::::
conducted

:::
for

:::
the

:::::::::
one-week

::::::
period

::
of

:::::::
August

:::::
8-14,

:::::
2013.

::::::::
Although

::::
this

::::::::::
observation

::::::
period

::
is25

:::::::
relatively

:::::
short

:::::::
(limited

:::
by

:::
the

:::::
OSSE

::::
cost

::
of

::::::::::
computing

:::
the

:::::::
Jacobian

:::::::
matrix),

::
it
:::::::
provides

::::::
useful

::::::::::
comparison

::
of

:::
the

::::::::
different

::::::
satellite

:::::::::
observing

::::::::::::
configurations

:::
and

::::
their

::::::::::
sensitivities

::
to

:::::::::::
measurement

:::::::::
frequency

:::
and

:::::
cloud

:::::
cover.

::
A

::::::
longer

::::::::
observing

::::::
period

:::::
would

:::::::
provide

::::
more

:::::::::::
information.

The state vector x of emissions, representing the spatial distribution of emissions to be resolved by the inversion, is the same

as in Sheng et al. (2018). It includes 216 Gaussian mixture model (GMM) elements
:
,
:::::
where

:::::
each

:::::::
element

:
is
::
a
::::::::
Gaussian

:::::
mode30

with radial basis functions (Turner and Jacob, 2015),
::::::
(RBFs)

::::::
applied

::
to

:::
the

::::::::::::::
0.25◦ × 0.3125◦

:::
grid

:::::::::::::::::::::
(Turner and Jacob, 2015).

::::
The

:::::
modes

:::
are

:::::::
selected

:::
on

:::
the

::::
basis

:::
of

::::::
criteria

::::::::
including

::::::
spatial

::::::::
proximity

::::
and

:::::
source

::::
type

:::::::
patterns

::
as

:::
in

::::::::::::::::::::
Turner and Jacob (2015)

:
.
:::
The

:::::::::::
optimization

::
is

:::
for

:::
the

:::::::::
amplitudes

:::
of

:::
the

:::
216

::::::::
Gaussian

:::::::
modes,

:::
and

:::
the

::::::::::::
corresponding

:::::::
solution

:::
on

:::
the

::::::::::::::
0.25◦ × 0.3125◦

:::
grid

::
is
::::::::
obtained

::::
from

:::
the

:::::
RBF

:::::::
weights.

:::
In

:::
this

:::::::
manner,

::::
each

::::::::::::::
0.25◦ × 0.3125◦

::::
grid

::::
cell

::
is

::::::::::
individually

:::::::::
optimized

::
as

::
a

:::::
linear

3



::::::::::
combination

::
of

::::::::
Gaussian

::::::
modes

::::
with

:::::
RBFs.

::::::
Figure

:
2
::::::
shows

::
the

::::::::
resulting

::::::::::
approximate

:::::::::
clustering

::
as

:::
the

:::
grid

::::
cells

::::::
whose

::::::
largest

::::
RBF

:::::::
weights

::
are

:::
for

::::::::
common

::::::::
Gaussian

::::::
modes.

:::
We

::::::
choose

::
to

::::::::
optimize

:::
216

::::::::
elements

::
as representing the extent of information

on emissions that we may hope to achieve in 1 week of
::::
with

::::::
1-week

:
observations. The GMM provides ∼25 km resolution to

resolve emission hotspots and coarser resolution
:::
use

::
of

:::
the

::::::
GMM

::::
with

:::::
RBFs

::::::
allows

::
us

::
to

::::::
resolve

::::::::
localized

::::::::
dominant

:::::::
sources

::::
(such

::
as
::::::
oil/gas

::
or

::::
coal

::::::
mines)

::
at

::::
high

:::::::::
resolution

:::::
while

::::::::
degrading

:::::::::
resolution in areas of weak emissions.

::
or

:::::::
broadly

:::::::::
distributed5

::::::
sources.

::::
The

::::::
GMM

:::
also

:::::::
reduces

:::::
errors

::
in

::::::::::
aggregation

::
of

:::
the

::::
state

:::::
vector

::
as

:::::::::
compared

::
to

:
a
::::::
simple

::::
grid

:::::::::
coarsening

::::::
method

:::::
(e.g.,

:::
216

::::::::
elements

::
at

:::::::::
1◦ × 1.25◦

:::::::::
resolution),

::::::
which

:::::
would

::::
mix

::::::::::
neighboring

::::::
source

::::
types

::::
and

::::::
induce

:::::
larger

::::::::::
aggregation

::::
error.

:

The analytical solution to the Bayesian inversion problem includes full characterization of the information content from the

observations towards quantifying the state vector of emissions, as computed by the Degrees of Freedom For Signal (DOFS;

Rodgers, 2000). Combining the Jacobian matrix K constructed from GEOS-Chem together with the prior error covariance10

matrix SA and the observation error covariance matrix SO, we compute the averaging kernel matrix A = ∂x̂/∂x that represents

the sensitivity of the optimization (x̂) to the true state (x):

A = SAKT (KSAKT +SO)−1 K.= In − ŜSA,
::::::::::

(1)

:::::
where

::
In::

is
:::

the
:::::::

identity
::::::
matrix

::
of

:::::::::
dimension

::
n
::::::
(=216)

::::
and

::
Ŝ

:
is
:::

the
::::::::

posterior
:::::
error

:::::::::
covariance

::::::
matrix.

:
The DOFS is then the

trace of the averaging kernel matrix:15

DOFS = tr(A)= tr(I− ŜSA)
:::::::::::

. (2)

The DOFS represents the number of pieces of information provided by the observing system for quantifying the state vector.

DOFS
::
As

::::
seen

::::
from

::::::::
Equation

:::
(2),

:::
the

:::::
DOFS

::
is

::::::
related

::
to

:::
the

::::::
relative

::::::::
reduction

::
in

::::
error

:::::::
variance

::::
that

:::::
would

::
be

::::::::
obtained

::::
from

:::
the

::::
ratios

:::
of

:::
the

:::::::
diagonal

::::::::
elements

::
of

::
Ŝ

:::
and

:::
SA:

.
::
It

:::::::
provides

::::::::
however

:
a
:::::
more

:::::::
complete

::::::::::::::
characterization

::
of

::::::::::
information

::::::
content

:::
by

:::::::::
accounting

:::
for

::::
error

::::::::::
covariances.

::::::
DOFS

:
= 216 would represent perfect constraints on our state vector. The SEAC4RS aircraft20

inversion of Sheng et al. (2018) achieved DOFS = 10.

The prior error covariance matrix SA for our problem is taken from the emission inventory error estimates of Maasakkers

et al. (2016) and Bloom et al. (2017)
::
for

::::::::::::
anthropogenic

:::::::
sources

:::
and

:::::::::::::::::
Bloom et al. (2017)

:::
for

:::::::
wetlands, as described by Sheng

et al. (2018). The observational error covariance matrix SO is specific to the observing configuration, and includes contributions

from model transport error in simulating the observations as well as instrument errors
:::
the

:::::::::
instrument

:::::
errors

:::::
given

::
in

:::::
Table

:
1.25

We estimate the model transport error variance by the residual error method (Heald et al., 2004) applied to the GEOS-Chem

simulation with prior emissions of hourly observed Total Carbon Column Observing Network (TCCON) methane columns in

Lamont, Oklahoma for August-September 2013 (Wunch et al., 2011; Wennberg et al., 2017). In that method, the mean bias in

the model compared to the observations is attributed to error in the prior emissions (to be corrected in the inversion) and the

residual characterizes the observation error including contributions from
:::
both

:
model transport error and instrument error. In our30

case, the TCCON measurements are highly precise (precision is <4 ppb), so that the residual characterizes the model transport

error. The residual error distribution is shown in Figure 3 , with
:::
and

::::::
features

:
an error standard deviation of 12 ppb. This

::::
error

:::::::
standard

::::::::
deviation is consistent with previous GEOS-Chem transport error estimates (Wecht et al., 2014a; Turner et al., 2015)
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.
::
by

:::
the

:::::::
residual

::::
error

:::::::
method

::::
using

:::::::
GOSAT

:::::::::::
observations

::::
from

::::::::::::::::::
Wecht et al. (2014a)

::
for

::::::::
California

::::
and

::::::::::::::::
Turner et al. (2015)

:::
for

:::::
North

::::::::
America.

:::
We

::::::
assume

::::::::
therefore

:::
that

::
it

::::::
applies

::::
over

:::
our

::::::
whole

:::::::
domain.

Temporal correlation in the model transport error may limit the benefit of high-frequency observations, because repeated

observations of the same scene may produce the same model-observation differences. Here we estimate this error correlation

from the autocorrelation vs. time lag of the difference between GEOS-Chem and TCCON observations. Results in Figure 35

show an e-folding
:::::
(right

:::::
panel)

:::::
show

::
an

::::::::::
exponential

:::
fit

:::::::
function

::::
with

:
error correlation time scale of 6 hours which we apply

as off-diagonal elements in the observational error covariance matrices for the different satellite observing configurations.

Also shown in Figure 3
:::
The

::::::::
increase

::
of

:::
the

::::::::::::
autocorrelation

::::::::::
coefficients

::::::
around

:::
12

:::::
hours

:
is
::::::::
possibly

:::
due

::
to

:::::
fewer

:::::::::::
observations

:::::::
(TCCON

:::::::::::
observations

:::
are

::::
only

:::::::
available

::
in
:::
the

::::::::
daytime)

::
or

:::::::::
neglecting

::
to

:::::
apply

:::::::::::::::
solar-zenith-angle

::::::::
dependent

:::::::::
averaging

::::::
kernels

::
in

:::
the

:::::::
modeled

:::::::
column

:::::::
methane,

::::
but

:
it
::::
does

::::
not

::::::::::
significantly

:::::
affect

:::
the

::::::::::
exponential

:::
fit.

::::::
Figure

:
4
:
is the persistence (e-folding)10

time scale for cloud cover, which affects the extent to which the temporal error correlation limits the information content of

high-frequency observations; this will be discussed in the next Section.

The instrument error for individual observations is given by the precision values in Table 1, taken from the original refer-

ences. The observations are averaged over 0.25◦ × 0.3125◦ GEOS-Chem grid cells for the purpose of the inversion, and the

instrument error standard deviation is decreased by the square root of the number of successful retrievals averaged over each15

grid cell for individual retrieval time.

Any cloud contamination within an observation pixel will cause an unsuccessful SWIR retrieval for methane (Butz et al.,

2012). Remer et al. (2012) used high-resolution cloud data (0.5-1.0 km) over the US for different regions and seasons to

infer probabilities for satellites to view clear-sky pixels
::
as

:
a
::::::::
function

::
of

:::::
pixel

::::
size. They focused on aerosol retrievals but

the same statistics can be used
::
and

:::::
here

::
we

::::
use

::::
their

:::::
same

:::::::
statistics

:
for methane retrievals. The retrieval of methane has no20

tolerance for any cloud in the scene. For the Southeast US in summer with an average cloud fraction of 0.7, they
::
we

:
find

that cloud contamination would invalidate 91% of retrievals for TROPOMI (7×7 km2 pixels), 73% for GeoCARB (3×3 km2

pixels), and 79% for GEO-CAPE (4×4 km2 pixels). The invalid retrieval
::::
Slant

::::
light

:::::
paths

::::
and

:::
3-D

::::::
cloud

::::::::
scattering

::::::
would

:::::
further

::::::::
decrease

:::
the

::::::::
frequency

::
of

:::::::::
successful

:::::::::
retrievals.

:::
Our

::::::
OSSE

:::::::
retrieval

:::::
failure

:
rate of 91% for TROPOMI in the Southeast

US is in
:::::
similar

:::
to

:
the global mean range of 83% for GOSAT (proxy retrieval, Parker et al., 2011) and 97% expected for25

TROPOMI (full physics retrieval, Butz et al., 2012).
:::::
failure

:::
rate

:::
of

::::
92%

:::
for

:::
the

:::::::
GOSAT

::::::::
(10× 10

::::
km2)

:::::::::::
full-physics

:::::::
retrieval

::::::::::::::::::::::::::::::::::
(Parker et al., 2011; Schepers et al., 2012).

:::::::::
Sensitivity

:::
to

:::::::
retrieval

::::::
success

::::
rate

::::
will

:::
be

::::::::
discussed

::
in

:::
the

::::
next

:::::::
section

:::::::
through

:::::::::::
modifications

::
of

:::::
cloud

:::::
cover.

:

Here we first remove observations for cloudy regions over the inversion domain and period following the
:::
Our

:::::::
removal

:::
of

:::::
cloudy

:::::::::::
observations

::::
uses

:
three-hour 0.25◦ × 0.3125◦ fractional cloud cover information in the GEOS-FP meteorological data30

used to drive
::::::
driving

:
GEOS-Chem (Lucchesi, 2013), and then scale the removal rate

:::::
scales

:::
the

:::::::
removal

:::::
rates

::::::::
regionally

:
to

match the clear-sky probabilities as a function of satellite pixel resolution (Remer et al., 2012)
:::::
cloud

::::::::::::
contamination

::::
rates

:::
in

::::
Table

::
1. Although the satellite data loss from cloud cover is severe, the

::::::::
relatively

::::::
coarse 0.25◦ × 0.3125◦ resolution of our

inversion allows aggregation of data from a large number of observation pixels for comparison to the model. This does not

help when there is solid cloud cover on the 25 km scale in the GEOS-FP data (as in the white areas for the GeoCARB pseudo-35
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observations in Figure 1) but it helps for fractional cloud cover. The median number of aggregated successful pixel retrievals

for a given 0.25◦× 0.3125◦ grid cell at a given observation time is 3, 30, and 15 for TROPOMI, GeoCARB, and GEO-CAPE,

respectively. Thus the median instrument error standard deviation on the 0.25◦×0.3125◦ grid scale over our inversion domain

is 6 ppb for TROPOMI, and 2-4 ppb for the geostationary instruments. This is smaller than the 12 ppb model transport error

standard deviation (Figure 3), so that most of the observational error is contributed by model transport. This is an important5

result as it implies that the instrument precisions in Table 1 are sufficiently good at the 25 km scale that the inversion results

are relatively insensitive to them, while at kilometer scales
:::::::::
instrument

::::::::
precision

::
at

:::
the

::
25

:::
km

:::::
scale.

:
Turner et al. (2018) found

much more pronounced benefit for finer instrument precision
::::::::
sensitivity

:::
to

::::::
satellite

::::::::::
instrument

:::::::
precision

:::::
when

::::::::::
attempting

::
to

:::::::
optimize

::::::::
emissions

::
at
::::::::
kilometer

::::::
scales.

3 Results and discussion10

The information content from different satellite observing configurations is diagnosed by the DOFs, as described in the Meth-

ods section, representing the number of pieces of information on emissions that can be retrieved by inversion of synthetic

observations. Figure 5 shows a contour plot of the DOFS as a function of observing frequency and pixel resolution, assuming

a fixed instrument precision of 0.6%. As discussed in the previous Section, results are relatively insensitive to instrument pre-

cision since most of the observational error is contributed by model transport. The DOFS increase as measurement frequency15

increases (more independent observations) and as pixel size decreases (more observations aggregated in a 0.25◦ × 0.3125◦

grid cell). The benefit of increasing measurement frequency eventually weakens at high values because of temporal correlation

in the GEOS-Chem model transport error. The benefit of increasing pixel resolution also weakens below 4 km because the

inversion does not try to resolve emissions to resolution finer than 0.25◦ × 0.3125◦. Even so, the maximum DOFS of 70 in

Figure 5
:::
that

:
could be achieved by a very high-resolution system (1 km pixel size and hourly observations) is much less than20

the ideal value of 216. A longer observation period or a lower model transport error would be needed to approach that ideal

value.
:::
216

:::::::::::
representing

:::
full

:::::::::::::
characterization

::
of

:::
the

::::::::
emission

::::
field.

:::::
This

:
is
:::::::
because

:::
we

::::
only

:::
use

::::
one

::::
week

:::
of

:::::::::::
observations.

DOFS for TROPOMI, GeoCARB (1-4 measurements per day) and GEO-CAPE are indicated on the contour map. The

TROPOMI inversion has 26 DOFS, higher than the SEAC4RS aircraft campaign (DOFS = 10; Sheng et al., 2018). The geosta-

tionary GeoCARB and GEO-CAPE observations achieve higher DOFS, reflecting their higher observing frequency and pixel25

resolution (greater density of observations). The GeoCARB information content increases by about 20% when going from 1 to

2 measurements for day, and another 20% when going from 2 to 4 measurements per day. GEO-CAPE provides higher DOFS

than GeoCARB, despite coarser pixels, because it measures hourly. We see from Figure 5 that an instrument measuring hourly

with 7× 7 km2 pixels would provide the same information as GeoCARB measuring 4 times per day with 3× 3 km2 pixels,

and GeoCARB measuring twice a day would provide about 70% of information content obtained from GEO-CAPE hourly30

measurements. Again, this result depends on the spatial resolution of the inverse problem (here ∼25 km). A focus on resolving

emissions on finer scales would place a larger premium on decreasing pixel size.
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Figure 6 (left panel) examines further the sensitivity of the DOFS to observing frequency for GeoCARB, and the role of the

model transport error correlation in limiting the gains from increasing measurement frequency. Without model transport error

correlation the DOFS increase roughly as the square root of the measurement frequency (about 40% for each doubling), as

would be expected from the central limit theorem. Temporal error correlation significantly reduces but does not eliminate the

gain from increasing observing frequency. Thus we find that the DOFS increase by 20-25% instead of 40% for each doubling of5

the measurement frequency when temporal error correlation is taken into account. Beyond increasing data density, an advantage

of more frequent measurements for a region is to increase the opportunity for observing clear-sky scenes (”cloud clearing”),

particularly if clouds are more transient than the 6-hour error correlation time scale (in which case multiple observations over

that time scale would increase the chance of obtaining a clear-sky value). Cloud cover in the GEOS-FP meteorological data

used to drive GEOS-Chem has a persistence time scale typically longer than 6 hours (Figure 3, right panel
:
4), which moderates10

this cloud-clearing benefit of high-frequency observations.

All satellite observing configurations considered in our work have low retrieval success rates because of cloud contamination

of individual pixels (Table 1
:
1), as determined from the GEOS-FP cloud cover information scaled to match the Remer et al.

(2012) clear-sky probability statistics for the Southeast US. These statistics are for summer (regional cloud cover of 70%),

but Remer et al. (2012) also give statistics for other seasons with regional cloud cover for the Southeast ranging from 55 to15

81%. Figure 6 (right panel) shows the effects of these different cloud statistics on the DOFS for the TROPOMI, GeoCARB,

and GEO-CAPE configuration. TROPOMI
:::::
(7× 7

::::
km2)

:
is strongly sensitive to regional cloud cover because of its coarse pixel

size and (to a lesser extent) its infrequent return time. The geostationary systems are far less sensitive .
:
to

::::::
cloudy

::::::::::
conditions.

:::
The

::::::
effects

:::
of

:::::
clouds

:::
on

:::
the

:::::::::::
information

::::::
content

:::
of

:::::::::
TROPOMI

::
is
::::::
further

:::::::::
illustrated

::
in
::::::

Figure
::

7
::::
with

:::
the

:::::::::
averaging

::::::
kernel

:::::::::
sensitivities

::::::::
(diagonal

::::::::
elements

::
of

:::
the

:::::::::
averaging

:::::
kernel

::::::
matrix)

:::::::
relative

::
to

::::::::
clear-sky

:::::::::
conditions.

::::
The

:::
loss

:::
of

:::::::::
information

::::::
varies20

::
by

::::::
region

::::::::
depending

:::
on

:::
the

:::::
extent

::
of

:::::
cloud

::::::
cover.

4 Conclusions

We performed observing system simulation experiments (OSSEs) to compare the ability of low-Earth orbit (TROPOMI) and

geostationary (GeoCARB, GEO-CAPE) satellite instruments for constraining methane emissions through inverse analyses.

The OSSEs use the GEOS-Chem chemical transport model (0.25◦ × 0.3125◦ grid resolution) in a 1-week simulation for25

the Southeast US with 216 emission state vector elements. The information content from the different satellite instrument

configurations towards quantifying the state vector of emissions is computed as the degrees of freedom for signal (DOFS)

using a Bayesian analytical inversion framework.

We find that inverse analysis of TROPOMI observations of atmospheric methane columns should provide a successful re-

gional characterization of methane emissions, though with limited spatial resolution. The information content from TROPOMI30

is strongly dependent on cloud cover, due to limited cloud-clearing capability (coarse pixels, infrequent return time). Geo-

stationary observations can perform much better, with less dependence on cloud cover, due to a combination of finer pixel

resolution and more frequent returns. GeoCARB gains 20-25% in information content for each doubling of its measurement

7



frequency from once to eight times per day. GeoCARB measuring twice a day can deliver 70% of information content from

the GEO-CAPE configuration (hourly observations). The benefit of increasing observation frequency is moderated by the 6-h

temporal error correlation in the transport model.
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Table 1. Specifications of satellite instruments.a

Instrument Observing Pixel size Precision Cloud Reference

frequency b ( km2 ) contamination c

TROPOMI once a day 7×7 0.6% 91% Butz et al. (2012)

GeoCARB 1-4 times a day 3×3 0.6% 73% Polonsky et al. (2014); O’Brien et al. (2016)

GEO-CAPE once an hour 4×4 1% 79% Fishman et al. (2012)
a All instruments measure atmospheric methane columns with near-uniform sensitivity in the troposphere, specified

here with a typical SWIR averaging kernel (Worden et al., 2015).
b All observations are daytime only (SWIR solar back-scatter instruments) and limited to the 9:00-16:00 local time

(LT) window. TROPOMI observes at 13:00 LT once a day. GeoCARB observes at 13:00 LT (once a day), 11:00 and

13:00 LT (twice a day), or 9:00, 11:00, 13:00, and 15:00 LT (four times a day). GEO-CAPE observes every hour in the

9:00-16:00 LT window (8 times a day).
c Percentage of observing scenes with unsuccessful retrievals due to cloud contamination (Remer et al., 2012).

Figure 1. Observing System Simulation Experiment (OSSE) framework for the Southeast US to compare the ability of new satellite instru-

ments to constrain methane emissions on the 25 km (0.25◦ × 0.3125◦) scale. GeoCARB is used here as an example. The right panels show

illustrative column concentrations and corresponding GeoCARB observations for a particular time. The column concentrations are in unit

of dry molar mixing ratio (ppb). White areas indicate full cloud cover or oceans preventing GeoCARB from making any observations on

the 25 km scale.
:::
The

::::
prior

::::
error

::::::::
covariance

:::::
matrix

::
on

::::::::
emissions

:::
SA::

is
::::::
assumed

:::::::
diagonal

:::
and

:::::
shown

::::
here

::
as

::
the

:::::::::::
corresponding

::::::
relative

::::
error

::::::
standard

::::::::
deviations.

::::
The

::::::
Degrees

:::
Of

:::::::
Freedom

::
for

:::::
Signal

:::::::
(DOFS)

:
is
:::
the

::::
trace

::
of

:::
the

:::::::
averaging

:::::
kernel

::::::
matrix

:::
and

:::::::
measures

:::
the

:::::::::
information

:::::
content

::::
from

:::
the

:::::::
different

::::::
satellite

:::::::::
instruments.

9



Figure 2.
:::::::::
Approximate

::::::::
rendition

::
of

:::
the

:::::::::::::::
reduced-dimension

::::
state

:::::
vector

::
of

:::::::
n= 216

:::::::
elements

::::
used

::
to
::::::::

constrain
:::::::
methane

::::::::
emissions

::
in

::
the

::::::::
Southeast

:::
US.

::::
This

::::::::::::::
reduced-dimension

::::
state

::::::
vector

:::
was

:::::::
obtained

::
by

::::::::
projecting

:::
the

::::
3456

::::::::::
GEOS-Chem

::::
grid

::::
cells

::
at

:::::::::::::
0.25◦ × 0.3125◦

:::::::
resolution

::::
onto

:
a
::::::::

Gaussian
::::::
mixture

:::::
model

::::::
(GMM)

::::
with

::::
radial

:::::
basis

:::::::
functions

::::::
(RBFs),

::
as

::::::::
described

::
in

::
the

::::
text.

::::
The

::::
colors

:::::
group

:::::::
together

::::::::::::
0.25◦ × 0.3125◦

::::
grid

::::
cells

::::
with

:::::
largest

:::::
RBFs

::
for

::
a
::::
given

::::::::
Gaussian

::::
mode

::::
and

::::
have

::
no

::::
other

::::::::::
significance.

::::
This

::::::::::
visualization

::
of

:::
the

::::
state

::::
vector

::
as
::

a
:::::
cluster

::::
with

:::
hard

:::::::::
boundaries

:
is
:::

an
:::::::::
approximate

:::::::
rendition

::::::
because

::::
each

::::::::::
0.25◦.3125◦

:::
grid

:::
cell

::
is

::
in

:::
fact

:::::::::
individually

::::::::
optimized

::
as

:
a
::::::::::::
superimposition

::
of

::
the

::::
216

:::::::
Gaussian

:::::
modes

:::
with

::::
RBF

:::::::
weights.
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Figure 3. GEOS-Chem model transport error statistics derived from the residual error method (Heald et al., 2004) applied to hourly TCCON

ground-based observations in Lamont, Oklahoma, in August-September 2013. Residuals are the differences between hourly simulated and

observed values after removal of the mean bias. The left panel shows the frequency distribution of residual error (GEOS-Chem minus

TCCON) and a Gaussian fit to that distribution with standard deviation 12 ppb. The right panel panel shows autocorrelation coefficients of

the residual error plotted against time lag and an exponential fit with a temporal error correlation e-folding scale of 6 hours. Significance

levels (p < 0.05) are shown as dashed lines. The correlation becomes insignificant past a time lag of 16 hours.Also shown inset are the

temporal e-folding correlation time scales for cloud cover fraction in the GEOS-FP meteorological data for August-September 2013.
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Figure 4.
::::::::
Persistence

:::
time

:::::
scale

::
for

::::::
cloudy

::::::::
conditions

::
in

:::
the

:::::::
GEOS-FP

:::::::::
assimilated

:::::::::::
meteorological

::::
data

:::
for

::::::::::::::
August-September

::::
2013.

::::
The

::::::::
persistence

::::
time

::::
scale

:
is
::::::
defined

::
as

:::
the

:::::::
temporal

:::::::
e-folding

::::::::
correlation

:::
time

:::::
scale

::
for

::::
total

::::
cloud

:::::
cover

::::::
fraction

:
in
:::

the
:::::
3-hour

::::::::
GEOS-FP

::::
data.
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Figure 5. Information content of different satellite observing configurations for constraining the distribution of methane emissions in the

Southeast US. The figure shows the Degrees of Freedom for Signal (DOFS) for a 1-week inversion
::::::::
observation

:::::
period

:
aiming to constrain

216 emission elements in the Gaussian mixture model characterizing the distribution of emissions at up to 25 km resolution. An ideal

inversion would have DOFS = 216. The configurations are defined by their observing frequency and pixel resolution. The DOFS for the

TROPOMI, GeoCARB (1, 2, and 4 measurements per day), and GEO-CAPE inversions
:::::::::
observations are indicated.
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Figure 6. Effects of observing frequency and regional cloud cover on the information content (DOFS) on methane emissions from different

satellite observing configurations
:

in
:::::::::
constraining

:::::::
methane

::::::::
emissions

::
on

:::
the

::
25

:::
km

::::
scale.

:
. The left panel shows the sensitivity of the DOFS

to observing frequency for the GeoCARB instrument, with and without accounting for temporal correlation in the model transport error

(e-folding time scale of 6 hours). The right panel shows the sensitivity of the DOFS to regional cloud fraction,
:
as

::
a

::::::::
percentage

:::::::
decrease

:::::
relative

::
to
::::
clear

::::
sky, using the combination of the GEOS-FP cloud cover data and clear-sky probabilities as a function of pixel size (Remer

et al., 2012).

Figure 7.
::::::

Diagonal
:::::::
elements

::
of

:::
the

:::::::
averaging

::::::
kernel

:::::
matrix

::::
from

:::
our

:::::
OSSE

::::
using

:::::::::
TROPOMI

:::::::
synthetic

:::::::::
observations

:::::
under

::::::
cloudy

:::::
(cloud

::::::
fraction

:
=
:::
0.7;

:::
left

:::::
panel)

:::
and

:::::::
clear-sky

::::::::
conditions

::::
(right

::::::
panel),

:::::::::
representing

:::
the

:::::
ability

::
of

::
the

::::::::::
observations

::
to

:::::::
constrain

::::
local

:::::::
emissions

::::
(see

::::
text).

:::
The

:::
sum

::
of
:::::
these

:::::
values

::::
(trace

::
of

:::
the

::::::
average

:::::
kernel

:::::
matrix)

::
is

:::
the

:::::
DOFS

::
of

::
the

::::::::
inversions.

:
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