1 8 December 2018

3 Dear Dr. Abbatt,

2

Thank you for the opportunity to revise our manuscript for further consideration by Atmospheric

6 Measurement Techniques. The suggestions made by the reviewers were extremely helpful for

7 reworking our manuscript in a manner that, we hope you will agree, has made it a much stronger 8 contribution to the literature. We seriously considered each comment, and in this document we

contribution to the literature. We seriously considered each comment, and in this document v
 attempt to address each comment and suggestion. To address these comments we added

additional data as well as moved material in the Supplemental Information to the main paper. In

addition, we changed the conclusions to a discussion that seems more appropriate and added a

12 brief section describing future work that is needed Below are the original reviewer comments

and suggestions in italics and our responses. Accompanying this letter are three documents: 1)

14 manuscript with edits tracked for easier review, 2) manuscript with all edits incorporated and not 15 tracked, and 3) updated supporting information. Again, thank you for the opportunity to submit

our revised manuscript to AMT and we look forward to further feedback.

18 Sincerely,

- 20 Sarrah M. Dunham-Cheatham, Postdoctoral Scholar
- 21 Mae Sexauer Gustin, Professor

22 Matthieu B. Miller

24 Detailed Response to Reviewers:

2526 Reviewer 1:

27 Evaluation of CEMs for GEM uptake and GOM capture and retention for use in a flow-based

technique is an important step towards obtaining realistic measurements of reactive mercury.
 This study presents data that shows promising results for laboratory air. Of course, further work

30 using an ambient air matrix and other species of GOM is need.

31

19

23

32 *I am concerned there was no mixing volume downstream of the bromide permeation tube. In* 33 *trying to keep line lengths short to minimize wall losses there may not be adequate mixing to*

ensure equal concentrations travel through Line 0 and Line 1. This may bias uptake and capture

35 measurements and may have contributed to the mass balance problems. It may be one of the

causes of the large amount of noise in the pyrolyzed signal shown in Figure 3. If mixing volume
 use was not possible then only running with a single Line should have been considered.

38 use was not possible then only running with a single Line should have been considered.

We performed a control experiment to ensure that both Lines 0 and 1 were conducting
 comparable concentrations of mercury under the experimental conditions. We deployed 2-stage

41 filter packs with cation exchange membranes (CEM) in each line at equal distances from the

42 permeation tube. The membranes were deployed for the same amount of time, in triplicate

deployments, and analyzed to quantify the amount of mercury sorbed to the membranes. The

44 average % deviation between lines was 2.9%, with a maximum deviation of 5.4%. These results 45 indicate to us that, though there may be some difference in the amount of mercury passing

through Lines 0 and 1, the difference is relatively small. These results have been added to the

47 manuscript to help alleviate the concern from readers.

I am also concerned about the poor performance of the pyrolyzer. Inadequate conversion due to 49 residence time and temperature problems is fairly easy to address. It would have been a much 50 better paper if simple tests of increasing the pyrolyzer temperature had been done. Incomplete 51 reduction or varying efficiency may be another cause of the noisey signal in Figure 3. 52 53 Additional experiments were conducted to ensure that the temperature of the pyrolyzer was 54 55 sufficient to convert GOM to GEM. Our results show that, under our experimental conditions, mercury concentrations measured by the downstream Tekran 2537 were not significantly 56 different when the pyrolyzer temperature was 650 C and 800 C. These results have been added to 57 the manuscript supporting information. We agree that the residence time in the pyrolyzer design 58 59 is short, and that improvements to the pyrolyzer are needed. These are foci of ongoing studies. 60 61 Another issue that was not raised in the paper is the effect of back-reactions downstream of the pyrolyzer to reform HgBr2. What is the fate of the bromine? 62 63 These are great questions and certainly warrant investigation. However, answering this question 64 is beyond the scope of the current project and assumptions would be unsupported by the 65 presented data; thus, we have decided to leave this discussion out of the manuscript. 66 67 68 Other Comments: 69 70 Line 43: Not ppt but parts per quadrillion 71 Thank you to the reviewer for catching this error. The correction has been made. 72 73 Line 145: Locating the AC scrubber downstream of the humidifier could cause problems: the 74 carbon's ability to uptake GEM is reduced at higher humidity. Some AC scrubbers contain 75 76 iodine which can be released and migrate with humidity, which can then trap Hg downstream. 77 78 While we recognize this as a potential issue, the scrubber was located downstream of the 79 humidity source to remove any potential contaminant Hg coming from the DIW used in the humidity source. Our results indicate that at absolute humidity concentrations around 5 g m⁻³, the 80 water vapor did not have a significant effect on the permeation system performance. However, in 81 the elevated humidity experiment, it was clear that the water vapor resulted in a large pulse of 82 83 mercury moving through both Lines, and discuss these results in the paper. 84 85

Line 158: Was the dry N2 flow included when calculating the humidity values?

87 No

88

Line 165: The volume of pyrolyzer seems small. What is residence time? Were any tests done to
ensure that reduction was quantitative?

92 The residence time in the pyrolyzer tube is approximately 1.5 seconds. Quartz wool was added to

the pyrolyzer to increase the amount of surface area available to facilitate reactions and

maximize the amount of GOM converted to GEM in the pyrolyzer. We have added this to the

text and commented on the fact this is a pretty efficient method for converting GOM to GEM. In

addition a comment was added that indicated that having an efficient pyrolyzer allows us to 96 better constrain permeation rates. 97 98 99 *Line 327: How did vou estimate line losses?* The estimate of line loss was and is described on lines 321-325 of the manuscript. 100 101 102 Line 330: I can believe that the pyrolyzer was not 100% efficient, but did you try to increase the temperature and look for increased conversion? 103 104 Yes, we performed an experiment to test if more mercury was converted to GEM, as indicated by 105 an increased measured mercury concentration in the downstream Tekran 2537, with increased 106 pyrolyzer temperatures. There was no significant increase in measured mercury concentrations 107 when the pyrolyzer temperature was increased from 650 C (circa the experimental pyrolyzer 108 temperature) to 800 C. When the pyrolyzer was increased to 1,000 C, significantly more mercury 109 was measured; however, the pyrolyzer design could not be safely sustained at an operational 110 temperature of 1,000 C, and thus due to safety concerns the pyrolyzer operating temperature was 111 set to 600 C. Pyrolyzer improvements in this permeation system are ongoing. 112 113 Figure 1: It would be nice to show humidifier in this figure. I am concerned about the lack of 114 mixing volume downstream of the permeation gas TEE. Without adequate mixing there may not 115 be equal concentration of HgBr2 going to Line 0 and Line 1. This may be one of the reasons that 116 there is so much noise of the red trace of Figure 3 and could throw off your mass balance 117 calculations. 118 119 120 The humidifier location was included in the figure caption and we prefer to leave it there rather than add it to this very busy figure. 121 The mixing volume downstream of the permeation tube is small, by design. We tested for 122 123 evenness in mercury concentrations reaching each line (as described in more detail above), and found that the average deviation in mercury concentrations between Lines 0 and 1 was 2.9%. 124 125 SI Figure 1: The gaps between 2537 calibrations is about a month. Why wasn't it done on a 126 regular basis or at the end of each test? 127 128 The system was not operated with an automatic internal calibration cycle to avoid interrupting 129 130 data collection during experiments. Due to the variable timing and duration of experiments, calibrations were performed between experiments, which in some cases resulted in calibrations 131 that were several weeks apart. However, the calibration data presented in Figure S1 indicates that 132 133 the system was stable for the duration of the experiment. 134 135

136 Reviewer 2:

- 137 *Response to Major concerns:*
- 138 *1. In response to the concern that no standard reference material is used during the*
- 139 acid-digestion analysis:
- 140 R2-The reviewers have adequately addressed this concern
- 141
- 142 2. In response to concerns about pyrolyzer efficiency:

R2 – The authors response is inadequate in regard to the pyrolyzer. The authors attest to the 143 pyrolyzer working at 500 C for GOM by referencing other papers, but their own data shows that 144 there is a rather large discrepancy between the Tekran concentrations and the GOM 145 146 concentration in this dataset of which the authors acknowledge. This could be (1) inefficient reduction of all GOM to GEM for subsequent Tekran analysis or (2) some other artefact in the 147 experiments. Using the Tekran was a clever way to QA/QC check the concentrations being 148 149 sorbed to the CEMs. But there was substantial discrepancies in the recoveries. To simply say "the pyrolyzer was inefficient" and then argue in response to my criticism of this by showing 150 references stating that the pyrolyzer should work under at the tested temperatures is inadequate 151 when clearly something was awry in the experiments in terms of these recoveries. The authors 152 153 could have and should have EASILY re-tested the experiments at the pyrolyzer temperatures they 154 themselves suggest. It is my opinion that this simple, additional experimental treatment needs to be included in the study. This relates to point 5 below. 155 156 We performed a test of the pyrolyzer to test the conversion efficiency at increasing temperatures. 157 We have provided more details on this test in the comments above to Reviewer 1. In short, we 158 found that increasing the pyrolyzer temperature to 800 C did not result in a significant increase in 159 conversion of mercury to GEM. We have added the data from this experiment to the manuscript. 160 161 3. In response to concerns over removal of first in-series CEM filter during GEM permeations: 162 R2 - Here I feel the authors have adequately addressed the concern by listing both the 163 proportion of sorbed GEM with and without inclusion of the first filter. It is still my preference 164 165 that the first filters be included and, as the authors state, this is still a very small amount. This would also reduce the length of the manuscript and discussion on this could easily be moved to 166 167 the SI without affecting anything, which would help with the suggestion I make in point 5 below. Nonetheless, one concern that is still yet to be addressed is why is the uptake of GEM on the first 168 filter not linear with increasing GEM concentration? It is exponential. I brought up this concern 169 170 in the previous round of comments and it was ignored. 171 172 There are only five data points, so we feel any assertion about this relationship being linear or exponential is not robust. That being said, the relationship is strongly linear (r2 = 0.98, p =173 0.001). 174 175 4. In response to the concern over unheated Teflon sample tubing length between Line 176 177 1 and Line 0: R2 - Indeed another factor that may be contributing to the poor recovery results and another 178 179 part of the experiments that could have easily been adjusted and retested. Possibly not a big 180 issue as the authors suggest, but I imagine it also could have been adjusted easily. 181 We certainly cannot rule out the possibility that the room temperature lines resulted in line loss 182 and contributed to the decreased recovery. However, we estimate our line loss to be a small 183 contribution to the decreased recovery. 184 185

- 186 5. "The authors agree that more experimentation is both welcome and necessary, and
- 187 *indeed is now ongoing within the scope of an expanded and fully funded NSF research*
- 188 project. However, our original and primary concern within the more narrow scope of this
- 189 *manuscript was with GEM uptake and HgBr2 breakthrough at high loading rates.*
- 190 These questions were of particular importance to a companion manuscript, also currently

191 *submitted to AMT.*"

192 R2 – What the authors are attempting to do here is manuscript quantity over manuscript quality.

- 193 These experiments show useful data, but as I have suggested they appear rushed and too many
- 194 *questions and concerns have been left unanswered and unaddressed, when they could have*
- 195 easily been rectified by simply re-running experiments making slight adjustments to the existing
- 196 conditions. This is THE STUDY addressing "GEM uptake and HgBr2 breakthrough at high
- 197 loading rates" it should not need "companion" studies or "follow-up" studies to
- 198 *comprehensively answer the research question it set out to do. That is the role of this manuscript.*
- 199 It is my suggestion that this study be combined with this "companion study" to make a more
- complete paper. There is a lot of over-elaboration in the discussion and many points could easily
 be moved to an SI without loss of information to combine this study with complimentary work.
- 202 This study definitely has merit, but it needs to be more polished.
- We appreciate the comment and have made every attempt to turn this manuscript into a more polished version. We selected not to combine the work in this manuscript with the work of the companion manuscript to avoid an extremely long, cumbersome manuscript that addresses two different, yet complementary, sets of questions. We posit that the two manuscripts are standalone studies and respectfully decline to combine them.
- 210 6. In response to concerns about high CEM filter blanks:
- R2 This concern was brought up here because it has been inadequately addressed in previous
 studies. Take the Huang et al (2017) study for example:
- 213
 214 "The bi-weekly MDLs (336 h) for active systems with cation-exchange and nylon membranes
 215 were 2–68 pg m-3 (mean: 24 pg m-3) and 0.01–14.6 pg m-3 (mean: 2.1 pg m-3), respectively.
 216 Biweekly MDL was calculated from 3 times the standard deviation of bi-weekly blanks. The
 217 MDL was calculated for each period of sampling, due to the fact this can vary based on
- 218 treatment of the membranes, the time samples are prepared for deployment, deployment at the
- *field site, and handling once returned to the laboratory. The membranes may also vary by*
- material lot. All samples were corrected by subtracting the blank for the corresponding 2-week
 period."
- (a) A 2 week mean detection limit concentration of 24 pg m-3 is at or below typical GOM
 concentration even in industrial city sites (examples: Lyman and Gustin 2009; Huang et al.
 2012; Choi et al. 2013).
- The Huang et al. (2017) reference uses the UNRRMAS system and is not comparable to the system in this study. However, the high blanks (above background) can be attributed to the fact that the CEM material passively collects (and accumulates) ambient GOM. Compared to the actively sampled membranes, the "blank" membrane mercury concentrations are low and are used to represent the amount of Hg sorbed to the material due to variables during preparation, deployment, harvesting, processing, etc.. Thus, "blank correcting" the samples is appropriate in these (actively sampled and/or high concentration) systems. See part (c) below for more details.
- 235

226

203

- (b) These are DETECTION limits. Not QUANTIFICATION limits. Attempting to provide high
 certainty, quantifiable results at concentrations at or below detection limits is simply erroneous.
 - 5

239 We agree that reported concentrations should be above MDLs, and that a quantification limit

should be established for each instrument and method in each laboratory. We acknowledge that

these are of often 2 different values, with quantification limits typically higher than MDLs. In the

242 current study, we have only reported values above the quantification limits for the respective

instruments, and any value below the quantification limit is reported as ND or 0, where

appropriate. Additionally direct comparison of the 2 studies is not possible since for one the

blank is per unit of digestate, whereas the other one is Hg per volume of air.

(c) The purpose of averaging method detection and/or quantification limits is to prevent exactly
what the authors are discussing here by smoothing out inconsistency in variable handling of
materials, residual Hg, etc. By subtracting "the blank" (a single blank for a single sampling
period; n=1) is again incorrect and biased.

Presumably the reviewer is addressing the sentences in lines 203-206 of the original submission. 252 A total of 50 blank membranes collected over the course of this study were used to represent an 253 average background mercury concentration that could be attributed to the unused CEM material 254 due to manufacturing, shipping/transport, processing (cutting 47 mm rounds from the sheeted 255 material), material storage, sample deployment, sample harvesting, and sample analysis. The 256 blank membranes were handled in the same manner as the sample membranes, and thus 257 represent the cumulative contribution of mercury to the lot of membranes from the numerous 258 259 potential sources listed above. By subtracting the average blank mercury concentration from the concentration of each sample membrane, we are quantifying the mercury concentration on the 260 sample membrane that resulted from experiment itself. This, of course, is not the ideal method 261 for determining the background concentration of each sample membrane; however, because the 262 263 analytical procedures are destructive, it is impossible to determine the background mercury concentration on each membrane prior to deployment and therefore we have selected to use the 264 method discussed above and in the manuscript. 265 266

(d) This completely contradicts a statement the authors of the current manuscript have
 introduced in this round of reviews in terms of their attempting to caution the use of the term
 RM:

"a broad term that favors basic accuracy of measurement over determination of specific
 compounds"

272 How can this favor "accuracy of measurement" if attempts at field measurements at typical

273 concentrations encountered in the environment are at or below detection (not quantification)

274 limits. There is no confidence in such results. As such these concerns do still need to be

275 *addressed for this sampling method.*

277 The phrase copied above has been removed from the manuscript.

278279 Other comments of this latest version:

280
281 Lines 39-40: This "cautionary" description of RM that was suggested by me previously is

inadequate as described above. This research group attempts to use this same sorbent material

to determine specific compounds of GOM in previous work (Huang et al. 2017). Thus, by making

284 this statement here they are saying the results from this previous work are not accurate

- 285 measurements.
- 286

276

The second half of this sentence was removed. It added confusion to the discussion. 287 288 Line 95: Once again here the authors should include a reference to the Marusczak et al. 2017 289 that describes how adding the zero flushes from GOM analysis to the actual GOM 290 concentrations increases the derived concentrations to agree more closely with alternative 291 measurement techniques and some modelled values. This was paper was specifically mentioned 292 293 in the previous round of comments to be added to the literature review to balance impartiality but this comment was ignored. 294 295 The reference was in fact added during the last revision We have added an additional citation to 296 297 this reference in this revision. 298 Lines 128-131: Can the authors please reference where exactly in the Gustin et al. 2015 paper is 299 300 the mention of PTFE/PFA producing zero sorption of GEM. Personally, I could not find this 301 specific point within the reference. 302 This sentence has been removed. 303 304 Lines 220-222: Yes, the uptake was linear if the first filter was not included. But when the first 305 filter is included it is exponential. Why? As yet this has not been addressed by the authors 306 307 anywhere. 308 309 We believe that this has been addressed, in response to an above comment and in the manuscript. The first filters clearly do not group with the other samples, despite exposure to essentially 310 311 identical GEM concentrations We will not assign the behavior of the first filters to GEM uptake because we cannot be sure they are not capturing some small amount of GOM, despite our best 312 efforts. However, we can be very sure that the subsequent downstream CEM filters are being 313 exposed only to GEM, given that the first filter would scrub over 99% of fugitive GOM. 314 Therefore, we feel the downstream filters to be the best representation of GEM uptake behavior 315 316 on the CEM material. 317 Line 232: Approximate not approximately. 318 319 This correction has been made. 320 321 Lines 236-237: "but it should be noted that the performance of the CEM filters at low 322 concentrations could be slightly different" 323 324 This should be changed to: "but it should be noted that these concentrations are 50-1000x above typical background 325 concentrations and the performance of the CEM filters at low concentrations could be slightly 326 different" as was previously suggested. 327 328 329 We apologize for the oversight. This statement has been adjusted in the manuscript to reflect the 330 reviewer's suggestion. 331 Lines 263-266: Caution needed here. You would never use such a system that has been used in 332 contaminated environments for background work. Even a small memory of the Hg would 333 334 overwhelm the background signal. Lines would need to be discarded or thoroughly acid cleaned

335 336 227	for background work. Please make a cautionary note on this here. A comment was made about this in the previous revisions, but ignored.
338 339 340 241	This comment was not ignored. We have very clearly indicated that this is a laboratory system used exclusively for high concentration permeation work and is never used for background measurements. However, we have added additional elaboration on this point to the manuscript.
342 343 344	Lines 284-285: Again I ask is "photochemistry driven by room fluorescent lighting" a process reported in the literature? If so please reference, if not this is just pure speculation.
345 346	This statement has been adjusted to remove speculation.
347 348 349	Lines 340-343: Again, why speculate when this could have easily been determined by repeating the experiments at higher pyrolyzer temperatures?
350 351 352 353 354 355 356	As mentioned above, the pyrolyzer temperature did not significantly affect the amount of mercury transformed by the pyrolyzer to GEM when the temperature was increased to 800 C. Though higher pyrolyzer temperatures (1,000 C) transformed significantly more mercury, the temperature was unsustainable and unsafe for the pyrolyzer design. Therefore, the lower (safer) pyrolyzer temperature was used with the tradeoff being that not all GOM was converted to GEM and detected.
357	
358	
359	
360	
361	
362	
363	
364	
365	
366	
367	
368	
369	
370	

נת this h

371 Revised Manuscript, Tracked Changes:

0/1	The file frances in the Changest	
372 373	Evaluation of cation exchange membrane performance under exposure to high ${\rm Hg^0}$ and ${\rm HgBr_2}$ concentrations	
374	Matthieu B. Miller ¹ , Sarrah M. Dunham-Cheatham ² , <u>Mae Sexauer Gustin²</u> , Grant C. Edwards ^{1,†}	Deleted: Mae S. Gustin ² ,
375 376 377	¹ Faculty of Science and Engineering, Department of Environmental Sciences, Macquarie University, Sydney, NSW, 2109, Australia	
378 379 380	² Department of Natural Resources and Environmental Science, University of Nevada, Reno NV, 89557, United States	
381 382	[†] Deceased 10 September 2018	
383 384	Correspondence to: Matthieu B. Miller <u>matthieu.b.miller@gmail.com</u> and <u>Mae Sexauer Gustin</u> <u>mgustin@cabnr.unr.edu</u>	Deleted: (Deleted:)
385	Abstract	
386	Reactive mercury (RM), the sum of both gaseous oxidized Hg and particulate bound Hg, is an	
387	important component of the global atmospheric mercury cycle, but measurement currently	
388	depends on un-calibrated operationally_defined methods with large uncertainty and demonstrated	Deleted:
389	interferences and artifacts. Cation exchange membranes (CEM) provide a promising alternative	Dereced:
390	methodology for quantification of RM, but method validation and improvements are ongoing.	
391	For the CEM material to be reliable, uptake of gaseous elemental mercury (GEM) must be	
392	negligible <u>under</u> all conditions, and RM compounds must be captured and retained with high	Deleted: for
393	efficiency. In this study, the performance of CEM material under exposure to high	
394	concentrations of GEM (1.43×10^6 to 1.85×10^6 pg m ⁻³) and reactive gaseous mercury bromide	
395	$(HgBr_2 \sim 5000 \text{ pg m}^{-3})$ was explored, using a custom-built mercury vapor permeation system,	Deleted: , with
396	Quantification of total permeated Hg was measured via pyrolysis at 600 °C and detection using a	Deleted: q
397	Tekran [®] 2537A. Permeation tests were conducted for 24 to 72 hours in clean laboratory air, with	Deleted: accomplished
398	absolute humidity levels ranging from 0.1 to 10 g m ⁻³ water vapor. <u>GEM</u> uptake by the CEM	Deleted: Gaseous elemental mercury
399	material averaged no more than 0.004% of total exposure for all test conditions, that equates to a	Deleted: , which
400	non-detectable GEM artifact for typical ambient air sample concentrations. Recovery of HgBr ₂	

412	on CEM filters was >100 % compared to calculated total permeated HgBr2 based on the	
413	downstream Tekran [®] 2537A data. These results suggest incomplete thermal decomposition due	Deleted: ,
111	to the purply zer or the gold trap in the Tekran 2537, as the CEM demonstrated a high collection	Deleted: ing
414	to the pyrotyzet of the gold trap in the restan 2557, as the CENT demonstrated a high concerton	Deleted: at the
415	efficiency for HgBr2, as indicated by less than 1% downstream breakthrough on average,	Deleted: material collected HgBr ₂ with
416		analyte
417	1 Introduction	
418	Mercury (Hg) is a persistent environmental contaminant with a significant atmospheric life time,	
419	and the form and chemistry of Hg is an important determinant of its biogeochemical cycling.	
420	Mercury in the atmosphere is found in three forms: gaseous elemental mercury (GEM), gaseous	
421	oxidized mercury (GOM), and particulate bound mercury (PBM). PBM and GOM are often	
422	quantified together as reactive mercury (RM = GOM + PBM), Atmospheric GEM, at an average	Deleted: , a broad term that favors basic accuracy of measur over determination of specific compounds
423	global background concentration of 1 to 2 ng m ⁻³ , can be reliably measured with calibrated	
424	analytical instruments (Gustin et al., 2015; Slemr et al., 2015). The measurement of GOM and	
425	PBM requires detection at the part per <u>quadrillion (pg m⁻³) concentrations</u> , and depends <u>currently</u>	Deleted: trillion
426	on un-calibrated operationally defined methods with demonstrated interferences and artifacts,	Deleted: level
427	and concomitant large uncertainty (Marusczak et al., 2017; Jaffe et al. 2014; McClure et al.	
428	2014; Gustin et al. 2013; Lyman et al. 2010). Recent reviews (Zhang et al., 2017; Gustin et al.,	
429	2015) detail the shortcomings, difficulties, developments, and ongoing improvements for	
430	atmospheric RM measurements.	
431	One alternative methodology that may provide improved measurement of ambient RM involves	Deleted: might
432	use of cation exchange membranes (CEM). CEM materials have been used to selectively	
433	measure GOM concentrations in ambient air in previous studies (Huang et al., 2017; Marusczak	
434	et al., 2017; Pierce and Gustin, 2017; Huang and Gustin, 2015a; Huang et al., 2013; Sheu and	
435	Mason, 2001; Ebinghaus et al., 1999; Mason et al., 1997; Bloom et al., 1996). Use of CEM type	Deleted: The u
1		

filters for this purpose was first documented in the literature in a conference presentation (Bloom		
et al., 1996). These were referred to as "ion exchange membranes". These were deployed earlier		Deleted: , although s
in a field-based international comparative study of RM measurement techniques in September,		Deleted: ' Deleted: membranes'
1995 (Ebinghaus et al., 1999). In the comparative study, one participating lab deployed a series	À	Deleted:)
of ion exchange membranes (for GOM) behind a quartz fiber filter (for PBM) at a sample flow		
rate of 9 to 10 Lpm for 24 h measurements (filter nore sizes were not reported). Results for PBM		
and GOM were in similar ranges of 4.5 to 26 ng m ⁻³ and 13 to 23 ng m ⁻³ , respectively.		
(T_{1}) $(T_{$		
(Ebinghaus et al., 1999).		
The ion exchange membrane method was also applied in a 1995-96 field campaign for		
determining the speciation of atmospheric Hg in the Chesapeake Bay area (Mason et al., 1997).		
This study used a 5-stage Teflon filter pack system that included one up front quartz fiber filter		
(0.8 µm pore size) to remove particules, and four downstream Gelman ion exchange membranes		Deleted: particulates
(pore size not reported) to 1) capture GOM, 2) capture GOM breakthrough, 3) serve as		
deployment blanks, and 4) isolate the filter train on the downstream side (Mason et al., 1997).		
Concentrations of GOM were reported to be 5-10 pg m ⁻³ , essentially at or below the method		
detection limit and it was speculated that even this small amount may have been an artifact from		
fine particulate Hg passing through the 0.8 µm quartz fiber filter (Mason et al., 1997). These low		
concentrations are likely due to GOM being degraded on the quartz fiber filter or inefficient		
uptake by the Gelman filter (see Supplemental Information Gustin et al. 2013). The 3rd-in-series		
ion exchange membrane blanks were reported to be not significantly different in Hg		
concentration from unused membrane material, indicating that breakthrough was not a		
phenomenon that extended past the second ion exchange filter position.		
The particulate Hg artifact problem was subsequently elaborated on in a further comparative		
study focusing exclusively on RM measurement techniques (Sheu and Mason, 2001). Specific		
	filters for this purpose was first documented in the literature in a conference presentation (Bloom et al., 1996). These were ferred to as "ion exchange membranes". These were deployed earlier in a field-based international comparative study of RM measurement techniques in September, 1995 (Ebinghaus et al., 1999). In the comparative study, one participating lab deployed a series of ion exchange membranes (for GOM) behind a quartz fiber filter (for PBM) at a sample flow rate of 9 to 10 Lpm, for 24 h measurements (filter pore sizes were not reported). Results for PBM and GOM were in similar ranges of 4.5 to 26 pg m ⁻³ and 13 to 23 pg m ⁻³ , respectively (Ebinghaus et al., 1999). The ion exchange membrane method was also applied in a 1995-96 field campaign for determining the speciation of atmospheric Hg in the Chesapeake Bay area (Mason et al., 1997). This study used a 5-stage Teflon filter pack system that included one up front quartz fiber filter (0.8 µm pore size) to remove particules, and four downstream Gelman ion exchange membranes (pore size not reported) to 1) capture GOM, 2) capture GOM breakthrough, 3) serve as deployment blanks, and 4) isolate the filter train on the downstream side (Mason et al., 1997). Concentrations of GOM were reported to be 5-10 pg m ⁻³ , essentially at or below the method detection limit and it was speculated that even this small amount may have been an artifact from fine particulate Hg passing through the 0.8 µm quartz fiber filter (Mason et al., 1997). These low concentrations are likely due to GOM being degraded on the quartz fiber filter or inefficient uptake by the Gelman filter (see Supplemental Information Gustin et al. 2013). The 3 rd -in-series ion exchange membrane blanks were reported to be not significantly different in Hg concentration from unused membrane material, indicating that breakthrough was not a phenomenon that extended past the second ion exchange filter position. The particulate Hg artifact problem was subsequently elaborated on in a further comparative s	filters for this purpose was first documented in the literature in a conference presentation (Bloom et al., 1996). These werereferred to as "ion exchange membranes". These were deployed earlier in a field-based international comparative study of RM measurement techniques in September, 1995 (Ebinghaus et al., 1999). In the comparative study, one participating lab deployed a series of ion exchange membranes (for GOM) behind a quartz fiber filter (for PBM) at a sample flow rate of 9 to 10 Lpm, for 24 h measurements (filter pore sizes were not reported). Results for PBM and GOM were in similar ranges of 4.5 to 26 pg m ⁻³ and 13 to 23 pg m ⁻³ , respectively (Ebinghaus et al., 1999). The ion exchange membrane method was also applied in a 1995-96 field campaign for determining the speciation of atmospheric Hg in the Chesapeake Bay area (Mason et al., 1997). This study used a 5-stage Teflon filter pack system that included one up front quartz fiber filter (0.8 µm pore size) to remove particules, and four downstream Gelman ion exchange membranes (pore size not reported) to 1) capture GOM, 2) capture GOM breakthrough, 3) serve as deployment blanks, and 4) isolate the filter train on the downstream side (Mason et al., 1997). Concentrations of GOM were reported to be 5-10 pg m ⁻³ , essentially at or below the method detection limit and it was speculated that even this small amount may have been an artifact from fine particulate Hg passing through the 0.8 µm quartz fiber filter (Mason et al., 1997). These low concentrations are likely due to GOM being degraded on the quartz fiber filter or inefficient uptake by the Gelman filter (see Supplemental Information Gustin et al. 2013). The 3 rd -in-series ion exchange membrane blanks were reported to be not significantly different in Hg concentration from unused membrane material, indicating that breakthrough was not a phenomenon that extended past the second ion exchange filter position. The particulate Hg artifact problem was subsequently elaborated on in a further comparative

-(Deleted: , although such membranes (then
(Deleted: '
`(Deleted: membranes'
Ý	Deleted:)

477	concerns included physical particle breakthrough, re-evolution of gas-phase Hg ^{t^{+}} from PBM	
478	captured on the upstream particulate filters passing downstream to the ion exchange membranes,	
479	possible adsorption of GOM compounds to the particulate filters, or a GEM collection artifact on	
480	the ion exchange membranes. None of these concerns were proven or disproven conclusively.	Deleted: (Sheu and Maso
481	Recent CEM based sampling systems typically deploy a pair of CEM disc filters without a pre-	
482	particulate filter, in replicates of 2 to 3 at a flow rate of 1.0 Lpm (Gustin et al., 2016). Each pair	
483	of filters constitutes one sample, the first filter serving as the primary RM collection surface, and	
484	the second filter capturing breakthrough. Filters are deployed for 1 to 2 weeks and then collected	
485	for analysis (Huang et al., 2017). The CEM material consists of a negatively charged	
486	polyethersulfone coated matrix (Pall Corporation), and at least one manufacturing evolution has	
487	occurred (Huang and Gustin, 2015b). Prior CEM material versions (I.C.E. 450) had a pore size	
488	of 0.45 $\mu m,$ while the current CEM material (Mustang $^{\circledast}$ S) has a manufacturer reported pore size	
489	of 0.8 μm.	
490	Previous work with the I.C.E 450 material indicated it does not adsorb significant quantities of	
491	GEM in passive exposures, but selectively uptakes gas-phase Hg ²⁺ species (Lyman et al., 2007).	Deleted: can
492	The CEM material was subsequently adapted for use in active sample flow systems, with the	
493	presumption of continued inertness to GEM and selectivity for GOM (Huang and Gustin, 2015a;	
494	Huang et al., 2013). These studies and others (Lyman et al., 2016) have shown better GOM	
495	recovery on CEM material compared to potassium chloride (KCl) coated denuder methods.	
496	Despite these tests, the transparency of the CEM material to GEM uptake has not been	
497	conclusively demonstrated for active sampling flow rates, nor for high GEM concentrations,	
498	though lLimited data using low concentration manual Hg ⁰ injections through CEM filters	
499	suggests little or no GEM uptake (Lyman et al., 2016). However, even small rates of GEM	

on, 2001)

502	uptake by the CEM material could result in a significant measurement artifact (e.g. a modest 1 to)	
503	2% GEM uptake could easily overwhelm detection of typical ambient GOM concentrations). It	is	
504	therefore important that a GEM artifact be ruled out if the CEM material is to be successfully		- Deleted: of critical importance
505	deployed for ambient RM measurements,		Deleted: such Deleted: , first and foremost under controlled laboratory
			conditions in the absence of confounding variables
506	Additionally, previous studies observed significant amounts of "breakthrough" GOM on the		- Deleted: have
507	secondary filter. The amount of breakthrough is not consistent, neither as a constant mass, with		
508	total Hg ranging from zero to as high as 400 pg (Huang et al., 2017), nor as a percentage of Hg		
509	collected on the primary filter, ranging from 0 to 40% (Pierce and Gustin, 2017). Similar variable	e	
510	breakthrough issues were observed in the earliest field-based CEM measurements as well		
511	(Mason et al., 1997). In contrast to ambient measurements, previous laboratory experiments hav	e	
512	reported only minor (0 to 16%) or no breakthrough Huang and Gustin, 2015a; Huang et al.,		
513	2013). Limited experimental work with flow rates of 1.0 and 16.7 Lpm in ambient air could not		
514	provide an explanation for differing breakthrough rates (Pierce and Gustin, 2017).		
515	In this <u>research</u> we investigate <u>d</u> the potential for GEM uptake on CEM material using a custom-		- Deleted: paper
516	built permeation system. Tests were done to investigate the ability of a pyrolyzer to convert		
517	GEM to GOM. In addition, the ability of the CEM material to capture and retain a		
518	representative GOM compound (mercury(II) bromide, HgBr ₂) and to estimate collection		- Deleted: is discussed with a view
519	efficiency of this <u>compound</u> and explain or rule out possible mechanisms of breakthrough for		" (Deleted: analyte
520	both dry and humid conditions.		
521			
522	2 Methods		
523	2.1 System for sampling configuration	•	Formatted: Font: Bold
			Formatted: Indent: First line: 0.25"

system designed to enable controlled exposures of GEM and GOM to CEM filters (Fig. 1). The 533 534 2537A analyzer was calibrated at the beginning and periodically throughout the study and 535 checked for accuracy by manual Hg⁰ injections (mean recovery $101.1\% \pm 4.3$, n = 10, SI Fig. 1). The entire system was checked for Hg contamination in clean air prior to permeation tests, and 536 periodically during sampling (SI Fig. 1). See SI for additional information on Tekran quality 537 control. All tubing and connections used in the permeation system were polytetrafluoroethylene 538 539 (PTFE), except for the quartz glass pyrolyzer tube and perfluoroalkoxy (PFA) filter holders. Given its reactive nature, some GOM inevitably adsorbs to internal line surfaces, but the capacity 540 of these materials to sorb and retain GOM is not infinite and a steady state of 541 542 adsorption/desorption is expected after 5-6 hours of exposure to a stable concentration (Xiao et al., 1997;Gustin et al., 2013). 543 Sample flow through the system was alternated between two PTFE sample lines (designated 544

A Tekran® 2537A ambient mercury analyzer was integrated with a custom-built permeation

532

- 545 Line 0 and Line 1) using a Tekran[®] Automated Dual Switching (TADS) unit. Sample air was
- 546 constantly pulled through each line at 1.0 Lpm by the internal pump and mass flow controller
- 547 (MFC) in the 2537A, or by an external flush pump (KNF Laboport® N86 KNP) and MFC (Sierra
- 548 Smart-Trak[®] 2). Laboratory air was pulled through a single inlet at the combined rate of 2.0
- 549 Lpm, passing through a $0.2 \ \mu m$ PTFE particulate filter and an activated charcoal scrubber
- $\label{eq:granular} 550 \qquad (granular activated carbon 6-12 mesh, FisherChemical^{\circledast}) \ to \ produce \ clean \ sample \ air.$
- Additionally, for dry air permeations sample air was pulled through a Tekran[®] 1102 Air Dryer
- installed upstream of the particulate filter, and for elevated humidity permeations sample air was
- pulled through the headspace of a distilled water bath (DIW, ≤ 0.2 ng L⁻¹ total Hg) that was
- located upstream from the charcoal scrubber to eliminate the DIW being a potential Hg source to

Deleted: 2

Deleted: Each of these materials is known to be chemically inert, virtually nonporous, and to have a low coefficient of friction and for these reasons, PTFE/PFA plastic and quartz glass are the standard materials employed in almost all Hg sampling systems, as GEM passes over or through these surfaces without loss (Gustin et al., 2015)...

562	the system. Temperature and relative humidity (RH) were measured in-line (Campbell Scientific		
563	CS215) and used for calculation of absolute humidity.		
564	Pure liquid Hg^0 and crystalline $HgBr_2$ (purity > 99.998% Sigma-Aldrich [®]) were used as Hg		
565	vapor sources. The elemental Hg^0 bead was contained in a PTFE vial. Solid HgBr_2 crystals were		
566	packed in thin-walled PTFE heat-shrink tubing (O.D. 0.635 cm) with solid Teflon plugs in both		
567	ends to create a perm tube with an active permeation length of 2 mm (Huang et al., 2013). The		
568	HgBr ₂ permeation tube was also placed in the bottom of a PTFE vial, and the permeation vials		
569	were submerged in a temperature-controlled laboratory chiller (0.06 \pm 0.13 °C, Cole Parmer		
570	Polystat®). A low source temperature was favored because higher temperatures would have		Deleted: both
571	produced unacceptably high concentrations, and there is evidence that at higher temperatures a		Deleted: because
572	small amount of Hg^0 can be evolved from Hg^{2+} compounds (Xiao et al., 1997).		
573	An ultra-high purity nitrogen (N_2) carrier gas was passed through the permeation vials at 0.2		
574	Lpm to carry the target Hg vapor into the main sample line through a PTFE T-junction. The main		
575	sample line was split into Line 0 and Line 1 immediately downstream from the permeation flow		
576	junction, with flow on each line controlled by MFC. Line 0 proceeded directly to the 2537A		
577	without modification during GEM permeations (Fig. 1A), but housed CEM filters during the		
578	HgBr ₂ permeations (Fig. 1B, 1C). Line 1 <u>contained an in-line pyrolyzer unit</u> The goal of the		Deleted: held a
579	pyrolyzer was to convert all Hg to GEM for detection on the Tekran [®] 2537A.		Deleted: composed of a quartz glass tube (O.D. 0.625 cm) packed with a 3 cm section of quartz wool heated to 600 °C using a nichrome wire coil (SI Fig. 3 and discussion).
580	2.2 Pyrolyzer	~	Formatted: Font: Bold
		1	Formatted: Indent: First line: 0.5"
581	The pyrolyzer used in the study (SI Fig. 3) consisted of a 25.4 cm long quartz glass tube of 0.625		
582	cm diameter (custom, URG Corporation). A loosely packed 3 cm section of quartz wool was		
583	lodged in the mid-section of the tube, and this 3 cm section was wrapped with 22 gauge		
584	Nichrome wire (18 loops). The quartz tube was closely contained within 2.5 cm thick quartz		

591	fiber insulation within a 1.6 mm aluminum casing, except for an enclosed air space around the	
592	heated Nichrome coil section. The coil wire was connected to 16 AWG stranded copper wire	
593	with all metal disconnects that were buried within the quartz fiber insulation to reduce thermal	
594	fatigue on the connections. The copper wire insulation was stripped and replaced with higher	
595	temperature heat-shrink insulation where the wiring passed through the pyrolyzer case to the	
596	external power supply. The tip of a 150 mm long K-type thermocouple (Auber WRNK-191) was	
597	inserted through the insulation into the heated air space next to the coil to provide a temperature	
598	feedback for a PID controller (Auber SYL-1512A). Power to the Nichrome coil was supplied by	
599	a 12 VDC transformer through a solid-state relay (Auber MGR-1D4825) switched by the PID	
600	controller.	
601	It was found that the position of the feedback thermocouple in the airspace outside of the heating	Format
602	coil caused a large discrepancy between nominal temperature setpoint and actual temperature	
603	inside the heated section of pyrolyzer tube. In general, much higher temperatures are achieved	
604	inside the coil than outside. To compensate for this, actual temperature at the heated coil section	
605	was verified to 600°C by external IR sensor and internal thermocouple probe.	
606	To test if higher pyrolyzer temperatures converted more GOM to GEM for detection by the	
607	Tekran 2537, the pyrolyzer temperature was increased to 650, 800, and 1,000°C (SI Fig. 4).	
608	Pyrolyzer temperatures were measured by placing a thermocouple inside the pyrolyzer. GOM	
609	concentrations measured as GEM by the Tekran 2537 increased at 600 and 800°C relative to	
610	375°C. There was no significant difference between the amount of mercury concentrations in the	
611	downstream Tekran 2537 when the pyrolyzer was at 600 and 800°C C (<i>t-test</i> , $p = 0.08$),	
612	indicating that the increased pyrolyzer temperature did not convert more GOM to GEM.	
613	However, when the pyrolyzer temperature was increased to 1000 °C, significantly more mercury	
614	was measured by the downstream Tekran 2537 relative to when the pyrolyzer was at 650°C (t-	
1		

formatted: None

615	<i>test</i> , $p = 0.00$), indicating that the higher temperature was more efficient at converting GOM to	
616	GEM; however, the pyrolyzer design could not sustain the 1000 °C temperature and was deemed	
617	unsafe to use in the experimental permeation system. Thus, all experiments were performed with	
618	a pyrolyzer temperature of 600°C.	
619	The residence time in the pyrolyzer tube was approximately 1.5 seconds. Quartz wool was added	Formatted: Space After: 0 pt
620	to increase the amount of surface area available to facilitate reactions and maximize the amount	
621	of GOM converted to GEM in the pyrolyzer. Because of the conversion rate (discussed below),	
622	this is a pretty efficient method for converting GOM to GEM. Having an efficient pyrolyzer	
623	provides us with a means of constraining perm tube permeation rates.	
624	2.3 Sample deployment	Formatted: Font: Bold
625	CEM filters were deployed in 2-stage, 47 mm disc PFA filter holders (Savillex [©]). The primary	Formatted: Indent: First line: 0.5", Space After: 0 pt
626	"A" filter in the 2-stage holder is the first to be exposed to the permeated Hg, with the secondary	
627	"B" filter mounted immediately behind the A filter (A to B distance \sim 3mm) to measure potential	
627 628	"B" filter mounted immediately behind the A filter (A to B distance ~ 3mm) to measure potential breakthrough. For GEM permeations, three 2-stage filter holders were placed in-series on Line 1	
627 628 629	"B" filter mounted immediately behind the A filter (A to B distance ~ 3mm) to measure potential breakthrough. For GEM permeations, three 2-stage filter holders were placed in-series on Line 1 behind the pyrolyzer unit (Fig. 1A), while total Hg coming through the system was measured on	
627 628 629 630	"B" filter mounted immediately behind the A filter (A to B distance ~ 3mm) to measure potential breakthrough. For GEM permeations, three 2-stage filter holders were placed in-series on Line 1 behind the pyrolyzer unit (Fig. 1A), while total Hg coming through the system was measured on Line 0 with no filters in place. This allowed simultaneous exposure of 6 CEM filters in one GEM	
627 628 629 630 631	"B" filter mounted immediately behind the A filter (A to B distance ~ 3mm) to measure potential breakthrough. For GEM permeations, three 2-stage filter holders were placed in-series on Line 1 behind the pyrolyzer unit (Fig. 1A), while total Hg coming through the system was measured on Line 0 with no filters in place. This allowed simultaneous exposure of 6 CEM filters in one GEM sample exposure. The first CEM filter in-line served to scrub any small residual RM passing	
627 628 629 630 631 632	 "B" filter mounted immediately behind the A filter (A to B distance ~ 3mm) to measure potential breakthrough. For GEM permeations, three 2-stage filter holders were placed in-series on Line 1 behind the pyrolyzer unit (Fig. 1A), while total Hg coming through the system was measured on Line 0 with no filters in place. This allowed simultaneous exposure of 6 CEM filters in one GEM sample exposure. The first CEM filter in-line served to scrub any small residual RM passing through the system and pyrolyzer, and these first in-line filters were removed for the calculations 	
627 628 629 630 631 632 633	"B" filter mounted immediately behind the A filter (A to B distance ~ 3mm) to measure potential breakthrough. For GEM permeations, three 2-stage filter holders were placed in-series on Line 1 behind the pyrolyzer unit (Fig. 1A), while total Hg coming through the system was measured on Line 0 with no filters in place. This allowed simultaneous exposure of 6 CEM filters in one GEM sample exposure. The first CEM filter in-line served to scrub any small residual RM passing through the system and pyrolyzer, and these first in-line filters were removed for the calculations of mean GEM uptake rate, (SL 5 and discussion).	Deleted: Fig
627 628 629 630 631 632 633 633	"B" filter mounted immediately behind the A filter (A to B distance ~ 3mm) to measure potential breakthrough. For GEM permeations, three 2-stage filter holders were placed in-series on Line 1 behind the pyrolyzer unit (Fig. 1A), while total Hg coming through the system was measured on Line 0 with no filters in place. This allowed simultaneous exposure of 6 CEM filters in one GEM sample exposure. The first CEM filter in-line served to scrub any small residual RM passing through the system and pyrolyzer, and these first in-line filters were removed for the calculations of mean GEM uptake rate, (SL 5 and discussion).	Deleted: Fig Deleted: 4
627 628 629 630 631 632 633 634	 "B" filter mounted immediately behind the A filter (A to B distance ~ 3mm) to measure potential breakthrough. For GEM permeations, three 2-stage filter holders were placed in-series on Line 1 behind the pyrolyzer unit (Fig. 1A), while total Hg coming through the system was measured on Line 0 with no filters in place. This allowed simultaneous exposure of 6 CEM filters in one GEM sample exposure. The first CEM filter in-line served to scrub any small residual RM passing through the system and pyrolyzer, and these first in-line filters were removed for the calculations of mean GEM uptake rate, (SL 5 and discussion). For determining the potential for GOM breakthrough, two system configurations were used. In the first configuration (Fig. 1B), total Hg concentrations of air that passed through the pyrolyzer 	Deleted: Fig Deleted: 4
627 628 629 630 631 632 633 634 635	 "B" filter mounted immediately behind the A filter (A to B distance ~ 3mm) to measure potential breakthrough. For GEM permeations, three 2-stage filter holders were placed in-series on Line 1 behind the pyrolyzer unit (Fig. 1A), while total Hg coming through the system was measured on Line 0 with no filters in place. This allowed simultaneous exposure of 6 CEM filters in one GEM sample exposure. The first CEM filter in-line served to scrub any small residual RM passing through the system and pyrolyzer, and these first in-line filters were removed for the calculations of mean GEM uptake rate, (SL 5 and discussion). For determining the potential for GOM breakthrough, two system configurations were used. In the first configuration (Fig. 1B), total Hg concentrations of air that passed through the pyrolyzer 	Deleted: Fig Deleted: 4 Deleted: the
627 628 629 630 631 632 633 634 635 636	 "B" filter mounted immediately behind the A filter (A to B distance ~ 3mm) to measure potential breakthrough. For GEM permeations, three 2-stage filter holders were placed in-series on Line 1 behind the pyrolyzer unit (Fig. 1A), while total Hg coming through the system was measured on Line 0 with no filters in place. This allowed simultaneous exposure of 6 CEM filters in one GEM sample exposure. The first CEM filter in-line served to scrub any small residual RM passing through the system and pyrolyzer, and these first in-line filters were removed for the calculations of mean GEM uptake rate, (SL, 5 and discussion). For determining the potential for GOM breakthrough, two system configurations were used. In the first configuration (Fig. 1B), total Hg concentrations of air that passed through the pyrolyzer on Line 1 was measured without any filters, while Line 0 held one 2-stage CEM filter pair for 	Deleted: Fig Deleted: 4 Deleted: the

permeation concentration through Line 1 using the 2537A, and comparison with total Hg loading
on the CEM filters on Line 0.
In the second configuration, replicate filters were concurrently loaded with HgBr₂ by placing 2-

stage CEM filter holders on both Line 0 and Line 1 (upstream of the pyrolyzer, Fig. 1C). In all HgBr₂ exposures, the filter holders were placed as close to the permeation vial as possible, with a total distance from vial to filter surface of approximately 20 cm. Mercury bromide permeation was conducted in dry air and elevated humidity air. The difference between one line being fully open to the HgBr₂ permeation flow (configuration Fig. 1B) and then closed by deployment of the CEM filters (configuration Fig. 1C) enabled a rough determination of the amount of HgBr₂ lineloss within the system.

653 2.4 Analyses of cation exchange membranes

After permeation, CEM filters were collected into clean, sterile polypropylene vials and analyzed 654 for total Hg by digestion in an oxidizing acid solution, reduction to Hg⁰, gold amalgamation, and 655 final quantification by cold vapor atomic fluorescence spectrometry (CVAFS, EPA Method 656 657 1631, Rev. E) using a Tekran[®] 2600 system. The system background Hg signal was determined for every analytical run by analyzing pure reagent solution in the same vials and at the same 658 659 volume as used for actual filter samples. Total Hg standards (5 to 100 ppb) were analyzed before 660 and after each batch of 10 filter samples to check precision and recovery, and the mean recovery for all Hg standards was 97.2 \pm 5.0 % (n = 37). Analysis for total Hg on the CEM filters 661 662 provided for comparison of total Hg filter loading, and verification of in-line results. A to B filter breakthrough was calculated by comparison of total Hg recoveries on the primary and secondary 663 664 CEM filters, using Eq. (1):

665

% Breakthrough = $100 * CEM_{2nd} / (CEM_{1st} + CEM_{2nd})$ (1)

Formatted: Font: Bold Formatted: Font: Bold

Deleted: The background Hg value was used as a system calibration blank and subtracted from all actual samples.

668	Blank CEM filters were collected and analyzed in the same manner with every set of sample	
669	filters deployed on the permeation system, and the mean filter blank value was subtracted from	
670	all total Hg values to calculate the final blank-corrected Hg values used for data analysis. All	
671	data were analyzed in Microsoft® Excel (version 16.12) and RStudio® (version 3.2.2).	
672	3 Results	
673	3.1 Elemental Mercury Uptake on CEM Filters	
674	A controlled experiment was performed to ensure that both Lines 0 and 1 were conducting	Form
675	comparable concentrations of mercury under the experimental conditions. Two-stage filter packs	For
676	were deployed with cation exchange membranes (CEM) in each line at equal distances from the	
c 7 7		_

678 <u>analyzed to quantify the amount of total mercury sorbed to the membranes. The average %</u>

679 deviation between lines was 2.9%, with a maximum deviation of 5.4%. These results indicated

680 that though there may be some difference in the amount of mercury passing through Lines 0 and

681 <u>1, but the difference was relatively small.</u>

Elemental Hg uptake on CEM material was negligible for permeated Hg⁰ vapor concentrations

for ranging from 1.43×10^6 to 1.85×10^6 pg m⁻³ (Fig. 2). High GEM concentrations were employed in

this study under the logic that if no GEM uptake was observed at high concentrations, a similar

- lack of GEM uptake can be expected for lower concentrations.
- 686
- The mean Hg mass on blank CEM filters was 50 ± 20 pg (n = 28). For permeations into dry sample air of 0.5 ± 0.1 g m⁻³ water vapor (WV), total mean Hg⁰ permeation exposures of 2.7×10^{6} pg (24 h) and 7.3×10^{6} pg (72 h) resulted in total (blank-corrected) Hg recoveries on the CEM

Formatted: Font: (Default) Times New Roman, 12 pt Formatted: Normal, No bullets or numbering

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: Font: (Default) Times New Roman, 12 pt Formatted: Font: (Default) Times New Roman, 12 pt

Deleted: all

filters of 100 ± 40 pg (n = 10) and 280 ± 110 pg (n = 5), respectively. These quantities of total
recovered Hg equate to a mean GEM uptake rate on the CEM filters of 0.004 ± 0.002% (0.006 ± 0.006% including first in-line filter).

The first CEM filter in line during the GEM permeations always showed more total Hg than the

695 <u>following 5 downstream filters, which were not significantly different from each other (SI Fig.</u>

696 5). It is unlikely that the Hg observed on the first CEM filters resulted from GEM uptake. Even

697 <u>at the highest GEM permeation rate, the first filter captured only ~1700 pg of Hg, out of a total</u>

698 permeated amount of over 7.3 million pg (a 0.02 % uptake rate). This means that the downstream

699 CEM filters were still exposed to about 7.2985 million pg of GEM but captured less total Hg.

700 We cannot entirely rule out the possibility of some small rate of *in-situ* oxidation of GEM in the

701 <u>system, at the surface of the Hg⁰ bead or in the vapor phase. Therefore, the first in-line filters</u>

702 were not included in calculation of GEM uptake rates because of suspicion that some component

703 of the Hg captured on the first filter was GOM. Inclusion or removal of the first in-line filters did

704 <u>not alter calculations.</u>

The overall GEM uptake rate was linear ($r^2 = 0.97$) for the range of concentrations used in this study, indicating a similar low uptake rate can be expected down to lower GEM concentrations.

- 707 **3.2 Mercury Bromide Uptake on CEM Filters**
- Breakthrough of HgBr₂ vapor from the primary (A) to secondary (B) CEM filters was low for all
 conditions tested in this study (Table 1). These conditions included HgBr₂ permeated into clean
- dry laboratory air with < 0.5 g m⁻³ WV, clean air at ambient room humidity (4 to 5 g m⁻³ WV),
- and clean air at elevated humidity (10 to 11 g m^{-3} WV), at line temperatures between 17 to 19
- °C. Overall, the mean A to B filter breakthrough ranged from 0 to 0.5% and averaged 0.2 ± 0.2

Commented [GM1]: Matthieu you need a p value and to give the equation since these data are not show in a figure.

Deleted: For GEM permeations into ambient humidity sample air (2 to 4 g m⁻³ WV), at a slightly lower total mean permeated Hg⁰ 24 h exposure of 2.1×10^6 pg, total (blank-corrected) Hg recoveries on the CEM filters were 55 ± 30 pg (n =10), equating to a GEM uptake rate of 0.003 \pm 0.001% (0.005 \pm 0.005% including first in-line filter).

718 % (n = 17), with no statistical difference observed in mean breakthrough rates for the three levels 719 of humidity (ANOVA, p = 0.124).

720	The first HgBr ₂ permeation in clean dry (< 0.5 g m ⁻³ WV) laboratory air was over a 96 h period,
721	using the system configuration in Fig, 1B to establish an approximate, permeation rate (Fig. 3).
722	Total Hg reaching the 2537A through the pyrolyzer on Line 1 (red line, Fig. 3) indicated an
723	average HgBr ₂ exposure concentration of 4540 pg m ⁻³ , or about 4.5 pg min ⁻¹ from the permeation
724	tube. This permeated concentration of HgBr_2 was deliberately much higher than ambient in order
725	to test retention and break through at high levels, It should be noted that these concentrations are
726	50 - 1000 times above background ambient concentrations and the performance of the CEM
727	filters at low concentrations could be slightly different. After this permeation, total blank-
728	corrected HgBr_2 loading on the primary CEM filter on Line 0 was 49400 pg, but only 50 pg on
729	the secondary CEM filter, indicating a breakthrough rate of approximately 0.1%. Total Hg
730	reaching the 2537A through the CEM filters on Line 0 (black line, Fig. 3) over this time period
731	was 15 pg, mostly at the beginning of the deployment when some ambient Hg entered the
732	opened system. The low concentrations of Hg measured downstream in Line 0 on the 2537A
733	corroborates that breakthrough of HgBr_2 was low. These data also demonstrate that the CEM
734	material did not saturate with a ${\rm HgBr}_2$ loading of ~ 50000 pg, a loading far higher than could be
735	expected in ambient conditions.
736	Subsequent replicate 24 h HgBr ₂ permeations in clean dry air resulted in consistent total Hg
737	loading on CEM filters placed on both lines concurrently $(8560 + 320 \text{ pg}, n = 6, \text{ Samples 2-7})$
720	Table 1) and mean total Hz on the second ary CEM filters was 20 ± 10 rs (success)
/38	Table 1), and mean total Fig on the secondary CEM inters was 20 ± 10 pg (average

- 739 breakthrough of 0.3%). On Line 0 (black line, Fig.3), which was never open to $HgBr_2$ vapor
- downstream from the CEM filters at any point in the study, Hg measured at the 2537A was zero

(Deleted: ure	
~(Deleted: ly	
(Deleted: indicates	

(Deleted: ,
(Deleted: but it
\geq	Formatted: Not Highlight
~~~(	Deleted: ,

747	for all three 24 h permeations, indicating no breakthrough (Samples 2, 4, & 6, Table 1).	
748	However, on Line 1, which had been exposed to the full $\mathrm{HgBr}_2$ vapor concentration of 4540 pg	
749	$m^{\text{-}3}$ over the duration of the 96 h perm test, 1155 pg of Hg were measured downstream in the first	
750	24 h sample (Sample 3, Table 1). The amount of downstream Hg dropped to 10 pg in the second	
751	24 h, and 6 pg in the third 24 h (Samples 5 & 7, Table 1). This downstream Hg in Line 1	
752	(compared to the zero Hg simultaneously observed on Line 0) is attributed to volatilization of	 Deleted: re-
753	HgBr ₂ that had <u>adsorbed</u> to the line material during the open permeation flow. At the moment	 Deleted: stuck
754	CEM filters were deployed on Line 1 (red-to-blue transition, Fig. 3), a rapid asymptotic decline	
755	in the Hg signal began. This decay curve supports drawdown and depletion of a Hg reservoir on	
756	the interior line surfaces behind the CEM filters, and not a continuous source such as	
757	breakthrough from the permeation tube that was still supplying $\mathrm{HgBr}_2$ to both sample lines. The	
758	total mass of Hg volatized from the interior line surfaces (1155 pg) represents 4 to 5% of the	 Deleted: re-
1	total UsPr, that had passed through Line 1 ( 25000 ng based on 2527 A massurement)	
759	total Hgb1 ₂ that had passed through Line 1 ( $\sim$ 25000 pg based on 2557A measurement).	
759 760	Eventually, Hg reaching the 2537A through Line 1 decreased to zero during the same 24 h filter	
759 760 761	Eventually, Hg reaching the 2537A through Line 1 decreased to zero during the same 24 h filter deployment, indicating, the majority of HgBr ₂ line contamination in a high-concentration	 Deleted: a
760 761 762	Eventually, Hg reaching the 2537A through Line 1 decreased to zero during the same 24 h filter deployment, indicating <u>the</u> majority of HgBr ₂ line contamination in a high-concentration permeation system can be expected to flush out within ~12 h. <u>However, we caution that</u>	 Deleted: a Formatted: Not Highlight
760 761 762 763	Eventually, Hg reaching the 2537A through Line 1 decreased to zero during the same 24 h filter deployment, indicating <u>the</u> majority of HgBr ₂ line contamination in a high-concentration permeation system can be expected to flush out within ~12 h. <u>However, we caution that</u> materials used in high-concentration permeation systems, despite being flushed out, should not	 Deleted: a Formatted: Not Highlight
760 761 762 763 764	Eventually, Hg reaching the 2537A through Line 1 decreased to zero during the same 24 h filter deployment, indicating, the majority of HgBr ₂ line contamination in a high-concentration permeation system can be expected to flush out within ~12 h. However, we caution that materials used in high-concentration permeation systems, despite being flushed out, should not be used for background ambient air work without at least a very thorough acid cleaning.	 Deleted: a Formatted: Not Highlight
759 760 761 762 763 764 765	Eventually, Hg reaching the 2537A through Line 1 decreased to zero during the same 24 h filter deployment, indicating, the majority of HgBr ₂ line contamination in a high-concentration permeation system can be expected to flush out within ~12 h. However, we caution that materials used in high-concentration permeation systems, despite being flushed out, should not be used for background ambient air work without at least a very thorough acid cleaning. Additional HgBr ₂ permeations were made at two levels of in-line humidity. At ambient room	Deleted: a Formatted: Not Highlight
759 760 761 762 763 764 765 765	Eventually, Hg reaching the 2537A through Line 1 decreased to zero during the same 24 h filter deployment, indicating, the majority of HgBr ₂ line contamination in a high-concentration permeation system can be expected to flush out within ~12 h. However, we caution that materials used in high-concentration permeation systems, despite being flushed out, should not be used for background ambient air work without at least a very thorough acid cleaning. Additional HgBr ₂ permeations were made at two levels of in-line humidity. At ambient room humidity (4 to 5 g m ⁻³ WV) mean total Hg measured on the CEM filters was 7910 ± 520 pg (n =	Deleted: a
759 760 761 762 763 764 765 766	Eventually, Hg reaching the 2537A through Line 1 decreased to zero during the same 24 h filter deployment, indicating, the majority of HgBr ₂ line contamination in a high-concentration permeation system can be expected to flush out within ~12 h. However, we caution that materials used in high-concentration permeation systems, despite being flushed out, should not be used for background ambient air work without at least a very thorough acid cleaning. Additional HgBr ₂ permeations were made at two levels of in-line humidity. At ambient room humidity (4 to 5 g m ⁻³ WV), mean total Hg measured on the CEM filters was 7910 ± 520 pg (n = 4: Samples H2 5. Table 1), with an average breakthrough to the accordery filters of 0.2%. When	Deleted: a Formatted: Not Highlight
759 760 761 762 763 764 765 766 766 767	Eventually, Hg reaching the 2537A through Line 1 decreased to zero during the same 24 h filter deployment, indicating, the majority of HgBr ₂ line contamination in a high-concentration permeation system can be expected to flush out within ~12 h. However, we caution that materials used in high-concentration permeation systems, despite being flushed out, should not be used for background ambient air work without at least a very thorough acid cleaning Additional HgBr ₂ permeations were made at two levels of in-line humidity. At ambient room humidity (4 to 5 g m ⁻³ WV), mean total Hg measured on the CEM filters was 7910 ± 520 pg (n = 4; Samples H2-5, Table 1), with an average breakthrough to the secondary filters of 0.3%. When normalized for sample volume, the mean HgPr ₂ leading on CEM filters during architect humidity	Deleted: a Formatted: Not Highlight
759 760 761 762 763 764 765 766 767 768 768	Eventually, Hg reaching the 2537A through Line 1 (~25000 pg based on 2537A measurement). Eventually, Hg reaching the 2537A through Line 1 decreased to zero during the same 24 h filter deployment, indicating, the majority of HgBr ₂ line contamination in a high-concentration permeation system can be expected to flush out within ~12 h. However, we caution that materials used in high-concentration permeation systems, despite being flushed out, should not be used for background ambient air work without at least a very thorough acid cleaning. Additional HgBr ₂ permeations were made at two levels of in-line humidity. At ambient room humidity (4 to 5 g m ⁻³ WV), mean total Hg measured on the CEM filters was 7910 ± 520 pg (n = 4; Samples H2-5, Table 1), with an average breakthrough to the secondary filters of 0.3%. When normalized for sample volume, the mean HgBr ₂ loading on CEM filters during ambient humidity (5068 ± 125 pg) and dry air (5005 ± 188 pg) permeations were not statistically significantly.	Deleted: a Formatted: Not Highlight
759 760 761 762 763 764 765 766 766 767 768 769	Eventually, Hg reaching the 2537A through Line 1 decreased to zero during the same 24 h filter deployment, indicating the majority of HgBr ₂ line contamination in a high-concentration permeation system can be expected to flush out within ~12 h. However, we caution that materials used in high-concentration permeation systems, despite being flushed out, should not be used for background ambient air work without at least a very thorough acid cleaning Additional HgBr ₂ permeations were made at two levels of in-line humidity. At ambient room humidity (4 to 5 g m ⁻³ WV), mean total Hg measured on the CEM filters was 7910 ± 520 pg (n = 4; Samples H2-5, Table 1), with an average breakthrough to the secondary filters of 0.3%. When normalized for sample volume, the mean HgBr ₂ loading on CEM filters during ambient humidity (5968 ± 125 pg) and dry air (5995 ± 188 pg) permeations was not statistically significantly different (4 torst n = 0.700). HzBra breakthrough other second results for any classifier of the second results	Deleted: a
759 760 761 762 763 764 765 766 766 767 768 769 770	Eventually, Hg reaching the 2537A through Line 1 decreased to zero during the same 24 h filter deployment, indicating the majority of HgBr ₂ line contamination in a high-concentration permeation system can be expected to flush out within ~12 h. However, we caution that materials used in high-concentration permeation systems, despite being flushed out, should not be used for background ambient air work without at least a very thorough acid cleaning. Additional HgBr ₂ permeations were made at two levels of in-line humidity. At ambient room humidity (4 to 5 g m ⁻³ WV), mean total Hg measured on the CEM filters was 7910 ± 520 pg (n = 4; Samples H2-5, Table 1), with an average breakthrough to the secondary filters of 0.3%. When normalized for sample volume, the mean HgBr ₂ loading on CEM filters during ambient humidity (5968 ± 125 pg) and dry air (5995 ± 188 pg) permeations was not statistically significantly different (t-test <i>p</i> = 0.790). HgBr ₂ breakthrough rates were also the same (0.3%) as during the	Deleted: a

dry air permeations, indicating that the permeation system was operating similarly at the two 775 humidity levels, and suggesting that absolute humidity concentrations of 4 to 5 g m⁻³ WV had 776 insignificant effects on collection of HgBr2 in clean laboratory air by the CEM material. 777 778 An increase in humidity resulted in an initial large increase in Hg measured at the 2537A downstream of the CEM filters on Line 0 (Sample H1, Table 1), concurrently with an open 779 HgBr₂ permeation flow through Line 1 while both lines were subjected to increased RH. This 780 781 downstream Hg on Line 0 dropped substantially to zero in ~10 h in the first 24 h deployment 782 (Sample H2, Table 1), and was zero for the duration of the second 24 h deployment (Sample H4, 783 Table 1). Hg rapidly declined to zero, due to off-gassing from the tubing induced by the 784 increased humidity that facilitated a heterogeneous surface reduction of HgBr2 to GEM in the short section of line between the perm source and CEM filters. This phenomena was also 785 786 observed during the Reno Atmospheric Mercury Intercomparison eXperiment (RAMIX; Gustin et al., 2013), Reduced HgBr₂ then then passed through to the 2537A as GEM. As the 787 breakthrough rate and the mean HgBr2 loading on the CEM filters did not change between the 788 dry air and ambient humidity permeations, the downstream Hg observed at the 2537A during the 789 ambient humidity permeations cannot be attributed to a loss of Hg from the CEM filters and is 790 791 more likely due to a process in the sample lines. 792 As a further test of possible humidity effects, two replicate 24 h CEM filter deployments were conducted in elevated humidity conditions (10 to 11 g m⁻³ WV) created by an in-line water bath. 793 Mean total Hg loading on the primary CEM filters was higher compared to the previous 794 795 permeations (11700  $\pm$  720 pg, n = 4, Samples H9-12, Table 1), indicating an increase in the effective HgBr₂ permeation rate, possibly due to the perturbation caused by a poor filter seal and 796

small leak in the preceding deployment (Sample H7-8, Table 1). However, mean total Hg on the

(	Deleted: around
(	Deleted: have

Deleted: We observed that a

-(	Deleted: As this downstream
(	Deleted: we believe this was also
(	Deleted: an
Y	Deleted: effect
$\gamma$	Deleted: , which
X	Deleted: perhaps
Ì	Deleted: photochemical
Y	Formatted: Not Highlight
(	Deleted: ,
	<b>Deleted:</b> with the photochemistry driven by room fluorescent lighting

secondary CEM filters was  $20 \pm 20$  pg, indicating an average breakthrough of 0.1%, less than the

812 breakthrough observed for the lower humidity permeations.

813	4 <u>Discussion</u>	Deleted: Conclusions
	CEM and the off the CEM and and the later of	
814	GEM uptake on the CEM material was negligible under the laboratory conditions and high GEM	
815	loading rates (3 orders of magnitude above ambient) tested in this study, with an overall linear	
816	uptake rate of 0.004% (SI Fig. 5), This uptake rate would be insignificant at typical ambient	<b>Deleted:</b> for permeated GEM concentrations between 1.43×10 ⁶ to 1.85×10 ⁶ pg m ⁻³
817	atmospheric Hg concentrations (1 to 2 ng m ⁻³ ). As a hypothetical example, a CEM filter	
818	sampling ambient air at an average GEM concentration of 2 ng m ⁻³ for a typical 2-week sample	
819	period would have a total $Hg^0$ exposure of ~40000 pg. At the calculated uptake rate of 0.004%, a	
820	maximum 1.6 pg of Hg observed on the sample filter could be attributed to GEM artifact, Given	Deleted: and
821	that blank filters have a mean total Hg mass of 50 $\pm$ 20 pg, this amount would be below <u>the</u>	Deleted: g
822	detection limit. This corroborates the lack of GEM uptake seen by Lyman et al. (2016) for	
823	manual Hg ⁰ injections on CEM filters at lower total mass loadings of 300 to 6000 pg.	
824	Mean HgBr ₂ breakthrough from primary to secondary CEM filters averaged $0.2 \pm 0.2\%$ over all	
825	test conditions, A to B filter breakthrough was derived from a comparison between the large	Deleted: , using HgBr2 as a test GOM compound
826	amount of $\mathrm{HgBr}_2$ permeated onto the primary CEM filters, to the small amount of $\mathrm{HgBr}_2$ that	
827	collected on the secondary CEM filters, 3 mm immediately downstream. The measurement of	
828	1000s of pg of Hg on the primary filter, and only 10s of pg on the secondary filter, leads to the	
829	conclusion that the primary filter removed the majority of HgBr2 from the sample air stream	
830	under laboratory conditions applied in this study. In addition, low breakthrough was	
831	corroborated by downstream measurement of the air stream passing through the CEM filters,	
832	using the Tekran [®] 2537A. The average breakthrough to the 2537A was 0 pg for 24 h	

840	without large perturbations).
841	While the permeation system was not specifically optimized for a quantitative mass balance
842	between permeated $\mathrm{HgBr}_2$ and $\mathrm{HgBr}_2$ recovered on the CEM filters, a rough estimation of the
843	CEM collection efficiency is possible. Using the HgBr ₂ permeations conducted in clean dry air
844	(mean loading 8560 pg) and comparing this to the mean Hg concentration measured at the
845	2537A analyzer during the last 24 h of the 96 h permeation measurement (4680 pg m ⁻³ or 6739
846	pg per 24 h), HgBr2 recovery on the CEM filters averaged 127%. Adjusting the expected
847	permeated HgBr2 mass for our estimated line-loss (~4-5%) changed the recoveries to ~123%.
848	Still, HgBr ₂ loading on the CEM filters was $\sqrt{23\%}$ higher than expected based on the pyrolyzed
849	total measurement on the 2537A, indicating not all HgBr2 was converted to GEM,
850	This can be explained by the pyrolyzer design used in this study not being 100% efficient at
851	thermally reducing HgBr2 to Hg ⁰ , based on the higher total Hg recoveries on the CEM filters
852	versus total Hg measured through the pyrolyzer on the Tekran 2537.
853	The technique of gold amalgamation in general, and specifically including the Tekran® 2537
854	analyzer, is widely considered to provide a quantitative total gaseous Hg measurement, at or very
855	near 100% collection efficiency for Hg ⁰ and Hg compounds (Temme et al., 2003; Landis et al.,
856	2002; Schroeder et al, 1995; Dumarey et al., 1985; Schroeder and Jackson, 1985). However, to
857	our knowledge collection and desorption efficiencies on gold traps have not been demonstrated
858	for HgBr ₂ . The stated desorption temperature of the Tekran [®] 2537A gold traps is 500 °C, but
859	temperatures as low as 375 °C have been reported (Gustin et al., 2013). This would cause
860	reduced thermal decomposition efficiency for all captured GOM compounds, including HgBr ₂ .
861	We speculate that a combination of incomplete thermal decomposition to $Hg_{\downarrow}^{0}at$ both the 600 °C
1	

permeations in dry air, and 0 to 40 pg in humid air, for filter deployments at steady-state (> 24 h

839

Deleted:	those
Deleted:	than can be considered

<ul> <li>Deleted: ,</li> <li>Deleted: the</li> <li>Deleted: improves</li> <li>Deleted: therefore</li> <li>Moved down [1]: Further testing and optimization of the pyrolyzer parameters (e.g., temperature, volume) should be done to allow for a more accurate, quantitative comparison between the CEM and Tekran* 2537 results.</li> </ul>		
Deleted: the         Deleted: improves         Deleted: therefore         Moved down [1]: Further testing and optimization of the pyrolyzer parameters (e.g., temperature, volume) should be done to allow for a more accurate, quantitative comparison between the CEM and Tekran* 2537 results.	Deleted: ,	
Deleted: the Deleted: improves Deleted: therefore Moved down [1]: Further testing and optimization of the pyrolyzer parameters (e.g., temperature, volume) should be done to allow for a more accurate, quantitative comparison between the CEM and Tekran [®] 2537 results.		
Deleted: improves Deleted: therefore Moved down [1]: Further testing and optimization of the pyrolyzer parameters (e.g., temperature, volume) should be done to allow for a more accurate, quantitative comparison between the CEM and Tekran [®] 2537 results.	Deleted: the	
Deleted: improves Deleted: improves Deleted: therefore Moved down [1]: Further testing and optimization of the pyrolyzer parameters (e.g., temperature, volume) should be done to allow for a more accurate, quantitative comparison between the CEM and Tekran [®] 2537 results.		
Deleted: therefore Moved down [1]: Further testing and optimization of the pyrolyzer parameters (e.g., temperature, volume) should be done to allow for a more accurate, quantitative comparison between the CEM and Tekran [®] 2537 results.	Deleted: improves	
Deleted: therefore Moved down [1]: Further testing and optimization of the pyrolyzer parameters (e.g., temperature, volume) should be done to allow for a more accurate, quantitative comparison between the CEM and Tekran® 2537 results.		
<b>Moved down [1]:</b> Further testing and optimization of the pyrolyzer parameters (e.g., temperature, volume) should be done to allow for a more accurate, quantitative comparison between the CEM and Tekran [®] 2537 results.	Deleted: therefore	
Moved down [1]: Further testing and optimization of the pyrolyzer parameters (e.g., temperature, volume) should be done to allow for a more accurate, quantitative comparison between the CEM and Tekran [®] 2537 results.		
	<b>Moved down [1]:</b> Further to pyrolyzer parameters (e.g., tem allow for a more accurate, quan CEM and Tekran [®] 2537 results	sting and optimization of the perature, volume) should be done to titative comparison between the
Deleted: . This indicates that	Deleted: . This indicates that	
Deleted: was	Deleted: was	

Deleted: may have been

Deleted: being

**Deleted:**, suggesting that the pryolyzer was not 100% efficient and that higher pyrolyzer temperatures may be needed

Formatted: Font: Not Italic

-(	Deleted: , which
•(	Deleted: likely

Deleted:

i i		
881	pyrolyzer and during the best-case 500 °C desorption of the 2537 gold traps, contributed to the	Deleted: may have
000	200/ new data tion of total newsoried Harmonia it manual the CMAES anti-al wet	Deleted: resulted in
883	While our results validated some basic performance metrics for the CEM material, they did not	Deleted: without generating the necessary fluorescence signal
005	while our results variated some basic performance metrics for the entity matchan, andy the not	
884	provide data that could fully explain the higher levels of breakthrough observed for CEM filters	
885	deployed in ambient air over the 1-to-2 week sample periods in previous studies. Increasing	
886	humidity by itself did not affect observed $\mathrm{HgBr}_2$ breakthrough. A $\mathrm{HgBr}_2$ loading of ~50000 pg	
887	also did not lead to increased breakthrough, indicating there is no saturation effect on CEM filter	
888	capacity at a GOM loading far greater than expected from ambient concentrations. It remains	
889	unclear, though, whether breakthrough results from different collection efficiencies for GOM	
890	compounds other than HgBr ₂ , or whether breakthrough results from a degradation of GOM	
891	retention capacity in the CEM material when exposed to ambient air chemistries not simulated in	
892	this study. Also, our experiments were conducted in particulate-free air, which leaves open the	
893	possibility that breakthrough is related to capture (or lack thereof) of PBM by the CEM material.	
894	Future work needed.	
895	Further testing and optimization of the pyrolyzer parameters (e.g., temperature, volume) should	Commented [DS3]: Mae, what do you think about this instead of building a brand new "Future Work Needed" section?
896	be done to allow for a more accurate quantitative comparisons between the CEM and Tekran®	Moved (insertion) [1]
897	<u>2537 results.</u>	Deleted: ,
898	Permeation rates of HgBr ₂ varied and these need to be precisely controlled. A stable permeation	Formatted: Subscript
899	system that is standardized needs to be developed.	
900	This study was done using controlled laboratory conditions. CEM performance needs to be	
901	further tested in ambient air.	

Deleted:	resulted in
Deleted:	without generating the necessary fluorescence signal

# 906 Lastly, the reason for breakthrough observed for CEM data collected in ambient air needs to be

907 <u>determined.</u>

## 908 Acknowledgements

- 909 The authors would like to acknowledge funding from Macquarie University iMQRES 2015148
- 910 and NSF Grant 629679. Valuable input and assistance was received from Dr. Ashley Pierce, Dr.
- 911 Seth Lyman, and the students of Dr. Gustin's laboratory. The surviving authors bid an untimely
- 912 farewell to Dr. Grant C. Edwards, who was ever a cheerful friend, mentor, and colleague. Dr.
- Edwards passed away unexpectedly on September 10, 2018.

### 915 References

- 917 Bloom, N., Prestbo, E., and VonderGeest, E.: Determination of atmospheric gaseous Hg(II) at
- the pg/m 3 level by collection onto cation exchange membranes, followed by dual
- 919 amalgamation/cold vapor atomic fluorescence spectrometry, 4th International Conference on
- 920 Mercury as a Global Pollutant, Hamburg, 1996.
- 921 Dumarey, R., Dams, R., and Hoste, J.: Comparison of the collection and desorption efficiency of
- 922 activated charcoal, silver, and gold for the determination of vapor phase atmospheric mercury,
- 923 Analytical Chemistry, 57, 2638-2643, 10.1021/ac00290a047, 1985.
- 924 Ebinghaus, R., Jennings, S. G., Schroeder, W. H., Berg, T., Donaghy, T., Guentzel, J., Kenny,
- 925 C., Kock, H. H., Kvietkus, K., Landing, W., Muhleck, T., Munthe, J., Prestbo, E. M.,
- 926 Schneeberger, D., Slemr, F., Sommar, J., Urba, A., Wallschlager, D., and Xiao, Z.: International
- 927 field intercomparison measurements of atmospheric mercury species at Mace Head, Ireland,
- 928 Atmospheric Environment, 33, 3063-3073, 1999.
- 929 Gustin, M. S., Huang, J., Miller, M. B., Peterson, C., Jaffe, D. A., Ambrose, J., Finley, B. D.,
- 930 Lyman, S. N., Call, K., Talbot, R., Feddersen, D., Mao, H., and Lindberg, S. E.: Do We
- 931 Understand What the Mercury Speciation Instruments Are Actually Measuring? Results of
- 932 RAMIX, Environmental Science & Technology, 47, 7295-7306, 10.1021/es3039104, 2013.
- 933 Gustin, M. S., Amos, H. M., Huang, J., Miller, M. B., and Heidecorn, K.: Measuring and
- modeling mercury in the atmosphere: a critical review, Atmos. Chem. Phys., 15, 5697-5713,
   10.5194/acp-15-5697-2015, 2015.
- 955 10.5194/acp-15-5097-2015, 2015.
- 936 Gustin, M. S., Pierce, A. M., Huang, J., Miller, M. B., Holmes, H. A., and Loria-Salazar, S. M.:
- Evidence for Different Reactive Hg Sources and Chemical Compounds at Adjacent Valley and
  High Elevation Locations, Environmental Science & Technology, 50, 12225-12231,
- 939 10.1021/acs.est.6b03339, 2016.
- 940 Huang, J., Miller, M. B., Weiss-Penzias, P., and Gustin, M. S.: Comparison of Gaseous Oxidized
- 941 Hg Measured by KCl-Coated Denuders, and Nylon and Cation Exchange Membranes,
- 942 Environmental Science & Technology, 47, 7307-7316, 10.1021/es4012349, 2013.
- 943 Huang, J., and Gustin, M. S.: Uncertainties of Gaseous Oxidized Mercury Measurements Using
- 944 KCl-Coated Denuders, Cation-Exchange Membranes, and Nylon Membranes: Humidity
- Influences, Environmental Science & Technology, 49, 6102-6108, 10.1021/acs.est.5b00098,
   2015a.
- 947 Huang, J., and Gustin, M. S.: Use of Passive Sampling Methods and Models to Understand
- 948 Sources of Mercury Deposition to High Elevation Sites in the Western United States,
- 949 Environmental Science & Technology, 49, 432-441, 10.1021/es502836w, 2015b.
- 950 Huang, J., Miller, M. B., Edgerton, E., and Sexauer Gustin, M.: Deciphering potential chemical
- compounds of gaseous oxidized mercury in Florida, USA, Atmos. Chem. Phys., 17, 1689-1698, 10, 5104/ 17, 1689-2017, 2017
- 952 10.5194/acp-17-1689-2017, 2017.

- Jaffe, D. A., Lyman, S., Amos, H. M., Gustin, M. S., Huang, J., Selin, N. E., Levin, L., ter 953
- Schure, A., Mason, R. P., Talbot, R., Rutter, A., Finley, B., Jaeglé, L., Shah, V., McClure, C., 954
- Ambrose, J., Gratz, L., Lindberg, S., Weiss-Penzias, P., Sheu, G.-R., Feddersen, D., Horvat, M., 955
- 956 Dastoor, A., Hynes, A. J., Mao, H., Sonke, J. E., Slemr, F., Fisher, J. A., Ebinghaus, R., Zhang,
- Y., and Edwards, G.: Progress on Understanding Atmospheric Mercury Hampered by Uncertain 957 Measurements, Environmental Science & Technology, 48, 7204-7206, 10.1021/es5026432,
- 958
- 2014. 959
- Landis, M. S., Stevens, R. K., Schaedlich, F., and Prestbo, E. M.: Development and 960
- characterization of an annular denuder methodology for the measurement of divalent inorganic 961 reactive gaseous mercury in ambient air, Environmental Science & Technology, 36, 3000-3009,
- 962 10.1021/es015887t, 2002. 963
- 964 Lyman, S., Jones, C., O'Neil, T., Allen, T., Miller, M., Gustin, M. S., Pierce, A. M., Luke, W.,
- 965 Ren, X., and Kelley, P.: Automated Calibration of Atmospheric Oxidized Mercury
- Measurements, Environmental Science & Technology, 50, 12921-12927, 966
- 10.1021/acs.est.6b04211, 2016. 967
- 968 Lyman, S. N., Gustin, M. S., Prestbo, E. M., and Marsik, F. J.: Estimation of Dry Deposition of
- 969 Atmospheric Mercury in Nevada by Direct and Indirect Methods, Environmental Science & Technology, 41, 1970-1976, 10.1021/es062323m, 2007. 970
- Lyman, S. N., Jaffe, D. A., and Gustin, M. S.: Release of mercury halides from KCl denuders in 971 the presence of ozone, Atmospheric Chemistry and Physics, 10, 8197-8204, 10.5194/acp-10-972
- 8197-2010, 2010. 973
- Marusczak, N., Sonke, J. E., Fu, X., and Jiskra, M.: Tropospheric GOM at the Pic du Midi 974
- Observatory-Correcting Bias in Denuder Based Observations, Environmental Science & 975
- Technology, 51, 863-869, 10.1021/acs.est.6b04999, 2017. 976
- 977 Mason, R., Lawson, N., and Sullivan, K.: The concentration, speciation and sources of mercury in Chesapeake Bay precipitation, Atmospheric Environment, 31, 3541-3550, 10.1016/S1352-978 2310(97)00206-9, 1997. 979
- McClure, C. D., Jaffe, D. A., and Edgerton, E. S.: Evaluation of the KCI Denuder Method for 980
- 981 Gaseous Oxidized Mercury using HgBr2 at an In-Service AMNet Site, Environmental Science & Technology, 48, 11437-11444, 10.1021/es502545k, 2014. 982
- 983 Pierce, A. M., and Gustin, M. S.: Development of a Particulate Mass Measurement System for Quantification of Ambient Reactive Mercury, Environmental Science & Technology, 51, 436-984
- 445, 10.1021/acs.est.6b04707, 2017. 985
- Schroeder, W., and Jackson, R.: An instrumental analytical technique for speciation of 986
- 987 atmospheric mercury, International Journal of Environmental Analytical Chemistry, 22, 1-18,
- 10.1080/03067318508076405, 1985. 988

- 989 Schroeder, W., Keeler, G., Kock, H., Roussel, P., Schneeberger, D., and Schaedlich, F.:
- 990 International field intercomparison of atmospheric mercury measurement methods, Water Air
- and Soil Pollution, 80, 611-620, 10.1007/BF01189713, 1995.
- 992 Sheu, G. R., and Mason, R. P.: An examination of methods for the measurements of reactive
- gaseous mercury in the atmosphere, Environmental Science & Technology, 35, 1209-1216,
  10.1021/es001183s, 2001.
- 995 Slemr, F., Angot, H., Dommergue, A., Magand, O., Barret, M., Weigelt, A., Ebinghaus, R.,
- Brunke, E., A Pfaffhuber, K., Edwards, G., Howard, D., Powell, J., Keywood, M., and Wang, F.:
  Comparison of mercury concentrations measured at several sites in the Southern Hemisphere,
- 998 3125-3133 pp., 2015.
- 999 Temme, C., Einax, J. W., Ebinghaus, R., and Schroeder, W. H.: Measurements of Atmospheric
- Mercury Species at a Coastal Site in the Antarctic and over the South Atlantic Ocean during
   Polar Summer, Environmental Science & Technology, 37, 22-31, 10.1021/es025884w, 2003.
- Xiao, Z., Sommar, J., Wei, S., and Lindqvist, O.: Sampling and determination of gas phase
   divalent mercury in the air using a KCl coated denuder, Fresenius Journal of Analytical
- 1004 Chemistry, 358, 386-391, 1997.
- 1005 Zhang, L., Lyman, S., Mao, H., Lin, C. J., Gay, D. A., Wang, S., Sexauer Gustin, M., Feng, X.,
- and Wania, F.: A synthesis of research needs for improving the understanding of atmospheric
- 1007 mercury cycling, Atmos. Chem. Phys., 17, 9133-9144, 10.5194/acp-17-9133-2017, 2017.



 **Figure 1**. Schematic of the Hg vapor permeation system configurations for: a) GEM permeations b) HgBr₂ permeations c) Simultaneous HgBr₂ loading on two sample lines. Note dry air supplier disconnected for ambient and elevated humidity HgBr₂ permeations, with sample path starting at 0.2 μm Teflon particulate filter and water bath inserted immediately in front of the charcoal scrubber. All tubing is PTFE, except for the quartz glass pyrolyzer tube, and PFA filter holders.

Deleted: chemically inert
Deleted: ,













 Date

 Figure 3. HgBr2 permeations in clean dry lab air using the configuration in Figure 1B (red line) and Figure 1C (blue

 line). The red line indicates total Hg released from permeation tube and passing through pyrolyzer on Line 1 before

 being measured by Tekran 2537A, black line indicates Hg reaching 2537A through CEM filters on Line 0. Vertical

 grey lines indicate open system during filter deployments.



Sample	Start	End	Sample Time (min)	Sample Flow (lpm)	Sample Volume (m ³ )	Total Hg on CEM (pg)	Blank Correct (pg)	Total Hg @ Tekran (pg)	A to B Filter Brkthru (%)
Mean CEM	1 Filter Blank						54		
				(	Clean Dry Air (0.3	± 0.05 g m ⁻³ wv)			
HgBr 1P	9/21/17 13:25	9/25/17 10:25	5580	1.00	5.580	na	na	25181	na
HgBr 1A	0/21/17 12:25	0/25/17 10:25	5590	1.00	5 590	49478	49424	15	0.10
HgBr 1B	9/21/17 13:23	9/23/17 10:23	0000	1.00	5.580	101	47	15	0.10
HgBr 2A	0.05/17 10 20	0200121020	1.140	1.00	1.440	8901	8847	0	0.20
HgBr 2B	9/23/17 10:30	9/20/17 10:30	1440	1.00	1.440	71	17	0	0.20
HgBr 3A	0/25/17 10.20	0/26/17 10.20	1440	1.00	1.440	9125	9072	1155	0.26
HgBr 3B	9/25/17 10:50		1440	1.50	1.440	86	33	1155	0.50
HgBr 4A	9/26/17 10:40 9	9/27/17 10:25	1425	1.00	1.425	8494	8440	0	0.28
HgBr 4B						77	24		
HgBr 5A	9/26/17 10:40	9/27/17 10:25	1425	1.00	1.425	8306	8253	10	0.36
HgBr 5B						83	29		
HgBr 6A	9/27/17 10:35	9/28/17 10:25	1430	1.00	1.430	8496	8442	0	0.22
HgBr 6B						72	19		
HgBr 7A	0/27/17 10:25 0	0/28/17 10-05	1410	1.00	1.410	8386	8333	6	0.15
HgBr 7B	9/2//1/ 10:55	9/28/17 10:05	1410	1.00	1.410	66	13	0	0.15
				с	lean Humid Air (4	$4 \pm .2 \text{ g m}^{-3} \text{ wv}$			
HgBr H1P	10/2/17 16:10	10/3/17 15:20	1390	1.00	1.390	na	na	5888	na
HgBr H1A	10/2/17 16:10	10/2/17 15:20	1200	1.00	1 200	10498	10444	1700	0.25
HgBr H1B	10/2/17 10:10	17 10:10 10/5/17 15:20	1590	1.00	1.590	80	27	1700	0.20
HgBr H2A	10/2/17 15:20	10/4/17 14:40	1200	1.00	1 200	8589	8535	164	0.12
HgBr H2B	10/5/17 15:50	10/5/17 15:50 10/4/17 14:40	1390	1.00	1.590	65	11	104	0.15
HgBr H3A	10/2/17 15 20 1	10///17 14-40	1300	1.00	1 200	8182	8129	420	0.54
HgBr H3B	10/3/17/15:50 10/4/17/14	10/4/17 14:40	1550	1.00	1390	98	44	720	0.07
HgBr H4A	10/4/17 14:50	10/5/17 11:50	1260	1.00	1.260	7504	7451	0	0.31
HgBr H4B						76	23		
HgBr H5A	10/4/17 14.50	10/5/17 11.50	1260	1.00	1 260	7576	7522	25	0.25
HgBr H5B	10/4/17 14:50	10/5/17 11:50	1200	1.00	1.200	73	19	2.5	0.25
HgBr H6P	10/5/17 12:05	10/9/17 10:25	5660	1.00	5.660	na	na	11889	na
HgBr H7A	10/0/17 10:40	10/10/17 10:45	1445	1.00	1.445	9024	8970	105	
HgBr H7B	10/3/17 10:40 10/	10/10/17 10:45	1115		1.445	2672*	2618*	10.5	па
HgBr H8A	10/0/17 10:40	10/10/17 10:45	1445	1.00	1.445	12359	12305	307	
HgBr H8B	10/9/17 10:40	10/10/17 10:45	1445	1.00	1345	75	21	597	na
				Clean	High Humidity Ai	$(10.9 \pm 1.7 \text{ g m}^{-3} \text{ wv})$			
HgBr H9A	10/10/17 10:50	10/11/17 0-30	1360	1.00	1 360	10920	10866	181	0.22
HgBr H9B	10/10/17 10:50	10/11/17 9:50	1500	1.00	1,500	78	24	101	0.22
HgBr H10A	10/10/17 10:50	10/11/17 0-30	1360	1.00	1 360	11413	11359	308	0.00
HgBr H10B	10/10/17 10:50	10/11/17 9.50	1500	1.00	1.500	53	0	200	0.00
HgBr H11A	10/11/20 25 10/20/20 2	10/12/17 0.25	5 1440	1.00	1.440	12001	11947	e	0.00
HgBr H11B	10/11/17 9:55	10/12/17 9:33	1440	1.00	1.440	52	0	2	0.00
HgBr H12A	10/11/17 0.25	10/12/17 0.25	1440	1.00	1.440	12579	12525	40	0.20
HgBr H12B	10/11/17 9:35	10/12/17 9:35	1440	1.00	1.440	90	36	40	0.29
HgBr H13P	P 10/12/17 9:40	10/13/17 9:40	1440	1.00	1.440	na	na	1430	na
HgBr H13A	1002076-10	10/12/17 0 10	1.140	1.00	1.440	13152	13099		0.12
HgBr H13B	10/12/17 9:40	10/13/17 9:40	1440	1.00	1.440	69	16	4	0.12

Table 1.

 Table 1. Summary of CEM filter loading and breakthrough during HgBr2 permeations. Samples denoted P indicate approximate permeation rate check through Line 1 via pyrolyzer and Tekran 2537A, italics indicate filter deployments on Line 1, and * indicates high values due to leak around first filter seal.