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1 Introduction

The following document outlines the author’s response to the two reviewer comments on the manuscript
amt-2018-126. The following colours are used to differentiate between the reviewer comments, the response
provided by the authors and the actions taken as a consequence of the comment.

Blue Comments made by the reviewer
Black Response from authors to address comment
Red Action points (AP) that have been taken to ad-

dress the comment

2 Response to Anonymous Referee

We thank the reviewer for taking the time provide such a thorough review which will aid substantially in
developing the manuscript to the standard required for publication.

2.1 Main comments

2.1.1 Why have you clustered down to two or three clusters?

”1. Reasons for clustering in some cases to 2 or 3 clusters is not clear. Figure 6 with LAB 2008 which
illustrates the worst rand index, has only two clusters. Why is a case of HAC with only two clusters shown
here? There are quite a few papers in the literature applying HAC to atmospheric aerosol. I can’t remember
any which clustered down to two. There are 9 samples in the 2008 data set combined into four main categories
(bacteria, fungal spores, pollen, and smoke). Wouldn’t a reasonable number of clusters be expected to be 9
or somewhere between 4 and 9? I do not see how two clusters makes sense. Also, there are 10 samples in
the 2008 data set in four main categories (bacteria, fungal spores, pollen, earth and two NaCl samples, with
and without phosphate buffer). Wouldn’t a reasonable number of clusters be expected to be 10 or close to
10? p.12, line 8-9 “In the worst case scenario two clusters are provided both primarily containing bacteria.
In this case we can conclude the algorithm has failed to differentiate between any of the biological classes.”
I don’t see how the failure is an intrinsic feature of HAC. The failure, at least in part seems attributable
to the choice to use two clusters. Table 5 show the bacteria, spores, pollen and non-bio in each of the two
clusters for the 2008 data. The discrimination of these clusters is remarkably poor. Why not first cluster to
9 and then show a table such as Table 5 but for the 9 particle types? The same applies to Fig. 4 why force
these four sample types into three clusters? The results are confusing enough that I’d recommend showing
dendrograms for the clusters of both 2008 and 2014 data sets, and discussing these dendrograms in relation
to the data illustrated in Figs. 4 and 5.”

We believe this confusion has arisen from the author’s inadequate description of Figure 6, which we detail
more thoroughly below. Since the response to this comment is substantial we have provided bullet points
summarising the response, followed by a more detail explanation.
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• A two cluster solution is presented since this is the solution for which the maximum of the CH index
was attained.

• Clusterings containing between 1 and 10 clusters have been produced, but this was not made clear in
our description of Figure 6.

• Figure 6 shows the maximum value of the adjusted rand score for clusterings containing between 1
and 10 clusters and the adjusted rand score for the clustering which produced the highest value of the
Calinski-Harabasz index.

• A dendrogram alongside a heat map of the matching matrix for the clustering containing 10 clusters
has been produced. From the plot we see material from two different broad categories e.g. fungal and
pollen has been grouped together prior to the final stages of the hierarchy.

Some of the potential sources of error when using HAC are: errors due to the hierarchical agglomerative
clustering routine, errors due to the clustering index used to determine the number of clusters and errors due
to the data preparation used prior to the algorithm being applied. Figure 6 has been created in an attempt
to differentiate between these errors.

Prior to HAC being applied, we label each particle depending on the broad category (1 for bacteria, 2
for fungal, 3 for pollen and 4 for non-biological). Hierarchical agglomerative clustering is then ran on every
possible combination of the considerations provided in Table 3, producing a total of 96 hierarchies.

Subsequently, the clusterings containing between 1 and 10 clusters are extracted from each hierarchy
and two statistics are calculated. First, the adjusted rand score is calculated as a measure of how similar
each clustering is to the known labels. This measure is intended to provide an indication of performance
and would be unavailable during an ambient campaign as cluster membership would not be known. We also
calculate the Calinski-Harabasz index (CH index) for each of the clusterings containing between 1 and 10
clusters. This is a statistic usually calculated to determine the number of clusters for data collected in an
ambient campaign. In Figure 6, we then present two values of the adjusted rand score. First, the maximum
value of the adjusted rand score across the first 10 clusterings (presented in the dark bars). Second, the
value of the adjusted rand score in the case of the clustering for which a maximum value of the CH index
was obtained (in the light bars). This is intended to demonstrate errors that arise due to the CH index.
For example, on the laboratory data collected in 2014 the CH index attains a maximum for the 3 cluster
solution (shown in the light bar) and the maximum adjusted rand score was attained also for the 3 cluster
solution (shown in the dark bar). This is an example where the CH index has worked at intended attaining
a maximum for the clustering which is most similar to the known labels.

Scores are presented when using the data preparation strategy suggested in Crawford et al. (2015) modi-
fied to use a fluorescent threshold of either 3 (in blue) or 9 (in orange) standard deviations above the average
forced trigger measurement as first suggested in Savage et al. (2017). The green bars show the best result
across all 96 strategies tested.

In some of the cases presented in Figure 6, the adjusted rand score and calinski-harabasz attained a
maximum for different clusterings. For example, in 2008 when using a fluorescent threshold of 3 standard
deviations above the forced trigger measurement, we see that a maximum of the CH index was attained for
the 4 cluster solution whereas the most similar clustering to the known labels was for the 5 cluster solution.
In this case, the 4 cluster solution was nearly as similar to the known labels as the 5 cluster solution, so
concluding that there are 4 clusters instead of 5 is reasonable since the 5 cluster solution was only marginally
better than the 4 cluster solution.

However, in 2008 when using a fluorescent threshold of 9 standard deviations above the average forced
trigger measurement, poor performance is observed where the CH index attains a maximum for the 2 cluster
solution when the most similar clustering to the known labels was the 5 cluster solution. For this specific
case, part of the poor performance is due to the CH index attaining a maximum at 2 clusters. But we also
see that largest adjusted rand score for clusterings with between 1 and 10 clusters (presented in the dark bar)
is still quite low. So the conclusion is that better performance could be attained if the index used concluded
there were 5 clusters, but also better performance could be obtained should a different data preparation
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strategy be used. The maximum of the adjusted rand score across all data preparation approaches tested
(shown in the green bars) for 2008 however is still approximately 0.6 whereas for the same data Gradient
Boosting attained an adjusted rand score of nearly 0.9.

To conclude, part of the poor performance is due to the index used to determine the number of clusters,
part is in the choice of data preparation used, though we failed to provide a recommendation for a data
preparation technique which performed consistently well across all the data sets tested, and part is due to
selecting to use the HAC algorithm rather than one of the other the algorithms tested.

We have investigated the tendency of the CH index to conclude that there are 2 clusters in further detail
and found that it is possibly due to a larger proportion of the data set consisting of bacterial samples.
To demonstrate this point further we have simulated data from three normally distributed clusters centred
around (0, 0), (5, 5) and (10, 10) and varied the proportion of the material placed in the cluster with
the largest number of particles. As the proportion of the data which is sampled from the largest cluster
increases, there is a point where the likelihood of the CH index to make the correct conclusion sharply drops.
The proportion of data placed in the largest cluster before this sharp drop occurs is dependent upon the
variability of the clusters. If we set the standard deviation of each of the clusters to σ = 3, it would only
require approximately 70% of the data to be from one cluster, before this sharp drop in the accuracy of
the CH index occurs. In an ambient environment where we would expect concentrations of bacteria to be
an order of magnitude greater than the concentrations of fungal spores, this tendency of the CH index to
conclude two clusters could be a significant disadvantage and investigating alternative indices for determining
the number of clusters may be required in future studies.

We agree that dendrograms would aid in interpreting these results and the reviewers suggestion for
providing Table 5 but for the 10 cluster solution has also been added to the same figure.

AP1 Produced dendrogram plots alongside a heat map of the matching matrix comparing the 10 cluster
solutions to the known labels.

AP2 Rewritten the HAC results section to make clearer what analysis has been conducted and more ade-
quately describe Figure 6.

AP3 Produced an additional section to indicate why the CH index has a tendency to conclude that there
are 2 clusters.

AP4 Split the HAC section into subsections highlighting potential considerations for data preparation, the
CH index, and potential issues in the hierarchy that could not be rectified by the selection of a different
index to determine the number of clusters.

2.1.2 Why is it valid to cluster down to 2 or 3 clusters for some algorithms but not all?

”2. In comparing the value of classification/clustering approaches the justification for using different number
of clusters for different methods is not clear. p.15, lines 7-10: “As we did in the previous sections we provide
matching matrices of the worst case scenario and best case scenario when using Gradient Boosting using the
current data preparation in Tables 8 and 9. In the best case scenario we provide a very good classification
with very small errors (AR=0.919).” In tables 8 and 9, four clusters (which are the minimum number that
makes sense) were used in testing Gradient Boosting, while two or three clusters were used in testing HAC
(1 or 2 less than the number of categories compared with) in Tables 4 and 5, and two or three clusters and
an additional category for Unclassified were used in testing DBSCAN in Tables 6 and 7. (Table 6 has 2014
and Table 7 has 2008 data). Because of the use of smaller number of clusters than categories for HAC and
DBSCAN, but the same number of clusters and categories for Gradient Boosting, I cannot see how these
results say anything about the relative value of HAC, DBSCAN and Gradient Boosting. One cannot set the
metric based on four categories, do HAC and DBSCAN down to two or three clusters, but generate four
categories with Gradient Boosting, and then compare decide on the better algorithm based on the matched
results.”
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We thank the reviewer for bringing the lack of clarity regarding how the number of clusters was set for
each algorithm to our attention. Dependent on which algorithm is used the number of clusters is set in a
different way.

In the case of HAC, the number of clusters has been determined by finding a maximum value of the CH
index for the clusterings from 1-10. Since this is what would be used when analysing ambient data it is
important to present the 2 and 3 cluster solutions since these solutions would be obtained if we analysed the
laboratory data in exactly the same fashion as we would analyse ambient data.

In the case of DBSCAN, we have no direct control over the number of clusters as this is determined
indirectly by the choice of epsilon and the number of points required to form a neighbourhood. We have
performed a grid search for these parameters, testing a variety of combinations, and there are a number
of selections for which a result with more than 3 clusters were produced. However, we attempted to select
epsilon and the minimum number of points by inspection of Figure 7 on the basis of which parameters
resulted in a consistent performance across the data sets tested and these selections resulted in 2-3 clusters.

Irregardless of the algorithm used, we have tested a fluorescent threshold of both 3 and 9 standard
deviations above the average forced trigger measurement. The purpose of such threshold is to remove the
instrument noise. Since the vast majority of the non-biological samples in 2014 will fail to exceed these
thresholds and hence have been removed, we believe a 3 cluster solution would be reasonable for the 2014
data.

It is important to note in the case of HAC we have tested 96 combinations of data preparations, produced
hierarchies for each, calculated the adjusted rand score for the clusterings between 1 and 10 clusters and at no
point did we attain an adjusted rand score of greater than 0.75 for the laboratory generated aerosol collected
in 2008 and 2014 (this can be seen in Figure 6). However, when using DBSCAN, with the exception of the
3 sigma threshold on the 2008 data, we were able to obtain an adjusted rand score of greater than 0.8 after
removing between 25 and 35% of the data (as indicated in Figure 7). In the case of the Gradient Boosting
algorithm we consistently attain an adjusted rand score of greater than 0.8. We believe that this should give
a strong indication of the potential of considering alternatives to HAC for this particular application.

AP5 Produce a table that highlights the potential advantages and disadvantages highlighted within the
current study and how the numbers of clusters are determined in each case.

2.1.3 Why combine the data into four categories?

”3. Why is there such confidence in the assumption that combining into categories is valid and appropriate
for deciding between classification schemes? Why is there such a focus on combining all the bacteria into
one category, pollens into one category, and fungal spores into one category? Why not differentiate into all
the categories measured, test on that and then combine the results for each to obtain the results for all the
pollens etc.? The two smut spore samples (2008) have similar features, but these are different from the puff
ball spores (2014), and as far as I know, very different from the large majority of spore types. Maybe I’m
misunderstanding what is done here. The two bacteria used here likely make sense to go into one category.
Their FL look similar. I’m assuming the goal is to compare techniques for their capability to help understand
atmospheric aerosol. Because of the way the conclusions are stated, this work implies that we can have
some confidence that results made on clustering to a category “bacteria” makes sense. However, bacteria
that survive in sunlight in the atmosphere tend to be more pigmented than E. coli. How about citing an
article such as, Y. Tong and B. Lighthart, Solar Radiation is Shown to Select for Pigemented bacteria in
the Ambient Outdoor Atmosphere, Photchem Photobiol 1997, pp 103-106, in at least acknowledging the two
bacteria used here are not necessarily representative of bacteria in outdoor air. An explanation of the validity
of the bacteria category, while taking into account bacterial pigments and fluorophores such as melanins and
carotenoids could be helpful.”

There are varying levels of complexity when attempting to discriminate between biological aerosol. In
order of difficulty: 1) to be able to discriminate between biological and non-biological material 2) to be able
to discriminate between the broad pollen, bacteria and fungal categories and 3) to be able to discriminate
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between different species of pollen, bacteria and fungal spores. If an algorithm was capable of discriminating
between the different samples, it seems logical that the algorithm would be capable of discriminating between
the broad biological classes. Similarly if an algorithm could not discriminate between the broad biological
classes we would believe that the algorithm would not be able to discriminate between the individual samples.

After producing the dendrograms suggested and matching matrices of the ten cluster solutions against
the samples as suggested by the reviewer in Section 2.1.1, it has become more apparent that fungal material
is being grouped with pollen material (2008) or with bacterial material (2014) prior to the final stages of the
algorithm. So we do not believe HAC is not segregating by sample either. Instead, fungal material is being
grouped with other classes prior to the final stages of HAC.

Given that there are still significant errors in classifying between fungal and pollen samples irregardless
of algorithm used, we would suggest that attempting to discriminate between individual samples may be
more successful using more recently developed instruments such as the MBS and the WIBS NEO or in future
analyses where a wider variety of samples are collected.

We have read Tong and Lighthart (1997) which does indicate that pigmented bacteria is more prevalent
in the presence of solar radiation, increasing to 50 − 60% at noontime compared to approximately 33% at
midnight. That being said, unless we are misunderstanding the article, these findings seem to indicate that
non-pigmented bacteria do constitute between 40% and 67% of outdoor air dependent on time of the time
of day. So, if pigmentation did significantly change the fluorescence response from the instrumentation it
would seem that collection of both pigmented and non-pigmented bacteria would be required to characterise
outdoor air.

A comment regarding the description of fluorophores within the current paper has also been made during
the technical review stage, where it has been noted that citing Pöhlker et al. (2013) may be helpful. We also
found an earlier article by the same author (Pöhlker et al., 2012), which we believe may also be of value in
investigating the potential influence of pigments such as melanin and carotenoids.

In Table 1 in Pöhlker et al. (2012), a wide range of atmospherically relevant biological fluorophores
are summarised, including a number of pigments. The excitation wavelengths reported for melanin and
carotenoids, 469 − 471nm and 400 − 500nm respectively, are different to the excitation used by the WIBS
which is 280nm and 370nm. Melanin is also noted to have relatively low fluorescence intensity and is estimated
to have low relevance for fluorescent biological aerosol particle (FBAP) detection. Despite Pöhlker et al.
(2012) suggesting that the role of carotenoids in FBAP detection is high, there are articles on the fluorescence
of carotenoids that report very low fluorescence (Gillbro and Cogdell, 1989). It therefore does appear that
carotenoids and melanins probably do not significantly influence the fluorescence response from the WIBS.

To further investigate pigmentation we also read an article specific to Bacillii (Khaneja et al., 2010).
Colonies of Bacillus atrophaeus (one of the samples presented in the current study) were presented that
appeared yellow-orange and others which appeared grey, although carotenoid production in the yellow-
orange samples was low. Bacillus subtilis, which has been presented in Hernandez et al. (2016), is noted
to carry a melanin-like compound to protect against solar radiation but shows very similar fluorescence
response to the E. coli sample also presented in Hernandez et al. (2016). Given that a significant proportion
of the bacterial content in the UK is believed to be Bacillii (Harrison et al., 2005), the inclusion of Bacillus
atrophaeus as one of our samples seems sensible.

Whether additional bacteria with more varied pigmentation will be required to characterise the outdoor
environment is an issue that could be investigated more thoroughly in further research through the collection
of a wider range of bacteria and, if possible, by measuring the instrument response to pigments. Whilst the
impact of pigmentation in bacteria cannot be fully addressed at this point in time, we recognise that our
current description of fluorophores is lacking, and have attempted to make improvements in response to this
comment.

AP6 Updated the description of the fluorophores in the introduction to include additional references.

2.1.4 Is size a useful measurement?
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”4. Is size a useful measurement for classification of all these particle types? Why is size treated as a useful
quantity in defining clusters when actual pollens of the species used here have sizes much larger than the
sizes used in the study (as indicated in Tables 4 and 5)? It seems that the samples of pollens are of pollen
fragments. Is there evidence that the size distributions of the pollens and fungal spores used in classification
here are similar to those in atmospheric particles? The fungal spores also seem to be fragments. I’ll assume
the “size” is diameter or some effective diameter for non-spheres. Then puffball diameter (avg. approx. 2
um in Fig. 5), is less than half the value for puffball spores, as far as I know. I think smut spores are 6 to
9 um, much larger than the 4 um or smaller shown in Fig. 4. The hypothesis that these are fragments of
spores seems more likely than the size calibration is incorrect? Some discussion of the relation to size and
ambient sampling for pollen and fungal spores is needed, especially if fragments are the objective or part of
the objective. Larger particles of one material should fluoresce more strongly than smaller particles, so I can
see the usefulness of size or volume for normalising the FL. But if the algorithms used here benefit from
clustering by size, some papers should be cited on the size distributions of pollen and fungal spore fragments
measured in the atmosphere. In any case, the sizes in Fig. 4 and 5 need error bars.”

We feel that size is definitely a useful measurement for all of these particle types. To better understand
the relationship between size and fluorescence for each of the samples collected we have produced fluorescence
versus size on scatter plots which we intend to include in the supplementary material. As we did in Section
2.1.1, we provide summary bullet points followed by a more thorough response.

• The WIBS measurement of size is different to other size measurements, but we feel that it is useful in
discriminating between the particles collected.

• Whether the samples are fragments could be more thoroughly investigated in future by using microscopy
in future experiments, but we agree with the hypothesis that a large quantity of the pollen samples
collected are likely fragments.

• We have included additional references to compare the size ranges in the current study to other studies
using the WIBS as well as other studies which use microscopy.

• As newer versions of the instrument are developed, measurements for larger particles, including more
intact pollen will become possible.

The WIBS size measurement is an optical scatter calculation, calibrated with unit density polystyrene
latex (PSL) spheres. If the particles are a different density (dry pollen) or refractive index (soots), or irregular
in shape (dusts, clumps etc) then the resultant size measurement will likely be different from alternative
measurements such as those from viewing the particles under a microscope. Whether or not the particles
are fragments or not could be more thoroughly investigated through future research, i.e. by collecting filter
samples of the particles after they are placed into the chamber.

We have now included several additional citations on the size ranges expected for the samples collected.
Fortunately, samples of the same or similar species have previously been collected using the WIBS instru-
mentation across a number of studies (Healy et al., 2012; Hernandez et al., 2016; Savage et al., 2017). In
Healy et al. (2012) a size range of ∼ 3 − 30µm (low gain) is used when collecting pollen samples, whereas
for the fungal samples they collected they used high-gain mode (∼ 0.5 − 12µm). The ”low gain” mode, is
available in the WIBS version 4 but the WIBS version 3 which is used to collect the data presented is limited
to an approximate size range of between 0.5 and 12 microns according to Healy et al. (2012), although we
did measure particles as large as 14 microns. In Hernandez et al. (2016), low-gain was used for the fungal
and the pollen samples whereas the high-gain mode is used for the bacterial samples. In Savage et al. (2017),
microscopy is used to support the hypothesis of a mixture of intact pollen and fragmented pollen being
present in the samples collected. The size ranges for the pollen samples, with the exception of the mulberry
sample, presented in the current study are similar to those presented in Hernandez et al. (2016) and would
be consistent with the hypothesis that the sample is comprised mostly, if not entirely, of fragmented pollen.
The mulberry sample has been also analysed in Healy et al. (2012) where an average size of 13.6 ± 6.2µm is
presented, very similar to the value of 13.8µm which has been presented in other studies using microscopy
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(Kang et al., 2007). The sizes of the paper mulberry samples presented here are 7.18 ± 4.74 and 3.40 ± 1.42
for two of the sample files from 2008 and then 11.27 ± 1.74 for the one sample file collected in 2014. For
the first sample of Paper Mulberry collected in 2008, it would seem that we have a mixture of intact and
fragmented pollen, whereas in the second sample could be entirely comprising of pollen fragments. In 2014,
we may be viewing a sample consisting of primarily intact pollen, albeit only the smaller tail of the size
distribution presented in Healy et al. (2012).

Inspecting the scatter plots of size versus fluorescence (which will be placed in the supplementary material
for the re-submission), we can see in the case of one of the puffball samples there a number of particles just
above the fluorescent threshold for a wide size range. However, there is a clear cluster of particles well
above the fluorescent threshold for one particular file with a much narrower size range around 6 microns. A
similar pattern is apparent in one of the Johnson-grass smut samples. The size range of the Bermuda grass
sample is similar to the sizes presented in Healy et al. (2012) whereas the size range of the Johnson grass
is substantially smaller. In both the current study and Healy et al. (2012) the size ranges are smaller than
the dimensions quoted in a microscopy study on fungal smuts (Crotzer and Levetin, 1996). So it does seem
possible that these samples will contain at least some fragments. The puff ball spores have been studied
previously using a fluorescence particle counter where the size range was stated to be between 2-4µm for the
particles that they believed to be puffball spores. Two of the puffball sample files produced in the current
study had average particle size of 2.50±0.85 and 2.45±1.16, but only 35 and 16 measurements from these files
exceeded a fluorescent threshold of three standard deviations above the average forced trigger measurement.
Whereas the other puffball sample collected had a size range of 3.39 ± 1.76µm with 506 particles exceeding
the 3σ threshold.

We recognise that sizes of the pollen collected may be different to those in atmospheric particles. However,
the data collected should be representative, at least to some extent, of what would be collected using the
instrument during an ambient campaign. Conclusions from this data should provide an enhancement of
conclusions stated in Crawford et al. (2015) where PSLs alone have been used to inform our analysis approach.

Since there is a large amount of historic data, and measurements are still being collected using the same
instrument, we believe the findings presented will be valuable at this point in time. Nonetheless, as newer
instruments are developed for example the WIBS NEO from Droplet Measurement Technologies, particles
will be collected over a larger size range which will likely include a larger quantity of intact pollen. We
expect such measurements will be more representative of an atmospheric environment and the current study
should also be somewhat helpful as starting point for future research using instrumentation that has been
more recently developed.

AP7 Added a table in the appendix section comparing the average size of the particles presented with other
studies.

AP8 Add error bars to size in Figures 4 and 5.

2.1.5 Add fluorescence tables for results

”5. Tables showing the same charts as in Figs. 4 and 5, but for the particles which were classified, should
be shown for the cases on which the conclusions are based.”

We thank the reviewer for this suggestion which will improve the paper. We have added tables of the
average measurements of the particles classified to the appendix.

AP9 Added the tables suggested.

2.1.6 What happened to k-means?

”6. K-means is mentioned in the abstract, introduction, Section 2.4 and Fig. 1. But are any results shown?
I’m not seeing any mention of k-means after section 2.4.”

The results for K-means were generally very poor. We have added a sentence to the main text to indicate
that this was the case and add further details to supplementary material.
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AP10 Added sentence to describe the poor performance of k-means to the text and add details to the
supplementary material.

2.2 Other Issues

2.2.1 Why is fraction of particles not used as a criteria for good performance

”1. There appear to be over 80, 000 lab-generated particles in the 2008 dataset and over 20,000 in the 2014
dataset. Why is the fraction-of-particles-classified not part of the criteria for best and worst cases? Is a
capability to classify more particles a desired feature in studying atmospheric aerosol? It seems odd that 3/4
to 4/5 of lab-generated test particles are not matched.”

There seems to be some level of instrument noise present in the samples that should be removed by the
threshold imposed. Such measurements are definitely worth removing. The only algorithm which removes
any additional particles not already removed by the fluorescent and size threshold is DBSCAN. But whether
this is an advantage or disadvantage is rather subjective. None of the algorithms worked perfectly on the
data tested. If it is the case that a particle cannot be correctly classified, whether it is better to classify the
particle incorrectly or not classify it at all is debatable.

In any case, in similar studies, (e.g. Hernandez et al., 2016), a similarly large number of particles from a
sample do not fluoresce in any of the channels and are removed. For example 19786 particles are collected
for the Bacillus subtilis sample with only 100 particles being fluorescent in at least one channel.

2.2.2 Error bars or some indication of data variation are needed in Figs. 4 and 5

This issue has also been raised by Darrell Baumgardner and is addressed in our response to this review.

2.2.3 Why not combine the 2008 and 2014 datasets?

Why not combine the 2008 and 2014 datasets? Combining would help with the generality of the study and
may help make it more realistic and applicable to ambient aerosol. The inorganic samples in 2008 are very
different from those in 2014. And there are different pollens (except mulberry) in these two years. The WIBS
instruments used here appear to have different sensitivities for the detectors, different filters (or something
else?). But three sample (the two bacteria and mulberry pollen) are in both datasets, and so using the ratios
of the measured fluorescences and assuming linearity it should be possible to find multiplication factors for
the FL. If it is not possible to combine these datasets, an explanation of why it is not feasible should be
presented.

We would agree that combining the data sets would perhaps be valuable. But on closer inspection of
the data we see that the paper mulberry samples collected had different size ranges across the two years. It
therefore would be quite difficult to combine the data sets as suggested. There is also the possibility that
average forced trigger fluorescence measurements could be subtracted from each of the sample measurements
in an attempt to combine the files. However, investigating whether data could be combined in such a fashion,
would be more appropriate once further data is collected alongside measurements using other techniques such
as microscopy, whereby we could be more certain of what particles are being measured by the instrument.

Furthermore, one of the findings from the study is that the conclusions that one makes as to how to
prepare the data for HAC is dependent upon what data is used to make these conclusions. So keeping the
data sets separate, may be beneficial in highlighting the importance of repeating experiments.

AP1 Update text to describe why the data sets have not been combined at this point
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2.2.4 Define FL1, FL2 and FL3

”4. FL1, FL2 and FL3 are not defined, and yet they are shown in Figs. 4 and 5. They are important for
understanding the data analysed here. These should be defined, for example in section 2.1 where the “four
fluorescent measurements” are described.”

The FL1, FL2 and FL3 notation has been used previously in other studies (e.g Healy et al., 2012), but
may cause confusion between the current study and the notation used in Kaye et al. (2005) so has been
replaced with FL1 280, FL2 280 and FL2 370 respectively.

AP2 Updated text and figures to include alternative notation and define these in the data section.

2.2.5 Justify fully why you have omitted FL4.

”The justification for omitting FL4, i.e., that some particles saturate, is inadequate”
Consulting Kaye et al. (2005), the following description should be more appropriate.
”The particle is irradiated with UV light at 280nm and 370nm from the firing of two xenon sources.

Fluorescence emission is collected via two collection channels in the ranges 310 − 400nm and 420 − 600nm.
The 370nm xenon radiation lies within the first detection range and hence elastically scattered light from
the particle, sufficient to saturate the detection amplifier, is received. This saturated signal is therefore
discarded. ”

AP3 Added this description to the text.

2.2.6 ”Reference Particles”

”6. Abstract, line 14-16: “Whilst HAC was able to effectively discriminate between the reference particles,
yielding a classification error of only 1.8%, similar results were not obtained when testing on laboratory
generated aerosol where the classification error was found to be between 11.5% and 24.2%.” This is unclear.
Aren’t all the particles studied here reference particles, e.g., mulberry pollen, E. coli. Even the smoke from the
burning grass is a reference aerosol. I guess reference particle means PSL. How about “reference narrow-size
distribution PSL particles” for clarity”

We thank the reviewer for this suggestion and agree that the wording proposed is clearer so have used
this instead.

AP4 Add the suggestion

2.2.7 Describe Adjusted Rand Score

”p. 12 line 5: “The adjusted rand score is often quite difficult to interpret ...” That sounds correct. It is
not defined in this paper. Even after looking it up, it is not clear what exactly is being done in this paper,
especially when there are n categories and m clusters. A little more explanation is needed.”

See response to 10.

2.2.8 Clarify drawbacks

”8. p. 16, line 10: “It is clear that Hierarchical Agglomerative Clustering certainly has it drawbacks.” Almost
everything has its drawbacks. But this paper does not demonstrate or clarify drawbacks for HAC, as far as I
can understand.”

We have added a table to the text to make this clearer to the reader, including potential advantages and
disadvantages of the other algorithms which may not be apparent in the current submission.
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2.2.9 Define the matching matrix

”9. How about defining the matching matrix as used here. What is the criterion of the match?”
See response to 10.

2.2.10 Add some references for ML

”10. The introduction cites general papers on aerosols and their importance, but the initial description of
machine learning does not. How about a very few relevant citations in the initial ML descriptions.”

We thank the reviewer for this suggestion. We agree that inclusion of these references alongside a
description of the adjusted rand score and the matching matrices would be useful.

AP5 Add references suggested and additional information to the methods section.

2.2.11 What is fluorescent in I & J?

”What is fluorescing in the NaCl and NaCl+phosphate samples I and J in Fig. 5? Do pure samples of these
fluoresce enough to give the values shown?”

The plot currently presented is of the fluorescence measurements after a threshold has been applied.
In the case of the NaCl and NaCl+phosphate samples these measurements would be for 3 and 61 particles
respectively. These particles are likely to be low level contamination. On reflection we realise that presenting
this information is of little value to the readership so we have removed it. In addition we realise, especially
in the case of the gradient boosting algorithm it would not be reasonable to train on this class and as such
this has been removed from the analysis.

For the data collected in 2008, the diesel soot and grass smoke samples could be expected to fluoresce
and it may be beneficial to be able to discriminate between the fluorescent particles within this sample and
the remainder of the data so these particles remain in the analysis.

AP6 Remove salt samples from plot.

AP7 Rerun analysis using gradient boosting without the salt samples.

3 Response to Darrell Baumgardner

We would like to thank Darrell for taking the time to review our manuscript. Many of the comments
provided highlighted some issues that we had not previously considered and will aid in improving the paper
to publication standard. We would like to apologise for initially not including a citation for the Hernandez
study in the submission. This choice was made in an attempt to keep the message of the paper succinct, but
upon reflection we realise that its inclusion would aid improving the paper, not only in contextualising the
findings but to compare and contrast results with previous studies.

3.1 Incorrect labelling of Tables

1) Table I and II are both labelled 2008
We thank you for bringing this incorrect labelling to our attention. This had been rectified during the

technical review stage, but we believe you may be reading the previous version of the manuscript prior to
the technical review. Nonetheless, it should be 2008 for Table I and 2014 for Table II and we will ensure
that this labelling is correct in the revised submission.

10



3.2 Need to summarise variation in the data

”2) If Tables I and II are actually 2008 and 2014, then there needs to be a third table that summarizes the
properties that are shown in Figs. 4&5, not only the averages but their variances as well. These need to
be listed for both years for the same test particles because from an examination of the figures, it certainly
appears that the properties are quite different for the same biotypes. If this is indeed the case, then it is no
surprise that there are different results using the various different clustering methods for the two data sets.”

The variation of the data does need to be explored in more detail. There are differences in the fluorescent
properties that can be explained by differences in sample preparation. In particular, for the bacteria there
are unwashed and washed samples, diluted and undiluted samples and some samples of vegetative cells. As
a result we believe that Figures 4 & 5 do need re-plotting to segregate further by sample. We have also
produced scatter plots of fluorescence against size in each of the three channels. We are considering providing
some of these plots in the main text with a link to similar plots for the remaining samples. In addition,
we have included the table you have suggested alongside ABC counts, similar to the table presented in the
appendix of Hernandez et al. (2016), which should aid in comparing the studies.

You are right that a potential explanation of the algorithmic performance for the two data sets could be
that there are differences in the fluorescence properties in each case. In addition, the different thresholds
used would result in a difference proportion of the different samples being present in the data set tested
which could also affect the performance. This consideration has been added to the main text.

However, it should be at least a slight concern that the performance of the unsupervised techniques seems
to be dependent on what data they were tested on, as we would hope that HAC would be adaptable to a
variety of different situations. Gradient boosting, the supervised technique tested, did provide a smaller
classification error across all of the tests and did seem to perform well consistently across the variety of tests
conducted, so long as a fluorescent threshold of either 3 or 9 standard deviations was applied.

AP1 Produce the table requested.

AP2 Update Figures 4 and 5.

3.3 Why not use the biomarkers suggested in Hernandez?

”3) Why are just FL1, 2 and 3 used. In the Hernandez study (not cited here, unfortunately), we found that
FL1 & 2 and FL 1 & 2 & 3 are important markers. Leaving them out seems like a loss of useful information.

We are using the raw fluorescent measurements when conducting our analysis, so information would not
be lost in this way. When a single decision tree is fit to the data all possible splits are considered, including
the splits using the thresholds defined in the Hernandez study, and as such the performance of a single
decision tree cannot be worse than the approach suggested in the Hernandez study. So when using decision
and ensembles of decision trees information will not be lost as suggested.

In the case of the unsupervised algorithms it is indeed an interesting idea to see whether better per-
formance could be attained by clustering the biomarkers indicated in the Hernandez study rather than the
raw data. However at this point we would be informing our analysis using laboratory data, so arguably the
analysis would cease to be unsupervised.

3.4 Why not use the variance?

”4) Bioaerosols are by their nature irregular in shape and in their fluorescing. Why isn’t the variance also
used as a parameter in the clustering”

We believe you are referring to either to the variance of each broad class or the variance of the samples.
The variance could be used in the clustering of laboratory data, but during an ambient campaign we would
not know the classification of each sample so the variance of each group or specific particle type could not
be explicitly calculated.
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3.5 More work?

”I think additional work remains to further separate by general categories within bacteria, fungi and pollen.
In our analysis of the lab results we were able to quite clearly separate the bio types just by fluorescence and
size without any sophisticated machine learning. I would assume that this can be improved upon using more
sophisticated approaches like the current study.”

To construct our response we have use two papers (Hernandez et al., 2016; Calvo et al., 2018). For the
benefit of other readers we briefly describe these papers. First, a particle may be described as A, B or C if
they exceed the fluorescent threshold in the first, second or third fluorescent channels respectively. These
ABC labels can then be combined to make groups of A, B, AB, C, AB, AC and ABC. For example, ”AB”
would describe particles that exceeded the threshold in the first and second channel.

The grouping of the data in such a fashion, referred to as ”ABC analysis”,was first introduced in Her-
nandez et al. (2016) and has since been applied to ambient data in Calvo et al. (2018). In Calvo et al.
(2018) more detail is provided on how these ABC counts could be combined with the equivalent optical
diameter (EOD) to provide a classification of WIBS data e.g. ”Type I: Having the characteristics of the
library bacteria (category A or AB, EOD < 1.5µm).”

From Figure 3 in Hernandez et al. (2016) the average measurements of each of the samples can clearly
be divided. However, such a plot does not include the variation of the data. If one further investigates Table
A1 in Hernandez et al. (2016), there are some particles that are fungi for example that have fluorescence
type ABC that may be incorrectly classified using the classification scheme suggested in Calvo et al. (2018),
if they are larger than 2µm,. In addition, we believe if the size of the bacteria is log normally distributed
with the mean and standard deviation presented in Hernandez et al. (2016) that some of the particles will
exceed 1.5 microns which is the threshold set in Calvo et al. (2018) for the bacteria.

Without having access to the full data set from this study it is difficult to determine precisely what
proportion of the data will be incorrectly classified using such an approach, to directly compare with the
techniques tested in this study. However, we do see the value in the application of the approach suggested
in Hernandez et al. (2016), and results using ABC analysis for the data presented has been conducted and
added to the paper.

AP3 Ran ABC analysis on data and appended results to manuscript
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Anon. Reviewer Significant Edits
AP1 Produced dendrogram plots alongside a heat

map of the matching matrix comparing the 10
cluster solutions to the known labels.

Presented in Figures 11 and 12 in the revised
manuscript

AP2 Rewritten the HAC results section to make
clear what analysis has been conducted and
more adequately describe Figure 6.

Significant editing of Section 4.1

AP3 Produced an additional section to indicate
why the CH index has a tendency to conclude
that there are 2 clusters

See Section 4.1.2

AP4 Split the HAC section into subsection high-
lighting potential considerations for data
preparation, the CH index, and potential is-
sues in the hierarchy that could not be rec-
tified by the selection of a different index to
determine the number of clusters

Split into 4.1.1- 4.1.3

AP5 Produce a table that highlihgts the poten-
tial advantages and disadvantages highlighted
with the current study and how the number
of clusters are determined in each case

See Table 4

AP6 Updated the description of the fluorophores
in the introduction to include additional ref-
erences

Second paragraph of introduction

AP7 Added a table in the appendix section compar-
ing the average size of the particles presented
with other studies

Table A1

AP8 Add error bars to size in Figures 4 and 5 Figures 4 and 5 have been segregated by sam-
ple and now form Figures 5-7 with error bars
included

AP9 Add the tables suggested See Appendix C1-C4
AP10 Added sentence to describe poor performance

of k-means to the text and add details to the
supplementary material

The sentence has been added to Section 4.4
in the revised manuscript. Except we have
elected to place the results for k-means with
the rest of the additional material in the code
repository rather than in the supplementary
material.
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Anon. Reviewer Other Issues
AP1 Update the text to describe why the data sets

have not been combined at this point
P7, L31-P8-L7

AP2 Updated text and figures to include alterna-
tive notation and define these in the data sec-
tion

See Figures 5, 6, 7 and text P3, L56-62

AP3 Added this description of omitting FL4 P3, L51-55
AP4 Add this rewording of the PSL particles. P1, L24
AP5 Add references suggested and additional infor-

mation to methods section.
P2, 37-38 Includes reference to friedman et
al., 2001 which is a good text on generic
machine learning. Section 2.7 now includes
a description of matching matrices and the
adjusted rand score. Section 2.6 includes
four additional references for Bagging, Ran-
dom Forests, AdaBoost and Gradient Boost-
ing which are mention in this section.

Darrell Baumgardner
AP1 Produce the table requested See Appendix C1-C4
AP2 Update Figure 4 and 5 Figures 4 and 5 have been segregated by sam-

ple and now form Figures 5-7 with error bars
included

AP3 Ran ABC analysis on data and append results
to manuscript

See Tables B1, 2 & 3.
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Abstract.

Primary biological aerosol including bacteria, fungal spores and pollen have important implications for public health and the

environment. Such particles may have different concentrations of chemical fluorophores and will provide different responses

::::::
respond

:::::::::
differently

:
in the presence of ultraviolet lightwhich potentially could be used to discriminate between ,

::::::::::
potentially

:::::::
allowing

:::
for

:
different types of biological aerosol

::
to

::
be

::::::::::::
discriminated. Development of ultraviolet light induced fluorescence5

(UV-LIF) instruments such as the Wideband Integrated Bioaerosol Sensor (WIBS) has made is possible to collect
::::::
allowed

:::
for

size, morphology and fluorescence measurements
:
to

:::
be

:::::::
collected

:
in real-time. However, it is unclear without studying responses

from the instrument
:::::::::
instrument

::::::::
responses

:
in the laboratory, the extent to which we can discriminate between different types of

particles
:::
can

:::
be

:::::::::::
discriminated. Collection of laboratory data is vital to validate any approach used to analyse the data and to

:::
data

::::
and ensure that the data available is utilised as effectively as possible.10

In this manuscript we test a variety of methodologies on traditional reference particles and
::
are

:::::
tested

:::
on a range of laboratory

generated aerosols
:::::::
particles

:::::::
collected

::
in
:::
the

:::::::::
laboratory. Hierarchical Agglomerative Clustering (HAC) has been previously ap-

plied to UV-LIF data in a number of studies and is tested alongside other algorithms that could be used to solve the classification

problem: Density Based Spectral Clustering and Noise (DBSCAN), k-means and gradient boosting.

Whilst HAC was able to effectively discriminate between the reference
::::::::
reference

::::::::::
narrow-size

::::::::::
distribution

::::
PSL particles,15

yielding a classification error of only 1.8%, similar results were not obtained when testing on laboratory generated aerosol

where the classification error was found to be between 11.5% and 24.2%. Furthermore, there is a worryingly large uncertainty

in this approach in terms of the data preparation and the cluster index used, and we were unable
:
to

:
attain consistent results

across the different sets of laboratory generated aerosol tested.

The best results
:::::
lowest

:::::::::::
classification

:::::
errors were obtained using gradient boosting, where the misclassification

::::::::::::
misclassifiation20

rate was between 4.38% and 5.42%. The largest contribution to this error
:::
the

:::::
error,

::
in

:::
the

::::
case

::
of

:::
the

::::::
higher

::::::::::::::
misclassification

:::
rate,

:
was the pollen samples where 28.5% of the samples were misclassified

:::::::::
incorrectly

::::::::
classified as fungal spores. The tech-

nique was also robust to changes in data preparation provided a fluorescent threshold was applied to the data.

Where
::
In

:::
the

:::::
event

:::
that

:
laboratory training data is

:
in

:
unavailable, DBSCAN was found to be an

:
a
:
potential alternative to

HAC. In the case of one of the data sets where 22.9% of the data was left unclassified we were able to produce three distinct25
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clusters obtaining a classification error of only 1.42% on the classified data. These results could not be replicated however for

the other data set where 26.8% of the data was not classified and a classification error of 13.8% was obtained. This method,

like HAC, also appeared to be heavily dependent on data preparation, requiring
:
a
:
different selection of parameters dependent

::::::::
depending

:
on the preparation used. Further analysis will also be required to confirm our selection of

::
the parameters when using

this method on ambient data.5

There is a clear need for the collection of additional laboratory generated aerosol to improve interpretation of current

databases and to aid in the analysis of data collected from an ambient environment. New instruments with a greater resolution

are likely
::
to improve on current discrimination between pollen, bacteria and fungal spores and even between their different

types
:::::::
different

::::::
species, however the need for extensive laboratory training data sets will grow as a result.

1 Introduction10

Biological aerosol, such as bacteria, fungal spores and pollen have important implications for public health and the environment

(Després et al., 2012). They have been linked to the formation of cloud condensation nuclei and ice nuclei which in turn may

have important influence on the weather (Crawford et al., 2012; Cziczo et al., 2013; Gurian-Sherman and Lindow, 1993; Hader et al., 2014; Hoose and Möhler, 2012; Möhler et al., 2007)

. The
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Crawford et al., 2012; Cziczo et al., 2013; Gurian-Sherman and Lindow, 1993; Hader et al., 2014; Hoose and Möhler, 2012; Möhler et al., 2007)

:
.
:::::
These particles have impacts on health (Kennedy and Smith, 2012), particularly for those who suffer from asthma and allergic15

rhinitis (D’Amato et al., 2001).

It is therefore of paramount importance that we continue to develop methods of detecting these particles, to quantify them,

determine seasonal trends and to compare different environments. One such method for detecting biological aerosol is to use

an ultraviolet light

:::::
There

:::
are

:
a
::::
wide

:::::
range

:::
of

::::::::
biological

:::::::::
molecules,

:::::::::
commonly

:::::::
referred

::
to

::
as

:::::::::
biological

:::::::::::
fluorophores,

::::
that

::
are

::::::
known

::
to
:::::::
re-emit20

:::::::
radiation

::::
upon

:::::::::
excitation

:::
e.g.

:::::
amino

:::::
acids,

::::::::::
coenzymes

:::
and

::::::::
pigments

::::::::::::::::::::::
(Pöhlker et al., 2012, 2013).

::::::::::::::
Ultraviolet-light induced fluo-

rescence (UV-LIF) spectrometer
::::::::::::
spectrometers, such as the Wideband Integrated Bioaerosol Spectrometer

:::::::
wideband

:::::::::
integrated

::::::::
bioaerosol

:::::::::::
spectrometer

:
(WIBS) . Particles with different concentrations of the chemical fluorophores tryptophan and NADH

will provide different responses when excited. In addition to the fluorescence measurements collected, a
::::
have

:::::::
received

::::::::
increased

:::::::
attention

::
in
::::::

recent
:::::
years

:::
as

:
a
::::::::

potential
::::::::::::

methodology
:::
for

::::::::
detecting

:::::::::
biological

::::::
aerosol

::::::::::::::::
(Kaye et al., 2005)

:
.
::::
The

:::::
WIBS

:::::
uses25

::::::::
irradiation

::
at
:::::::
280nm

:::
and

:::::::
370nm

::
to

:::::
target

:::::
some

::
of

:::
the

:::::
most

:::::::::::
significantly

:::::::::
fluorescent

::::::::::::
bioflorophores

:::::
such

::
as

:::::::::
tryptophan

::::
(an

:::::
amino

:::::
acid)

:::
and

::::::
NADH

::
(a

::::::::::
coenzyme).

:::::
These

::::::::::::
measurements

:::
are

:::::::::
combined

::::
with

::
an

::::::
optical

:
measurement of size and shape for

each particle is taken to further aid in discrimination.

These measurements
::::::::::::
Measurements

::::
from

:::
the

:::::
WIBS

:
have limited application in isolation. However, data analysis techniques,

such as those available within the field of machine learning, are potentially able transform these measurements into quantities of30

pollen, bacteria and fungal spores. There are a variety of machine learning algorithms that are applicable to solving
::::
there

:::
are

::
a

::::
range

:::
of

:::::::::
techniques

:::
that

:::::
could

::
be

::::
used

:::
to

::::::
predict

::::::::
quantities

::
of

::::::::
biological

:::::::
aerosol

::::
from

:::::
these

:::::::::::
fluorescence,

:::
size

:::
and

:::::::::::
morphology

::::::::::::
measurements.

::::::::::
Techniques

:::
that

:::::
could

:::
be

::::
used

::
to

:::::
solve

:
this classification problem, and they can be divided broadly into two
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groups:
::::::
include

::::
field

:::::::
specific

:::::::::
techniques

::::
such

::
as

:::::
ABC

::::::
analysis

:::::::::::::::::::::
(Hernandez et al., 2016)

:
as

::::
well

::
as

:
supervised and unsupervised

:::::::
machine

:::::::
learning

:::::::::
techniques

:::
that

:::
are

:::::::
broadly

::::
used

:::::::::::::::::::
(Friedman et al., 2001).

It is not clear whether the supervised or unsupervised approach is to be preferred as both approaches have their
::
at

:::
this

:::::
point

::::
what

::::::::
approach

::
is

:::::::
preferred

:::
as

::
all

::::::::::
approaches

::::
have

:
a
:::::
range

::
of

:
advantages and disadvantages.

Supervised machine learning uses data , usually collected within laboratory settings
:::::::
collected

::::::
within

:::
the

:::::::::
laboratory, where5

the correct classification is known. Subsequently, this data
:::
Data

:
is split into training data and testing data . The

:::::
where

:::
the

training data is used to fit a model which is then validated using
::
on the test set. Once the

:
a
:
model is fitted and validated it may

then be applied to
::::::
classify ambient data.

During unsupervised analysis, ambient data is classified without using training data from the laboratory
::::::::
laboratory

:::::::
training

:::
data. Instead, an attempt is made to split the datainto groups using natural differences in the data. Ideallythe data would be10

naturally split
:::::::
naturally

::::::::
segregate

:::
the

::::
data.

::::::
Ideally,

:::
we

::::
may

::::::
expect

::::
data

::
to

:::::::
naturally

:::
be

:::::::::
segregated into broad biological classes

,
::
or

:::
into

::::::::
different

::::::
groups

::
of

::::::
similar

::::::::
bacteria,

:::::
fungal

:::::::
material

::::
and

::::::
pollen, but this may not necessarily be the case. Instead, for

example, two sets of similar bacteria and fungal spores could be grouped together.

The supervised methods, including gradient boosting, have the disadvantage that the training data collected may not include

the entirety of what may
:::::
might be collected during an ambient campaign. Particularly,

:
in an urban environment, the instrument15

will collect
:::
may

::::::
collect

::::::::::::
measurements

:::
for

:
a large quantity of non-biological material that will still need to be either

::::::
should

::
be

:
classified as such or removed from the analysis. We would expect most of this non-biological material to either be non-

fluorescent or weakly fluorescent and therefore it should be removed prior to analysis by applying a justifiable threshold to the

fluorescent measurements (see Section 2.2). Nonetheless, a few weakly fluorescent non-biological particles may remain and

could be overlooked if the training data is incomplete.20

Clearly there are
:::::
There

:::
are

:::::
likely

:::
to

::
be

:
issues to be explored with either approach ,

:::
and therefore it seems unlikely that

we will be able to abandon either supervised or unsupervised techniques
:::
can

:::::::::
justifiably

::
be

::::::::::
abandoned at this point in time

.
:::
and

::
it
::::
may

::::
well

:::
be

:::
the

::::
case

::::
that

::::::
usage

::
of

::
a

::::::
variety

::
of

::::::::::
techniques

::::
may

::
be

::::::::
required

::
to

:::::
better

::::::::::
understand

:::
the

:::::::::::
atmospheric

:::::::::::
environment.

::::::::::
Nonetheless,

::
it
::
is

:::
still

:::::
vital

::
to

:::::::::
investigate

::::
how

::::
these

::::::::
different

:::::::::
techniques

::::::
behave

:::::
when

::::::::
analysing

:::::::::
laboratory

::::
data

::
to

:::::
better

:::::::::
understand

::::
how

::::
they

:::
can

::
be

:::::
most

:::::::::::
appropriately

::::::
applied

::
to
:::::::
ambient

:::::
data.25

In an ambient setting, determining the number of clusters is difficult,
:
so Hierarchical Agglomerative Clustering (HAC) has

been the preferred method over other methods such as k-means since the method naturally presents a clustering for all possible

number of clusters (Robinson et al., 2013). A suggestion of the number of clusters can then be provided using indices such

as the Caliński Harabasz Index (CH Index) (Caliński and Harabasz, 1974) by maximising a statistic which yields a peak for

clusterings which contain clusters that are compact and far apart. HAC has previously been used on data collected using the30

WIBS to discriminate between different Polystyrene Latex Spheres (PSLs) and has been applied to ambient measurements

collected as part of the BEACHON RoMBAS experiment (Crawford et al., 2015; Gallagher et al., 2012; Robinson et al.,

2013).

Nonetheless , little has been done to demonstrate the effectiveness
:::::::
relatively

::::
few

::::::
studies

::::
have

::::::
studied

:::
the

:::::
usage

:
of HAC on

laboratory generated aerosol
:::
data

:::::
from

:::
the

:::::
WIBS

:::::::::::::::::::::::::::::::::::::::::
(Savage et al., 2017; Savage and Huffman, 2018) . Evaluating the effective-35
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ness of HAC on generated aerosol is crucial to support or repudiate conclusions made using HAC on ambient data, especially

since the fluorescence response from the laboratory generated aerosol will much better reflect fluorescence responses from the

environment, when compared with PSLs.

During the process of HAC there are also a number of vital choices that have to be made, that could have a substantial

implication on the effectiveness of the method (these are discussed in detail in Section 2.2). For the PSLs previously analysed5

(Crawford et al., 2015), we determined standardising using the z-score, with removal of non-fluorescent particles, taking

logarithms of shape and size was most effective. The CH index was selected to determine the number of clusters as it was

demonstrated to perform best in the literature (Milligan and Cooper, 1985). It is however, not clear whether these choices

will remain the most effective for laboratory generated aerosol nor ambient data. See Section 2.3 for further details on data

preparation for HAC.10

Furthermore, data analysis using HAC can take a matter of hours, if not days depending on the number of particles. The

time requirements for HAC are between N2 and N3 meaning that a doubling of the number of particles will require between

four and eight times as much time. This means
::::
Such

::::
time

:::::::::::
requirements

:::::
mean that not only is the method already quite slow,

but will get increasingly slower as more data is collected. This
:
,
:::::
which

:
may limit the real time effectiveness of the method.

Within the Python programming language, a package called Scikit-learn (Pedregosa et al., 2011) offers implementations of15

several unsupervised methods. Some of these methods i.e. Affinity Propagation, Mean-shift, Spectral Clustering and Gaussian

mixtures are not explored as they will scale poorly as the number of particles increases (Pedregosa et al., 2011). Instead, our

analysis is focused on K-means, HAC and DBSCAN which can be used on larger data-sets.

For HAC we continue to use the fastcluster package (described in Section 2.3). Sklearn
::::::
Sci-kit

::::
learn

:
does have a HAC

implementation but it is not as fast or memory efficient. We do use sklearn for DBSCAN and kmeans, although if one was to20

use DBSCAN for ambient data we would suggest exploring alternatives such as ELKI (Schubert et al., 2015) as the sklearn

:::::
sci-kit

::::
learn

:
implementation of DBSCAN by default is not memory efficient making it difficult to utilise for more than 30,000

particles. Sklearn
::::::
Sci-kit

::::
learn

:
has a fast implementation for Gradient Boosting, so this is used.

2 Methods

In this section we discuss the variety of approaches that could be used to classify particles such as bacteria, fungal spores or25

pollen. In Section 2.1 we provide an overview of the instrument used to collect the data. In Section 2.2 we discuss the variety

of decisions that need to be made prior to passing the data to the machine learning algorithms which are discussed in Sections

2.3 - 2.6. An overview of the different methods is given in Figure 1.

2.1 Instrumentation

The Wideband Integrated Bioaerosol Sensor (WIBS) collects size, shape and fluorescence measurements (Kaye et al., 2005).30

The size is a single measurement; the shape measurement consists of four measurements (one for each quadrant) which are

4



Figure 1. Overview of different analysis approaches

combined to produce a single asymmetry factor measurement. Four fluorescencemeasurements are collected by firing a flash

lamp
::
A

:::::
more

::::::
precise

::::::::
definition

::
of

:::::::::
asymmetry

::::::
factor

:::
has

::::
been

::::::::
provided

::::::::
previously

:::
in

::
the

::::::::
literature

:::::::::::::::::
(Gabey et al., 2010).

:

::
To

:::::::
measure

:::::::::::
fluorescence,

:::
the

::::::
particle

::
is

::::::::
irradiated

::::
with

:::
UV

::::
light

:
at 280nm and 370nm and detecting the resultant fluorescence

on two fluorescence detectors. The measurement collected using the second detector from the excitation at 280nm is ignored as

it saturates the instrument.
::::
from

:::
the

:::::
firing

::
of

:::
two

::::::
xenon

:::::::
sources.

:::::::::::
Fluorescence

:::::::
emission

::
is

::::::::
collected

:::
via

:::
two

::::::::
collection

::::::::
channels5

::
in

:::
the

::::::
ranges

:::::::::::
310− 400nm

::::
and

::::::::::::
420− 600nm.

::::
The

::::::
370nm

::::::
xenon

::::::::
radiation

:::
lies

::::::
within

:::
the

::::
first

::::::::
detection

::::::
range

:::
and

::::::
hence

::::::::
elastically

::::::::
scattered

::::
light

:::::
from

:::
the

:::::::
particle,

::::::::
sufficient

::
to

:::::::
saturate

:::
the

::::::::
detection

::::::::
amplifier,

::
is
::::::::

received.
::::
This

::::::
signal

::
is

::::::::
therefore

::::::::
discarded.

:

After removal of this fluorescent measurement, there are three remaining fluorescence measurementswhich are .
::::
The

:::::::
notation

:::::::
FL1_280

::
is
::::
used

:::
to

:::::
denote

:::
the

::::::::::::
measurement

::
in

:::
the

:::
first

::::::::
detection

:::::::
channel

:::::
when

:::
the

:::::::
particle

:
is
:::::::::
irradiated

::::
with

:::::::::
ultraviolet

::::
light10

:
at
:::::::
280nm

:::
and

::::::::
FL2_280

:::
and

::::::::
FL2_370

:::
are

::::
used

:::
to

:::::
denote

:::
the

::::::::::::
measurements

:::
in

:::
the

::::::
second

::::::::
detection

::::::
channel

:::::
when

:::
the

:::::::
particle

:
is
:::::::::

irradiated
::::
with

:::::::::
ultraviolet

::::
light

::
at
::::
280

::::
and

::::::
370nm

::::::::::
respectively.

::::::
These

:::::::::::
fluorescence

::::::::::::
measurements

:::
are combined with the

size and asymmetry factor measurements. A more detailed description of the instrument can be found in previous publications

(e.g. Gabey et al., 2010; Healy et al., 2012a)
::::::::::::::::::::::::::::::::::::
(e.g. Gabey et al., 2010; Healy et al., 2012a)
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Figure 2. Overview of preprocessing steps for WIBS data

2.2 Data preparation

Prior to analysis using the machine learning algorithm we may choose to make a variety of decisions to pre-process the data

with the aim to improve performance (see Figure 2). An overview for the decisions often made are outlined below.

First we may elect to remove particles which are non-fluorescent. Forced trigger data is collected which is a measurement

of the instrument response when particles are not present. We then set a threshold, for which if a particle fails to exceed5

this threshold in at least one of the fluorescent channels we conclude that the particle is non-fluorescent. Usually we set the

threshold to be three standard deviations above the average forced trigger measurement although a recent laboratory study has

suggested that nine standard deviations may be more appropriate (Savage et al., 2017).

Another threshold is usually then applied to the size. A size threshold of 0.8µm is usually applied as detection efficiency of

the instrument drops below 50% at this point. (Gabey, 2011; Gabey et al., 2011; Healy et al., 2012b).10

Natural logarithms of the size and the asymmetry factor are often taken as these measurements are often log normally

distributed and it is postulated that this will increase performance in the case of hierarchical agglomerative clustering.

It is also widely regarded that standardising the data prior to analysis is utmost importance (Milligan and Cooper, 1988). We

often subtract the average measurement in each of the five variables and divide by the standard deviation, often referred to as

’standardising using the z-score’. Standardisation is used to prevent variables with larger magnitude, such as the fluorescent15

measurements, from dominating the analysis. An alternative approach to standardising is to divide each of the five variables by

the range.

2.3 Hierarchical Agglomerative Clustering

In order for particles to be clustered, we need to define a measurement of how similar two clusters are. These similarity

measures are often referred to as linkages. We use the Python package fastcluster (Müllner, 2013) which provides modern20

implementations of single, complete, average, weighted, Ward, centroid and median linkages (Müllner, 2011). A thorough

detailing of the definitions of the different linkages can be found in the fastcluster manual (Müllner, 2013). For the memory
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efficient mode, which is essential when using the algorithm for large data sets, only Ward, centroid, median and single linkages

are available.

Initially each particle is placed into an individual cluster. Next, using the linkage selected, the two most similar clusters are

merged. The merging process is repeated until all the particles are placed in a single cluster, which provides a clustering from

k = 1, · · · ,N , where k is the number of clusters and N is the number of particles being analysed. A cluster validation index5

such as the Calinski-Harabasz index (Caliński and Harabasz, 1974) is then used to identify an appropriate number of clusters.

The index is maximised for clusterings that contain compact clusters that are far apart.

2.4 K-Means Clustering

K-Means clustering is designed to place particles into k clusters. However we can repeat the method multiple times e.g. for

k = 1,2, · · · ,10, where k is the number of clusters. Similar to HAC we can then use a cluster validation index to determine10

which choice of k gives the most effective results.

The method works as follows. Initially k cluster centroids are set by selecting k particles at random. The rest of the particles

are then placed into these k clusters depending on which of the centroids the particle is closest to. At this point a new centroid is

calculated for each cluster. The process is then repeated many times until convergence occurs and the centroids do not change

significantly from one iteration to the next.15

2.5 DBSCAN

For DBSCAN we set two parameters, the radius for a neighbourhood ε, and the number of particles required for a neighbour-

hood to be identified as dense.

Initially a random point, say A, is selected. If there are sufficient number of points in the neighbourhood of A then all the

points in A’s neighbourhood are also checked and so on, until the cluster has fully expanded and there are no points left to20

check. Should the point not have a sufficient number of other points in its neighbourhood then it is left unclassified. Further

points are then selected and the above process is repeated until all points have been considered.

We give an example of DBSCAN in Figure 3. Note that cluster validation indices are not required for DBSCAN, since the

number of clusters is intrinsically calculated within the algorithm.

2.6 Gradient Boosting25

A basic decision tree is constructed by considering each possible split across all variables and evaluating which split best

divides the data. For example, we may consider the third fluorescence channel and split the data on the basis of whether the

measurement is more or less than 10 arbitrary units (AU). This process is then repeated many times until a tree is built.

There are two ways in which trees can be combined into an ensemble. The first is by averaging multiple trees in the hope

to produce a more accurate classification . This is known as a Random Forest. Here the data-set
:
as

::
is
:::
the

:::::
case

::
in

:::::::
random30

:::::
forests

::::
and

:::::::
bagging

::::::::
classifiers

:::::::::::::::::::
(Breiman, 2001, 1996).

:::
In

:::
the

::::
case

::
of

:::::::
random

:::::
forests

::::
and

:::::::
bagging

:::
the

::::
data

:::
set is sampled with

7
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Figure 3. Visual representation of DBSCAN. Here each point is represented as a black dot and it’s neighbourhood is represented by a circle.

Here ε is the radius of the circle and the minimum number of points is 3. Four points have each been placed into the blue cluster and green

cluster, all of which having at least 3 other points in their neighbourhood. One point is classified as noise as it has only 1 other point in it’s

neighbourhood.

replacement, meaning that the same particle could be selected more than once or not at all. Sampling in this way enables the

algorithm to produce a subtly different version of the data from which to build each tree. In addition,
:::::
when

::::
using

::
a
:::::::
random

:::::
forest,

:
instead of considering all possible variables to use to split the data, only a random subset is used.

Alternatively we can fit a single decision tree to the data, evaluate where the tree is performing well and then fit a second

tree to the particles in the data for which the current model is performing poorly. This process can be repeated many times,5

each time adding a new tree to the model in the hope of making an improvement. This approach is known as AdaBoost

:::::::::::::::::::::::
(Freund and Schapire, 1997). Gradient Boosting is an extension of AdaBoost to allow for other loss functions

::::::::::::::
(Friedman, 2001)

.

For the current study we elect to use Gradient Boosting to indicate the performance of the supervised approach since it was

the best performer for the Multiparameter Bioaerosol Spectrometer, a similar UV-LIF spectrometer similar to the WIBS but10

with single waveband fluorescence, 8 fluorescence detection channels and very high shape analysis capability (Ruske et al.,

2017)

2.7
:::::::::
Evaluation

:::::::
Criteria

::
To

:::
aid

::
in

:::::::::
evaluating

::::
how

::::
well

::::::::::::
methodologies

:::::::::
performed

:::
we

::::
used

:::
two

:::::
tools:

:::
the

::::::::
matching

::::::
matrix

:::::::::::
(Ting, 2010)

:::
and

:::
the

:::::::
adjusted

::::
rand

::::
score

::::::::::::::::::::::
(Hubert and Arabie, 1985).15

3 Data
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Figure 4.
:::

Four
:::::::
example

:::::::
matching

:::::::
matrices.

::::::::::
Immediately

::::
below

::::
each

::::::
matrix

:
is
:::
the

::::::::
percentage

::
of
:::::::

particles
:::::
placed

::::
into

::
the

:::::
same

:::::
cluster

:::
for

:::
both

::::::::
clustingers

::
in
::::
each

::::
case.

::
At

:::
the

::::
very

:::::
bottom

:::
we

:::
have

:::
the

:::::::
adjusted

:::
rand

:::::
score.

::
In

:::::
Figure

::
4
:::
we

::::::
present

::::
four

:::::::
different

::::::::
matching

::::::::
matrices.

::
To

:::::::
produce

:::::
these

:::::::
matrices

:::
we

:::::::::
compared:

:::
two

:::::::
random

:::::::::
clusterings

::::
with

::::::::::::
approximately

::::
50%

::
of

:::
the

::::
data

::
in

::::
each

::::::
cluster

::::
(A);

:::
two

:::::::
random

:::::::::
clusterings

::::
each

::::
with

:::::
80%

:::
and

::::
20%

::
of

:::
the

::::
data

::
in
:::::
each

::
of

:::
the

:::
two

:::::::
clusters

::::::::::
respectively

::::
(B);

:::
two

::::::::
identical

:::::::::
clusterings

::::
(C);

:::
and

::::
two

:::::::::
clusterings

::::::
which

::::
were

::::::
nearly

:::::::
identical

::::::
except

::::
one

::::
data

::::
point

::::
had

:::::
been

:::::
placed

::::
into

:
a
:::::
third

::::::
cluster

::
for

::::
one

::
of

:::
the

::::::::::
clusterings.

2.0.1
::::::::
Matching

:::::::
Matrix5

:::
The

::::::::
matching

::::::
matrix,

:::::
often

:::::::
referred

::
to

::
as

:
a
:::::::::
confusion

::::::
matrix,

:::
can

:::
be

::::
used

::
as

::
an

:::
aid

::
in

:::::::::
comparing

::::
two

::::::::::
clusterings.

::
In

:::
the

::::
case

::
of

:::
the

:::::::
current

::::::::::
manuscript,

:::
we

:::
use

::::
this

::
to

::::::::
compare

:::
the

:::::
output

:::::
from

:::
an

::::::::
algorithm

::::
with

::::::
labels

:::::::
assigned

::
to
:::::

each

::::::
particle.

::::
We

::::
may

:::::
assign

::::::
labels

::
to

:::::::
indicate

::::
what

:::::
broad

::::
type

::::
the

::::::
particle

::
is

::::
(e.g.

::
1
::
if

:::
the

::::::
particle

::
is
::::::::
bacteria,

:
2
::
if
:::
the

:::::::
particle

::
is

:::::
fungal

::::
etc.)

::
or

:::
we

::::
may

:::::
assign

::::::
labels

::
to

:::::::
indicate

::::
what

::::::
sample

:
a
:::::::
particle

::
is

::::
from

::::
(e.g.

::
1

:
if
:::
the

:::::::
particle

::
is

:::::::
Bacillus

:::::::::
atrophaeus

:
,
:
2
::
if

::
the

:::::::
particle

::
is

::
E.

:::
coli

:::
etc.)

:
10

:::::::
Consider

::::::::
example

::
C

::
in

::::::
Figure

::
4.

::::
This

::::::::
matching

::::::
matrix

::::::::
compares

::::
two

:::::::::
clusterings

::::
each

::::::::::
containing

:::
two

:::::::
clusters.

:::::
Each

::::
row

::::::::::
corresponds

::
to

:
a
::::::
cluster

::
in

:::
the

:::
first

:::::::::
clustering

:::
and

::::
each

::::::
column

:::::::::::
corresponds

::
to

:
a
::::::
cluster

::
in

:::
the

::::::
second

::::::::
clustering.

::::
The

:::::::
element

::
in

::
the

::::
first

::::
row

:::
and

:::
the

:::
first

:::::::
column

:::
(in

:::
this

::::
case

::::
784)

::::::::
indicates

::
the

:::::::
number

::
of

:::::::
particles

::::
that

::::
were

::::::
placed

:::
into

:::
the

::::
first

::::::
cluster

::
in

:::
the

:::
first

:::::::::
clustering

:::
that

::::
were

::::
also

::::::
placed

::::
into

:::::
cluster

::
1
::
in

:::
the

::::::
second

:::::::::
clustering.

::::
Two

::::::::
identical

:::::::::
clusterings

:::
will

:::::::
produce

::
a
::::::::
matching

:::::
matrix

::::
that

:::
has

:::::::
non-zero

::::::
values

::::
only

:::
the

::::::::
diagonal.15

:
A
::::
and

::
B

::
in

:::::
Figure

::
4
:::
are

::::::::
examples

::
of

::::
poor

:::::::::::
performance

:::
and

::
C

:::
and

::
D
:::
are

::::::::
examples

:::
of

::::
very

::::
good

:::::::::::
performance.

:

2.0.2
::::::::
Adjusted

:::::
Rand

:::::
Score

:::::
When

::::::::
evaluating

::
a
::::
large

:::::::
number

::
of

::::::::::
clusterings,

:
it
::::
may

::
be

::::::
useful

::
to

:::
use

:
a
:::::::
statistic

::
to

:::::::::
summarise

:::
the

::::::::::
information

::
in

:::
the

::::::::
matching

::::::
matrix.

::
In

:
a
::::::::
previous

::::
study

:::::::::::::::::
(Ruske et al., 2017),

:::
we

::::
used

:::::::::
percentage

::
of

::::::::
particles

:::::::
correctly

::::::::
classified

::
as

::
a
::::::
statistic

:::
for

:::::::::
indicating

:::::::::::
performance.

::::
This

::
is

::
an

::::
easy

:::
to

:::::::
interpret

:::::::
statistic,

:::
but

::::
can

::
be

::::::::::
misleading

:::::
when

::::
used

:::
on

:::::::::
imbalanced

:::::
data.

::
In

::::
both

::::::::
example

::
A20

:::
and

::
B,

:::
we

::::
have

::::
two

::::::::
randomly

::::::::
generated

::::::::::
clusterings.

:::::::
However

::
in
::
B
:::
we

::::
have

::::
80%

:::
of

::
the

::::
data

::::::
points

:::::
placed

::::
into

:::
the

:::
first

:::::::
cluster,

:::::::
whereas

::
in

::
A

:::
the

::::
data

:::::
points

:::
are

::::::::::::
approximately

:::::::
equally

:::::::::
distributed

:::::::
between

:::
the

::::
two

:::::::
clusters.

:::
The

::::::::::
percentage

::
of

:::::
points

::::::
which

::
are

::::::
placed

::::
into

:::
the

::::
same

::::::
cluster

:::
for

::::
both

:::::::::
clusterings

:::
are

::::::
52.2%

::::
and

:::::
68.3%

:::
for

::
A

::::
and

::
B

::::::::::
respectively.

:::
We

:::
can

::::
see

:::
that

:::
the

:::::
more

:::::::::
imbalanced

::
a

:::
data

:::
set

:::
is,

::
the

:::::
more

:::::
likely

::::
data

:::::
points

:::
are

::
to
:::
be

::::::
placed

:::
into

:::
the

:::::
same

:::::::
clusters.

::
It

:
is
:::
for

::::
this

:::::
reason

:::
we

::::
elect

:::
to

:::
use

::
an

:::::::::
alternative

:::::::
statistic:

:::
the

:::::::
adjusted

::::
rand

:::::
score.

::::
This

:::::::
statistic

::::::
attains

:
a
:::::
value

::
of

::::::::::::
approximately

::::
zero

:::
for

::::
both

::
A

:::
and

:::
B.25
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:::::::::
Comparing

:::::::::
clusterings

::
is

:
a
:::::::::
developing

::::
area

::
of

:::::::
research

:::
and

:::::
there

:::
are

::::
other

:::::::::
alternative

:::::::
statistics

::::
such

::
as

:::
the

::::::
mutual

::::::::::
information

::::
score

::::::::::::::::
(Vinh et al., 2010)

:::
that

:::::
could

::
be

:::::::::
preferable

::
to

:::
the

:::::::
adjusted

::::
rand

:::::
score.

::::::::
However

:::
our

:::::
initial

::::
tests

::::
(not

:::::::::
presented),

::::::::
indicated

:::
that

:::::::::
calculation

::
of
:::
the

::::::
mutual

::::::::::
information

:::::
often

:::::::
required

:::
an

::::
order

:::
of

:::::::::
magnitude

::::
more

::::
time

::::
than

:::
the

:::::::::
calculation

:::
of

:::
the

:::::::
adjusted

::::
rand.

::::::::
Therefore

:::
we

::::::
elected

::
to
::::
use

:::
the

:::::::
adjusted

::::
rand

:::::
score

::
for

:::
the

::::::
current

::::::
study.

3
::::
Data5

The efficacy of the different data analysis approaches was evaluated using three different data sets. The first of which comprised

several industry standard polystyrene latex spheres of various different sizes and colours. This data set was first analysed in

Crawford et al. (2015), where Hierarchical Agglomerative Clustering was successfully applied to the data yielding a classifi-

cation accuracy of 98.2%. This data set presents a simple challenge for which we would expect any reasonable algorithm to be

able to discriminate between the different sizes and colours of particles.10

To further extend the previous analysis in Crawford et al. (2015) we include two previously unpublished data sets from

:::
data

::::
sets

::::::::
collected

::
in
:
2008 and 2014 which are similar to data previously published using the Multiparameter Bioaerosol

Spectrometer (Ruske et al., 2017).
:
A

:::::::::
subsection

::
of

:::
the

::::
data

::::::::
collected

:::::
2014

:::
has

:::::::::
previously

:::::
been

:::::::
analysed

::
in
:::

the
::::::::

appendix
:::

of

::::::::::::::::::
(Crawford et al., 2017)

:
. These data sets consist of various different pollen, fungal, bacterial and non-biological samples, and

should present a much more difficult challenge for the algorithms.15

The samples of laboratory generated aerosol were collected as follows. Material was aerosolised into a large, clean HEPA

filtered chamber, which incorporated a recirculation fan. The Bacillus atrophaeus and Escherichia coli (E.coli) bacteria were

aerosolised into the chamber using a mini-nebuliser (e.g. Hudson RCI Micro-Mist nebuliser) as were the salt and phosphate

buffered saline samples. The dry samples, which included the pollen, and fungal samples were aerosolised directly into the

chamber from small quantities of powder utilising a filtered compressed air jet. The diesel smoke and grass smoke samples20

were generated by burning a small amount within a fume cupboard using a smoker (piece of bespoke equipment).
:::
The

::::::::
bacterial

::::::
samples

:::::
were

:::::
either

::::::
washed

:::
or

::::::::
unwashed

:::
and

::::::
diluted

:::
or

::::::::
undiluted.

:

We present a summary of the number of particles for each sample in total as well as when using
:::
after

:
a fluorescent threshold

of 3σ and 9σ in Tables ?? and ??.
:
is
:::::::

applied
::
in

::::::
Tables

::
1,

:
2
::::
and

::
3.

::
In

:::::
2008

:::
the

::::::::
thresholds

:::
are

::::::::::
constructed

:::::
using

::::::
forced

::::::
trigger

:::
data

::::::::
collected

::
at
:::
the

:::::
same

::::
time

:::
as

:::
the

::::::::::
experiment,

:::::::
whereas

::
in
:::::

2014
:::
the

:::::::::
thresholds

:::
are

::::::::::
constructed

:::::
using

::::::
forced

::::::
trigger

::::
data25

:::::::
collected

:::::
using

:::
the

::::
same

:::::::::
instrument

::
at
:::
an

:::::
earlier

:::::
date.

::::::
Ideally,

:::
the

::::::::
threshold

::
for

:::
the

::::
data

::::::::
collected

::
in

::::
2014

::::::
would

::
be

::::::::::
constructed

::::
using

::::::
forced

::::::
trigger

:::
data

::::::::
collected

::
at

:::
the

::::
same

::::
time

:::
as

::
the

:::::::::
laboratory

::::
data,

:::
but

:::
we

:::
can

:::
see

::
in
::::::
Figure

::
8

:::
that

:::
the

::::::::
threshold

:::
we

::::
have

:::::::::
constructed

::
is

:::::::::
successful

::
in

::::::::
removing

:::
the

::::
vast

:::::::
majority

::
of

:::::
NaCl

:::::::
samples

::::::::
collected.

Plots of the average fluorescent characteristics and size and shape for each sample are provided in Figures ?? and 7 .
:
5,

::
6

:::
and

:
7
:::::

after
:
a
::::::::::
fluorescent

:::::::
baseline

::
of

:::
3σ

:::
has

::::
been

:::::::
applied.

:::::::
Similar

::::
plots

:::::
have

::::
been

::::::::
produced

:::::
using

::
a

::
9σ

::::::::
threshold

::::
and

:::
can

:::
be30

:::::
found

::
in

:::
the

::::::::
repository

::::::::
released

::::::::
alongside

:::
the

:::::::::
manuscript

::::
(see

:::
the

::::::::
code/data

::::::::::
availability

::::::
section

:::
for

::::::
further

:::::::
details). Plots and

tables for the polystyrene spheres previously published in Crawford et al. (2015) are omitted.
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Table 1. Counts
:::
The

::::::
number

:
of different aerosols collected in 2008 before and

::::::
particles

::::::::
remaining after a fluorescent threshold is

:
of

:::
3σ

::
or

::
9σ

:::
was

:
applied

::
for

::::
each

::
of

::
the

:::::::
bacterial

::::::
samples

:::::::
collected

::
in
:::::

2008.
::::
Each

::::::
sample

:::
was

:::::
either

::::::
washed

::
or

:::::::
unwashed

:::
and

::::::
diluted

::
or

:::::::
undiluted.

::::::
Washed

::::::
samples

:::
are

::::::
denoted

::
by

:
a
:::::
check

::::
mark

::
in

::
the

::::::
column

::::
"W"

:::
and

:::::
diluted

:::::::
samples

::
are

:::::
mark

:
in
:::
the

::::::
column

:::::
’Dil.’.

ID Sample #
:
W

:
# (3σ)

:::
Dil. # (9σ)

::::::
n > 3σ Classification

::::::
n > 9σ

A Bacillus atrophaeus
:::::
Spores 30946 12631 3239

:::
952 bacteria

::
34

:

B E.coli 15237 8332 X 3681
::
52

:
bacteria

:
4
:

C Bermuda grass smut 5220 X 2681 423
::::
1171 fungal

:::
217

D Johnson grass smut 7248 X 3882 X 637
:::
241

:
fungal

::
38

E Paper-mulberry
:::::
—"—

::::::::
Vegetative

::::
Cells 1030 630 312

::::
4779 pollen

::::
1915

F Ragweed pollen 569 332 X 151
::::
1488 pollen

:::
264

G X
::::
1884

:::
573

:
H
:

X X
::::
2064

:::
194

:
I

:
E
::::
coli.

::::
3684

::::
1547

:
J X

::::
1448

:::
371

:
K
:

X
::::
2365

::::
1461

:
L
:

X X
:::
835

:::
302

Table 2.
:::
The

::::::
number

::
of

:::::::
particles

:::::::
remaining

::::
after

:
a
:::::::::
fluorescent

:::::::
threshold

:::
was

::::::
applied

::
for

::::
each

::
of

::
the

::::::::::
non-bacterial

:::::::
samples

::::::
collected

::
in
:::::
2008.

::
ID

: ::::::
Sample

:::::::
Category

::::::
n > 3σ

::::::
n > 9σ

::
M

:::::::
Bermuda

::::
grass

:::::
Fungal

: ::::
2681

:::
423

:
N
: ::::::

Johnson
::::
grass

:
I
: :::::

Fungal
: ::::

1209
:::
259

:
O
: ::::::

Johnson
::::
grass

::
II

:::::
Fungal

: ::::
2673

:::
378

:
P
:

Birch pollen 164
:::::
Pollen 111 56

:
Q
:

pollen
::::
Paper

:::::::
mulberry

:
I
: :::::

Pollen
:::
233

:::
209

H
:
R
:

Grass smoke
::::
Paper

:::::::
mulberry

::
II 14457

:::::
Pollen 3357

:::
397 299

:::
103

:

:
S
:

interferent
:::::::
Ragweed

:
I

:::::
Pollen

:::
123

::
34

:
T
: :::::::

Ragweed
::
II

:::::
Pollen

:::
209

:::
117

I
::
U Diesel smoke 7900

::::::::
Interferent 11 5

:
V
:

interferent
::::
Grass

:::::
smoke

:
I
: ::::::::

Interferent
::::
2542

:::
231

::
W

::::
Grass

:::::
smoke

::
II
: ::::::::

Interferent
:::
815

::
68

For most of the interferent particles
::
To

:::::::
provide

:::::
further

::::::
clarity

::
on

:::
the

::::::::
variation

::
of

:::
the

:::::::
samples

::
in

::::
terms

::
of

::::
size

:::
and

:::::::::::
fluorescence

::
we

:::::::
include

:::::
scatter

:::::
plots

::
of

::::
each

::
of

:::
the

::::::::::
fluorescence

:::::::
channels

::::::
against

::::
size

:::
for

:::
four

:::
of

::
the

:::::::
samples

::
in

::::::
Figure

::
8.

:::
For

:::
the

::::::
puffball

::::
and

11



Table 3. Counts
:::
The

::::::
number of different aerosols collected in 2014 before and

::::::
particles

::::::::
remaining after a fluorescent threshold is

:::
was applied

:
to
::::
each

::
of

:::
the

::::::
samples

:::::::
collected

::
in

::::
2014.

:::::::
Whether

:
a
:::::::
bacterial

:::::
sample

:::
was

::::::
washed

:::
(w)

::
or

::::::::
unwashed

:::::
(unw)

:
is
:::::::
specified

::::
after

::
the

::::::
sample

::::
name.

ID Sample #
::::::
Category

:
#(3σ)

:::::
n > 3σ

:
#(9σ

:::::
n > 9σ

:

:
A
: ::::::

Bacillus
:::::::::
atrophaeus

::::
(unw) Classification

::::::
Bacteria

: ::::
1728

:::
684

A
:
B
:

Bacillus atrophaeus
:::
(w) 6217

::::::
Bacteria

:
3050

::::
1322 1292 bacteria

:::
608

:

B
:
C
:

E. coli
:::::
(unw) 2534

::::::
Bacteria

:
1290 632 bacteria

C
:
D
:

Puffballs
::::::
Puffball

:
I 3919

:::::
Fungal

:
555

:::
504

:
252

:::
248

:

:
E
:

fungal
::::::
Puffball

::
II

:::::
Fungal

: ::
35

:
3
:

:
F
: ::::::

Puffball
::
III

: :::::
Fungal

: ::
16

:
1
:

D
:
G
:

Aspen pollen
:::::
Pollen 398

:::::
Pollen 74 31 pollen

E
:
H Poplar

::::
Paper

:::::::
mulberry

:
pollen 375

:::::
Pollen 104

:::
541

:
50 pollen

:::
537

:

F I
:

Paper-Mulberry
:::::
Poplar

:::::
Pollen 565

:::::
Pollen 541

:::
104

:
537 pollen

::
50

:

G
:
J Ryegrass

:::::
pollen 47

:::::
Pollen

:
21 15 pollen

H
:
K
:

Fullers ’ Earth 3226
::::::::
Interferent 35

::
61

:
3 interferent

::
20

:

I
:
L
:

NaCl 2197
::::::::
Interferent 3 0 interferent

J
::
M Phosphate Buffered Saline 3064

::::::::
Interferent 61

::
35

:
20 interferent

:
3
:
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Figure 5. Average fluorescent characteristics for the different aerosol
::::::
bacterial

:
samples collected in 2008

::::
2008.

::::
The

::::
error

:::
bars

::
in

:::
red

::::::
indicate

:
a
::::
range

::
of

::::
±1σ

:::
for

:::
each

::::::
sample.

:::
rye

::::
grass

::::::::
samples,

::
in

::::::::
particular

:::
we

:::
can

:::
see

::::
that

:::
we

:::
may

:::
be

:::::::::
measuring

::::
both

:::::::::
fragmented

::::
and

:::::
intact

::::::::
particles.

:::
For

:::
the

:::::::::
interferent

::::::
samples

:
we see that a fluorescent threshold of either

:::::::
threshold

::
of

:
3σ or 9σ will remove

::::::
removes

:
the vast majority of these

particles. The exception to this is in the case of the 2008 data we are unable to remove a significant number of the grass smoke
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Figure 6. Average fluorescent characteristics for the different aerosol
:::::::
remaining samples collected in 2014

::::
2008.

:::
The

::::
error

:::
bars

::
in

:::
red

::::::
indicate

:
a
::::
range

::
of

::::
±1σ

:::
for

:::
each

::::::
sample.
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Figure 7.
:::::

Average
:::::::::

fluorescent
:::::::::::
characteristics

::
for

:::
the

:::::::
different

::::::
aerosol

::::::
samples

:::::::
collected

::
in

:::::
2014.

:::
The

::::
error

::::
bars

::
in

::
red

:::::::
indicate

:
a
:::::
range

::
of

:::
±1σ

:::
for

::::
each

::::::
sample.

samples even using a fluorescent thresholdof 9σ, providing an example of an interferent that does fluoresce in the instrument.

::
In

:::
fact

:::
the

::::
only

:::::::::
interferent

:::::::
samples

::
to

:::::::
measure

::
a

::::::
number

::
of

::::::::
particles

::::
over

:
a
::::::::
threshold

::
of

:::
3σ

::::
were

:::
the

:::::
grass

:::::
smoke

::::::::
samples.

:::
The

::::
data

::::::::
collected

::
is

:::::
using

:
a
::::::
WIBS

::::::
version

::
3

:::::
which

::
is
::::::
limited

:::
to

:
a
::::::::
detection

:::::
range

::
of

::::::::::::
approximately

::::::::::::
0.5µm-12µm,

::::::
which

:::::
limits

:::
the

:::::
ability

::
of

:::
the

:::::::::
instrument

::
to
::::::
detect

:::::
intact

:::::
pollen

::::::
grains.

::::
The

::::
vast

:::::::
majority

::
of

:::
the

:::::::::
equivalent

::::::
optical

::::::::
diameters

:::::::
(EODs)

::
for

:::
the

::::::
pollen

:::::::
samples

::::::::
collected

:::
are

:::::
much

:::::
lower

::::
than

:::
the

::::::::::::
measurements

:::
for

:::::
intact

:::::
pollen

::::::
grains

:::
and

:::
are

::::::::
therefore

:::::
likely

::
to

:::
be5

:::::
pollen

:::::::::
fragments,

:::
as

:::
was

:::
the

:::::
case

::
in

:::::::::::::::::::
Hernandez et al. (2016)

:
.
::::
The

::::::::
exception

::
is

:::
the

:::::
paper

::::::::
mulberry

:::::::
samples

::::::
where

:::::
there

:::
are

:::::::::
differences

:::::
across

::::
each

:::
of

::
the

::::::::
samples.

::
In

:::::
2008,

::::::
sample

::
Q

:::::
which

::::::
shows

:
a
::::
size

:::::
range

::::::
similar

::
to

:::
the

::::
other

::::::
pollen

:::::::
samples

:
is
:::::
most

:::::
likely

::
to

::::::
consist

::::::
entirely

::
of

::::::
pollen

:::::::::
fragments,

:::::::
whereas

::::::
sample

::
R

:::::
shows

::
a
:::::
much

:::::
wider

:::
size

:::::
range

::::::
which

::
is

:::::
likely

::
to

::::::::
comprise

::
of

::::
both

:::::::::
fragmented

::::
and

:::::
intact

::::::
pollen.

:::
The

:::::::::
collection

::
of

::::
both

::::::::::
fragmented

:::
and

:::::
intact

:::::
pollen

::::
has

:::::::::
previously

::::
been

::::::
shown

::
to

:::::
occur

::
in

::::::::::::::::
Savage et al. (2017).

:::
In

:::::
2014,

:::
for

::::::
sample

::
H,

:::
the

::::
size

:::::
range

::
is

:::::
much

::::::
larger,

::::::::
consistent

::::
with

:::
the

::::::::::
hypothesis

::
of

:::::::::
measuring

:::::
intact10
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Figure 8.
:::::
Scatter

::::
plots

::
of

:::::::::
fluorescence

:::::
versus

::::
size

::
for

::::
four

:
of
:::
the

:::::::
samples.

:::
Two

::
of

:::
the

::::::
samples

::::
were

:::::::
collected

::
in

::::
2008

:::
(top

::::
row)

:::
and

:::
two

::::
were

::::::
collected

::
in
::::
2014

:::::::
(bottom

::::
row);

:::
two

:::
are

:::::::
biological

::::
(left

::::::
column)

:::
and

:::
two

:::
are

:::::::::::
non-biological

::::
(right

:::::::
column).

::::::
pollen.

::::::
Paper

:::::::
mulberry

:::
has

:::::
been

:::::::::
previously

::::
been

:::::::
sampled

::
in

:::::::::::::::::
(Healy et al., 2012a),

:::::
using

::
a

:::::
WIBS

::::::
version

::
4
::
in

:
a
::::::::
low-gain

:::::
mode

:::::
which

::::::
allows

::
for

:::
the

:::::::::
collection

::
of

:::::::
particles

:::
up

::
to

::::::::::::
approximately

::::::
31µm.

::
In

:::
this

::::::
study,

:::
the

:::
size

:::::
range

::
of

:::
the

:::::
paper

::::::::
mulberry

::::
was

:::::::::
13.6± 6.2,

::::::::
indicating

::::
that

::
if

::::::
sample

::
H

:
is
:::::
intact

::::::
pollen

:::
we

::::
may

::::
only

::
be

:::::::::
measuring

::::
part

::
of

:::
the

::::::::::
distribution.

:
It
::::
may

:::::
have

::::
been

:::::::
possible

::
to

::::::::
combine

:::
the

::::
data

:::
sets

:::::
from

::::
2008

::::
and

:::::
2014.

::::::::
However,

:::::::::::
investigating

::
if

::::
there

:::
are

::::::::::
differences

::
in

:::::::::
conclusions

:::::
when

::::::
testing

:::::::
different

::::::::::::
methodologies

:::::
using

:::::::
different

:::::::::
laboratory

:::::::
samples

:::::
could

::::
offer

::::::
insight

:::
into

:::
the

:::::::::::::
reproducability5

::
of

:::
the

:::::::
research

::::::::
presented

::
in

:::
the

::::::
current

:::::
study.

:::
We

::::::::
therefore

::::::
elected

::
to

::::::
analyse

:::
the

::::
data

:::
sets

:::::::::
separately

:::
and

::::::::
compare

:::
and

:::::::
contrast

::
the

:::::::
findings

:::::
when

::::::
testing

:::
on

::
the

:::::
PSLs

::::
and

::::
each

::
of

:::
the

::::
data

:::
sets

::::::::
collected

::
in

::::
2008

::::
and

:::::
2014.

4 Results

::
In

:::::::
Sections

::::
4.1,

:::
4.2,

:::
4.3

:::
we

:::::::
present

:::
the

::::::
results

:::::
using

:::::
HAC,

:::::::::
DBSCAN

:::
and

:::::::
gradient

::::::::
boosting

::::::::::
respectively.

::
A
::::::::
summary

:::
of

:::
the

::::::
findings

:::
for

::::
each

:::::::
method

:::
and

:::
an

::::::::
indication

::
of

::::
how

:::
the

:::::::
number

::
of

:::::::
clusters

:::
are

:::::::::
determined

:::
are

::::::
shown

::
in

:::::
Table

::
4.10

4.1 Hierarchical Agglomerative Clustering

::::
Prior

::
to

::::::::::
hierarchical

::::::::::::
agglomerative

::::::::
clustering

::::::
(HAC)

:::::
being

:::::::
applied,

:::
we

:::::::
labelled

::::
each

::::::
particle

:::::
from

:::
1-4

::
to

:::::::
indicate

:::::::
whether

:::
the

::::::
particle

::::
was

:::::::
bacteria,

:::::::
fungal,

:::::
pollen

:::
or

::::::::::::
non-biological

:::::::::::
respectively.

:::
We

::::
then

:::::::::
considered

::
a
::::::
variety

::
of

::::::::
different

:::::::::
approaches

:::
to

::::::
prepare

:::
the

::::
data

::::::
which

:::
are

:::::
shown

:::
in

:::::
Table

::
5.

::
96

:::::::
possible

::::::::::::
combinations

::
of

:::::
these

::::::::::::
considerations

:::::
were

::::::
applied

::
to

:::
the

::::
data

::::
and

::
the

::::::::::
hierarchical

::::::::::::
agglomerative

:::::::::
clustering

::::::
routine

::::
was

::::
used

::
to

::::::
cluster

:::
the

:::::::
resultant

::::
data

::
in

::::
each

:::::
case.

:::
For

::::
each

::
of

:::
the

:::::::::
ninety-six15
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Table 4.
:::::::
Summary

::
of
:::::::
findings

:::
and

:::::::::::
considerations

::
for

::::::
method

:::::::
selection.

::::::
Method

:::::::
Summary

:
#
::::::
Clusters

:

::::
HAC –

::::
Does

::
not

::::
rely

::
on

::::::
training

:::
data

:

–
:::
The

::::::::
conclusion

:::
we

::::
make

::::
when

:::::
using

::
the

:::
CH

:::::
index

::::
may

::
be

:::::::
incorrect

::::
when

:
a
::::
large

::::::::
proportion

:::
of

::
the

:::::::
particles

:::
are

:::
from

::::
one

::::
broad

::::
class

–
:::
How

::::
the

::::
data

::::
was

:::::::
prepared

::::::
greatly

::::::::
impacted

:::::
upon

:::::::::
performance

:

–
::::::
Particles

:::::
from

:::::::
different

:::::::::
categories

:::::
were

:::::::::
sometimes

::::::
clustered

:::::::
together

:::
e.g.

:::::
pollen

:::
with

::::::
fungal

::::::::
Determined

::::::
using

:::
the

:::::::
maximum

:::::
value

::
of

:::
the

:::
CH

::::
index

:::::::
produced

:::
for

::::::::
clusterings

:::::::
between

::
1

:::
and

::
10

::::::
clusters.

:

:::::::
DBSCAN

: –
:::::::
Produced

::
a

::::::::
clustering

:::::
which

::::::::
contained

::::
three

:::::::
distinct

:::::
clusters

:::::
each

::::::::
containing

::::::::
primarily

:::
one

:::::
broad

::::
class

:::
of

:::::::
bioaerosol

::
in
:::
the

::::
case

:
of
::::

one
:
of
:::

the
::::
data

:::
sets

–
:::
Data

:::::::::
preparation

:::::
greatly

::::::::
impacted

::::
upon

:::::::::
performance

:

–
:
It
::
is

:::
not

::::
clear

:
at
::::

this
::::
point

::::::
whether

:::
the

:::::
values

::
of

::::::
epsilon

:::
and

::
the

::::::::
minimum

::::::
number

::
of

:::::
points

::::
would

:::
be

::::::::
applicable

:
to
:::::::
ambient

:::
data

:

:::::::
Naturally

::::::::::
determined

::
by

:::::
setting

:::::::
epsilon

:::
and

::
the

::::::::
minimum

:::::::
number

:
of
:::::

points
:::::::

required
:::
for

:
a

:::::::::::
neighbourhood.

:

::::::
Gradient

:::::::
Boosting

–
:::::::::
Performance

::::
was

:::::::::
consistently

::::
good

:::::::::
irregardless

::
of

::::
data

::::::::
preparation

::::::::
provided

:::
that

::
a
::::::::

threshold,
:::::

either
::

3
:::

or
::
9

::::::
standard

::::::::
deviations,

::::
was

:::::
applied

::
to

:::
the

:::::::::
fluorescence

:

–
::::
Relies

:::
on

:::::::
adequate

::::::
training

:::
data

::::
being

:::::::
collected

:::
and

::
it
::
is

::
not

::::
clear

::
at
:::
this

::::
point

:::::::
whether

::
the

::::
data

:::::::
collected

:::
will

:::
be

:::::::
sufficient.

:

:::::
Always

:::
the

::::
same

::
as
:::
the

:::::
number

::
of
::::::
groups

:
in
:::
the

::::::
training

:::
data

:::::::::
hierarchies

::::::::
produced,

:::
the

:::::::::
clusterings

:::::::::
containing

:::::::
between

:
1
::::
and

::
10

:::::::
clusters

::::
were

::::::::
extracted.

::::::::::::
Subsequently,

:
a
:::::
value

::
of

:::
the

:::::::
adjusted

::::
rand

::::
score

:::::::::
comparing

:::::
each

::
of

::::
these

:::
10

:::::::::
clusterings

::
to

:::
the

::::::
known

:::::
labels

::::
was

:::::::::
calculated.

:::::
These

::::::
values

::
of

:::
the

:::::::
adjusted

::::
rand

:::::
score

:::::
would

::
be

::::::::::
unavailable

::::::
during

::
an

:::::::
ambient

::::::::
campaign

:::
but

:::
are

:::::
used

::::
here

::
to

:::::::
measure

:::
the

::::::::
similarity

::
of

::::
each

:::::::::
clustering

::
to

:::
the

::::::
known

:::::
labels

::
in

:::::
order

::
to

:::::::
indicate

::::::
overall

:::::::::::
performance

:::
and

::::::::
highlight

:::::
which

:::
of

:::
the

:::
first

:::
10

:::::::::
clusterings

::::
was

::::
most

:::::::
similar

::
to

:::
the

::::::
known
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Table 5. Outline of the different approaches tested when using Hierarchical Agglomerative Clustering

Consideration Option

Take Logs True or False

Size Threshold None or 0.8

Fluorescent Threshold None, 3σ or 9σ

Standardisation Z-score or Range

Linkage Ward, Centroid, Median or Single

:::::
labels.

::::::
Values

::
of

:::
the

:::::::::::::::
Calinski-Harabasz

:::::
index

::::
(CH

::::::
index),

::
an

:::::
index

::::::
which

:
is
:::::::
usually

::::
used

::
in

::
an

:::::::
ambient

::::::::
campaign

::
to

:::::::::
determine

::
the

:::::::
number

::
of

:::::::
clusters,

:::::
were

:::
also

::::::::::
calculated.

:::
The

:::::::
number

::
of

::::::
clusters

:::
in

::
the

:::::::::
clustering

:::
for

:::::
which

:::
the

:::::::::
maximum

::::
value

:::
of

::
the

::::
CH

::::
index

::::
was

:::::::
attained

:::
can

::::
then

:::
be

::::::::
compared

:::
to

:::
the

::::::::
clustering

::::::
which

::
is

::::
most

::::::
similar

::
to
:::
the

::::::
known

::::::
labels

::
to

::::::::
determine

::
if
:::
the

::::
CH

::::
index

::::::
attains

::
a

::::::::
maximum

:::
for

:::
the

::::::::
clustering

::::::
which

::
is

::::
most

::::::
similar

::
to

:::
the

::::::
known

::::::
labels.

Usually when using Hierarchical Agglomerative Clustering we use the following data preparation strategy:5

4.1.1
::::::
Impact

::
of

:::::
data

::::::::::
preparation

:::::
Figure

::
9
:::::::
provides

:::
an

::::::::
overview

::
of

:::
the

::::::
results

:::::::
obtained

:::::
using

:::
the

:::
96

:::::::
different

:::::::::
strategies

:::::
tested.

::::
The

::::
data

::::::::::
preparation

::::::::
approach

::::::::
suggested

::
in

:::::::::::::::::::
Crawford et al. (2015)

::::::::
(presented

::
in

:::::
blue)

::::
was

::
to take logs of the size and the asymmetry factor, apply

:::
use a size

threshold of 0.8 microns, apply
:::
0.8

::::::::
microns,

:::
use

:
a fluorescent threshold of 3 or more recently 9 standard deviations and

:
3

:::::::
standard

:::::::::
deviations

:::::
above

:::
the

::::::
average

::::::::::::
forced-trigger

::::::::::::
measurement, standardise using the z-score . This approach is used as it10

has been demonstrated to be the most effective for the PSL data previously tested. We varied this approach by using a variety

of different data preparation methods outlined in Table 5.

Performance of Hierarchical Agglomerative Clustering using the adjusted rand score for the data sets tested across different

data preparation strategies. The number of clusters concluded in each case is indicated at the bottom of each bar.

In Figure 9 we outline how well Hierarchical Agglomerative Clustering performed when using the standard strategy varying15

between 3σ and
::
and

::::
use

:::::
Ward

:::::::
Linkage.

::
It
:::
has

::::
also

::::
been

:::::::::
suggested

::::
that

:
a
::::::::
threshold

::
of

::::
nine

::::::::
standard

:::::::::
deviations

::::
may

::
be

:::::
more

:::::::::
appropriate

:::::::::::::::::
(Savage et al., 2017)

:
,
::
so

:::
the

::::::::
approach

::::::::
suggested

::
in
:::::::::::::::::::
Crawford et al. (2015)

:::::::
modified

:::
to

:::
use

:
a
::::::::
threshold

::
of

:
9σ , and

how well the algorithm worked with the best data preparation strategy across all 96 possible combinations of options for each

data set.
:
is
::::
also

::::::::
presented

:::
(in

:::::::
orange)

First
:
In

:::
the

::::
case

:::
of

:::
the

::::
PSL

::::
data

:::
set, we see that the high performance achieved for the PSLs (AR =

::::
HAC

:::
has

::::::::
produced

::
a20

::::::::
clustering

::::
with

::
5

::::::
clusters

::::::
which

::
is

::::
very

::::::
similar

::
to

:::
the

::::::
known

::::::
labels.

:::
The

::::
best

:::::::::::
performance

:::::::
occurred

:::::
when

:::::
using

:
a
::::::::::
fluorescent

:::::::
threshold

:::
of

::
9

:::::::
standard

:::::::::
deviations,

::::::
albeit

:
3
::::::::

standard
:::::::::
deviations

::::::::
produced

:
a
::::::::

similarly
:::::

high
:::::
value

::
of

:::
the

::::::::
adjusted

::::
rand

:::::
score

:
(0.958), previously studied in Crawford et al. (2015), could not be fully extended to the laboratory generated aerosol studied

where the highest adjusted rand score attained was 0.567 and 0.747
:
.
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:::
The

:::::::::
maximum

:::::::
adjusted

::::
rand

:::::
scores

:::::::
attained

:::
for

:::
the

:::
the

:::::::::
laboratory

:::::::
generate

::::::
aerosol

::::::::
collected in 2008 and 2014 respectively.

This is
::::
were

:::::
0.567

:::
and

::::::
0.747.

::::::
Lower

:::::
scores

:::
are

:
to be expected as the

::::
since

:::
we

::::::
would

::::::::
anticipate

:
laboratory generated aerosol

particles are much more complex , and therefore
:
to

:::
be

::::
more

::::::::
complex

::::
than

::::::::::
polystyrene

::::
latex

:::::::
spheres

:::
and

:::::
hence

:
more difficult

to differentiate.

We note the best performing data strategy for the PSL’s previously studied (Crawford et al., 2015) was not the best performing5

for the laboratory generated aerosol. For the data set collected in
::::::::::
discriminate.

::::
The

:::::::
adjusted

::::
rand

::::
score

:::
of

::
the

::::
best

::::
data

:::::::
strategy

::
of

:::
the

::
96

::::::
tested,

::
as

::::::::
indicated

::
by

:::
the

:::::
height

:::
of

::
the

:::::
green

::::
bar,

::
is

:::::
larger

::::
than

:::
the

:::::::::::
corresponding

::::::::
adjusted

::::
rand

::::
score

:::
for

:::
the

:::::::
strategy

::::::::
suggested

::
in

::::::::::::::::::
Crawford et al. (2015)

:
,
::::::::
indicating

::::
that

:::::::::
potentially

::
a

:::::::
different

:::::::
strategy

::::
may

::::
yield

:::::
better

:::::::
results.

::::::::
However,

:::
the

::::
best

:::::::::
performing

:::::::
strategy

:::
was

:::
not

:::::::::
consistent

:::::
across

::::
both

:::
the

:
2008

:::
and

:::::
2014

::::
data.

:

::
In

::::::::
particular, the best strategy

::
in

:::::
2008 was found to be: taking logs; using a size threshold of 0.8

::
0.8

:
microns; using 310

standard deviations as a fluorescent threshold ;
:
3
::::::::

standard
:::::::::
deviations

:::
and

:::::::::
fluorescent

::::::::
threshold

:
standardising using the range

; and using Ward linkage. In 2014, the best results were
::::::
highest

:::::
value

::
of

:::
the

:::::::
adjusted

::::
rand

:::::
score

::::
was obtained by not taking

logs, not applying a size threshold, using a fluorescent threshold of 9
:
9
:

standard deviations and using the centroid linkage.

::::
Since

::::
our

:::::::
findings

::
are

::::::::::
inconsistent

::::::
across

:::
the

:::
two

:::::::::
laboratory

::::::::
generated

:::::::
aerosol

:::
data

::::
sets

:
it
::::::::
becomes

:::::::
difficult

::
to

::::::
provide

::
a

:::::
better

:::::::::::::
recommendation

:::
for

::::
data

::::::::::
preparation

::::
other

::::
than

:::
the

:::::::
strategy

::::::::
suggested

::
in
:::::::::::::::::::
Crawford et al. (2015).

:
15

In addition, there was a substantial difference between the quality of results attained for
::::
when

:::::
using

:
a
::::::::::
fluorescent

::::::::
threshold

::
of 3 standard deviations vs.

::
or 9 standard deviations. In 2008, we see a decrease in the adjusted rand score from 0.482 to 0.277

when using 3 and 9σ respectively. In 2014, we see an increase in the adjusted rand score from 0.462 to 0.625 when using 3

and 9σ respectively. So not only is there a substantial difference between the quality of results dependent on the

:
It
::

is
::::::::

possible
:::
that

::::
the

:::::::::
difference

::
in

:::::::::::
performance

:::::
when

:::::
using

:::
the

::::::::
different

:::::::::
thresholds

:::::
could

:::
be

::
in

::::
part

:::::::::
explained

::
by

::::
the20

:::::::::
fluorescent

::::::::
threshold

::
in

::::
2014

:::::
being

::::::::::
constructed

:::::
using

:::::
forced

::::::
trigger

::::
data

::::::::
collected

::
at

:
a
:::::::
different

:::::
time

::
to

:::
the

::::::::
laboratory

:::::
data,

::
or

::
by

:::
the

::::::::::
fluorescence

:::::::::
properties

:::::::
differing

::::::
across

:::
the

:::
two data preparation technique used, but the difference is inconsistent across

different data sets.

It is indeed the case that the data preparation approach currently used could be improved upon for the laboratory generated

aerosol. However, due to inconsistencies in results across different data-sets it becomes difficult to provide an accurate recommendation25

as to what data preparation strategy should be used for hierarchical agglomerative clustering
:::
But

:::
this

:::::::
differing

:::::::::
behaviour

:::::
when

::::
using

::::::::
different

::::
data

:::::::::
preparation

:::::
does

::::
need

::
to

::
be

:::::::::::
investigated

::::::
further

::::
with

::::::::
additional

:::::::::
laboratory

::::
data

:::
sets

::::
and

::
in

:::
the

::::::
context

:::
of

::::::
ambient

:::::
data.

:::::::::::
Nonetheless,

:::
the

:::::::
differing

::::::::::
conclusions

::::::
across

:::
the

::::
two

::::
data

:::
sets

::
as
:::

to
:::::
which

::::
data

::::::::::
preparation

::
is

::::::::
preferable

:::::
does

:::::::
highlight

:::
the

:::::::::
importance

:::
of

:::::::
repeating

::::
data

::::::::
collection

::::
and

::::::::::::
demonstrating

:::::::::
conclusions

:::
are

:::::::::
consistent

:::::
across

:::::::
multiple

::::::::::
experiments.

The adjusted rand score is often quite difficult to interpret, so we provide matching matrices for the best and worst case30

scenario using the current data preparation strategy in Tables 6 and 7. In the best case scenario we are able to discriminate

between the pollen and the rest of the data placing 86.8% of the pollen into Cluster 2. Most of the bacteria is also placed into

Cluster 3 with 66.6% of the fungal spores. A third of the fungal spores are differentiated from the rest of the data and placed

into Cluster 1. In the worst case scenario two clusters are provided both primarily containing bacteria. In this case we can
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Figure 9.
::::::::::
Performance

::
of

:::::::::
Hierarchical

:::::::::::
Agglomerative

::::::::
Clustering

:::::
using

::
the

:::::::
adjusted

::::
rand

::::
score

::
for

:::
the

::::
data

:::
sets

:::::
tested

:::::
across

::::::
different

::::
data

::::::::
preparation

::::::::
strategies.

:::
The

::::::
number

::
of

::::::
clusters

::::::::
concluded

::
in

:::
each

::::
case

::
is

:::::::
indicated

:
at
:::
the

::::::
bottom

::
of

:::
each

:::
bar.

conclude that algorithm has failed to differentiate between any of the biological classes
:
,
::
in

:::
part

:::
due

::
to
:::
the

::::
CH

::::
index

::::::::::
concluding

::::
there

:::
are

:
2
:::::::
clusters.

From Figure 9

4.1.2
::::::
Impact

::
of

:::
the

:::::::::::::::::
Calinski-Harabasz

:::::
Index

::
At

:::
the

::::
base

:::
of

::::
each

:::
bar

::
in
::::::

Figure
::
9
:::
we

::::::::
provided

:::
the

:::::::
number

::
of

:::::::
clusters

::
in

:::
the

:::::::::
clustering

:::
for

:::::
which

:::
the

::::::::
adjusted

::::
rand

:::::
score5

::::::::
presented

:::
was

:::::::::
obtained.

:::
For

:::
the

::::::
darker

:::::
bars,

:::
this

:::::::
number

:::::::::
represents

:::
the

:::::::
number

::
of

:::::::
clusters

::
in

:::
the

:::::::::
clustering

:::
for

::::::
which

:::
the

::::::
highest

:::::
value

::
of

:::
the

::::::::
adjusted

::::
rand

:::::
score

::::
was

:::::::
obtained

::::::
across

:::
the

:::::::::
clusterings

:::::::::
containing

::::::::
between

::
1

:::
and

:::
10

:::::::
clusters.

::::
For

:::
the

:::::
lighter

:::::
bars,

:::
this

:::::::
number

:::::::::
represents

:::
the

:::::::
number

::
of

:::
the

:::::::
clusters

::
in

:::
the

::::::::
clustering

:::
for

::::::
which

:
a
:::::::::

maximum
::
of
::::

the
:::
CH

:::::
index

::::
was

:::::::
attained.

:::::
There

:::
are

::::
three

:::::::
different

::::::::
scenarios

::::
that

:::::
occur.

:::::
First,

:::
the

:::::::::::::::
Calinski-Harabasz

:::::
index

:::::
attains

::
a
::::::::
maximum

:::
for

:::
the

::::::::
clustering

::::::
which10

:
is
:::::
most

::::::
similar

::
to

:::
the

::::::
known

:::::
labels

::::
e.g.

::
for

:::
the

::::
PSL

::::
data

:::::
using

::
a

:::::::::
fluorescent

::::::::
threshold

::
of

::
3

:::::::
standard

:::::::::
deviations,

:::
the

:::::::::
clustering

:::::
which

::
is

::::
most

:::::::
similar

::
to

:::
the

::::::
known

:::::
labels

:::::::
(shown

::
in

:::
the

::::::
darker

::::
bar)

:::::::
contains

::
5

::::::
clusters

::::::
which

::
is

:::
the

:::::
same

::
as

:::
the

:::::::::
clustering

::
for

::::::
which

:
a
:::::::::

maximum
::
of

:::
the

::::
CH

:::::
index

::
is

:::::::
attained

::::::
(shown

:::
in

:::
the

:::::
lighter

:::::
bar).

:::::::
Second,

:::
the

:::::::::::::::
Calinski-Harabasz

:::::
index

::::::
attains

::
a

::::::::
maximum

:::
for

:
a
::::::::
different

::::::::
clustering

:::::
which

::
is
:::::
most

::::::
similar

::
to

:::
the

::::::
known

:::::
labels,

:::
but

:::
the

:::::::::
conclusion

:::::
does

:::
not

::::
have

:
a
:::::
large

::::::
impact

::
on

:::::::::::
performance.

::::
For

::::::::
example,

::
in

:::::
2008

:::::
using

:
a
::::::::::
fluorescent

::::::::
threshold

::
of

::
3
:::::::
standard

::::::::::
deviations,

:::
the

:::::::::
clustering

:::::
which

::
is
:::::
most15

::::::
similar

::
to

:::
the

::::::
known

:::::
labels

:::::::
contains

::
5

:::::::
clusters,

:::::::
whereas

:::
the

::::::::
clustering

:::
for

::::::
which

:::
the

:::
CH

:::::
index

::::::
attains

:
a
:::::::::
maximum

:::::::
contains

::
4

:::::::
clusters.

::::::::
However,

:::
the

::::::
heights

::
of

::::
bars

:::
are

::::::
nearly

:::
the

:::::
same.

::
In

::::
this

::::
case,

::
a

::::
very

:::::
small

:::::
cluster

::::
has

::::
been

:::::::
merged

::
in

:::
the

::::::::
hierarchy

::::
from

:
5
:::

to
:
4
:::::::
clusters

:::::::
resulting

::
in
:::

the
::

4
:::
and

::
5
::::::
cluster

:::::::::
clusterings

:::::
being

:::::::::
extremely

::::::
similar

:::
and

:::::::::::
consequently

:::
the

::::
fact

:::
that

:::
the

::::
CH

::::
index

::::
has

:::::::
attained

:
a
:::::::::
maximum

::
at

::
4

::::::
clusters

:::::::
instead

::
of

:
5
::

is
::::

not
::::::::::
concerning,

::::
since

::::::::::
concluding

:
4
:::::::

clusters
::::::
instead

:::
of

:
5
::::
has

::::
very

::::
little

::::::
impact

::::
upon

:::::::::::
performance.

:
20
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:::
The

::::
final

::::
case

::
is

::
in

:::::
2008,

:::::
using

:
a
:::::::::
fluorescent

::::::::
threshold

::
of
::
9
:::::::
standard

:::::::::
deviations.

:::::
Here

:::
the

::::::::
clustering

:::::
which

::
is
:::::
most

::::::
similar

::
to

::
the

::::::
known

:::::
labels

::
is
:::
the

:::::::::
clustering

::::::::
containing

::
5
:::::::
clusters,

:::::::
whereas

:::
the

:::
CH

:::::
index

::::::
attains

:
a
:::::::::
maximum

:::
for

::
the

:::::::::
clustering

:::::::::
containing

::::
only

:
2
:::::::
clusters.

::::
The

:
2
::::::
cluster

:::::::
solution

::
in

:::
this

::::
case

::
is
::::
very

:::::::::
dissimilar

::::
from

:::
the

::::::
known

::::::
labels.

::
In

:::
the

::::
cases

::::::
where

:
a
:::::::::
maximum

::
for

:::
the

::::
CH

::::
index

::::
was

:::::::
attained

:::
for

:
a
::::::::
clustering

:::::::::
containing

::
2
::::::
clusters

:::
i.e.

::
in
:::::
2008

:::::
using

::
9σ

::::
and

::
in

::::
2014

:::::
using

:::
3σ, it is clear that data preparation strategy can have a substantial impact upon the quality of clustering results.5

From Tables 6 and 7 we demonstrate that for a particular data preparation approach the quality of
:::::
78.6%

:::
and

::::::
76.5%

:::
of

:::
the

:::::::
particles

::::
were

:::::
from

:
a
:::::::
bacterial

:::::::
sample.

::::::::::
Conversely

::
in

::::
2008

:::::
using

:::
3σ

:::
and

:::
in

::::
2014

:::::
using

:::
9σ,

::::::
65.4%

:::
and

::::::
68.4%

::
of

:::
the

::::::::
particles

:::::::
analysed

::::
were

::::::::
bacteria.

::
To

:::::::::
investigate

::::
the

:::::::::
possibility

::
of
::

a
:::::::::::

relationship
:::::::
between

:::
the

::::::::::
proportion

::
of

::::
the

::::
data

:::::
which

:::
is

::::::::
contained

:::
in

:::
the

::::::::
category

::::::::
containing

:::
the

::::::
largest

:::::::
number

::
of

:::::::
particles

::::
and

:::
the

:::::::
tendency

:::
of

:::
the

:::
CH

:::::
index

::
to

::::::::
conclude

:::
that

:::::
there

:::
are

:
2
:::::::
clusters

:::
we

::::::::
produced10

:::
data

:::::::::
simulated

::::
from

:
3
:::::::
normal

::::::::::
distributions

::
in

:
3
:::::::::::
dimensions.

::::
Each

::
of

:::
the

:::::::
clusters

:::
was

:::::::
centred

::::::
around [

:
0,

::
0,

::
0]

:
, [

::
5,

:
5,
::
5],

:
[
:::
10,

:::
10,

::
10]

:::
and

:::
the

::::::::::
co-variance

::::::
matrix

::::
was

::
set

:::
to

::::
σI3,

:::::
where

:::
I3 :

is
:

the clustering results could vary substantially across the different

data sets. Therefore, it is important that in future analysis one should demonstrate that a particular data preparation performs

consistently across a variety of different types of samples
:
3

::
by

::
3

::::::
identity

::::::
matrix.

::::
The

:::::
value

::
of

:
σ
::::
was

:::::
varied

:::::
from

:::
1-3

::
to

:::::::
produce

:
a
:::::
range

::
of

::::::::
variation

::
in

:::
the

:::::::::::
simulations.

:::
We

::::::
elected

:::
to

:::::::
produce

:::
this

:::::::::
simulated

::::
data

::::
from

:::::::
normal

::::::::::
distributions

::::::
rather

::::
than

:::
the15

::::::::
laboratory

::::
data

::::::::
collected

::
to

::::::
remove

::::
any

:::::::
potential

:::::::::::
confounding

:::::
issues

::::
such

::
as

:::
the

:::::::::
fluorescent

::::::::
threshold

:::::
used.

::::
The

:::::::::
proportion

::
of

::
the

::::
data

::::
that

::::
was

::::::::
contained

::
in

:::
the

::::::::
dominant

::::::
cluster

::::
was

:::::
varied

:::::
from

::::
50%

::
to

:::::
99%.

::::
Each

:::::::::
simulation

::::
was

:::::::
repeated

::::
100

:::::
times

::
to

::::::
provide

::
an

:::::::::
indication

::
of

:::
the

:::::::::
frequency

::
the

::::
CH

:::::
index

:::::
attains

::
a
::::::::
maximum

:::
for

:::
the

::
3

::::::
cluster

:::::::
solution.

::
In

:::::
Figure

:::
10

:::
we

:::
see

::::
that

::::
there

::
is

:
a
:::::
point

:::::
where

:::
the

:::::::::
frequency

:::
for

:::::
which

:::
the

::::
CH

:::::
index

:::::
attains

::
a
::::::::
maximum

:::
for

:::
the

:::::::::
clustering

:::::::
contains

:
3
:::::::
clusters

:::::
starts

::
to

::::::::
decrease.

:::
The

:::::::::
proportion

::
of

::::
data

::::::
points

:::
that

:::::
needs

::
to
:::
be

::::::
placed

::
in

:::
the

::::::::
dominant

::::::
cluster

:::::
before

::::
this20

:::::::
decrease

::
in

:::::::::::
performance

::
of

:::
the

:::
CH

:::::
index

::
is

::::
seen

::::::::
decreases

::
as

:::
the

:::::::::
variability

::
in

:::
the

::::
data

::::::::
increases.

::::
This

:::::::
incorrect

::::::::::
conclusion

:::::
when

:::::
using

:::
the

::::
CH

:::::
index

:::::
when

::::::::
analysing

::::
data

:::
for

::::::
which

:
a
:::::

large
:::::::::
proportion

:::
of

::::
data

::
is

::
of

::::
one

::::::::
particular

::::
type

::
is

::::::::::
problematic

:::::
when

::::::::
analysing

::::::::
biological

:::::::
aerosol,

:::::
since

:::
we

::::
may

::::::
expect

:::
the

:::::::
quantity

::
of

:::::::
bacteria

::
to

::
be

:::
an

:::::
order

::
of

:::::::::
magnitude

::::::
greater

::::
than

::::
than

:::
the

::::::
fungal

::::::
spores,

::::
and

:::
for

:::
the

:::::::
quantity

::
of

::::::
fungal

::::::
spores

::
to

:::
be

::
an

:::::
order

::
of

::::::::::
magnitude

::::::
greater

:::
than

:::
the

::::::
pollen

:::::::::::::::::::::::::::::
(Després et al., 2012; Gabey, 2011).

:::
In

:::::
future

::::::
studies

::
it

::::
may

:::::::
therefore

:::
be

::::::::
necessary

::
to

:::::::
explore

:::
the

:::
use

::
of

:::::
other25

::::::
indices

::
for

:::::::::::
determining

:::
the

::::::
number

::
of

:::::::
clusters.

:

4.1.3
::::::::::
Breakdown

::
of

:::
the

::::::::::
hierarchies

::
To

:::::
more

::::::
clearly

:::::::::
understand

::::
how

::::
data

:::
has

:::::
been

::::::::
clustered

:::::
using

::::
HAC

:::
we

:::::
have

::::::::
presented

:::::::::::
dendrograms

:::
for

:::
the

:::::::::
laboratory

::::
data

:::::::
collected

::
in

:::::
2008 and performance is repeatable.

::::
2014

::
in

::::::
Figures

:::
11

::::
and

::
12

::::::::
alongside

::::
heat

:::::
maps

::
of

:::
the

::::::::
matching

::::::::
matrices

::
to

::::::
indicate

:::
the

::::::
cluster

:::::::::::
composition

::
of

:::
the

::
10

::::::
cluster

:::::::
solution

::::::
broken

:::::
down

:::
by

::::::
sample.

::::
The

::::::::
hierarchy

::::::::
produced

:::::
using

:::
the

:::::::
strategy30

::::::::
suggested

::
in

:::::::::::::::::::
Crawford et al. (2015)

:
is

::::::::
presented

::
at

:::
the

:::
top

::
of

::::
each

::::
plot

:::::::
whereas

:
a
:::::::::::
modification

::
of

:::
this

:::::::
strategy

:::::
using

:
a
::::::::
threshold

::
of

:
9
:::::::
standard

:::::::::
deviations

::
as

:::::::::
suggested

::
by

:::::::::::::::::
Savage et al. (2017)

:
is
:::::::::
presented

::
at

::
the

:::::::
bottom.

:

::::
Each

::::
row

::
of

:::
the

::::
heat

:::::
map

::::::::::
corresponds

::
to

::
a
::::::::
particular

::::::
cluster

::::
and

::::
each

:::::::
column

:::::::::::
corresponds

::
to

::
a

::::::::
particular

:::::::
sample.

::::
The

:::::::
intensity

::
of

::::
each

::::
box

::::::::::
corresponds

::
to

:::
the

::::::
quantity

:::
of

:::::::
particles

:::::
placed

::::
into

:
a
::::::::
particular

::::::
cluster

:::::
from

:
a
::::::::
particular

:::::::
sample.

::::::::
Bacterial,
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Figure 10.
::::::::
Percentage

::
of

:::::::::
simulations

:::
for

:::::
which

:::
the

:::
CH

:::::
index

::::::
attained

:
a
::::::::

maximum
:::

for
:::

the
::::::::
clustering

::::::::
containing

::
3
::::::
clusters

::::::
against

:::
the

::::::::
proportion

::
of

::
the

::::
data

::::
which

::
is
:::::
placed

::::
into

:
a
:::::::
dominant

::::::
cluster.

::::::
fungal,

:::::
pollen

::::
and

::::::::::::
non-biological

:::::::
samples

:::
are

:::::::
grouped

:::::::
together

::
in

::::
blue,

::::::
green,

::::::
orange

:::
and

:::::
black

:::::::::::
respectively.

:::::::
Different

::::::
scales

::
are

:::::
used

::
for

:::
the

::::::::
different

::::::
groups

::
to

::::::
prevent

:::
the

::::::::
dominant

:::::
class

::::
from

::::::::
obscuring

::::::::::
information

::
in

:::
the

:::::
other

::::::
classes.

:

::
In

:::::
2008,

:::
the

:::::::
majority

::
of

:::
the

::::::::
Bacteria

:
is
::::::
placed

::::
into

:
a
::::::
single

::::::
cluster

::
for

:::::
both

::
3σ

::::
and

:::
9σ.

::::
The

:::::
fungal

::::
and

:
a
:::::::
number

::
of

::::::
pollen

:::::::
particles

:::
are

:::::
placed

::::
into

:::
the

::::
same

::::
two

::::::
clusters

:::::
when

:::::
using

:::
3σ

:::
and

::::
into

:::
one

::::::
cluster

:::::
when

::::
using

::::
9σ.

:::
The

::::::::::::
non-biological

::::::::
samples,

::::::::
consisting

::::::::
primarily

::
of

:::::
grass

::::::
smoke,

:::
are

::::::::
clustered

:::::
mostly

::::
with

::::::::
bacterial

:::::::
samples,

:::::::
possibly

::::
due

::
to

::::
their

::::::
similar

::::
size.

::
In

::::::::
addition,5

::::
there

:::
two

:::::::
clusters

:::::
when

:::::
using

::
3σ

::::
and

::::
three

:::::::
clusters

:::::
when

:::::
using

::
9σ

:::::::::
containing

::::::::
primarily

::::::
pollen.

:

::
In

:::::
2014,

:::::
pollen

:::
has

:::::
been

:::::
placed

::::::::
primarily

::::
into

:
1
::
or
::
2
:::::::
clusters.

:::::
Some

::
of

:::
the

::::::
fungal

:::::::
samples

::::
have

::::
been

::::::
placed

::::
into

:
a
::::::::
singleton

::::::
cluster.

:::
For

::::
both

:::::::::
thresholds

:::
the

:::::::
bacteria

::
is

:::::::
grouped

::::
with

:::::
some

::
of

:::
the

::::::
fungal

:::::::
samples.

::::
The

::::::::::::
non-biological

::::::::
material

:::
has

::::::
almost

::::::
entirely

::::
been

::::::::
removed

::
by

:::
the

::::::::
threshold

::::
and

:::
the

::::::::
remaining

:::::::
material

:::
has

:::::
been

::::::
divided

::::::
among

:
a
:::::::
number

::
of

:::
the

:::::::
clusters.

:

::
In

::::
both

:::::
2008

:::
and

::::::
2014,

:::::
some

::
of

:::
the

:::::::
material

::::
has

::::
been

::::::::::
segregated

:::
into

:::::::
clusters

::::::::::
containing

::::::::
primarily

:::
one

::::::
broad

::::
class

:::
of10

::::::::
biological

:::::::
aerosol.

::::::::
However,

::
a
:::::::
number

::
of

::::::
fungal

:::::::
particles

:::
has

:::::
been

:::::::
grouped

::::
with

::::::
pollen

:::::::
samples

::
in
:::

the
:::::

case
::
of

:::::
2008

:::
and

::
a

::::::
number

::
of

:::
the

::::::
fungal

:::::::
samples

::::
have

::::
been

:::::::
grouped

::::
with

:::::::
bacterial

::::::::
particles

::
in

:::::
2014.

:::
The

:::::
more

::::::::
successful

::::::::::
segregation

::
of

::::::
pollen

::
in

::::
2014

::::
may

::
be

::::
due

::
to

:::
the

:::::
much

:::::
larger

:::
size

:::::
range

:::
for

:::
the

:::::
paper

::::::::
mulberry

:::::::
sample,

:::::::
whereas

::
in

::::
2008

:::
the

::::::
fungal

:::
and

::::::
pollen

:::::::
material

:::
may

:::
be

:::::::
grouped

::::
due

::
to

::::::::
presence

::
of

:
a
::::::

larger
:::::::
number

::
of

::::::
pollen

:::::::::
fragments.

::
It

::
is

:::::::
therefore

:::::::::
important

:::::
when

::::::::::
interpreting

::::::
results

::::
from

::
an

:::::::
ambient

::::::::
campaign

::::
that

::
it

:
is
:::::::
possible

::::
that

:::::::
clusters

::::
may

::::::
contain

:::::
more

:::
than

::::
one

:::::
broad

::::::::
biological

:::::
class.

:
15

::::
Also

::::
note

::::
that

:::
this

:::::::::
potentially

::::::::::
undesirable

::::::::
grouping

::
of

::::::::
material

::::
from

::::
two

:::::::
different

:::::::
classes

:::
has

::::::::
occurred

::::
prior

::
to
:::

the
:::::

final

:::::
stages

::
of

:::
the

::::::::
algorithm

::::
and

:::::::
therefore

::::
will

::
be

::::::::
apparent

::
in

:::
the

::::
final

:::::::
solution

:::::::::
regardless

::
of

:::
the

::::::
number

::
of

:::::::
clusters

:::::::::
concluded,

::::
and

:::::
cannot

:::
be

:::::::
rectified

::
by

:::::
using

:
a
::::::::
different

::::::::
validation

::::::
index.

4.2 DBSCAN

One of the main difficulties of using DBSCAN is selecting the minimum number of points to form a neighbourhood and the20

radius of the neighbourhood (Khan et al., 2014). For 9σ and 3σ
:::
and

:::
9σ using z-score

::::::::::::
standardisation, taking logs of the size and
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Figure 11.
::::::::::
Dendrogram

:::::::
truncated

::
at

::
10

::::::
clusters

::::
(left)

:::
for

::::::::
laboratory

:::
data

:::::::
collected

::
in
::::
2008

::::::::
alongside

:::
heat

::::
map

::
of

:::::::
matching

::::::
matrix

:::::
(right)

:::::::
indicating

::::::
cluster

:::::::::
composition

::
by

::::
each

::::::
sample

::::::::
segregated

:::
by

::::::
bacteria,

::::::
fungal,

:::::
pollen

:::
and

:::::::::::
non-biological

::
in
:::::

blue,
:::::
green,

:::::
orange

:::
and

:::::
black

:::::::::
respectively.

:::::::
Separate

::::
scales

:::
are

::::
used

::
for

::::
each

:::::
broad

::::
class

:
to
::::::
prevent

:::::::
dominant

::::
class

::::::::
obscuring

::::
detail

::
in
:::
the

::::
other

::::::
classes.

:::::::::
Hierarchies

::
for

:::
3σ

:::
(top)

::::
and

::
9σ

:::::::
(bottom)

::
are

::::::::
presented.

Figure 12.
:::::::::
Dendrogram

::::::::
trunctated

::
at

::
10

::::::
clusters

::::
(left)

:::
for

::::::::
laboratory

::::
data

:::::::
collected

:
in
:::::

2014
:::::::
alongside

::::
heat

:::
map

::
of

:::::::
matching

::::::
matrix

:::::
(right)

:::::::
indicating

::::::
cluster

:::::::::
composition

:::
by

:::
each

::::::
sample

::::::::
segregated

:::
by

:::::::
bacteria,

:::::
fungal,

:::::
pollen

::::
and

:::::::::::
non-biological

::
in

::::
blue,

::::
green

::::::
orange

:::
and

:::::
black

:::::::::
respectively.

:::::::
Separate

::::
scales

:::
are

::::
used

::
for

::::
each

:::::
broad

:::
class

::
to
::::::
prevent

:::
the

:::::::
dominant

::::
class

:::::::
obscuring

:::::
detail

::
in

::
the

:::::
other

:::::
classes.

:::::::::
Hierarchies

:::
for

::
3σ

:::
and

:::
9σ

::::::
(bottom)

:::
are

::::::::
presented.

asymmetry factor and removing particles smaller than 0.8 microns we repeat the DBSCAN algorithm for a variety of ε (neigh-

bourhood radii) and minimum number of points values. The range of values of ε we test is 0.1,0.2, · · · ,1.0. The range of mini-

mum number of points is set using the following range relative to the number of particles collected 0.1%,0.2%, · · · ,1.0%,2.0%, · · · ,10.0%.
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Table 6. Matching matrix for the best case scenario when using the current data preparation strategy with 9σ on the data collected in 2014

bacteria fungal spores pollen non-biological

CL1 4 80 13 5

CL2 85 4 550 3

CL3 1835 168 70 15

Table 7. Matching matrix for the worst case scenario when using the current data preparation strategy with 9σ on the data collected in 2008

bacteria fungal spores pollen non-biological

CL1 547 69 298 0

CL2 6373 991 221 304

We found wide variety of performance across the different parameters. Often high accuracy could be obtained when using

a high value of the minimum number of points but this resulted in removing a substantial portion of the data. In Figure 13 we

filter our results using a range of thresholds for the maximum number of points that can be left unclassified (5%,10%, · · ·60%)

and plot the corresponding best performance under this filter. In all the data sets there was a point of diminishing returns where

no further benefit could be attained by removing any more of the data. In the case of the PSL data, this point happened after5

removing around 5% of the particles. For the laboratory data sets between 25 and 40% of the data was left unclassified before

a peak in performance was attained. Nonetheless, we note in the case of the laboratory data collected in 2014 and using a 9σ

fluorescent threshold, we can attain performance similar to that which we attain for the PSL data.

In order to investigate further a choice of ε and the minimum number of points which would maximise performance in terms

of the adjusted rand score we plot the adjusted rand score for each test across all of the data sets. In Figure 14 we see that10

there is a large window of different values for which a higher value of the adjusted rand score can be achieved on the PSLs.

Contrary to this, in 2008 when using 9σ there is a very narrow window for which higher values of the adjusted rand score

could be attained. It can also be seen that as ε increases the number of points required to create a cluster needs to be increased

to compensate.

Overall our results indicate setting ε= 0.3 and ε= 0.4 when using 3σ and 9σ respectively. Best
:::
The

:::
best

:
results can then be15

obtained by setting the number of points between 0.4% and 0.7% of the data when using an ε of 0.3 and 0.7% and 1.0% when

using an ε of 0.4. However, future research will be required to demonstrate these conclusions are applicable when studying

ambient data.

We provide matching matrices for the worst and best case scenarios in Tables 8 and 9. We see that in the best case scenario,

leaving a decent proportion of data left unclassified we are able to produce three distinct clusters containing predominantly20

one broad class of biological aerosol. In the worst case scenario we manage only to distinguish between the bacteria from the

fungal spores combined with the pollen.
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Figure 13. Adjusted rand score using different thresholds of percentage of points we allow to be left in the analysis for DBSCAN.
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Figure 14. Adjusted rand score for DBSCAN, over a range different values of ε and minimum number of points required to form a neighbor-

hood. The minimum number of points is expressed relative to the total number of points. The columns correspond to 3 and 9σ respectively.

The rows correspond to the PSL, 2008 and 2014 data respectively.

In the worst case scenario i.e. using 3σ, on the 2008 data we fail to remove a sizable
:::::::
sizeable fraction of the non-biological

particles, which was also the case when using HAC, however we would have expected that the algorithm would leave the

particles unclassified. There is some argument that this worst case scenario could be circumvented by simply using the 9σ

threshold instead. But further research needs to be conducted on the handling of non-biological material that appears fluorescent

in the instrument.5

4.3 Gradient Boosting

We conducted a similar analysis varying data preparation approaches as in Section 4.1. We found data preparation to have a very

small impact upon performance when using Gradient Boosting as long as some kind of fluorescence threshold is applied where
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Table 8. Matching matrix for the best case scenario when using DBSCAN with 9σ, ε= 0.4 and a minimum number of points of 0.7% on

2014 data.

bacteria fungal spores pollen non-biological

Unclassified 329 169 134 16

CL1 0 0 490 0

CL2 12 80 4 0

CL3 1583 3 5 7

Table 9. Matching matrix for the worst case scenario when using DBSCAN with 3σ, ε= 0.3 and a minimum number of points of 0.4% on

2008 data

bacteria fungal spores pollen non-biological

Unclassified 5858 1893 636 752

CL1 15025 15 44 2616

CL2 80 4655 393 0

a high value of the adjusted rand score was obtained regardless of whether we took logs, what standardization
::::::::::::
standardisation

was used or the size threshold imposed.

Figure 15 shows the performance using 3σ and 9σ using z-score, taking logs and applying a size threshold of 0.8 microns.

High performance was attained across both laboratory generated aerosol data sets and for the PSLs. As we did in the previous

sections we provide matching matrices of the worst-case scenario and best case scenario when using Gradient Boosting
:::::::
gradient5

:::::::
boosting using the current data preparation in Tables 10 and 11. In the best case scenario we provide a very good classification

with very small errors (AR=0.919). The algorithm does a poor job with the remaining non-biological material but there are

only 13 non biological particles left for this data set, so the algorithm has very little to train on, but these few particles have

very little impact on the quality of the result.
::::::
0.933).

In the worst case scenario a similar performance is achieved (AR = 0.877
:::::
0.882). Nonetheless, a few particles are incorrectly10

classified within the fungal spore and pollen classes. The classification for the bacteria is still very strong and most of the

remaining non-biological particles are correctly classified.
:::
The

::::::::::::
non-biological

:::::::
samples

::::
have

:::::
been

:::::::
removed

:::::
from

:::
this

::::
data

:::
set

::::
prior

::
to

:::::::
gradient

::::::::
boosting

:::::
being

:::::::
applied

:::::
when

:::::
using

::
a
:::::::::
fluorescent

::::::::
threshold

:::
of

:::::
either

:::
3σ

:::
or

:::
9σ.

:::
We

:::::
elect

::
to

:::::::
remove

:::::
these

:::::::
particles

::::
since

:::
too

::::
few

::
of

:::
the

::::::::::::
non-biological

:::::::
samples

::::
that

::::::
exceed

:::::
either

::::::::
threshold

::
to

:::::::
produce

:
a
:::::
viable

:::::::
training

:::::
class.

:

4.4
:::::::
K-means15

24



Figure 15. Performance of Gradient Boosting for the different data sets when using 3σ and 9σ.

Table 10. Matching matrix for the best case scenario when using Gradient Boosting. This is when using 9σ on 2014 data.

bacteria fungal spores pollen non-biological

bacteria 1908
::::
1911 8 18 10

::
19

fungal spores 6
:
7
:

216
:::
219 31 7

:
29

pollen 6 23
::
25 584 5

::
595

:

non-biological 4 5 0 1 height

::::::
Similar

::
to

:::
the

:::::::
findings

::::::::
presented

::
in

::::::::::::::::
Ruske et al. (2017),

::::::::
k-means

:::::::::
performed

:::::
poorly

::::
and

:::::
hence

:::
the

::::::
results

:::
are

::::::
omitted

:::::
from

:::
the

::::
main

::::
text.

::::
The

:::::
results

:::
are

::::::::
available

::
in

:::
the

:::::::::
repository

::::::::
published

::::::::
alongside

:::
the

:::::::::
manuscript

::::
(see

:::
the

::::::::
code/data

::::::::::
availability

::::::
section

::
for

::::::
further

:::::::
details).

:

5 Conclusions

We evaluated a variety of different methods that could be used for classification of biological aerosol. Gradient Boosting offered5

by far the best performance consistently across
:::
the different data preparation strategies and the different data sets tested. That

being said it is unclear at this point how this will translate to ambient data and whether or not the training data currently

collected will be sufficient to outline the variety of environments that could potentially be studied.

Should there not be sufficient training data available we will have to use an unsupervised approach
::::
may

:::
be

:::::::
required. In

this case, a possible alternative to Hierarchical Agglomerative Clustering is found
::::
HAC

::
is
::::::::
provided. In the best case scenario10

DBSCAN, despite leaving a decent proportion of the data unclassified, was able to produce three distinct clusters containing

predominantly one biological class each.
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Table 11. Matching matrix for the worst case scenario when using Gradient Boosting. This is when using 9σ on 2008 data.

bacteria fungal spores pollen non-biological

bacteria 6852 89
::
85 79

::
76

:
7
:
8
:

fungalspores 51
::
56 892

:::
898 148

:::
147

:
3
:
2
:

pollen 9
:
8 75

::
72 288

:::
293

:
1
:
0
:

non-biological 8 4 4
:
5
:

293
:
3
: :::

294

To the best of our knowledge this is the first manuscript using DBSCAN to classify biological aerosol using the WIBS. So

we will need to continue to evaluate the performance of this algorithm in the context of the ambient setting. In particular, we

have provided details of what we believe to be sensible selections of epsilon and the minimum number of points on the basic of

the laboratory data collected. However, it is unclear at this point how effective these selections will be when analysing ambient

data.5

It is clear that Hierarchical Agglomerative Clustering certainly has it drawbacks. When applied the laboratory generated

aerosol tested, we found that performance
::
of

:::::
HAC

:
was in general much lower than what could be achieved for the PSLs

:::
was

::::::::
achieved

:::::::::
previously

:::::
using

:::
the

::::
PSLs

:::::::::::::::::::
(Crawford et al., 2015). Performance was heavily dependent on the data preparation

strategy used
:
, and often results could vary substantially between different strategies and data sets. ,

:::::::::
potentially

::::
due

::
to

:::::::::
differences

::
in

::
the

:::::::::::
fluorescence

::::::::::::
measurements

:::::
across

:::
the

::::
two

::::
data

::::
sets.

:
A
::::::::
potential

::::
issue

::::
with

:::
the

::::
CH

:::::
index

:
is
::::::::::
highlighted,

::::::::
whereby

:::
we

:::
see10

:
a
::::::
failure

::
of

:::
the

:::::
index

::
to

:::::::::
determine

:::
the

::::::
correct

:::::::
number

::
of

:::::::
clusters

::
as

:::
the

::::
size

::
of
::::

the
::::::::
dominant

::::
class

::::
and

:::::::
variation

:::
in

:::
the

::::
data

::::::::
increases.

:::::
Some

::
of

:::
the

:::::
pollen

:::::::
samples

::::
were

::::::::
clustered

::::
with

:::
the

::::::
fungal

::::::
samples

:::::
when

::::::::
analysing

:::
the

::::
data

::::
from

:::::
2008.

::
A

:::::::
number

::
of

::
the

::::::
pollen

:::::::
particles

::::
may

:::
be

:::::::::
fragmented

::::::
which

::::
may

::::::
explain

::::
why

::::
this

:::::::
grouping

::::
may

::::::
occur.

::::::::
Similarly

::::
grass

::::::
smoke

::::
was

:::::::
grouped

::::
with

:::
the

:::::::
bacterial

::::::::
samples,

:::::::::
potentially

::::
due

::
to

::::
their

::::::
similar

:::::
size. Caution will therefore be required when applying the

::::
HAC

algorithm to ambient data,
::::

and
::
it

::::
must

:::
be

:::::
noted

::
in

::::::::
particular

::::
that

:::::::
material

::::
from

::::
two

:::::::
different

:::::::
classes

::::
may

::
be

::::::
placed

::::
into

:::
the15

::::
same

::::::
cluster

::::
and

:::
that

:::
the

::::
CH

:::::
index

::::
may

:::::::
indicate

::
an

::::::::
incorrect

:::::::
number

::
of

:::::::
clusters

::
if

:::
the

::::
data

::::::::
collected

:::::::
contains

::
a
:::::::::
significant

:::::::
quantity

::
of

:::
one

::::::::
particular

::::
type

::
of

:::::::
particle.

In the future, more laboratory generated aerosol particles will need to be collected to continue to evaluate the performance of

the algorithms which we use. In addition, even when Gradient Boosting was used we failed to classify the some of the pollen

and fungal spores
::::
spore

:::::::
samples analysed. It is

:::::::
therefore possible that higher spectral instruments

::::
such

::
as

:::
the

::::::
spectral

::::::::
intensity20

::::::::
bioaerosol

::::::
sensor

:::::::::::::::
(Nasir et al., 2018)

:
, will be required to provide a more accurate classification.

Code and data availability. Part of the code used produce the above manuscript is part of an ongoing development of a software suite for

analysis of various UV-LIF instruments, are available at https://github.com/simonruske/UVLIF upon publication. Other code not currently

26

https://github.com/simonruske/UVLIF


included within the software package i.e. code files which are used to produce the plots and figures specific to the current manuscript are

available at https://github.com/simonruske/AMT-2018-126.

The data used is available upon request by contacting the lead author.

27

https://github.com/simonruske/AMT-2018-126


References

Breiman, L.: Bagging predictors, Machine learning, 24, 123–140, 1996.

Breiman, L.: Random forests, Machine learning, 45, 5–32, 2001.
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Appendix A:
::::::::::
Comparison

:::
of

:::::::
particle

:::
size

:::::
with

:::::
other

::::::
studies

::
To

:::::::::::
contextualise

:::
the

:::::::
samples

::::::::
collected

::
in

::
the

:::::::
current

::::
study

:::
we

::::::::
examined

:::
the

::::::::
literature

::
to

:::
find

::::::
similar

::::::
studies

:::::
using

:::
the

::::::
WIBS

::
as25

:::
well

:::
as

::::
other

::::::
studies

:::::
using

::::::::::
microscopy.

:::
In

:::
the

:::
case

:::
of

::::
most

::
of

:::
the

:::::::
samples

:::
we

::::
were

::::
able

::
to
::::
find

:
a
:::::
paper

:::
on

:::
the

::::
same

:::
or

::::::
similar

::::::
species

::
of

::::::
particle

::::::
which

:::
are

::::::::
presented

::
in

:::::
Table

:::
A1.

:

Appendix B:
::::
ABC

::::::
counts

:
/
::::::::
Average

:::::::
particle

::::
sizes

::
To

:::
aid

::
in
::::::::::

comparing
:::
the

::::
data

::::::::
presented

::::
with

:::::
other

:::::::
studies,

:::
we

::::
have

:::::::::
presented

::::::
Tables

:::
B1

:::
and

:::
B2

::::::
which

:::
are

::::
very

::::::
similar

:::
to

::
the

:::::
table

::
in

:::
the

::::::::::
appendices

::
of

:::::::::::::::::::
Hernandez et al. (2016)

:
.
::
A,

::
B
::::

and
::
C

:::
are

::::
used

::
to

::::::
denote

::::::::
particles

:::::
which

::::::
exceed

:::
the

::::::::::
fluorescent30

:::::::
threshold

:::
in

::::::::
FL1_280,

::::::::
FL2_280,

::::::::
FL2_370

:::::::::::
respectively.

:::
For

::::::::
example

::
A

::
is

::::
used

::
to

::::::
denote

:
a
:::::::
particle

::::
that

:::
was

::::
only

::::::::::
fluorescent

::
in

:::
the

::::::::
FL1_280

:::::::
channel

:::::
only.

::::::::::::
Combinations

::::
such

::
as

:::::
AB,

:::
AC,

::::
BC

::::
and

::::
ABC

::::
are

::::
used

::
to
:::::::

denote
:::::::
particles

::::::
which

::::::
exceed

::
a

30
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:::::::::
fluorescent

::::::::
threshold

::
in

:::::
more

::::
than

:::
one

:::::::
channel.

::::
For

:::::::
example,

::::
AB

::
is

::::
used

::
to

::::::
denote

:
a
:::::::
particle

:::
that

::::::::
exceeded

:::
the

::::::::::
fluorescent

::
in

::::
both

:::
the

::::::::
FL1_280

::::
and

::::::::
FL2_280

::::::::
channels.

:::
The

:::::
same

::::::::::
information

:::
but

:::::
using

:
a
:::
9σ

::::::::
threshold

::::::
instead

::
is

::::::::
presented

::
in

:::::
Table

:::
B3.

:

Appendix C:
::::::::
Summary

:::
of

:::::::
average

:::::::::
properties

::
of

:::
the

::::::::
different

::::
data

::::
sets

::
In

:::
the

::::::::
following

::::::
section

:::
we

:::::::::
summarise

:::::
mean

:::
and

::::::::
standard

::::::::
deviations

:::
in

::::
each

::
of

:::
the

:::
five

::::::::::::
measurements

::
in
:::::
each

::
of

:::
the

:::::::
samples5

:::::::
collected

:::
in

::::
2008

::::
and

:::::
2014.

::::
The

:::::::::
properties

::::::::
presented

::
in

::::::
Tables

::::
C1,

:::
C2,

:::
C3

::::
and

:::
C4

:::
are

:::::
after

:
a
::::
size

::::::::
threshold

:::
of

::::::
0.8µm

::
is

:::::::
imposed

:::
and

::
a

:::::::::
fluorescent

::::::::
threshold

::
of

:::::
either

:::
3σ

::
or

:::
9σ

:::
has

:::::
been

:::::::
applied.

:::::
These

::::::::
summary

:::::::
statistics

:::::::::
presented

:::
are

::::
prior

::
to

::::
any

::::::::::::::::
log-transformations

::
or

::::
data

::::::::::::
standardisation

::::
has

::::
been

:::::::
applied.
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Table A1.
:::::

Average
:::::::

particle
::::
sizes

:::
for

:::
the

::::::
current

:::::
study

:::::::
compared

::::
with

:::::
other

::::::
studies.

::::
The

::::
sizes

::::::::
presented

::::
here

:::
are

::::::
collated

:::::
from

:::
the

:::::::
following

:::::
studies

:
[
:
1]

:::::::::::::::
Healy et al. (2012a),

:
[
:
2]

:::::::::::::::
Savage et al. (2017), [

:
3]

:::::::::::::::::
Hernandez et al. (2016),

:
[4]

:::::::::::
Pierucci (1978),

:
[
:
5]

:::::::::::::::
Carrera et al. (2007)

,
:

[
:
6]

::::::::::::::::::::
Crotzer and Levetin (1996),

:
[
:
7]

::::::::::::::
Geiser et al. (2000),

:
[
:
8]

:::::::::::::::
Pinnick et al. (1995),

:
[
:
9]

::::::::::::::::
Fumanal et al. (2007),

:
[
:

10]
::::::::::
Mäkelä (1996)

:
,
:
[
::
11]

:::::::::::::
Kang et al. (2007)

:
, [

:::
2008]

::
& [

:::
2014]

:::
the

:::::
current

:::::
study.

::::::
Sample

::::::::::
Measurement

:::
type

: :::
Size

::::
(µm)

: :::::::
Reference

::::
Paper

:::::::
mulberry

: :::::
WIBS4

:::::::
low-gain

::::::::
13.6± 6.2 [

:
1]

:::::
WIBS3

: :::::::::
7.18± 4.74

:
[
::::
2008]

:::::
WIBS3

: :::::::::
3.41± 1.43

:
[
::::
2008]

:::::
WIBS3

: ::::::::::
11.27± 1.74 [

::::
2014]

:::::::::
Miscroscopy

: :::
13.8

:
[
::
11]

:::::::
Ragweed

:::::
pollen

:::::
WIBS4

:::::::
low-gain

::::::::
24.5± 7.6 [

:
1]

:::::
WIBS3

: :::::::::
3.51± 1.38

:
[
::::
2008]

:::::
WIBS3

: :::::::::
4.70± 1.71

:
[
::::
2008]

::::::::
Microscopy

: ::::::::::
13.02± 0.12

:
-
::::::::::
14.86± 0.16

:
[
:
9]

::::
Birch

:::::
pollen

: :::::
WIBS4

:::::::
low-gain

::::::::
19.0± 9.2 [

:
1]

:::::
Betula

::::
lenta,

::::
nigra

::
&
:::::::::
populifolia

:::::
WIBS4

: :::::::
2.5± 4.2

:
[
:
3]

::::
Birch

:::::
pollen

: :::::
WIBS3

: :::::::::
3.98± 1.59

:
[
::::
2008]

:::::
Betula

:::::::
(various)

::::::::
Microscopy

: :::::::::::::::::::::
17.31± 0.08− 24.36± 1.59

:
[
::
10]

:::::
White

:::::
poplar

:::::::
WIBS4A

: ::::::::
18.7± 1.9 [

:
2]

:::::
White

:::::
poplar

:::::::
fragments

: :::::::
WIBS4A

: :::::::
7.4± 4.0

:
[
:
2]

:::::
Aspen

:::::
pollen

:::::
WIBS3

: :::::::::
3.72± 2.49

:
[
::::
2014]

:::::
Poplar

:::::
pollen

:::::
WIBS3

: :::::::::
3.63± 2.39

:
[
::::
2014]

:::::::
Bermuda

::::
grass

::::
smut

::::::
WIBS4

:::::::
high-gain

: :::::::
4.7± 2.2

:
[
:
1]

:::::
WIBS3

: :::::::::
3.57± 1.16

:
[
::::
2008]

::::::::
Microscopy

: :::::::
6.7× 6.5

:
[
:
6]

::::::
Johnson

::::
grass

::::
smut

: ::::::
WIBS4

:::::::
high-gain

: :::::::
8.9± 1.5

:
[
:
1]

:::::
WIBS3

: :::::::::
3.47± 1.00

:
[
::::
2008]

:::::
WIBS3

: :::::::::
3.35± 0.78

:
[
::::
2008]

::::::::
Microscopy

: :::::::::
13.9× 12.6

:
[
:
6]

::::::
Puffball

:::::
spores

::::::::
Microscopy

: ::::::::
3.5± 0.24 [

:
7]

:::::
WIBS3

: :::::::::
2.50± 0.85

:
[
::::
2008]

:::::
WIBS3

: :::::::::
2.45± 1.16

:
[
::::
2008]

:::::
WIBS3

: :::::::::
3.39± 1.76

:
[
::::
2008]

::::::::::
Fluorescence

::::::
particle

:::::
counter

: ::
2-4 [

:
8]

::::::
Bacillus

:::::::::
atrophaeus

:::::
spores

:::::::
WIBS4A

: :::::::
2.2± 0.4

:
[
:
2]

:::::
WIBS3

: :::::::::
1.00± 0.40

:
-
:::::::::
1.60± 0.78

:
[
::::
2008,

::::
2014]

::::::::
Microscopy

: :::::::::
1.22± 0.12

::::::
(length)

:

:::::::::
0.65± 0.05

::::::::
(diameter)

:
[
:
5]

::::::
Bacillus

:::::::::
atrophaeus

:::::::
vegetative

::::
cells

:::::
WIBS3

: :::::::::
1.06± 0.68

:
-
:::::::::
1.60± 0.78

:
[
::::
2008]

::
E.

:::
coli

:::::::
WIBS4A

: :::::::
1.2± 0.3

:
[
:
2]

:::::
WIBS4

: :::::::
0.9± 0.4

:
[
:
3]

:::::
WIBS3

: :::::::::
0.89± 0.23

:
-
:::::::::
1.48± 0.79

:
[
::::
2008,

::::
2014]

::::::::
Microscopy

: :::::::::
1.67− 3.08

::::::
(length)

:

:::::::::
0.69− 0.84

::::::::
(diameter)

:
[
:
4]
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Table B1.
::

For
:::
the

:::
data

:::::::
collected

::
in

::::
2008,

:
a
:::::::
summary

::
of

:::
size

:::
and

:::::::::
fluorescent

::::::::::
measurements

:::
for

:::
each

::::::
sample

::
to

::::::
include:

::
the

::::::
number

::
of

:::::::
particles

:
in
:::

the
::::::
sample

:::::
(total),

::::::
average

::::::::
equivalent

::::::
optical

:::::::
diameter

::::::
(EOD),

::::::
standard

:::::::
deviation

:::
of

::
the

::::
size

:::
(σ),

:::
the

::::::
number

::
of

:::::
points

:::
that

:::::::
exceeded

::
a

::::::::
fluorescent

:::::::
threshold

::
of

:
3
:::::::
standard

:::::::
deviations

:::::
above

:::
the

::::::
average

::::
forced

::::::
trigger

::::::::::
measurement

:::::::
(n > 3σ),

:::
and

::::
ABC

:::::
counts

:::::
using

:
a
::
3σ

::::::::
threshold.

:
n
: ::::

EOD
:
σ
: ::::::

n > 3σ
:
A
: :

B
: :::

AB
:
C
: :::

AC
:::
BC

::::
ABC

Bacteria

::::::
Bacillus

:::::::::
atrophaeus

::::::::
(unwashed)

: ::::
5778

::
1.4

: ::
0.5

: ::::
1015

:::
322

:::
200

::
74

:::
113

::
48

::
90

:::
168

:::::
—"—

::::::::
(unwashed,

::::::
diluted)

: ::::
1525

::
1.1

: ::
0.7

: ::
82

::
65

:
6
: :

3
: :

4
: :

0
: :

3
: :

1
:

:::::
—"—

:::::::
(washed)

::::
4694

::
1.6

: ::
0.8

: ::::
1246

:::
728

:::
107

:::
191

::
18

::
29

:
5
: :::

168

:::::
—"—

::::::
(washed,

::::::
diluted)

: ::::
1786

::
1.5

: ::
0.8

: :::
280

:::
183

::
21

::
30

:
9
: ::

10
::
12

::
15

:::::
—"—

:::::::
vegetative

::::
cells

:::::::::
(unwashed)

::::
6142

::
1.1

: ::
0.4

: ::::
5546

:::
409

:::
693

:::
771

::
75

::
79

:::
287

::::
3232

:::::
—"—

:::::::
vegetative

::::
cells

:::::::::
(unwashed,

::::::
diluted)

::::
2192

:
1
: ::

0.2
: ::::

1739
:::
484

:::
279

:::
326

::
30

::
26

::
67

:::
527

:::::
—"—

:::::::
vegetative

::::
cells

:::::::
(washed)

::::
6002

::
1.3

: ::
0.6

: ::::
1961

::::
1797

:
3
: :::

139
:
0
: :

1
: :

1
: ::

20

:::::
—"—

:::::::
vegetative

::::
cells

:::::::
(washed,

::::::
diluted)

::::
2827

::
1.1

: ::
0.2

: ::::
2218

::::
2178

:
3
: ::

36
:
0
: :

0
: :

1
: :

0
:

::
E.

:::
coli

:::::::::
(unwashed)

::::
4956

::
1.2

: ::
0.5

: ::::
4097

:::
366

:::
578

:::
174

:::
179

::
69

:::
868

::::
1863

:::::
—"—

::::::::
(unwashed,

::::::
diluted)

: ::::
2508

:
1
: ::

0.2
: ::::

1778
:::
751

:::
309

::
82

::
99

::
27

:::
263

:::
247

:::::
—"—

:::::::
(washed)

::::
5669

::
1.5

: ::
0.8

: ::::
2627

::::
2508

:
1
: ::

99
:
0
: :

0
: :

0
: ::

19

:::::
—"—

::::::
(washed,

::::::
diluted)

: ::::
2104

::
0.9

: ::
0.2

: ::::
1390

::::
1383

:
0
: :

5
: :

0
: :

0
: :

2
: :

0
:

Fungal

:::::::
Bermuda

::::
grass

::::
smut

::::
5220

::
3.6

: ::
1.2

: ::::
2681

::::
1446

:
7
: ::

34
:::
271

:::
495

::
81

:::
347

::::::
Johnson

::::
grass

::::
smut

:
I
: ::::

2157
::
3.5

: :
1
: ::::

1211
::
76

:
3
: :

3
: :::

796
:::
128

::
92

:::
113

::::::
Johnson

::::
grass

::::
smut

::
II

::::
5091

::
3.3

: ::
0.8

: ::::
2675

:::
217

:
8
: :

1
: ::::

1939
:::
270

:::
132

:::
108

Pollen

::::
Birch

:::::
pollen

: :::
164

:
4
: ::

1.6
: :::

112
::
16

:
1
: :

0
: ::

29
:
7
: :

8
: ::

51

::::
Paper

:::::::
mulberry

:::::
pollen

:
I
: :::

295
::
7.2

: ::
4.7

: :::
237

::
16

:
2
: :

9
: :

2
: :

0
: ::

21
:::
187

::::
Paper

:::::::
mulberry

:::::
pollen

::
II

:::
735

::
3.4

: ::
1.4

: :::
405

:::
159

:
2
: :

9
: ::

72
::
59

::
37

::
67

:::::::
Ragweed

:::::
pollen

:
I

:::
241

::
3.5

: ::
1.4

: :::
127

::
24

:
1
: :

0
: ::

57
::
12

:
7
: ::

26

:::::::
Ragweed

:::::
pollen

:
II
: :::

328
::
4.7

: ::
1.7

: :::
209

::
21

:
0
: :

1
: ::

41
::
16

::
15

:::
115

Non-biological

:::::
Diesel

:::::
smoke

::::
7900

::
1.1

: ::
0.4

: ::
16

:
3
: :

4
: :

0
: :

5
: :

0
: :

0
: :

4
:

::::
Grass

:::::
smoke

:
I
: ::::

9212
::
1.1

: ::
0.4

: ::::
2976

:
1
: :::

234
:
0
: ::::

2004
:
0
: :::

737
:
0
:

::::
Grass

:::::
smoke

::
II
: ::::

5245
::
1.1

: ::
0.4

: :::
900

:
3
: ::

51
:
0
: :::

668
:
0
: :::

176
:
2
:
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Table B2.
::

For
:::
the

:::
data

:::::::
collected

::
in

::::
2014,

:
a
:::::::
summary

::
of

:::
size

:::
and

:::::::::
fluorescent

::::::::::
measurements

:::
for

:::
each

::::::
sample

::
to

::::::
include:

::
the

::::::
number

::
of

:::::::
particles

:
in
:::

the
::::::
sample

:::::
(total),

::::::
average

::::::::
equivalent

::::::
optical

:::::::
diameter

::::::
(EOD),

::::::
standard

:::::::
deviation

:::
of

::
the

::::
size

:::
(σ),

:::
the

::::::
number

::
of

:::::
points

:::
that

:::::::
exceeded

::
a

::::::::
fluorescent

:::::::
threshold

::
of

:
3
:::::::
standard

:::::::
deviations

:::::
above

:::
the

::::::
average

::::
forced

::::::
trigger

::::::::::
measurement

:::::::
(n > 3σ),

:::
and

::::
ABC

:::::
counts

:::::
using

:
a
::
3σ

::::::::
threshold.

:
n
: ::::

EOD
:
σ
: ::::::

n > 3σ
:
A
: :

B
: :::

AB
:
C
: :::

AC
:::
BC

::::
ABC

Bacteria

::::::
Bacillus

:::::::::
atrophaeus

:::::::
(washed)

::::
3321

:
1
: ::

0.4
: ::::

2685
::::
2545

:
1
: ::

15
:
1
: ::

81
:
1
: ::

41

::::::
Bacillus

:::::::::
atrophaeus

::::::::
(unwashed)

: ::::
2896

:
1
: ::

0.5
: ::::

2248
::
85

::
15

:
2
: ::::

1166
::
88

:::
350

:::
542

::
E.

:::
coli

:::::::::
(unwashed)

::::
2534

::
1.2

: ::
0.6

: ::::
1640

:::
268

::
10

:
5
: :::

439
:::
239

::
48

:::
631

Fungal

::::::
Puffball

:::::
spores

:
I
: ::::

1739
::
2.5

: ::
0.8

: ::
35

:
3
: :

1
: :

0
: ::

27
:
1
: :

3
: :

0
:

::::::
Puffball

:::::
spores

::
II

:::
553

::
2.5

: ::
1.2

: ::
16

:
2
: :

0
: :

0
: ::

12
:
1
: :

0
: :

1
:

::::::
Puffball

:::::
spores

::
III

: ::::
1627

::
3.4

: ::
1.8

: :::
506

::
79

:
4
: ::

73
:::
168

:
7
: ::

68
:::
107

Pollen

:::::
Aspen

:::::
pollen

:::
398

::
3.7

: ::
2.5

: ::
74

:
5
: :

1
: :

0
: ::

35
:
1
: ::

11
::
21

:::::
Poplar

:::::
pollen

:::
375

::
3.6

: ::
2.4

: :::
104

:
7
: :

0
: :

3
: ::

45
:
4
: ::

21
::
24

::::
Paper

:::::::
mulberry

:::::
pollen

:
I
: :::

565
:::
11.3

: ::
1.7

: :::
543

:
3
: :

0
: :

1
: :

4
: :

0
: ::

35
:::
500

:::::::
Ryegrass

:::::
pollen

::
47

::
3.3

: ::
2.1

: ::
21

:
0
: :

0
: :

0
: :

6
: :

0
: :

7
: :

8
:

Non-biological

::::::
Fullers’

::::
earth

::::
3064

::
3.6

: ::
2.8

: ::
62

::
40

:
1
: :

0
: :

8
: :

4
: :

3
: :

6
:

::::::::
Phosphate

::::::
buffered

:::::
saline

::::
3226

::
1.2

: ::
1.6

: ::
50

::
29

:
7
: :

0
: ::

11
:
1
: :

0
: :

2
:

::::
NaCl

::::
2197

::
1.4

: ::
0.8

: :
6
: :

6
: :

0
: :

0
: :

0
: :

0
: :

0
: :

0
:
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Table B3.
:::::::
Summary

::
of

:::::::
properties

:::
for

::::::
samples

:::::::
collected

::::
from

::::
2008

:::
and

::::
2014

:::::::::
respectively

:::::
using

:
a
::::::::
fluorescent

:::::::
threshold

::
of

:::
9σ.

2008

::::
EOD

:
σ
: ::::::

n > 9σ
:
A
: :

B
: :::

AB
:
C
: :::

AC
:::
BC

::::
ABC

Bacteria

::::::
Bacillus

:::::::::
atrophaeus

::::::::
(unwashed)

: ::
2.2

: ::
0.6

: ::
34

:
9
: :

2
: :

3
: ::

13
:
1
: :

3
: :

3
:

:::::
—"—

::::::::
(unwashed,

::::::
diluted)

: ::
2.7

: ::
1.8

: :
4
: :

1
: :

0
: :

0
: :

0
: :

0
: :

2
: :

1
:

:::::
—"—

:::::::
(washed)

::
2.6

: ::
1.1

: :::
217

:::
182

:
0
: :

9
: :

0
: :

5
: :

0
: ::

21

:::::::::::
—"—(washed,

::::::
diluted)

::
2.6

: :
1
: ::

38
::
28

:
0
: :

1
: :

1
: :

0
: :

6
: :

2
:

:::::
—"—

:::::::
vegetative

::::
cells

:::::::::
(unwashed)

::
1.3

: ::
0.6

: ::::
2051

:::
273

:::
326

:::
132

::
33

::
19

:::
184

::::
1084

:::::
—"—

:::::::
vegetative

::::
cells

:::::::::
(unwashed,

::::::
diluted)

::
1.2

: ::
0.3

: :::
278

:::
121

::
72

::
24

:
2
: :

2
: ::

14
::
43

:::::
—"—

:::::::
vegetative

::::
cells

:::::::
(washed)

::
1.7

: ::
0.9

: :::
581

:::
567

:
0
: ::

13
:
0
: :

0
: :

0
: :

1
:

:::::
—"—

:::::::
vegetative

::::
cells

:::::::
(washed,

::::::
diluted)

::
1.3

: ::
0.3

: :::
196

:::
196

:
0
: :

0
: :

0
: :

0
: :

0
: :

0
:

::::
E.coli

::::::::
(unwashed)

: ::
1.5

: ::
0.7

: ::::
1676

:::
343

::
97

::
23

::
92

::
30

:::
334

:::
757

:::::
—"—

::::::::
(unwashed,

::::::
diluted)

: ::
1.1

: ::
0.2

: :::
413

:::
333

::
23

:
4
: ::

12
:
4
: ::

17
::
20

:::::
—"—

:::::::
(washed)

::
1.7

: ::
0.9

: ::::
1516

::::
1506

:
2
: :

7
: :

0
: :

0
: :

0
: :

1
:

:::::
—"—

::::::
(washed,

::::::
diluted)

: ::
1.1

: ::
0.3

: :::
349

:::
348

:
0
: :

0
: :

0
: :

0
: :

1
: :

0
:

Fungal

:::::::
Bermuda

::::
grass

::::
smut

:
4
: ::

1.5
: :::

423
:::
118

::
10

::
14

:::
133

::
19

::
37

::
92

::::::
Johnson

::::
grass

::::
smut

: ::
4.2

: ::
1.3

: :::
259

:
0
: :

0
: :

1
: :::

171
:
0
: ::

29
::
58

::::::
Johnson

::::
grass

::::
smut

::
II

::
3.8

: :
1
: :::

378
:
2
: :

2
: :

0
: :::

340
:
0
: ::

29
:
5
:

Pollen

::::
Birch

:::::
pollen

: ::
4.5

: ::
1.8

: ::
57

:
7
: :

0
: :

0
: :

9
: :

0
: :

2
: ::

39

::::
Paper

:::::::
mulberry

: ::
7.8

: ::
4.6

: :::
212

::
22

:
0
: :

7
: :

3
: :

0
: ::

30
:::
150

::::
Paper

:::::::
mulberry

::
II

::
3.9

: ::
2.1

: :::
107

::
17

:
2
: :

2
: ::

21
:
0
: ::

39
::
26

:::::::
Ragweed

:::::
pollen

::
4.7

: ::
1.4

: ::
34

:
0
: :

0
: :

0
: ::

11
:
0
: :

2
: ::

21

:::::::
Ragweed

:::::
pollen

:
II
: ::

5.5
: ::

1.5
: :::

117
:
2
: :

0
: :

0
: :

9
: :

0
: ::

10
::
96

Non-biological

:::::
Diesel

:::::
smoke

::
1.1

: ::
0.2

: :
6
: :

0
: :

3
: :

1
: :

1
: :

0
: :

0
: :

1
:

::::
Grass

:::::
smoke

: :
2
: ::

0.5
: :::

236
:
0
: :

1
: :

0
: :::

218
:
0
: ::

17
:
0
:

::::
Grass

:::::
smoke

: :
2
: ::

0.4
: ::

68
:
0
: :

0
: :

0
: ::

64
:
0
: :

4
: :

0
:

2014

Bacteria

::::::
Bacillus

:::::::::
atrophaeus

::::::
(washed)

: ::
1.3

: ::
0.5

: :::
735

:::
721

:
0
: :

0
: :

0
: ::

12
:
1
: :

1
:

::::::
Bacillus

:::::::::
atrophaeus

::::::::
(unwashed)

: ::
1.5

: ::
0.5

: :::
679

:
2
: :

0
: :

0
: :::

262
:
7
: :::

264
:::
144

::::
E.coli

:::::::::
(unwashed)

::
1.6

: ::
0.7

: :::
669

::
55

:
0
: :

0
: :::

209
:::
135

::
13

:::
257

Fungal

::::::
Puffball

:
I

::
2.4

: ::
0.7

: :
1
: :

0
: :

0
: :

0
: :

0
: :

0
: :

0
: :

1
:

::::::
Puffball

::
II

:
2
: :

0
: :

3
: :

0
: :

0
: :

0
: :

2
: :

0
: :

1
: :

0
:

::::::
Puffball

::
III

: ::
4.2

: ::
1.8

: :::
249

::
98

:
0
: :

4
: ::

46
:
1
: ::

18
::
82

Pollen

:::::
Aspen

:::::
pollen

:
5
: ::

3.2
: ::

31
:
1
: :

0
: :

0
: ::

10
:
2
: :

7
: ::

11

:::::
Poplar

:::::
pollen

::
4.4

: ::
2.9

: ::
50

:
3
: :

0
: :

0
: ::

14
:
1
: ::

19
::
13

::::
Paper

:::::::
mulberry

: :::
11.4

: ::
1.4

: :::
537

:
3
: :

0
: :

0
: :

7
: :

0
: :::

285
:::
242

:::::::
Ryegrass

::
3.6

: ::
2.4

: ::
15

:
0
: :

0
: :

0
: :

6
: :

0
: :

3
: :

6
:

Non-biological

::::::
Fullers’

::::
earth

::
4.5

: ::
3.2

: ::
20

:
9
: :

0
: :

0
: :

4
: :

1
: :

3
: :

3
:

::::::::
Phosphate

::::::
buffered

:::::
saline

::
4.6

: ::
5.1

: :
3
: :

2
: :

0
: :

0
: :

0
: :

0
: :

0
: :

1
:

::::
NaCl

:::
N/A

: :::
N/A

: :
0
: :

0
: :

0
: :

0
: :

0
: :

0
: :

0
: :

0
:
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Table C1.
:::::::
Summary

::
of

::::::
particle

::::::::::
measurements

:::
for

:::
the

::::
2008

:::
data

::
set

:::::
using

:
a
::::::::
fluorescent

::::::::
threshold

::
of

::
3σ.

::::::
Sample

::::::
n > 3σ

:::::::
FL1_280

:::::::
FL2_280

:::::::
FL2_370

:::
Size

: :::
AF

::::::
Bacillus

:::::::::
atrophaeus

::::
(unw)

: :::
952

::::
mean

: :::
94.6

: :::
63.9

: :::
65.4

: ::
1.4

: ::
7.7

:

::
S.

::
D.

:::
47.3

: :::
36.1

: :::
44.6

: ::
0.4

: ::
3.8

:

:::::
—"—

::::
(unw,

:::
dil)

::
52

::::
mean

: ::::
110.3

: :::
51.8

: ::
43

::
1.3

: ::
8.1

:

::
S.

::
D.

:::
84.8

: :::
79.7

: :::
76.5

: ::
0.8

: ::
6.1

:

:::::
—"—

::
(w)

: ::::
1171

::::
mean

: ::::
164.2

: :::
60.6

: :::
48.5

: ::
1.7

: ::
9.3

:

::
S.

::
D.

::::
136.4

: :::
58.5

: :::
55.8

: ::
0.8

: ::
4.9

:

:::::
—"—

::
(w,

:::
dil)

: :::
241

::::
mean

: ::::
140.7

: :::
50.3

: :::
46.1

: ::
1.7

: ::
9.4

:

::
S.

::
D.

:::
97.9

: :::
57.1

: :::
58.4

: ::
0.8

: ::
5.9

:

:::::
—"—

:::::::
vegetative

::::
cells

:::::
(unw)

::::
4779

::::
mean

: ::::
239.3

: ::::
221.2

: :::
192

::
1.1

: ::
4.7

:

::
S.

::
D.

::::
287.5

: ::::
293.3

: ::::
284.9

: ::
0.4

: :
2
:

:::::
—"—

::::
—"—

:::::
(unw,

:::
dil)

::::
1488

::::
mean

: ::::
140.5

: :::
94.5

: :::
68.8

: :
1
: ::

6.1
:

::
S.

::
D.

:::
71.6

: :::
70.1

: :::
60.4

: ::
0.2

: ::
3.8

:

:::::
—"—

::::
—"—

:::
(w)

: ::::
1884

::::
mean

: ::::
214.5

: :::
29.8

: :::
12.4

: ::
1.4

: ::
6.4

:

::
S.

::
D.

::::
156.7

: :::
44.9

: :::
33.6

: ::
0.6

: ::
3.4

:

:::::
—"—

:::::::
—"—(w,

:::
dil)

::::
2064

::::
mean

: ::::
153.8

: ::
19

::
7.4

: ::
1.1

: ::
11

::
S.

::
D.

:::
43.2

: :::
19.3

: :::
17.7

: ::
0.2

: ::
5.8

:

:
E
::::
coli.

:::::
(unw)

::::
3684

::::
mean

: ::::
222.5

: ::::
240.4

: ::::
247.7

: ::
1.2

: ::
4.7

:

::
S.

::
D.

::::
301.6

: ::::
351.1

: ::::
375.5

: ::
0.5

: :
2
:

:::::
—"—

::::
(unw,

:::
dil)

::::
1448

::::
mean

: ::::
139.3

: ::
70

:::
63.9

: :
1
: ::

5.5
:

::
S.

::
D.

:::
99.2

: :::
56.1

: :::
59.6

: ::
0.2

: ::
2.5

:

:::::
—"—

::
(w)

: ::::
2365

::::
mean

: ::::
351.4

: :::
12.5

: ::
0.8

: ::
1.6

: ::
7.5

:

::
S.

::
D.

::::
317.8

: :::
30.7

: :::
22.5

: ::
0.8

: ::
4.7

:

:::::
—"—

::
(w,

:::
dil)

: :::
835

::::
mean

: ::::
202.6

: :::
10.7

: ::
4.1

: :
1
: ::

6.6
:

::
S.

::
D.

:::
56.3

: :::
20.2

: :::
20.8

: ::
0.2

: ::
2.8

:

:::::::
Bermuda

::::
grass

::::
2681

::::
mean

: ::::
138.1

: :::
46.5

: :::
97.9

: ::
3.6

: :::
12.6

:

::
S.

::
D.

::::
122.7

: ::::
134.7

: ::::
153.9

: ::
1.2

: ::
6.4

:

::::::
Johnson

::::
grass

:
I
: ::::

1209
::::
mean

: ::::
160.5

: :::
97.4

: ::::
154.9

: ::
3.5

: ::
11

::
S.

::
D.

::::
419.7

: ::::
280.4

: ::::
169.2

: :
1
: :

6
:

::::::
Johnson

::::
grass

::
II

::::
2673

::::
mean

: :::
66.7

: :::
25.7

: ::::
124.4

: ::
3.3

: :::
11.6

:

::
S.

::
D.

:::
28.9

: :::
48.3

: :::
89.4

: ::
0.8

: ::
5.7

:

::::
Birch

:::::
pollen

: :::
111

::::
mean

: :::
662

::::
433.7

: ::::
250.4

: :
4
: ::

8.3
:

::
S.

::
D.

::::
854.8

: ::::
586.9

: :::
280

::
1.6

: ::
6.9

:

::::
Paper

:::::::
mulberry

:
I
: :::

233
::::
mean

: ::::
668.3

: :::::
1228.4

: :::::
1247.9

: ::
7.3

: :::
10.9

:

::
S.

::
D.

:::
583

::::
851.5

: ::::
856.6

: ::
4.7

: ::
7.1

:

::::
Paper

:::::::
mulberry

::
II

:::
397

::::
mean

: ::::
142.8

: ::::
159.6

: ::::
229.2

: ::
3.5

: :::
13.5

:

::
S.

::
D.

::::
188.7

: ::::
412.3

: ::::
443.4

: ::
1.4

: ::
6.5

:

:::::::
Ragweed

:
I

:::
123

::::
mean

: ::::
384.6

: ::::
219.5

: ::::
173.2

: ::
3.6

: ::
10

::
S.

::
D.

::::
698.7

: ::::
447.9

: ::::
211.1

: ::
1.3

: ::
6.5

:

:::::::
Ragweed

::
II

:::
209

::::
mean

: ::::
928.2

: ::::
625.1

: ::::
310.6

: ::
4.7

: ::
7.9

:

::
S.

::
D.

::::
953.9

: ::::
643.9

: ::::
303.1

: ::
1.7

: ::
7.3

:

:::::
Diesel

:::::
smoke

::
11

::::
mean

: ::::
161.1

: ::::
146.5

: :::
78.4

: ::
1.2

: ::
7.8

:

::
S.

::
D.

::::
204.3

: ::::
166.2

: :::
96.3

: ::
0.3

: ::
7.5

:

::::
Grass

:::::
smoke

:
I
: ::::

2542
::::
mean

: ::
9.8

: ::
52

::::
110.9

: ::
1.2

: ::
4.4

:

::
S.

::
D.

:::
18.2

: :::
33.3

: :::
66.9

: ::
0.4

: ::
1.9

:

::::
Grass

:::::
smoke

::
II
: :::

815
::::
mean

: :::
10.9

: :::
44.2

: :::
108

::
1.2

: ::
4.9

:

::
S.

::
D.

:::
19.2

: :::
32.7

: :::
59.2

: ::
0.4

: ::
2.4

:
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Table C2.
:::::::
Summary

::
of

::::::
particle

::::::::::
measurements

:::
for

:::
the

::::
2008

:::
data

::
set

:::::
using

:
a
::::::::
fluorescent

::::::::
threshold

::
of

::
9σ.

::::::
Sample

::::::
n > 9σ

::::::
statistic

:::::::
FL1_280

:::::::
FL2_280

:::::::
FL2_370

:::
Size

: :::
AF

::::::
Bacillus

:::::::::
atrophaeus

::::
(unw)

::
34

::::
mean

: ::::
214.2

: ::::
142.5

: ::::
163.3

: ::
2.2

: :::
10.2

:

::
S.

::
D.

:::
79.3

: :::
60.2

: :::
72.9

: ::
0.6

: ::
5.6

:

:::::
—"—

::::
(unw,

:::
dil)

:
4
: ::::

mean
: ::::

230.8
: ::::

259.2
: ::::

242.5
: ::

2.7
: :::

14.4
:

::
S.

::
D.

::::
243.8

: ::::
162.1

: :::
142

::
1.8

: :::
11.3

:

:::::
—"—

::
(w)

: :::
217

::::
mean

: :::
358

::::
121.6

: ::::
110.1

: ::
2.6

: :::
12.4

:

::
S.

::
D.

::::
218.1

: ::::
105.4

: :::
95.5

: ::
1.1

: ::
6.1

:

:::::
—"—

::
(w,

:::
dil)

: ::
38

::::
mean

: :::
276

:::
128

::::
123.7

: ::
2.6

: :::
14.8

:

::
S.

::
D.

::::
169.6

: :::
97.3

: ::::
101.8

: :
1
: ::

7.9
:

:::::
—"—

:::::::
vegetative

::::
cells

:::::
(unw)

::::
1915

::::
mean

: ::::
423.7

: ::::
400.4

: :::
358

::
1.4

: ::
4.8

:

::
S.

::
D.

:::
384

::::
399.3

: ::::
393.3

: ::
0.6

: ::
2.4

:

:::::
—"—

::::
—"—

:::::
(unw,

:::
dil)

:::
264

::::
mean

: ::::
244.9

: :::
166

::::
123.1

: ::
1.2

: ::
7.5

:

::
S.

::
D.

:::
94.5

: ::::
117.3

: ::::
103.9

: ::
0.3

: ::
4.6

:

:::::
—"—

::::
—"—

:::
(w)

: :::
573

::::
mean

: ::::
347.9

: :::
50.3

: :::
21.4

: ::
1.7

: ::
7.6

:

::
S.

::
D.

::::
230.2

: ::
72

:::
53.9

: ::
0.9

: ::
3.9

:

:::::
—"—

:::::::
—"—(w,

:::
dil)

:::
194

::::
mean

: ::::
247.7

: :::
26.8

: :::
11.1

: ::
1.3

: :::
13.8

:

::
S.

::
D.

:::
32.6

: :::
21.4

: ::
17

::
0.2

: ::
6.8

:

:
E
::::
coli.

:::::
(unw)

::::
1547

::::
mean

: ::::
413.7

: ::::
447.1

: ::::
470.3

: ::
1.5

: ::
4.8

:

::
S.

::
D.

::::
388.8

: ::::
467.3

: ::::
498.4

: ::
0.7

: ::
2.4

:

:::::
—"—

::::
(unw,

:::
dil)

:::
371

::::
mean

: ::::
254.1

: :::
75.4

: :::
68.8

: ::
1.1

: ::
6.6

:

::
S.

::
D.

::::
111.1

: :::
86.8

: :::
92.2

: ::
0.2

: :
3
:

:::::
—"—

::
(w)

: ::::
1461

::::
mean

: ::::
463.6

: :::
18.1

: ::
2.8

: ::
1.8

: ::
8.5

:

::
S.

::
D.

::::
360.6

: :::
34.3

: ::
24

::
0.9

: ::
5.2

:

:::::
—"—

::
(w,

:::
dil)

: :::
302

::::
mean

: :::
260

:::
12.8

: ::
6.4

: ::
1.1

: :
7
:

::
S.

::
D.

::
47

:::
22.5

: :::
24.7

: ::
0.2

: ::
3.2

:

:::::::
Bermuda

::::
grass

:::
423

::::
mean

: ::::
271.7

: ::::
203.8

: ::::
303.7

: :
4
: :::

13.4
:

::
S.

::
D.

::::
262.6

: ::::
285.5

: ::::
303.1

: ::
1.5

: ::
7.3

:

::::::
Johnson

::::
grass

:
I
: :::

259
::::
mean

: ::::
510.2

: ::::
380.2

: ::::
344.8

: ::
4.2

: :
9
:

::
S.

::
D.

::::
814.8

: :::
513

::::
289.3

: ::
1.3

: ::
6.1

:

::::::
Johnson

::::
grass

::
II

:::
378

::::
mean

: :::
77.7

: :::
82.5

: ::::
267.8

: ::
3.8

: :::
12.6

:

::
S.

::
D.

:::
41.1

: :::
96.2

: :::
161

:
1
: :

6
:

::::
Birch

:::::
pollen

: ::
56

::::
mean

: :::::
1229.8

: ::::
828.8

: ::::
406.1

: ::
4.6

: ::
5.4

:

::
S.

::
D.

::::
891.9

: ::::
605.8

: ::::
324.5

: ::
1.7

: ::
5.8

:

::::
Paper

:::::::
mulberry

:
I
: :::

209
::::
mean

: ::::
730.8

: :::::
1363.4

: :::::
1384.5

: ::
7.9

: :::
11.2

:

::
S.

::
D.

::::
583.7

: ::::
794.4

: :::
798

::
4.5

: ::
7.1

:

::::
Paper

:::::::
mulberry

::
II

:::
103

::::
mean

: ::::
258.1

: :::
556

::::
690.7

: :
4
: :::

13.4
:

::
S.

::
D.

::::
340.3

: ::::
663.8

: ::::
682.1

: :
2
: :

7
:

:::::::
Ragweed

:
I

::
34

::::
mean

: ::::
1188

::::
750.4

: ::::
393.1

: ::
4.7

: ::
6.5

:

::
S.

::
D.

::::
933.1

: ::::
577.8

: ::::
299.9

: ::
1.4

: ::
6.5

:

:::::::
Ragweed

::
II

:::
117

::::
mean

: :::::
1590.7

: :::::
1089.8

: ::::
484.3

: ::
5.5

: ::
5.2

:

::
S.

::
D.

::::
791.9

: ::::
499.4

: ::::
307.5

: ::
1.5

: ::
6.7

:

:::::
Diesel

:::::
smoke

:
5
: ::::

mean
: ::::

284.8
: ::::

281.2
: ::::

173.8
: ::

1.2
: ::

4.6
:

::
S.

::
D.

::::
248.8

: ::::
160.7

: :::
58.9

: ::
0.1

: ::
2.9

:

::::
Grass

:::::
smoke

:
I
: :::

231
::::
mean

: :::
10.9

: ::::
106.4

: ::::
262.7

: :
2
: ::

3.3
:

::
S.

::
D.

:::
18.3

: ::
51

::::
127.4

: ::
0.5

: :
2
:

::::
Grass

:::::
smoke

::
II
: ::

68
::::
mean

: ::
8.6

: ::::
102.1

: ::::
260.3

: :
2
: :

4
:

::
S.

::
D.

:::
18.9

: :::
40.5

: ::
93

::
0.4

: ::
3.2

:
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Table C3.
:::::::
Summary

::
of

::::::
particle

::::::::::
measurements

:::
for

:::
the

::::
2014

:::
data

::
set

:::::
using

:
a
::::::::
fluorescent

::::::::
threshold

::
of

::
3σ.

::::::
Sample

::::::
n > 3σ

::::::
statistic

:::::::
FL1_280

:::::::
FL2_280

:::::::
FL2_370

:::
Size

: :::
AF

::::::
Bacillus

:::::::::
atrophaeus

::::::::
(unwashed)

: ::::
1728

::::
mean

: ::::
104.5

: :::
45.5

: :::
26.5

: ::
1.2

: ::
8.4

:

::
S.

::
D.

:::
118

:::
45.9

: :::
61.2

: ::
0.4

: ::
4.3

:

::::::
Bacillus

:::::::::
atrophaeus

:::::::
(washed)

::::
1322

::::
mean

: :::
25.4

: ::::
211.2

: :::
357

::
1.2

: :
5
:

::
S.

::
D.

:::
69.5

: ::::
222.7

: ::::
376.5

: ::
0.5

: ::
2.1

:

::
E.

:::
coli

:::::::::
(unwashed)

::::
1290

::::
mean

: ::::
104.3

: ::::
174.9

: ::::
317.4

: ::
1.3

: ::
6.1

:

::
S.

::
D.

::::
187.3

: ::::
207.1

: ::::
395.6

: ::
0.6

: ::
2.8

:

::::::
Puffball

:
I

:::
504

::::
mean

: ::::
288.2

: ::::
218.1

: ::::
169.3

: ::
3.4

: :::
12.1

:

::
S.

::
D.

::::
524.4

: :::
289

:::
182

::
1.8

: ::
9.8

:

::::::
Puffball

::
II

::
35

::::
mean

: ::::
-19.6

:::
64.4

: ::::
118.4

: ::
2.5

: :::
17.6

:

::
S.

::
D.

:::
17.8

: :::
49.9

: ::::
107.7

: ::
0.8

: ::
8.7

:

::::::
Puffball

::
III

: ::
16

::::
mean

: :::
19.4

: :::
64.2

: ::::
100.2

: ::
2.5

: :::
20.6

:

::
S.

::
D.

::::
165.4

: :::
68.4

: :::
60.3

: ::
1.2

: :::
12.3

:

:::::
Aspen

:::::
pollen

::
74

::::
mean

: ::::
131.3

: :::
301

::::
447.6

: ::
3.7

: :::
17.2

:

::
S.

::
D.

::::
385.8

: ::::
504.4

: ::::
631.4

: ::
2.5

: ::
7.5

:

::::
Paper

:::::::
mulberry

:::::
pollen

: :::
541

::::
mean

: :::
99.9

: :::::
1907.9

: :::::
1924.1

: :::
11.3

: :::
11.8

:

::
S.

::
D.

:::
77.9

: ::::
311.9

: ::::
260.9

: ::
1.6

: ::
5.5

:

:::::
Poplar

:::::
pollen

:::
104

::::
mean

: ::::
163.2

: ::::
338.2

: ::::
496.2

: ::
3.6

: ::
17

::
S.

::
D.

::::
488.6

: ::::
525.4

: ::::
643.3

: ::
2.4

: ::
9.1

:

:::::::
Ryegrass

:::::
pollen

::
21

::::
mean

: ::::
110.7

: ::::
278.7

: ::::
569.3

: ::
3.3

: :::
18.4

:

::
S.

::
D.

:::
340

::::
258.6

: :::
431

::
2.1

: ::
8.6

:

:::::
Fullers

::::
earth

: ::
61

::::
mean

: ::::
180.2

: ::::
114.3

: ::::
148.2

: ::
3.7

: ::
16

::
S.

::
D.

::::
476.2

: ::::
214.5

: ::::
367.8

: ::
2.8

: ::
9.9

:

::::
NaCl

:
3
: ::::

mean
: :::

16.7
: :::

19.7
: :::

14.7
: :

2
: ::

9.1
:

::
S.

::
D.

::
5.4

: :::
24.4

: :::
32.5

: ::
0.7

: ::
5.3

:

::::::::
Phosphate

::::::
buffered

:::::
saline

::
35

::::
mean

: :::
64.2

: ::::
113.9

: :::
89.1

: ::
1.4

: ::
6.2

:

::
S.

::
D.

::::
342.1

: :::
320

::::
324.1

: ::
1.8

: ::
2.7

:
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Table C4.
:::::::
Summary

::
of

::::::
particle

::::::::::
measurements

:::
for

:::
the

::::
2014

:::
data

::
set

:::::
using

:
a
::::::::
fluorescent

::::::::
threshold

::
of

::
9σ.

::::::
Sample

::::::
n > 9σ

::::::
statistic

:::::::
FL1_280

:::::::
FL2_280

:::::::
FL2_370

:::
Size

: :::
AF

::::::
Bacillus

:::::::::
atrophaeus

::::::::
(unwashed)

: :::
684

::::
mean

: :::
195

:::
60.5

: :::
46.2

: ::
1.4

: ::
9.8

:

::
S.

::
D.

::::
144.6

: :::
65.3

: :::
90.3

: ::
0.5

: ::
4.7

:

::::::
Bacillus

:::::::::
atrophaeus

:::::::
(washed)

:::
608

::::
mean

: :::
65.4

: ::::
358.7

: ::::
636.8

: ::
1.6

: ::
4.6

:

::
S.

::
D.

:::
83.6

: ::::
257.9

: ::::
402.1

: ::
0.5

: :
2
:

::
E.

:::
coli

:::::::::
(unwashed)

:::
632

::::
mean

: ::::
199.9

: ::::
284.1

: :::
550

::
1.7

: ::
6.2

:

::
S.

::
D.

::::
229.6

: ::::
251.3

: :::
460

::
0.7

: ::
3.1

:

::::::
Puffball

:
I

:::
248

::::
mean

: ::::
599.7

: ::::
380.6

: ::::
252.3

: ::
4.3

: ::
8.7

:

::
S.

::
D.

:::
606

::::
341.3

: ::::
226.1

: ::
1.8

: ::
8.2

:

::::::
Puffball

::
II

:
3
: ::::

mean
: ::::

-20.7
::::
176.7

: ::::
417.3

: ::
2.4

: :::
19.7

:

::
S.

::
D.

:::
17.4

: ::
76

::::
146.6

: ::
0.7

: :
9
:

::::::
Puffball

::
III

: :
1
: ::::

mean
: :::

654
:::
298

:::
284

:
2
: :::

25.6
:

::
S.

::
D.

:
0
: :

0
: :

0
: :

0
: :

0
:

:::::
Aspen

:::::
pollen

::
31

::::
mean

: :::
338

::::
643.5

: :::
952

:
5
: :::

18.7
:

::
S.

::
D.

::::
529.9

: ::::
635.9

: ::::
716.1

: ::
3.2

: ::
8.6

:

::::
Paper

:::::::
mulberry

:::::
pollen

: :::
537

::::
mean

: :::
101

:::::
1921.8

: :::::
1937.7

: :::
11.4

: :::
11.8

:

::
S.

::
D.

:::
77.2

: ::::
268.5

: ::::
209.1

: ::
1.4

: ::
5.5

:

:::::
Poplar

:::::
pollen

::
50

::::
mean

: ::::
355.9

: ::::
644.5

: ::::
938.8

: ::
4.4

: :::
16.5

:

::
S.

::
D.

::::
651.1

: ::::
626.5

: ::::
694.4

: ::
2.9

: ::
9.8

:

:::::::
Ryegrass

:::::
pollen

::
15

::::
mean

: ::::
168.1

: ::::
361.5

: ::::
753.3

: ::
3.6

: :::
17.8

:

::
S.

::
D.

::::
387.7

: ::::
263.5

: ::::
375.9

: ::
2.4

: ::
9.5

:

:::::
Fullers

::::
earth

: ::
20

::::
mean

: ::::
521.1

: ::::
274.6

: ::::
411.7

: ::
4.5

: :::
15.7

:

::
S.

::
D.

::::
719.7

: ::::
317.2

: ::::
552.1

: ::
3.2

: :::
11.3

:

::::::::
Phosphate

::::::
buffered

:::::
saline

:
3
: ::::

mean
: ::::

748.7
: ::::

725.7
: :::

711
::
4.6

: ::
4.7

:

::
S.

::
D.

::::
918.1

: ::::
878.5

: ::::
888.2

: ::
5.1

: ::
1.6

:
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