

1 Evaluation of cation exchange membrane performance under exposure to high Hg^0 and

- 2 HgBr₂ concentrations
- 3 Matthieu B. Miller¹, Mae S. Gustin², Sarrah M. Dunham-Cheatham², Grant C. Edwards¹

¹Faculty of Science and Engineering, Department of Environmental Science, Macquarie University, Sydney, NSW,
 2113, Australia

- ²Department of Natural Resources and Environmental Science, University of Nevada, Reno NV, 89557, United States
- 10 *Correspondence to*: Matthieu B. Miller (matthieu.b.miller@gmail.com)

11 Abstract

12	Reactive mercury (RM) is an important component of the global atmospheric mercury cycle, but
13	measurement currently depends on un-calibrated, operationally defined methods with large
14	uncertainty and demonstrated interferences and artifacts. Cation exchange membranes (CEM)
15	provide a promising alternative methodology for quantification of RM, but method validation
16	and improvement are ongoing. For the CEM material to be reliable, uptake of gaseous elemental
17	mercury (GEM) must be negligible for all conditions, and RM compounds must be captured and
18	retained with high efficiency. In this study the performance of CEM material under exposure to
19	high concentrations of GEM $(1.43 \times 10^6 - 1.85 \times 10^6 \text{ pg m}^{-3})$ and reactive gaseous mercury
20	bromide (HgBr ₂ \sim 5000 pg m ⁻³) was explored, using a custom-built mercury vapor permeation
21	system, with quantification of total permeated Hg accomplished via pyrolysis at 600 $^\circ$ C and
22	detection using a Tekran [®] 2537A. Permeation tests were conducted for 24 to 72 hours in clean
23	laboratory air, with absolute humidity levels ranging from $0.1 - 10$ g m ⁻³ water vapor. Gaseous
24	elemental mercury uptake by the CEM material averaged no more than 0.004% of total exposure
25	for all test conditions, which equates to a non-detectable GEM artifact for typical ambient air
26	sample concentrations. Recovery of $HgBr_2$ on CEM filters was >100 % compared to calculated
27	total permeated HgBr ₂ , suggesting incomplete thermal decomposition at the pyrolyzer, as the

- 28 CEM material collected HgBr₂ with less than 1% downstream breakthrough on average,
- 29 implying a high collection efficiency.
- 30

31 1 Introduction

32 Mercury (Hg) is a persistent environmental contaminant with a significant atmospheric life time,

and the form and chemistry of Hg is an important determinant of its biogeochemical cycling.

34 Mercury in the atmosphere is found in three forms: gaseous elemental mercury (GEM), gaseous

35 oxidized mercury (GOM), and particulate bound mercury (PBM). PBM and GOM are often

quantified together as reactive mercury (RM = GOM + PBM). Atmospheric GEM, at an average

37 global background concentration of $1 - 2 \text{ ng m}^{-3}$, can be reliably measured with calibrated

analytical instruments (Gustin et al., 2015;Slemr et al., 2015). The measurement of GOM and

39 PBM requires detection at the part per trillion (pg m⁻³) level and depends on un-calibrated

40 operationally defined methods with demonstrated interferences and artifacts, and concomitant

41 large uncertainty. Recent reviews (Gustin et al., 2015;Zhang et al., 2017) detail the

42 shortcomings, difficulties, and needed developments for atmospheric RM measurements.

43 As an alternative methodology, cation exchange membranes (CEM) have been used to

selectively measure GOM concentrations in ambient air (Huang et al., 2013;Huang and Gustin,

45 2015b;Huang et al., 2017;Sheu and Mason, 2001;Pierce and Gustin, 2017;Marusczak et al.,

46 2017;Ebinghaus et al., 1999;Mason et al., 1997;Bloom et al., 1996). The use of CEM type filters

47 for this purpose was first documented in the literature in a conference presentation (Bloom et al.,

48 1996), although such membranes (then referred to as 'ion exchange membranes') were deployed

- 49 earlier in a field-based international comparative study of RM measurement techniques in
- 50 September, 1995 (Ebinghaus et al., 1999). In the comparative study, one participating lab

- 51 deployed a series of ion exchange membranes (for GOM) behind a quartz fiber filter (for PBM)
- at a sample flow rate of 9-10 Lpm, for 24 h measurements (filter pore sizes were not reported).
- Results for PBM and GOM were in similar ranges of $4.5 26 \text{ pg m}^{-3}$ and $13-23 \text{ pg m}^{-3}$,
- 54 respectively (Ebinghaus et al., 1999).
- 55 The ion exchange membrane method was also applied in a 1995-96 field campaign for
- determining the speciation of atmospheric Hg in the Chesapeake Bay area (Mason et al., 1997).
- 57 This study used a 5-stage Teflon filter pack system that included one up front quartz fiber filter
- 58 (0.8 µm pore size) to remove particulate, and four downstream Gelman ion exchange membranes
- 59 (pore size not reported) to 1) capture GOM, 2) capture GOM breakthrough, 3) serve as
- deployment blanks, and 4) isolate the filter train on the downstream side (Mason et al., 1997).
- 61 Concentrations of GOM were reported to be $5 10 \text{ pg m}^{-3}$, essentially at or below the method
- 62 detection limit and it was speculated that even this small amount may have been an artifact from
- fine particulate Hg passing through the 0.8 μ m quartz fiber filter (Mason et al., 1997). The 3rd-in-
- 64 series ion exchange membrane blanks were reported to be not significantly different in Hg
- 65 concentration from unused membrane material, indicating that breakthrough was not a
- 66 phenomenon that extended past the second ion exchange filter position.
- The particulate Hg artifact problem was subsequently elaborated on in a further comparative study focusing exclusively on RM measurement techniques. Specific concerns included physical particle breakthrough, re-evolution of gas-phase Hg²⁺ from PBM captured on the upstream particulate filters passing downstream to the ion exchange membranes, possible adsorption of GOM compounds to the particulate filters, or a GEM collection artifact on the ion exchange membranes (Sheu and Mason, 2001). None of these concerns were proven or disproven conclusively.

74	Recent CEM based sampling systems typically deploy a pair of CEM disc filters without a pre-						
75	particulate filter, in replicates of 2 to 3 at a flow rate of 1.0 Lpm (Gustin et al., 2016). Each pair						
76	of filters constitutes one sample, the first filter serving as the primary RM collection surface, and						
77	the second filter capturing breakthrough. Filters are deployed for 1-to-2 weeks and then collected						
78	for analysis (CVAFS, EPA Method 1631, modified) (Huang et al., 2017). The CEM material						
79	consists of a positively charged polyethersulfone coated matrix (Pall Corporation), and at least						
80	one manufacturing evolution has occurred (Huang and Gustin, 2015a). Prior CEM material						
81	versions (I.C.E. 450) had a pore size of 0.45 $\mu m,$ while the current CEM material (Mustang^® S)						
82	has a manufacturer reported pore size of 0.8 µm.						
83	Previous work with the I.C.E 450 material indicated it does not adsorb significant quantities of						
84	GEM in passive exposures, but can selectively uptake gas-phase Hg ²⁺ species (Lyman et al.,						
85	2007). The CEM material was subsequently adapted for use in active sample flow systems, with						
86	the presumption of continued inertness to GEM and selectivity for GOM (Huang et al.,						
87	2013;Huang and Gustin, 2015b). These studies and others (Lyman et al., 2016) have shown						
88	better GOM recovery on CEM material compared to potassium chloride (KCl) coated denuder						
89	methods.						
90	Despite these tests, the transparency of the CEM material to GEM uptake has not been						
91	conclusively demonstrated for active sampling flow rates, nor for high GEM concentrations,						
92	though limited data using low concentration manual Hg ⁰ injections through CEM filters suggests						
93	little or no GEM uptake (Lyman et al., 2016). However, even small rates of GEM uptake by the						
94	CEM material could result in a significant measurement artifact (e.g. a modest $1 - 2\%$ GEM						

- 95 uptake could easily overwhelm detection of typical ambient GOM concentrations). It is therefore
- 96 of critical importance that such a GEM artifact be ruled out if the CEM material is to be

- 97 successfully deployed for ambient RM measurements, first and foremost under controlled
- 98 laboratory conditions in the absence of confounding variables.
- 99 Additionally, previous studies have observed significant amounts of "breakthrough" GOM on the
- secondary filter. The amount of breakthrough is not consistent, neither as a constant mass, with
- total Hg ranging from zero to as high as 400 pg (Huang et al., 2017), nor as a percentage of Hg
- 102 collected on the primary filter, ranging from 0 40% (Pierce and Gustin, 2017). Similar variable
- 103 breakthrough issues were observed in the earliest field-based CEM measurements as well
- 104 (Mason et al., 1997). In contrast to ambient measurements, previous laboratory experiments have
- reported only minor (0 16%) or no breakthrough (Huang et al., 2013; Huang and Gustin,
- 106 2015b). Limited experimental work with flow rates of 1.0 and 16.7 Lpm in ambient air could not
- 107 provide an explanation for differing breakthrough rates (Pierce and Gustin, 2017).
- 108 In this paper we investigate the potential for GEM uptake on CEM material using a custom-built
- 109 permeation system. In addition, the ability of the CEM material to capture and retain a
- 110 representative GOM compound (mercury bromide, HgBr₂) is discussed with a view to estimate
- 111 collection efficiency and explain or rule out possible mechanisms of breakthrough for both dry
- and humid conditions.

113 2 Methods

- 114 A Tekran[®] 2537A ambient mercury analyzer was integrated with a custom-built permeation
- system designed to enable controlled exposures of GEM and GOM to CEM filters (Fig. 1). The
- 116 2537A analyzer was calibrated at the beginning and periodically throughout the study and
- 117 checked for accuracy by manual Hg⁰ injections (mean recovery $101.1\% \pm 4.3$, n = 10, SI Fig. 1).
- 118 The entire system was checked for Hg contamination in clean air prior to permeation tests, and

119	periodically during sampling (SI Fig. 2). All tubing and connections used in the permeation
120	system were polytetrafluoroethylene (PTFE), except for the quartz glass pyrolyzer tube and
121	perfluoroalkoxy (PFA) filter holders. Each of these materials is known to be chemically inert,
122	virtually nonporous, and to have a low coefficient of friction. For these reasons, PTFE/PFA
123	plastic and quartz glass are the standard materials employed in almost all Hg sampling systems,
124	as GEM passes over or through these surfaces without loss (Gustin et al., 2015). Given its
125	reactive nature, some GOM inevitably adsorbs to internal line surfaces, but the capacity of these
126	materials to sorb and retain GOM is not infinite and a steady state of adsorption/desorption is
127	expected after 5-6 hours of exposure to a stable concentration (Xiao et al., 1997;Gustin et al.,
128	2013).
129	Sample flow through the system was alternated between two PTFE sample lines (designated

129 Line 0 and Line 1) using a Tekran[®] Automated Dual Switching (TADS) unit. Sample air was 130 131 constantly pulled through each line at 1.0 Lpm by the internal pump and mass flow controller in the 2537A, or by an external flush pump (KNF Laboport® N86 KNP) and mass flow controller 132 (Sierra Smart-Trak[®] 2). Laboratory air was pulled through a single inlet at the combined rate of 133 2.0 Lpm, passing through a 0.2 µm PTFE particulate filter and an activated charcoal scrubber to 134 produce clean sample air. Additionally, for dry air permeations sample air was pulled through a 135 136 Tekran[®] 1102 Air Dryer installed upstream of the particulate filter, and for elevated humidity permeations sample air was pulled through the headspace of a distilled water bath (DIW, < 0.2137 ng L^{-1} total Hg) that was located upstream from the charcoal scrubber to eliminate the DIW being 138 139 a potential Hg source to the system. Temperature and relative humidity (RH) were measured inline (Campbell Scientific CS215) and used for calculation of absolute humidity. 140

141	Pure liquid Hg ⁰ and crystalline HgBr ₂ (purity > 99.998% Sigma-Aldrich [®]) were used as Hg
142	vapor sources. The elemental Hg^0 bead was contained in a PTFE vial. Solid $HgBr_2$ crystals were
143	packed in thin-walled PTFE heat-shrink tubing (O.D. 0.635 cm) with solid Teflon plugs in both
144	ends to create a perm tube with an active permeation length of 2 mm (Huang et al., 2013). The
145	HgBr ₂ permeation tube was also placed in the bottom of a PTFE vial, and the permeation vials
146	were submerged in a temperature-controlled laboratory chiller (0.06 ± 0.13 °C, Cole Parmer
147	Polystat®). A low source temperature was favored both because higher temperatures would have
148	produced unacceptably high concentrations, and because there is evidence that at higher
149	temperatures a small amount of Hg^0 can be evolved from Hg^{2+} compounds (Xiao et al., 1997).
150	An ultra-high purity nitrogen (N_2) carrier gas was passed through the permeation vials at 0.2
151	Lpm to carry the target Hg vapor into the main sample line through a PTFE T-junction. The main
152	sample line was split into Line 0 and Line 1 immediately downstream from the permeation flow
153	junction. Line 0 proceeded directly to the 2537A without modification during GEM permeations
154	(Fig. 1A), but housed CEM filters during the HgBr ₂ permeations (Fig. 1B, 1C). Line 1 held a
155	pyrolyzer unit composed of a quartz glass tube (O.D. 0.625 cm) packed with a 3 cm section of
156	quartz wool heated to 600 °C using a nichrome wire coil (SI Fig. 3 and discussion). The goal of
157	the pyrolyzer was to convert all Hg to GEM for detection on the Tekran [®] 2537A.
158	CEM filters were deployed in 2-stage, 47 mm disc PFA filter holders (Savillex [©]). The primary
159	"A" filter in the 2-stage holder is the first to be exposed to the permeated Hg, with the secondary
160	"B" filter mounted immediately behind the A filter (A to B distance ~ 3mm) to measure potential
161	breakthrough. For GEM permeations, three 2-stage filter holders were placed in-series on Line 1
162	behind the pyrolyzer unit (Fig. 1A), while total Hg coming through the system was measured on
163	Line 0 with no filters in place. This allowed simultaneous exposure of 6 CEM filters in one GEM

sample exposure. The first CEM filter in-line served to scrub any small residual RM passing

through the system and pyrolyzer, and these first in-line filters were removed for the calculations

166 of GEM uptake (SI Fig. 4 and discussion).

For determining the potential for GOM breakthrough, two system configurations were used. In 167 the first configuration (Fig. 1B), the total Hg concentration of air that passed through the 168 pyrolyzer on Line 1 was measured without any filters, while Line 0 held one 2-stage CEM filter 169 pair for HgBr₂ loading. This configuration allowed for real time (10 min interval) quantification 170 of the HgBr₂ permeation concentration through Line 1 using the 2537A, and comparison with 171 172 total Hg loading on the CEM filters on Line 0. In the second configuration, replicate filters were concurrently loaded with HgBr₂ by placing 2-stage CEM filter holders on both Line 0 and Line 1 173 (upstream of the pyrolyzer, Fig. 1C). In all HgBr₂ exposures, the filter holders were placed as 174 175 close to the permeation vial as possible, with a total distance from vial to filter surface of 176 approximately 20 cm. Mercury bromide permeation was conducted in dry air and elevated 177 humidity air. The difference between one line being fully open to the HgBr₂ permeation flow 178 (configuration Fig. 1B) and then closed by deployment of the CEM filters (configuration Fig. 1C) enabled a rough determination of the amount of HgBr₂ line-loss within the system. 179 After permeation, CEM filters were collected into clean, sterile polypropylene vials and analyzed 180 for total Hg by digestion in an oxidizing acid solution, reduction to Hg⁰, gold amalgamation, and 181 final quantification by cold vapor atomic fluorescence spectrometry (CVAFS, EPA Method 182 1631, Rev. E) using a Tekran[®] 2600 system. This analysis provided for comparison of total Hg 183 filter loading, and verification of in-line results. A to B filter breakthrough was calculated by 184 comparison of total Hg recoveries on the primary and secondary CEM filters, using Eq. (1): 185

186	% $Breakthrough = 100 * CEM_{2nd} / (CEM_{1st} + CEM_{2nd})$ (1)						
187	Blank CEM filters were collected and analyzed in the same manner with every set of sample						
188	filters deployed on the permeation system, and the mean filter blank value was subtracted from						
189	all total Hg values to calculate the final blank-corrected Hg values used for data analysis. All						
190	data were analyzed in Microsoft [®] Excel (version 16.12) and RStudio [®] (version 3.2.2).						
191	3 Results						
192	3.1 Elemental Mercury Uptake on CEM Filters						
193	Elemental Hg uptake on CEM material was negligible for permeated Hg ⁰ vapor concentrations						
194	ranging from $1.43 \times 10^6 - 1.85 \times 10^6$ pg m ⁻³ (Fig. 2). High GEM concentrations were employed in						
195	this study under the logic that if no GEM uptake was observed at high concentrations, a similar						
196	lack of GEM uptake can be expected for all lower concentrations.						
197	The mean Hg mass on blank CEM filters was 50 ± 20 pg (n = 28). For permeations into dry						
198	sample air of 0.5 ± 0.1 g m ⁻³ water vapor (WV), total mean Hg ⁰ permeation exposures of 2.7×10^6						
199	pg (24 h) and 7.3×10^6 pg (72 h) resulted in total (blank-corrected) Hg recoveries on the CEM						
200	filters of 100 \pm 40 pg (n = 10) and 280 \pm 110 pg (n = 5), respectively. These quantities of total						
201	recovered Hg equate to a mean GEM uptake rate on the CEM filters of $0.004 \pm 0.002\%$. For						
202	GEM permeations into ambient humidity sample air (2 – 4 g m ⁻³ WV), at a slightly lower total						
203	mean permeated Hg ⁰ 24 h exposure of 2.1×10^6 pg, total (blank-corrected) Hg recoveries on the						
204	CEM filters were 55 ± 30 pg (n =10), equating to a GEM uptake rate of $0.003 \pm 0.001\%$. The						
205	overall GEM uptake rate was linear ($r^2 = 0.97$) for the range of concentrations used in this study,						
206	indicating a similar low uptake rate can be expected down to lower GEM concentrations.						

3.2 Mercury Bromide Uptake on CEM Filters

Breakthrough of HgBr₂ vapor from the primary (A) to secondary (B) CEM filters was low for all conditions tested in this study (Table 1). These conditions included HgBr₂ permeated into clean dry laboratory air with < 0.5 g m⁻³ WV, clean air at ambient room humidity (4 – 5 g m⁻³ WV), and clean air at elevated humidity (10 – 11 g m⁻³ WV), at line temperatures between 17 to 19 °C. Overall, the mean A to B filter breakthrough ranged from 0 to 0.5% and averaged 0.2 ± 0.2 % (n = 17), with no statistical difference observed in mean breakthrough rates for the three levels of humidity (ANOVA, p = 0.124).

The first HgBr₂ permeation in clean dry (< 0.5 g m⁻³ WV) laboratory air was over a 96 h period, 215 using the system configuration in Figure 1B to establish an approximately permeation rate (Fig. 216 3). Total Hg reaching the 2537A through the pyrolyzer on Line 1 (red line, Fig. 3) indicates an 217 average HgBr₂ exposure concentration of 4540 pg m⁻³, or about 4.5 pg min⁻¹ from the permeation 218 219 tube. After this permeation, total blank-corrected HgBr₂ loading on the primary CEM filter on Line 0 was 49400 pg, but only 50 pg on the secondary CEM filter, indicating a breakthrough rate 220 of approximately 0.1%. Total Hg reaching the 2537A through the CEM filters on Line 0 (black 221 line, Fig. 3) over this time period was 15 pg, mostly at the beginning of the deployment when 222 some ambient Hg entered the opened system. The low concentrations of Hg measured 223 downstream in Line 0 on the 2537A corroborates that breakthrough of HgBr₂ was low. These 224 225 data also demonstrate that the CEM material did not saturate with a HgBr₂ loading of ~ 50000 pg, a loading far higher than could be expected in ambient conditions. 226 227 Subsequent replicate 24 h HgBr₂ permeations in clean dry air resulted in consistent total Hg

loading on CEM filters placed on both lines concurrently (8560 ± 320 pg, n = 6, Samples 2-7

229	Table 1), and mean	total Hg on the	secondary CEM	filters was 20	± 10 pg (average
-----	--------------------	-----------------	---------------	----------------	------------------

- 230 breakthrough of 0.3%). On Line 0 (black line, Fig.3), which was never open to HgBr₂ vapor
- downstream from the CEM filters at any point in the study, Hg measured at the 2537A was zero
- for all three 24 h permeations, indicating no breakthrough (Samples 2, 4, & 6, Table 1).
- However, on Line 1, which had been exposed to the full HgBr₂ vapor concentration of 4540 pg
- m^{-3} over the duration of the 96 h perm test, 1155 pg of Hg were measured downstream in the first
- 235 24 h sample (Sample 3, Table 1). The amount of downstream Hg dropped to 10 pg in the second
- 236 24 h, and 6 pg in the third 24 h (Samples 5 & 7, Table 1). This downstream Hg in Line 1
- 237 (compared to the zero Hg simultaneously observed on Line 0) is attributed to re-volatilization of
- HgBr₂ that had stuck to the line material during the open permeation flow. At the moment CEM
- filters were deployed on Line 1 (red-to-blue transition, Fig. 3), a rapid asymptotic decline in the
- Hg signal began. This decay curve supports drawdown and depletion of a Hg reservoir on the
- 241 interior line surfaces behind the CEM filters, and not a continuous source such as breakthrough
- from the permeation tube that was still supplying $HgBr_2$ to both sample lines. The total mass of
- Hg re-volatized from the interior line surfaces (1155 pg) represents 4 5% of the total HgBr₂ that
- had passed through Line 1 (~25000 pg based on 2537A measurement). Eventually, Hg reaching
- the 2537A through Line 1 decreased to zero during the same 24 h filter deployment, indicating a
- 246 majority of HgBr₂ line contamination can be expected to flush out within ~ 12 h.

252	different (t-test $p = 0.790$). HgBr ₂ breakthrough rates were also the same (0.3%) as during the							
253	dry air permeations, indicating that the permeation system was operating similarly at the two							
254	humidity levels, and suggesting that absolute humidity concentrations around $4 - 5$ g m ⁻³ WV							
255	have insignificant effects on collection of HgBr2 in clean laboratory air by the CEM material.							
250	We observed that an increase in hyperidity regulted in an initial large increase in U.S. measured at							
256	we observed that an increase in numberly resulted in an initial large increase in Fig measured at							
257	the 2537A downstream of the CEM filters on Line 0 (Sample H1, Table 1), concurrently with an							
258	open HgBr ₂ permeation flow through Line 1 while both lines were subjected to increased RH.							
259	This downstream Hg on Line 0 dropped substantially to zero in ~10 h in the first 24 h							
260	deployment (Sample H2, Table 1), and was zero for the duration of the second 24 h deployment							
261	(Sample H4, Table 1). As this downstream Hg rapidly declined to zero, we believe this was also							
262	an off-gassing effect, likely induced by the increased humidity, which perhaps facilitated a							
263	heterogeneous surface reduction of $HgBr_2$ to GEM in the short section of line between the perm							
264	source and CEM filters, with the GEM then passing through to the 2537A. As the breakthrough							
265	rate and the mean HgBr ₂ loading on the CEM filters did not change between the dry air and							
266	ambient humidity permeations, the downstream Hg observed at the 2537A during the ambient							
267	humidity permeations cannot be attributed to a loss of Hg from the CEM filters and is more							
268	likely due to a process in the sample lines.							
269	As a further test of possible humidity effects, two replicate 24 h CEM filter deployments were							
270	conducted in elevated humidity conditions $(10 - 11 \text{ g m}^{-3} \text{ WV})$ created by an in-line water bath.							
271	Mean total Hg loading on the primary CEM filters was higher compared to the previous							
272	permeations (11700 \pm 720 pg, n = 4, Samples H9-12, Table 1), indicating an increase in the							

- 273 effective HgBr₂ permeation rate, possibly due to the perturbation caused by a poor filter seal and
- small leak in the preceding deployment (Sample H7-8, Table 1). However, mean total Hg on the

- secondary CEM filters was 20 ± 20 pg, indicating an average breakthrough of 0.1%, less than the
- breakthrough observed for the lower humidity permeations.
- 277 4 Conclusions

GEM uptake on the CEM material was negligible under the laboratory conditions and high GEM loading rates (2 orders of magnitude above ambient) tested in this study, with an overall linear uptake rate of 0.004% for permeated GEM concentrations between $1.43 \times 10^6 - 1.85 \times 10^6$ pg m⁻³.

- 281 This uptake rate would be insignificant at typical ambient atmospheric Hg concentrations (1 2)
- ng m⁻³). As a hypothetical example, a CEM filter sampling ambient air at an average GEM
- concentration of 2 ng m⁻³ for a typical 2-week sample period would have a total Hg⁰ exposure of

 \sim 40000 pg. At the calculated uptake rate of 0.004%, a maximum 1.6 pg of Hg observed on the

sample filter could be attributed to GEM artifact and given that blank filters have a mean total

Hg mass of 50 ± 20 pg, this amount would be below detection. This corroborates the lack of

GEM uptake seen by Lyman et al. (2016) for manual Hg⁰ injections on CEM filters at lower total

288 mass loadings of 300 – 6000 pg.

Mean HgBr₂ breakthrough from primary to secondary CEM filters averaged $0.2 \pm 0.2\%$ over all

test conditions, using HgBr₂ as a test GOM compound. A to B filter breakthrough was derived

from a comparison between the large amount of HgBr₂ permeated onto the primary CEM filters,

to the small amount of HgBr₂ that collected on the secondary CEM filters, 3 mm immediately

downstream. The measurement of 1000s of pg of Hg on the primary filter, and only 10s of pg on

the secondary filter, leads to the conclusion that the primary filter removed the majority of HgBr₂

- 295 from the sample air stream. In addition, low breakthrough was corroborated by downstream
- measurement of the air stream passing through the CEM filters, using the Tekran[®] 2537A. The

- average breakthrough to the 2537A was 0 pg for 24 h permeations in dry air and 0 40 pg in
- humid air, for those filter deployments than can be considered steady-state (> 24 h without large
- 299 perturbations).
- 300 While the permeation system was not specifically optimized for a quantitative mass balance
- 301 between permeated HgBr₂ and HgBr₂ recovered on the CEM filters, a rough estimation of the
- 302 CEM collection efficiency is possible. Using the HgBr₂ permeations conducted in clean dry air
- 303 (mean loading 8560 pg) and comparing this to the mean Hg concentration measured at the
- 2537A analyzer during the last 24 h of the 96 h permeation measurement (4680 pg m⁻³, or 6739
- pg per 24 h), the HgBr₂ recovery on the CEM filters averaged 127%. Adjusting the expected
- permeated HgBr₂ mass for our estimated line-loss (\sim 4-5%) improves the recoveries to \sim 123%.
- Still, HgBr₂ loading on the CEM filters was therefore $\sim 23\%$ higher than expected based on the
- 308 pyrolized total measurement on the 2537A.
- 309 The technique of gold amalgamation in general, and specifically including the Tekran[®] 2537
- analyzer, is widely considered to provide a quantitative *total gaseous Hg* measurement, at or
- very near 100% collection efficiency for Hg^0 and Hg compounds (Dumarey et al.,
- 312 1985;Schroeder and Jackson, 1985;Landis et al., 2002;Temme et al., 2003;Schroeder et al.,
- 1995). However, to our knowledge collection and desorption efficiencies on gold traps have not
- been demonstrated for HgBr₂. The stated desorption temperature of the Tekran[®] 2537A gold
- traps is 500 °C, but temperatures as low as 375 °C have been reported (Gustin et al., 2013),
- 316 which would likely cause reduced thermal decomposition efficiency for all captured GOM
- 317 compounds, including HgBr₂. We speculate that a combination of incomplete thermal
- decomposition to Hg⁰, at both the 600 °C pyrolyzer and during the best-case 500 °C desorption

- of the 2537 gold traps, resulted in $\sim 20\%$ non-detection of total permeated HgBr₂ as it passed
- through the CVAFS optical path without generating the necessary fluorescence signal.
- While our results validated some basic performance metrics for the CEM material, they did not 321 provide data that could fully explain the higher levels of breakthrough observed for CEM filters 322 deployed in ambient air over the 1 to 2 week sample periods in previous studies. Increasing 323 humidity by itself did not affect observed HgBr₂ breakthrough. A HgBr₂ loading of ~50000 pg 324 also did not lead to increased breakthrough, indicating there is no saturation effect on CEM filter 325 326 capacity at a GOM loading far greater than expected from ambient concentrations. It remains unclear, though, whether breakthrough results from different collection efficiencies for GOM 327 compounds other than HgBr₂, or whether breakthrough results from a degradation of GOM 328 retention capacity in the CEM material when exposed to ambient air chemistries not simulated in 329 this study. Also, our experiments were conducted in particulate-free air, which leaves open the 330 possibility that breakthrough is related to capture (or lack thereof) of PBM by the CEM material. 331

332 Acknowledgements

The authors would like to acknowledge funding from Macquarie University iMQRES 2015148
and NSF Grant 629679, as well as valuable input and assistance from Dr. Ashley Pierce, Dr. Seth
Lyman, and the students of Dr. Gustin's laboratory.

- 336
- 337
- 338 339
- 340
- 341
- 342
- 343
- 344 345

346 **References**

- 348 Bloom, N., Prestbo, E., and VonderGeest, E.: Determination of atmospheric gaseous Hg(II) at
- the pg/m 3 level by collection onto cation exchange membranes, followed by dual
- amalgamation/cold vapor atomic fluorescence spectrometry, 4th International Conference on Manuary es a Clabel Bollutent, Hamburg, 1006
- 351 Mercury as a Global Pollutant, Hamburg, 1996.
- 352 Dumarey, R., Dams, R., and Hoste, J.: Comparison of the collection and desorption efficiency of
- activated charcoal, silver, and gold for the determination of vapor phase atmospheric mercury,
- Analytical Chemistry, 57, 2638-2643, 10.1021/ac00290a047, 1985.
- Ebinghaus, R., Jennings, S. G., Schroeder, W. H., Berg, T., Donaghy, T., Guentzel, J., Kenny,
- 356 C., Kock, H. H., Kvietkus, K., Landing, W., Muhleck, T., Munthe, J., Prestbo, E. M.,
- Schneeberger, D., Slemr, F., Sommar, J., Urba, A., Wallschlager, D., and Xiao, Z.: International
- field intercomparison measurements of atmospheric mercury species at Mace Head, Ireland,
- 359 Atmospheric Environment, 33, 3063-3073, 1999.
- Gustin, M. S., Huang, J., Miller, M. B., Peterson, C., Jaffe, D. A., Ambrose, J., Finley, B. D.,
- 361 Lyman, S. N., Call, K., Talbot, R., Feddersen, D., Mao, H., and Lindberg, S. E.: Do We
- 362 Understand What the Mercury Speciation Instruments Are Actually Measuring? Results of
- 363 RAMIX, Environmental Science & Technology, 47, 7295-7306, 10.1021/es3039104, 2013.
- Gustin, M. S., Amos, H. M., Huang, J., Miller, M. B., and Heidecorn, K.: Measuring and
- modeling mercury in the atmosphere: a critical review, Atmos. Chem. Phys., 15, 5697-5713,
 10.5194/acp-15-5697-2015, 2015.
- Gustin, M. S., Pierce, A. M., Huang, J., Miller, M. B., Holmes, H. A., and Loria-Salazar, S. M.:
- Evidence for Different Reactive Hg Sources and Chemical Compounds at Adjacent Valley and
- 369 High Elevation Locations, Environmental Science & Technology, 50, 12225-12231,
- 370 10.1021/acs.est.6b03339, 2016.
- Huang, J., Miller, M. B., Weiss-Penzias, P., and Gustin, M. S.: Comparison of Gaseous Oxidized
- Hg Measured by KCl-Coated Denuders, and Nylon and Cation Exchange Membranes,
- 373 Environmental Science & Technology, 47, 7307-7316, 10.1021/es4012349, 2013.
- Huang, J., and Gustin, M. S.: Use of Passive Sampling Methods and Models to Understand
- 375 Sources of Mercury Deposition to High Elevation Sites in the Western United States,
- 376 Environmental Science & Technology, 49, 432-441, 10.1021/es502836w, 2015a.
- Huang, J., and Gustin, M. S.: Uncertainties of Gaseous Oxidized Mercury Measurements Using
- 378 KCl-Coated Denuders, Cation-Exchange Membranes, and Nylon Membranes: Humidity
- Influences, Environmental Science & Technology, 49, 6102-6108, 10.1021/acs.est.5b00098,
- 380 2015b.
- Huang, J., Miller, M. B., Edgerton, E., and Sexauer Gustin, M.: Deciphering potential chemical
- compounds of gaseous oxidized mercury in Florida, USA, Atmos. Chem. Phys., 17, 1689-1698,
 10.5194/acp-17-1689-2017, 2017.

- Landis, M. S., Stevens, R. K., Schaedlich, F., and Prestbo, E. M.: Development and
- characterization of an annular denuder methodology for the measurement of divalent inorganic
- reactive gaseous mercury in ambient air, Environmental Science & Technology, 36, 3000-3009,
- 387 10.1021/es015887t, 2002.
- Lyman, S., Jones, C., O'Neil, T., Allen, T., Miller, M., Gustin, M. S., Pierce, A. M., Luke, W.,
- 389 Ren, X., and Kelley, P.: Automated Calibration of Atmospheric Oxidized Mercury
- 390 Measurements, Environmental Science & Technology, 50, 12921-12927,
- 391 10.1021/acs.est.6b04211, 2016.
- 392 Lyman, S. N., Gustin, M. S., Prestbo, E. M., and Marsik, F. J.: Estimation of Dry Deposition of
- 393 Atmospheric Mercury in Nevada by Direct and Indirect Methods, Environmental Science &
- Technology, 41, 1970-1976, 10.1021/es062323m, 2007.
- 395 Marusczak, N., Sonke, J. E., Fu, X., and Jiskra, M.: Tropospheric GOM at the Pic du Midi
- Observatory Correcting Bias in Denuder Based Observations, Environmental Science &
 Technology, 51, 863-869, 10.1021/acs.est.6b04999, 2017.
- Mason, R., Lawson, N., and Sullivan, K.: The concentration, speciation and sources of mercury
 in Chesapeake Bay precipitation, Atmospheric Environment, 31, 3541-3550, 10.1016/S13522310(97)00206-9, 1997.
- 401 Pierce, A. M., and Gustin, M. S.: Development of a Particulate Mass Measurement System for
 402 Quantification of Ambient Reactive Mercury, Environmental Science & Technology, 51, 436403 445, 10.1021/acs.est.6b04707, 2017.
- Schroeder, W., and Jackson, R.: An instrumental analytical technique for speciation of
 atmospheric mercury, International Journal of Environmental Analytical Chemistry, 22, 1-18,
- 406 10.1080/03067318508076405, 1985.
- Schroeder, W., Keeler, G., Kock, H., Roussel, P., Schneeberger, D., and Schaedlich, F.:
 International field intercomparison of atmospheric mercury measurement methods, Water Air
 and Soil Pollution, 80, 611-620, 10.1007/BF01189713, 1995.
- Sheu, G. R., and Mason, R. P.: An examination of methods for the measurements of reactive
 gaseous mercury in the atmosphere, Environmental Science & Technology, 35, 1209-1216,
 10.1021/es001183s, 2001.
- Slemr, F., Angot, H., Dommergue, A., Magand, O., Barret, M., Weigelt, A., Ebinghaus, R.,
- 414 Brunke, E., A Pfaffhuber, K., Edwards, G., Howard, D., Powell, J., Keywood, M., and Wang, F.:
- 415 Comparison of mercury concentrations measured at several sites in the Southern Hemisphere,
 416 3125-3133 pp., 2015.
- 417 Temme, C., Einax, J. W., Ebinghaus, R., and Schroeder, W. H.: Measurements of Atmospheric
- 418 Mercury Species at a Coastal Site in the Antarctic and over the South Atlantic Ocean during
- 419 Polar Summer, Environmental Science & Technology, 37, 22-31, 10.1021/es025884w, 2003.

- 420 Xiao, Z., Sommar, J., Wei, S., and Lindqvist, O.: Sampling and determination of gas phase
- 421 divalent mercury in the air using a KCl coated denuder, Fresenius Journal of Analytical
- 422 Chemistry, 358, 386-391, 1997.
- 423 Zhang, L., Lyman, S., Mao, H., Lin, C. J., Gay, D. A., Wang, S., Sexauer Gustin, M., Feng, X.,
- 424 and Wania, F.: A synthesis of research needs for improving the understanding of atmospheric
- 425 mercury cycling, Atmos. Chem. Phys., 17, 9133-9144, 10.5194/acp-17-9133-2017, 2017.

Figure 1. Schematic of the Hg vapor permeation system configurations for: a) GEM permeations b) HgBr₂
 permeations c) Simultaneous HgBr₂ loading on two sample lines. Note dry air supplier disconnected for ambient and
 elevated humidity HgBr₂ permeations, with sample path starting at 0.2 μm Teflon particulate filter and water bath
 inserted immediately in front of the charcoal scrubber. All tubing is chemically inert PTFE, except for the quartz
 glass pyrolyzer tube, and PFA filter holders.

433

439

440

441

443
444
444
445
445
446
446
446
447
447
447
447
448
449
449
449
449
449
440
440
440
441
441
441
442
442
443
444
444
444
445
445
446
446
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
447
448
448
448
449
449
449
449
449
449
449
449
449
440
440
441
441
441
441
441
441
441
441
441
441
441
441
441
441
441
441

Table 1.									
Sample	Start	End	Sample Time (min)	Sample Flow (lpm)	Sample Volume (m ³)	Total Hg on CEM (pg)	Blank Correct (pg)	Total Hg @ Tekran (pg)	A to B Filter Brkthru (%)
Mean CEM	Filter Blank						54		
				C	lean Dry Air (0.3	± 0.05 g m ⁻³ wv)			
HgBr 1P	9/21/17 13:25	9/25/17 10:25	5580	1.00	5.580	na	na	25181	na
HgBr 1A	0/21/17 12:25	0/25/17 10:25	5590	1.00	5 590	49478	49424	15	0.10
HgBr 1B	9/21/17 13:25	9/25/17 10:25	5580	1.00	5.580	101	47	15	0.10
HgBr 2A			1.140	1.00	1 440	8901	8847		0.00
HgBr 2B	9/25/17 10:30	9/20/17 10:30	1440	1.00	1.440	71	17	0	0.20
HgBr 3A	0/25/17 10.20	0.000/100000000000000000000000000000000	1.640	1.00	1.440	9125	9072	1155	0.04
HgBr 3B	9/23/17 10:30	9/20/17 10:50	1440	1.00	1.440	86	33	1155	0.50
HgBr 4A	0.00(117.10.40		1425		1 105	8494	8440		
HgBr 4B	9/26/17 10:40	9/2//17 10:25	1425	1.00	1.425	77	24	0	0.28
HgBr 5A	0/26/17 10.40	0/27/17 10.25	1425	1.00	1.425	8306	8253	10	0.26
HgBr 5B	9/20/17 10:40	9/2//17 10:25	1423	1.00	1.425	83	29	10	0.36
HgBr 6A	0.07/17 10 25	0/20/17 10 25	1420	1.00	1 (20	8496	8442	0	0.22
HgBr 6B	9/2//17 10:35	9/28/17 10:25	1430	1.00	1.430	72	19	0	0.22
HgBr 7A	0127117 10 25	0/20/17 10 05	1410	1.00	1.410	8386	8333		0.15
HgBr 7B	9/2//17 10:35	9/28/17 10:05	1410	1.00	1.410	66	13	0	0.15
				C	lean Humid Air (4	$.4 \pm .2 \text{ g m}^{-3} \text{ wv}$			
HgBr H1P	10/2/17 16:10	10/3/17 15:20	1390	1.00	1.390	na	na	5888	na
HgBr H1A						10498	10444		
HgBr H1B	10/2/17 16:10	10/3/17 15:20	1390	1.00	1.390	80	27	1700	0.25
HgBr H2A		10/4/17 14:40	1390	1.00	1.390	8589	8535	164	0.13
HgBr H2B	10/3/17 15:30					65	11		
HgBr H3A		10/4/17 14:40				8182	8129	420	0.54
HgBr H3B	10/3/17 15:30		1390	1.00	1.390	98	44		
HgBr H4A		10/5/17 11:50	1260			7504	7451	0	0.31
HgBr H4B	10/4/17 14:50			1.00	1.260	76	23		
HgBr H5A		10/5/17 11:50	1260		1.260	7576	7522	25	0.25
HgBr H5B	10/4/17 14:50			1.00		73	19		
HgBr H6P	10/5/17 12:05	10/9/17 10:25	5660	1.00	5.660	na	na	11889	na
HgBr H7A						9024	8970		
HgBr H7B	10/9/17 10:40	10/10/17 10:45	1445	1.00	1.445	2672*	2618*	105	na
HgBr H8A						12359	12305		
HgBr H8B	10/9/17 10:40	10/10/17 10:45	1445	1.00	1.445	75	21	397	na
Clean High Humidity Air (10.9 ± 1.7 ø m ⁻³ wv)									
HgBr H9A					0 1	10920	10866		0.22
HgBr H9B	10/10/17 10:50	10/11/17 9:30	1360	1.00	1.360	78	24	181	
- HgBr H10A						11413	11359		0.00
HgBr H10B	10/10/17 10:50	10/11/17 9:30	1360	1.00	1.360	53	0	308	
HgBr H11A		10/12/17 9:35 14				12001	11947		
HgBr H11B	10/11/17 9:35		1440	1.00	1.440	52	0	5	0.00
HgBr H12A						12579	12525		
HgBr H12B	10/11/17 9:35	10/12/17 9:35	1440	1.00	1.440	90	36	40	0.29
HgBr H13P	10/12/17 9:40	10/13/17 9:40	1440	1.00	1.440	na	na	1430	na
HgBr H13A						13152	13099		
HoBr H13B	10/12/17 9:40	10/13/17 9:40	1440	1.00	1.440	69	16	4	0.12

⁴⁶²

464

465

463

 Table 1. Summary of CEM filter loading and breakthrough during HgBr2 permeations. Samples denoted P indicate approximate permeation rate check through Line 1 via pyrolyzer and Tekran 2537A, italics indicate filter deployments on Line 1, and * indicates high values due to leak around first filter seal.