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RESPONSE TO REVIEWER 1 

Thank you for your comments. 

1. In the section describing IMS-dataset you might want to explain a bit more in detail 

what instruments the dataset is based on.  

IMS uses an often-changing list of instruments and models to build its dataset. We have added 

some examples of instruments that are used in Section 2.1.1.  

Line 100: “The maps are produced by a trained analyst using visible imagery from a collection of 

geostationary (e.g. GOES, MeteoSat) and polar orbiting (e.g. AVHRR, MODIS, SAR) satellite 

instruments, with additional information from microwave sensors (e.g. DMSP, AMSR, AMSU), 

surface observations (e.g. SNOTEL), and models (e.g. SNODAS) (Helfrich et al., 2007).” 

2. There is a fractional snow extent product from Globsnow/Sen3app projects that might 

be also worth a look and included in the comparison. For 2015 it is based on VIIRS 

(Suomi-NPP) data. The data and information are available here: 

http://www.globsnow.info/index.php?page=SE or here: 

http://sen3app.fmi.fi/index.php?page=Fractional_Snow_Cover_Extent_- _NH&style=main  

We have looked at the fractional snow extent product from Globsnow/Sen3app as suggested, and 

have decided to exclude it from this work. This product does not provide snow cover information 

when clouds are present in the VIIRS observations. As a result, there is no information on snow 

cover for approximately a third of the TEMPO domain in 2015. Therefore, the product is not 

appropriate for the study performed here.  

3. In the conclusion you write: “However, the lack of confidence in snow identification has 

previously led many retrieval procedures to omit observations over snow. Increasing this 

confidence such that these observations could be included would not only improve spatial 

and temporal sampling, but also allow the inclusion of observations with higher quality 

information on the lower troposphere.” It would be useful to actually demonstrate this with 

an example or case study, perhaps based on OMI data. I mean, showing one OMI 

scene/orbit of NO2 retrievals, where the added value of this improved snow information 

would be visible. For example, an OMI orbit with snow-cover that was filtered out or 

somehow incorrectly flagged and would be improved using a more accurate knowledge of 

the snow cover (with the right AMFs and profiles) in the NO2 retrieval.  

Thank you for this suggestion. We have included a figure (Figure 6) that shows how including 

observations over snow improves sampling and increases AMFs. This is explained in the text on 

Line 280 as follows: 

 “We next examine the effect on both spatial sampling and sensitivity to the lower 

troposphere of a retrieval data set if observations with surface snow are included rather than 

omitted. We use IMS to identify the presence of snow for OMI observations over North America 
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in January 2015. We then use LIDORT to calculate AMFs for these observations using the 

corresponding snow-free (Sun et al., 2017) or snow-covered (O’Byrne et al., 2010) surface 

reflectance, and examine the results of either including or omitting snow-covered scenes. Figure 

6 shows that including snow-covered scenes results in a significant (factor of 2.1) increase in 

observation frequency, particularly in the northern US and Canada. Additionally, including 

snow-covered scenes increases the average AMF by a factor of 2.7 in regions with occasional 

snow cover. The increase in AMF demonstrates that including snow-covered scenes increases 

the quality of information about the tropospheric NO2 column by increasing the observation 

sensitivity to tropospheric NO2.” 

 

4. Could you comment on how the increased sensitivity in the PBL might affect NO2 

retrievals at relatively higher latitudes (where snow is very often present)? For example, 

how would those scattering weight profiles in Fig. 2 look like for higher SZA/or a different 

latitude? It might be less important for TEMPO but it is relevant for OMI/TROPOMI 

missions to improve retrieval at high latitudes in autumn-winter.  

We have added a scattering weight profile for a high latitude location in Figure 2. 

5. There is this paper by Vasilkov et al. about BRDF and OMI retrievals you might need to 

mention/discuss in your paper: Vasilkov, A., Qin, W., Krotkov, N., Lamsal, L., Spurr, R., 

Haffner, D., Joiner, J., Yang, E.-S., and Marchenko, S.: Accounting for the effects of 

surface BRDF on satellite cloud and trace-gas retrievals: a new approach based on 

geometry-dependent Lambertian equivalent reflectivity applied to OMI algorithms, Atmos. 

Meas. Tech., 10, 333-349, https://doi.org/10.5194/amt-10-333-2017, 2017. 

We have added a mention to this paper in the introduction (Line 59): 

“Correspondingly, surface snow may be mistaken for cloud, leading to errors in cloud fraction 

and pressure estimates used in trace gas retrievals (Lin et al., 2015; O’Byrne et al., 2010; 

Vasilkov et al., 2017).” 

and in the conclusion, as follows (Line 316): 

“This could potentially include Bidirectional Reflectance Distribution Functions (BRDF) that 

describe reflection at different viewing angles, as this effect has been shown to have significant 

impact on retrieved NO2 columns (Vasilkov et al., 2017)” 
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RESPONSE TO REVEIWER 2 

Thank you for your comments. 

1. The assessment of different snow cover data sets is carried out for the entire year of 

2015. This approach of using the full year data may cause biases in the metrics. The 

authors admit “All data sets have high accuracy numbers, owing to a high number of true 

negatives during the summer months” (Line 220). I think that the assessment of the snow 

cover data sets should be done on a seasonal basis and the metrics for different seasons 

should be compared. It would be particularly interesting to assess the snow data sets for 

spring when melting snow occurs.  

We have included a table in the Appendix that gives evaluations of the snow data sets by season, 

and now include the following text on Line 245: 

“Data sets were also evaluated by season with similar results (Appendix Table A1). All data sets 

have weaker performance metrics during the spring melt season, which has been observed in past 

evaluations (Frei et al., 2012). IMS has the highest F score in winter and autumn but is slightly 

outperformed by MAIAC in spring.” 

However, keeping in mind that the goal of this work is to evaluate data sets for informing 

retrieval algorithms, and as most retrieval algorithms would likely choose a single data set to 

provide snow information throughout the year, we continue to focus on the full year data. 

2. In my opinion, results of the RT simulations shown in Fig. 2 and 3 do not provide new 

significant information. Effects of surface reflectance on trace gas retrievals have been 

studied theoretically (see O’Bryne et al., JGR, 2010; Lin et al., ACP, 2015; Vasilkov et al., 

2017 and references there).  

We respectfully contend that Figures 2-3 do provide important information here. They illustrate 

how changes in snow cover affect the observation sensitivity to NO2. Indeed Reviewer 1 

expressed interest in Figure 2.  

Figure 2 of the manuscript (showing the scattering weights for a single solar zenith angle 

and a single NO2 profile) is not conclusive because the NO2 sensitivity to surface 

reflectance substantially depends on tropospheric NO2 profiles (see Fig. 13 in Vasilkov et 

al., AMT, 2017).  

It is true that the column NO2 sensitivity depends on tropospheric NO2 profiles. However, the 

scattering weights in Figure 2 represent the sensitivity of backscattered radiation to surface 

reflectance, which is independent of NO2 profile. We have taken care to clarify this in the text 

(Line 201): 

“Figure 2 shows the sensitivity of backscattered radiation (scattering weights) over snow-

covered and snow-free surfaces …” 

Figure 3 compares AMFs for snow-covered and snow-free conditions for January 2013. 

The snow-free conditions are absolutely unrealistic for January. That is why I doubt that 

useful information can be derived from this comparison.  
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We clarified that the figure is for the observation geometry of January. The Figure 3 “snow-free 

conditions” plot shows AMF values in the case that snow is not present during a given 

observation. It is not meant to suggest that snow is never present in January in North America. 

As snow-covered scenes are often omitted in retrieval algorithms, the resulting data sets are 

essentially “snow-free”, and thus a snow-free map of AMF does provide important context. 

I think that the text and figures related to the RT simulations can be removed without the 

loss of significant material. To some extent, this is supported by the title of the manuscript 

because the RT simulations are not mentioned in the title.  

We have strengthened the material covering snow and AMFs by including Figure 6, which 

shows how including snow-covered scenes improves the quantity and quality of retrieval data 

sets. We have changed the title to reflect this as well. Together with Figures 2-3 we feel that this 

is new, significant information. 

Specific comments Line 24. The quantity “F” is not defined here.  

We have removed the mention of F here. It is defined later in the abstract. 

Line 52. It is worthwhile to mention that uncertainties in surface reflectance also lead to 

uncertainties in the cloud fraction and pressure retrievals which affect the NO2 retrievals 

(Vasilkov et al., AMT, 2017).  

We now mention this effect in the introduction (Line 59): 

“Correspondingly, surface snow may be mistaken for cloud, leading to errors in cloud fraction 

and pressure estimates used in trace gas retrievals (O'Byrne et al., 2010; Lin et al., 2015; 

Vasilkov et al., 2017).” 

Line 162. Indeed, snow reflectivity is almost spectrally independent in UV/Vis. However, 

the maps in Fig. 1 include snow-free regions. For such regions, ground reflectivity does 

depend on wavelength, so reflectivity at 354 nm may not be used for 440 nm.  

The snow reflectivity (for 354 nm) is only used when snow is present. Snow-free regions use the 

MODIS CMG Gap-Filled Snow-Free Products at 470 nm, which are at a wavelength closer to 

the 440 nm used in the AMF calculation. We have clarified this in the text and in Figure 1. 

Line 174. Please clarify “the most reliable source is used”.  

As stated, the GHCN-D data set includes information from multiple sources. GCHN-D provides 

a priority ranking of these sources. We have added a citation to this line which provides 

additional information. 

Line 185. Please explain why the F score is most relevant for TEMPO.  

This is now clarified in the text (Line 192) as follows: 

“The F score balances recall (which accounts for false negatives) and precision (which accounts 

for false positives) to measure correct classification of snow without the influence of frequent 

snow-free periods, and therefore is the metric which is most relevant for TEMPO” 

Line 190. Where does the OMI cloud fraction come from? How is the cloud fraction 

determined for snow-covered and partially snow-covered scenes?  
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We no longer use the OMI cloud fraction in this work. From line 199: 

“We assume cloud-free conditions in the AMF calculations, as the impact of surface reflectance 

on retrieved cloud fractions is beyond the scope of this paper.” 

Line 235. Is it correct that the MODIS products perform better at coarser resolution? 

Table 1 shows F=0.46 and 0.54 for the 4 km resolution while Table 2A shows F=0.45 and 

0.53 for the 25 km resolution.  

Yes, MODIS products do perform better when regridded to 4km than at their native resolution of 

0.05°, where F=0.37 and 0.43. However as pointed out by the reviewer, the benefit of regridding 

does not continue to improve if the resolution is further decreased. This has been clarified in the 

text (Line 250): 

“…MODIS Aqua and Terra products perform better when regridded from their native 0.05° 

resolution to a 4 km resolution as it reduces the number of grid boxes missing observations due 

to cloud…” 

Reference to McLinden et al., ACP, 2014 is missing.  

This has been fixed. 

Figure 1. The caption states “reflectivity at visible wavelengths”. The 354 nm wavelength 

(used for the upper panel) is not a visible wavelength. The lower panel is not informative 

because the color scale is not appropriate for it.  

The figure caption now specifies “UV-Visible” instead of only “visible” wavelengths. We have 

also changed the colour scale. 

Figure 2. The corresponding NO2 profiles should be shown. Surface reflectivities should be 

specified. What is the viewing zenith angle of observations?  

Surface reflectivities and zenith angles are now included in Figure 2. We have edited the text at 

Line 201 to better distinguish between the sensitivity of backscattered radiation to lower 

troposphere NO2 (i.e. scattering weights) and the sensitivity of the NO2 column to lower 

troposphere NO2 (i.e. AMFs). Figure 2 focuses on how the scattering weights themselves (which 

do not depend on the NO2 profile) are affected by reflectivity, and thus we do not include the 

corresponding NO2 profiles for the sake of clarity.  

“Figure 2 shows the sensitivity of backscattered radiation (scattering weights) over snow-

covered and snow-free surfaces for two locations … This shows that satellite observed 

backscattered radiation is up to five times as sensitive to NO2 in the boundary layer in the 

presence of snow, due to the increased absorption by NO2 in the lower troposphere when the 

surface reflects more sunlight.” 

Appendix. Please explain why some numbers for the CMC and NISE data sets are slightly 

different in Tables A1 and A2. The spatial resolution of the data sets is same for both 

tables. 

Thank you for noticing this. There were some errors in the Appendix tables that have been 

corrected. In Table A3 (previously A2), all products were regridded to a common 25km 
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resolution. For NISE, this is slightly different than its native 25km grid, hence a small difference 

in its F score (0.51 to 0.52). 
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Abstract 10 

Accurate representation of surface reflectivity is essential to tropospheric trace gas retrievals 11 

from solar backscatter observations. Surface snow cover presents a significant challenge due to 12 

its variability and thus snow-covered scenes are often omitted from retrieval data sets; however, 13 

the high reflectance of snow is advantageous for trace gas retrievals. We first examine the 14 

implications of surface snow on retrievals from the upcoming TEMPO geostationary instrument 15 

for North America. We use a radiative transfer model to examine how an increase in surface 16 

reflectivity due to snow cover changes the sensitivity of satellite retrievals to NO2 in the lower 17 

troposphere. We find that a substantial fraction (>50%) of the TEMPO field of regard can be 18 

snow covered in January, and that the average sensitivity to the tropospheric NO2 column 19 

substantially increases (doubles) when the surface is snow covered.  20 

We then evaluate seven existing satellite-derived or reanalysis snow extent products against 21 

ground station observations over North America to assess their capability of informing surface 22 

conditions for TEMPO retrievals. The Interactive Multisensor Snow and Ice Mapping System 23 

(IMS) had the best agreement with ground observations (accuracy=93%, precision=87%, 24 

recall=83%, F=85%). Multiangle Implementation of Atmospheric Correction (MAIAC) 25 

retrievals of MODIS observed radiances had high precision (90% for Aqua and Terra), but 26 

underestimated the presence of snow (recall=74% for Aqua, 75% for Terra). MAIAC generally 27 

outperforms the standard MODIS products (precision=51%, recall=43% for Aqua; 28 



8 
 

precision=69%, recall=45% for Terra). The Near-real-time Ice and Snow Extent (NISE) product 29 

had good precision (83%) but missed a significant number of snow covered pixels (recall=45%). 30 

The Canadian Meteorological Centre (CMC) Daily Snow Depth Analysis Data set had strong 31 

performance metrics (accuracy=91%, precision=79%, recall=82%, F=81%). We use the F score, 32 

which balances precision and recall, to determine overall product performance (F = 85%, 33 

82(82)%, 81%, 58%, 46(54)% for IMS, MAIAC Aqua(Terra), CMC, NISE, MODIS 34 

Aqua(Terra) respectively) for providing snow cover information for TEMPO retrievals from 35 

solar backscatter observations. We find that using IMS to identify snow cover and enable 36 

inclusion of snow-covered scenes across North America in January can increase both the number 37 

of observations by a factor of 2.1 and the average sensitivity to the tropospheric NO2 column by 38 

a factor of 2.7. 39 

 40 

1. Introduction 41 

 Satellite observations of solar backscatter are widely used as a source of information on 42 

atmospheric trace gases (Richter and Wagner, 2011). These observations have provided valuable 43 

information on vertical column densities of O3, NO2, SO2, CO, HCHO, CH4 and other important 44 

trace gases in the troposphere (Fishman et al., 2008). Satellite observations of trace gases have 45 

been used to assess air quality (Duncan et al., 2014; Martin, 2008) and to gain insight into 46 

atmospheric processes including emissions (Streets et al., 2013), lifetimes (Beirle et al., 2011; 47 

Fioletov et al., 2015; de Foy et al., 2015; Valin et al., 2013), and deposition (Geddes and Martin, 48 

2017; Nowlan et al., 2014). The utility of these observations is dependent on their quality, and 49 

thus ensuring retrieval accuracy is essential. 50 

Previous studies have found that retrieved NO2 vertical column densities are highly 51 

sensitive to errors in assumed surface reflectance (Boersma et al., 2004; Lamsal et al., 2017; 52 

Martin et al., 2002). Much of this error sensitivity results from observation sensitivity to trace 53 

gases in the lower troposphere. The observation sensitivity is accounted for in the air mass factor 54 

(AMF) conversion of observed line-of-sight “slant columns” to vertical column densities. 55 

Uncertainties in surface reflectance are a significant contributor to AMF uncertainty. 56 
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Existing reflectivity climatologies (e.g. Kleipool et al., 2008; Koelemeijer et al., 2003; 57 

Liang et al., 2002; Herman and Celarier, 1997) do not represent snow cover well, since the 58 

statistical methods to exclude reflective clouds from the climatologies also exclude variable 59 

snow cover; Correspondingly, surface snow may be mistaken for cloud, leading to errors in 60 

cloud fraction and pressure estimates used in trace gas retrievals (Lin et al., 2015; O’Byrne et al., 61 

2010; Vasilkov et al., 2017).  Therefore, snow cover is particularly challenging to retrievals. 62 

Misrepresenting surface snow cover can lead to large errors (20-50%) in retrieved NO2 columns 63 

over broad regions with seasonal snow cover (O’Byrne et al., 2010). For this reason, 64 

observations over snow are often omitted to avoid potential errors. This limits the ability of 65 

satellite retrieved data sets to offer adequate temporal and spatial sampling in winter months. 66 

Additionally, over highly reflective surfaces such as snow observation sensitivity to the lower 67 

troposphere is larger and has less dependence on a priori NO2 profiles over highly reflective 68 

surfaces such as snow (Lorente et al., 2017; O’Byrne et al., 2010); Thus, omitting snow-covered 69 

scenes means omitting the observations with the greatest sensitivity to the lower troposphere. 70 

This could be remedied by using a product that would allow for snow cover identification to be 71 

done with confidence.  72 

Several data products provide information on snow extent using surface station 73 

observations, satellite observed radiances, or visible imagery. Previous evaluations have found it 74 

difficult to determine which of these products is definitively the best, partly due to differences in 75 

resolution. Most products are more consistent during the winter months when persistent, deep 76 

snow is present (Frei et al., 2012; Frei and Lee, 2010). However, disagreements are common 77 

during accumulation and melting seasons, over mountains, and under forest canopies. These 78 

evaluations have largely focused on local or regional snow cover, or included only cloud-free 79 

observations.  80 

The upcoming geostationary Tropospheric Emissions: Monitoring of Pollution (TEMPO) 81 

satellite instrument will provide hourly observations of air quality relevant trace gases over 82 

North America at an unprecedented spatial and temporal resolution (Zoogman et al., 2017). As is 83 

the case for all nadir satellite retrievals, the quality of these observations will depend on the 84 

accuracy of the surface reflectance used in the retrieval. As a significant portion of the observed 85 
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domain experiences snow cover, an accurate representation of snow cover is needed. Current 86 

plans to deal with snow cover for TEMPO are to rely on external observations. 87 

In this work, we examine the importance of accurate snow identification by using a 88 

radiative transport model to evaluate how the vertical sensitivity of a satellite retrieval is 89 

impacted by surface reflectance. We then assess seven snow extent products that are expected to 90 

continue to be operational during the TEMPO mission using in situ observations across North 91 

America with the intent of determining which product is best suited for providing snow cover 92 

information for TEMPO and other future satellite retrievals. Finally, we combine radiative 93 

transfer model results with a snow extent product to show how including snow-covered scenes 94 

improves both the quantity and quality of information in a retrieval data set. 95 

 96 

2. Data and Algorithms 97 

2.1. Gridded Snow Products 98 

2.1.1. IMS 99 

One of the most widely used sources of snow extent data is the Interactive Multisensor 100 

Snow and Ice Mapping System (IMS). IMS provides daily, near-real-time maps of snow and sea 101 

ice cover in the Northern Hemisphere at 4km resolution (Helfrich et al., 2007). The maps are 102 

produced by a trained analyst using visible imagery from a collection of geostationary (e.g. 103 

GOES, MeteoSat) and polar orbiting (e.g. AVHRR, MODIS, SAR) satellite instruments, with 104 

additional information from microwave sensors (e.g. DMSP, AMSR, AMSU), surface 105 

observations (e.g. SNOTEL), and models (e.g. SNODAS) (Helfrich et al., 2007). By using 106 

multiple sources of information with different spatial resolution and temporal sampling, IMS can 107 

minimize interference from clouds.  108 

2.1.2. MODIS 109 

A second commonly used snow and ice product is derived from MODIS satellite 110 

observations from the Terra and Aqua satellites (Hall and Riggs, 2007). Terra and Aqua have 111 

sun-synchronous, near polar orbits with overpass times of 1030 and 1330 hr respectively. Snow 112 

cover is calculated using a Normalized Difference Snow Index (NDSI), which examines the 113 



11 
 

difference between observed radiation at visible wavelengths (where snow is highly reflective) 114 

and short IR wavelengths (where there is little reflection from snow). Observations are made at 115 

500 m spatial resolution and aggregated to produce daily snow cover fractions on a 0.05° 116 

resolution grid. Past evaluations of the standard MODIS snow product show good agreement in 117 

cloud-free conditions but often snow is misidentified as cloud (Hall and Riggs, 2007; Yang et al., 118 

2015). 119 

The Multiangle Implementation of Atmospheric Correction (MAIAC) algorithm is also 120 

derived fromanother algorithm processing MODIS observations. MAIAC retrievals uses 121 

radiances observed by the MODIS Aqua and Terra satellites to provide atmospheric and surface 122 

products including snow detection on a 1 km grid (Lyapustin et al., 2011a, 2011b, 2012). While 123 

the NDSI used by the standard MODIS product is also used by MAIAC as one of the criteria, the 124 

overall snow and cloud detection in MAIAC are different from the standard MODIS algorithm 125 

(Lyapustin et al., 2008).  126 

2.1.3. NISE 127 

The Near-real-time Ice and Snow Extent (NISE) provides daily updated snow cover 128 

extent information on a 25x25 km grid (Nolin et al., 2005). NISE uses microwave measurements 129 

from the Special Sensor Microwave Imager/Sounder (SSM/I) on a sun-synchronous, quasi-polar 130 

orbit to observe how microwave radiation emitted by soil is scattered by snow. Products based 131 

on microwave measurements such as NISE are known to miss wet and thin snow, as wet snow 132 

emits microwave radiation similar to soil, and thin snow does not provide sufficient scattering.  133 

2.1.4. CMC 134 

The Canadian Meteorological Centre (CMC) Daily Snow Depth Analysis Data is a 135 

statistical interpolation of snow depth measurements from 8,000 surface sites across Canada and 136 

U.S. interpolated using a snow pack model (Brasnett, 1999). Unlike the aforementioned satellite 137 

products that provide snow extent, CMC provides snow depths. Daily snow maps are produced 138 

at 25 km resolution. As it a reanalysis product, there is a time delay in availability. The CMC 139 

snow depths show good agreement with independent observations over midlatitudes and is 140 

considered an improvement over previous snow depth climatologies (Brown et al., 2003). 141 

2.2 Surface observations 142 
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These snow identification products are evaluated against surface station observations 143 

from the Global Historical Climatology Network-Daily (GHCN-D) database, an amalgamation 144 

of daily climate records from over 80,000 surface stations worldwide (Menne et al., 2012a). 145 

Most observations over Canada and the United States are collected by government organizations 146 

(Environment and Climate Change Canada and NOAA National Climatic Data Center, 147 

respectively) with additional measurements from smaller observation networks. While the focus 148 

of the database is collecting temperature and precipitation measurements, many stations (1,279 in 149 

Canada, 13,932 in United States in 2015 used here) also offer snow depth measurements.  150 

A subset of the surface stations included in GHCN-D may also be used in the CMC 151 

reanalysis. It is difficult to definitively know which stations are used, as CMC does not routinely 152 

archive this information. However, we estimate that only 5% of the GHCN-D stations used here 153 

are located within 0.1° of a possible CMC station, and thus GHCN-D has sufficient independent 154 

information sources to evaluate the CMC product. 155 

2.3 Radiative transfer calculations 156 

The sensitivity of satellite observations of NO2 to its vertical distribution is calculated 157 

here using the LIDORT radiative transfer model (Spurr, 2002). The model is used to calculate 158 

scattering weights, which quantify the sensitivity of backscattered solar radiation to NO2 at 159 

different altitudes (Martin et al., 2002; Palmer et al., 2001). The observation sensitivity to lower 160 

tropospheric NO2 is represented by the air mass factor. Air mass factors for OMI satellite 161 

observations in January 2013 are calculated as a useful analog for future TEMPO observations as 162 

both instruments are spectrometers observing reflected sunlight at UV to visible wavelengths. 163 

AMFs are calculated at 440 nm, at the centre of the NO2 retrieval window for OMI and TEMPO 164 

where NO2 has strong absorption features. Vertical NO2 profiles, and other trace gas and aerosol 165 

profiles needed for the AMF calculation shown here, are obtained from a simulation of the 166 

GEOS-Chem chemical transport model version 11-01 (www.geos-chem.org).   167 

Figure 1 shows maps of snow-free and snow-covered reflectances used here. Snow-free 168 

surface reflectance at 470 nm is provided by Nadir BRDF-Adjusted reflectances from the 169 

MODIS CMG Gap-Filled Snow-Free Products (Sun et al., 2017). Reflectivities at 354 nm for 170 

snow-covered scenes are derived from OMI observations as described by O’Byrne et al. (2010). 171 

While this wavelength is different than the 440 nm wavelength used to calculate AMFs, snow 172 
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reflectivity has weak spectral dependence in UV-Visible wavelengths (Feister and Grewe, 1995; 173 

O’Byrne et al., 2010). Snow can increase surface reflectance by over a factor of 10 in central 174 

North America where short vegetation is readily covered by snow. 175 

3. Methods 176 

 Here we test daily snow cover products for 2015. Snow products are regridded from their 177 

native resolutions to a common 4 km grid (similar to the spatial resolution of TEMPO). A grid 178 

box is considered to be snow covered if any observations within that box are snow covered. 179 

MAIAC, NISE, and IMS give only a yes/no flag for presence of snow. MODIS products provide 180 

a pixel snow fraction, and we consider any pixels with nonzero snow fractions as snow covered.  181 

Any CMC grid box with nonzero snow depth is considered snow covered.  182 

GHCN-D surface measurements are used as the ground “truth” for evaluating the satellite 183 

and reanalysis snow data products tested here. If measurements from multiple surface data 184 

networks exist in the same grid box, the most reliable source is used per the priority order given 185 

by GHCN-D (Menne et al., 2012b). If observations from multiple surface stations within the 186 

most reliable network within a grid box disagree on the presence of snow on a given day, that 187 

day is excluded from the evaluation.  188 

 We assess the snow data sets using metrics that are commonly used for evaluating binary 189 

data sets (Rittger et al., 2013). These metrics are based on the possible outcomes for identifying 190 

snow: true positive (TP), true negative (TN), false positive (FP), and false negative (FN). 191 

Accuracy measures the likelihood that a grid box, with snow or without, is correctly classified: 192 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(1) 

Precision is the probability that a region identified as snow-covered has snow: 193 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(2) 

Recall is the likelihood that snow cover is detected when present: 194 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(3) 
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The F score balances recall (which accounts for false negatives) and precision (which accounts 195 

for false positives) to measure correct classification of snow without the influence of frequent 196 

snow-free periods, and therefore is the metric which is most relevant for TEMPO: 197 

 
𝐹 = 2 ∗

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

(4) 

4. Results 198 

 We first examine the effect of surface reflectivity on retrieval sensitivity by using the 199 

LIDORT radiative transfer model to calculate NO2 air mass factors for both snow-free and snow-200 

covered scenarios over North America. We calculate air mass factors for all cloud-free (OMI 201 

cloud fraction < 20%) OMI NO2 observations over North America in January 2013. We assume 202 

cloud-free conditions in all AMF calculations, as the impact of surface reflectance on retrieved 203 

cloud fractions is beyond the scope of this paper.  204 

 Figure 2 shows the sensitivity of backscattered radiation (scattering weights) over snow-205 

covered and snow-free  retrieval sensitivity (scattering weights)surfaces for twoa locations; a 206 

midlatitude location (in the US Midwest, (42°N, 10099°W) with a solar zenith angle of 605° and 207 

at a high latitude location (Northern Canada, 58°N, 76°W) with a solar zenith angle of 79°. The 208 

mean snow-covered scattering weights are is greater than the mean snow-free scattering weights 209 

throughout the troposphere, by factors of 2.02 (2.7) below 5 km, 2.6 7 (3.7) below 2 km, and 210 

3.12.6 (5.3) below 1 km at the mid (high) latitude location. This shows that a satellite observed 211 

backscattered radiationation is up to three five times as sensitive to NO2 in the boundary layer in 212 

the presence of snow, due to the increased absorption by NO2 in the lower troposphere when the 213 

surface reflects more sunlight.  214 

Figure 3 shows the distribution of AMF values over the TEMPO field of regardNorth 215 

America with and without reflectance from snow. The snow-free AMF distribution is unimodal 216 

with a median of 1.2.  Allowing for the presence of snow introduces a second mode with a 217 

median of 3.20. Mean AMFs increase by a factor 2.0 in the presence of snow, indicating an 218 

overall doubling in the sensitivity to tropospheric NO2 over snow covered surfaces across North 219 

America. The impact is larger over polluted regions, as mean AMFs increase by a factor of 2.2 in 220 

regions where NO2 columns exceed 1x1015 molec/cm2. Maps of AMF with and without snow 221 



15 
 

cover for January 2013 show that AMF values increase over 69% of the land surface within the 222 

TEMPO domain.  223 

We next examine the snow datasets to identify the one most suited for the TEMPO 224 

retrieval algorithm. Figure 4 shows the spatial distribution of false positives and false negatives 225 

in the data sets. In all data sets, both false positives and negatives are most frequent over 226 

mountainous regions, particularly in the Rocky Mountain region, consistent with previous 227 

validation studies (Chen et al., 2012, 2014; Frei et al., 2012; Frei and Lee, 2010). These errors 228 

are often attributed to differences in representativeness, as snow cover in mountain regions is 229 

often spatially inhomogeneous, and thus in situ measurements may not be representative of the 230 

pixel. A slight increase in the number of false positives in IMS over mid-western and prairie 231 

regions may result from crop regions with high snow-free albedos being mistaken for snow in 232 

visible imagery (Chen et al., 2012; Yang et al., 2015). NISE, MODIS Aqua, and MODIS Terra 233 

have more false negatives overall, especially in the Great Lakes and New England regions. False 234 

positives are less frequent than false negatives in all data sets. IMS and CMC have the lowest 235 

frequency of false negatives. NISE and MAIAC have the lowest frequency of false positives. 236 

Figure 5 shows the metrics used to evaluate data set performance. Table 1 summarizes 237 

these results. All data sets have high accuracy numbers, owing largely to a high number of true 238 

negatives during the summer months. MODIS Aqua and Terra have low recall and F scores. 239 

When only observations with MODIS cloud fractions less than 20% are used, MODIS has better 240 

agreement with the ground stations (F statistic increases from 0.38 to 0.49 at native resolution 241 

for Aqua, 0.43 to 0.63 for Terra), however this reduces the number of usable MODIS 242 

observations by up to 60%. NISE has high precision but low recall, indicating that while areas 243 

classified as snow-covered by NISE are likely correct, many snow-covered regions are missing 244 

in the data set. This is consistent with evaluations by McLinden et al. (2014) and O’Byrne et al. 245 

(2010). Although CMC, IMS, and MAIAC products show an increase in frequency of false 246 

negatives over the Rocky Mountains, they retain a high precision in this region due to frequent 247 

snow cover. While MAIAC Aqua/Terra have high accuracy and precision, lower recall values 248 

indicate that they are conservative in identifying the presence of snow. This is possibly a 249 

consequence of the method used for identifying cloud, which may incorrectly classify fresh 250 

snowfall as cloud (Lyapustin et al., 2008). Data sets were also evaluated by season with similar 251 
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results (Appendix Table A1). All data sets have weaker performance metrics during the spring 252 

melt season, which has been observed in past evaluations (Frei et al., 2012). IMS has the highest 253 

F score in winter and autumn but is slightly outperformed by MAIAC in spring. Data sets were 254 

also evaluated at their native resolutions and at a common 25 km resolution (Appendix Tables 255 

A2-3). Results are similar at each resolution with two exceptions: MODIS Aqua and Terra 256 

products perform better when regridded from their native 0.05° resolution to a 4 km coarser 257 

resolution as it reduces the number of grid boxes missing observations due to cloud, and MAIAC 258 

Aqua and Terra perform better at their native resolution than at either 4 km or 25 km as 259 

degrading the spatial resolution results in a loss of information.  260 

For all data sets, recall is generally low in two regions: along the Pacific coastline where 261 

snow depths are relatively thin, and in the south when snow is rare and generally short lived. 262 

Thin snow is likely to be less homogenous across a pixel and more likely to be obscured by 263 

forest canopies or tall grasses, and thus is difficult to observe from satellite imagery. Short lived 264 

snow in the south is likely to be missed by satellite observations, especially since clouds are 265 

often present. However, as IMS uses multiple observations at multiple times of day in addition to 266 

incorporating ground station data, it is more likely to find snow in these cases than other satellite 267 

products (Hall et al., 2010). Overall, IMS has best agreement with in situ observations, with the 268 

highest accuracy, recall, and F statistic and relatively high precision.  269 

 While CMC also has strong performance metrics, it is important to consider the 270 

information source used to describe snow extent in each product. Products based on satellite 271 

observations are advantageous when assessing how surface reflectivity affects backscattered 272 

radiation observed from space. For example, thin snow, or snow obscured by tree canopies, may 273 

not affect the observed brightness from space, but would be considered snow-covered by a 274 

product based on surface observations (e.g. CMC). Also, the reflectivity of a snow-covered 275 

surface decreases over time as the snow ages (Warren and Wiscombe, 1980); This effect would 276 

not be captured by snow depth measurements. And while snow depth has been used as an 277 

indicator of brightness (Arola et al., 2003), it can not account for snow aging or canopy effects. 278 

IMS is based on visible satellite imagery and thus determines snow extent based on brightness 279 

from space, which is more applicable to satellite retrievals. And while most satellite-based 280 

products rely on observations made at a single overpass time and viewing geometry, IMS has the 281 
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advantage of incorporating observations from multiple satellites with differing measurement 282 

times and geometries, including both geostationary and low Earth orbits. These reasons, in 283 

addition to a strong agreement with in situ measurements and near-real-time updates, make IMS 284 

best suited for informing TEMPO retrievals. 285 

We next examine the effect on both spatial sampling and sensitivity to the lower 286 

troposphere of a retrieval data set if observations with surface snow are included rather than 287 

omitted. We use IMS to identify the presence of snow for OMI observations over North America 288 

in January 2015. We then use LIDORT to calculate AMFs for these observations using the 289 

corresponding snow-free (Sun et al., 2017) or snow-covered (O’Byrne et al., 2010) surface 290 

reflectance, and examine the results of either including or omitting snow-covered scenes. Figure 291 

6 shows that including snow-covered scenes results in a significant (factor of 2.1) increase in 292 

observation frequency, particularly in the northern US and Canada. Additionally, including 293 

snow-covered scenes increases the average AMF by a factor of 2.7 in regions with occasional 294 

snow cover. The increase in AMF demonstrates that including snow-covered scenes increases 295 

the quality of information about the tropospheric NO2 column by increasing the observation 296 

sensitivity to tropospheric NO2. 297 

 298 

5. Conclusion 299 

 An accurate representation of snow cover is essential to ensuring satellite retrieval 300 

accuracy, including those from TEMPO. Radiative transfer model calculations indicate that NO2 301 

retrievals over reflective snow-covered surfaces are more than twice as sensitive to NO2 in the 302 

boundary layer than over snow-free surfaces, with the greatest increases in sensitivity occurring 303 

over polluted regions. This makes snow an attractive surface over which to observe tropospheric 304 

NO2. However, the lack of confidence in snow identification has previously led many retrieval 305 

procedures to omit observations over snow. We show that Iincreasing this confidence such that 306 

these observations could be included would not only improves spatial and temporal sampling, 307 

but also allows the inclusion of observations with higher quality information on the lower 308 

troposphere. 309 
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We evaluated seven snow extent data sets to determine their usefulness for informing 310 

satellite retrievals of trace gas from solar backscatter observations. All products were more likely 311 

to misidentify snow over mountains or where snow cover is thin or short lived. IMS had the best 312 

agreement with in situ observations (F=0.85), and as a satellite based, operational, daily updated 313 

product, it is well suited for informing TEMPO satellite retrievals. The low recall value (0.45) 314 

for NISE indicated that a significant number of snow covered pixels are missed.  The standard 315 

MODIS products showed medium precision and low recall owing to cloud contamination. The 316 

MAIAC products had the highest precision (0.90 for both Aqua and Terra) of those tested, but is 317 

conservative in ascribing the presence of snow (recall=0.74 for Aqua, 0.75 for Terra). CMC had 318 

strong performance metrics (F=0.81), but as a reanalysis product based on ground observations it 319 

may not appropriately represent how a surface snow reflectivity would affect TEMPO observed 320 

radiances.  321 

Future work should investigate snow reflectance products , potentially including 322 

Bidirectional Reflectance Distribution Functions (BRDF) that describe reflection at different 323 

viewing angles, that could be used when snow is detected. This could potentially include 324 

Bidirectional Reflectance Distribution Functions (BRDF) that describe reflection at different 325 

viewing angles, as this effect has been shown to have significant impact on retrieved NO2 326 

columns (Vasilkov et al., 2017). A retrieval algorithm that combines daily snow detection from 327 

IMS with a climatology of snow reflectance has the potential to greatly improve upon current 328 

methodologies.  329 

 330 

6. Data Availability 331 

 IMS (National Ice Center, 2008), NISE (Brodzik and Stewart, 2016), MODIS Aqua (Hall 332 

and Riggs, 2016a), MODIS Terra (Hall and Riggs, 2016b), and CMC (Brown and Brasnett, 333 

2010) data are available from the NASA National Snow and Ice Data Center (http://nsidc.org). 334 

MAIAC Collection 6 re-processing of MODIS data started in September 2017 and is expected to 335 

be completed by the end of year. This study used MAIAC data currently available via ftp at 336 

NASA Center for Climate Simulations (NCCS):  337 

ftp://maiac@dataportal.nccs.nasa.gov/DataRelease/. GHCN-D data are available from the 338 

NOAA National Climatic Data Center (Menne et al., 2012b; www.ncdn.noaa.gov). Code for 339 
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calculating scattering weights and air mass factors, and snow-covered surface reflectances used 340 

here are available at http://fizz.phys.dal.ca/~atmos. Snow-free surface reflectances are available 341 

at ftp://rsftp.eeos.umb.edu/data02/Gapfilled/. The GEOS-Chem chemical transport model used 342 

here is available at www.geos-chem.org. 343 
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 524 

Figure 1: Surface reflectivity at UV-visible wavelengths for snow-covered and snow-free 525 

conditions for January 2013. White space in top panel indicates no snow reflectance information 526 

is available. 527 
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Figure 2: Observation sensitivity to NO2. Scattering weight profiles calculated for cloud-free 530 

OMI NO2 retrievals, with and without surface snow cover, for January 2013 at (Left) 42° N, 531 

10099°  W for January 2013 with a solar zenith angle (ZA) of 6560° and (Right) 58° N, 76° W 532 

with a solar zenith angle of 79°.. 533 
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 534 

 535 

Figure 3: (Left) Distribution of Air Mass Factors (AMFs) calculated for OMI NO2 retrievals over 536 

North America for observation geometry of January 2013, with and without surface snow cover. 537 

(Right) Maps of AMF for snow-covered and snow-free conditions. 538 
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 539 

Figure 4: Number of false positive (FP) and false negative (FN) snow attributions by the snow 540 

data sets in 2015. All data sets are evaluated at 4 km resolution. Total number of false snow 541 

attributions inset. White space indicates no ground stations present.  542 
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 543 

Figure 5: Statistical metrics to evaluate snow cover products. All data sets are gridded at 4 km 544 

resolution. White space indicates no ground stations present. 545 
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 546 

Figure 6: OMI observation frequency (top) and average AMFs (bottom) over North America in 547 

January using IMS to identify surface snow conditions. White space indicates a lack of 548 

observations. 549 
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 551 

 Accuracy Precision Recall F 

CMC 0.91 0.79 0.83 0.81 

IMS 0.93 0.87 0.83 0.85 

MAIAC AQUA 0.91 0.90 0.74 0.82 

MAIAC TERRA 0.91 0.90 0.75 0.82 

MODIS AQUA 0.76 0.51 0.43 0.46 

MODIS TERRA 0.82 0.69 0.45 0.54 

NISE 0.84 0.83 0.45 0.58 

Table 1: Metrics for evaluatingEvaluation of daily snow extent data set performance for 2015. 552 

GHCN-D surface observations are used as “truth”. All products are regridded to a common 4 km 553 

resolution. The highest value for each metric is shown in bold. 554 

Appendix 555 

Months Data Set Accuracy Precision Recall F 

DJF 

CMC 0.84 0.84 0.89 0.86 

IMS 0.88 0.90 0.88 0.89 

MAIAC AQUA 0.84 0.93 0.80 0.86 

MAIAC TERRA 0.84 0.92 0.80 0.86 

MODIS AQUA 0.58 0.84 0.34 0.48 

MODIS TERRA 0.60 0.88 0.37 0.52 

NISE 0.63 0.90 0.41 0.57 

MAM 

CMC 0.90 0.63 0.57 0.59 

IMS 0.93 0.74 0.67 0.70 

MAIAC AQUA 0.93 0.81 0.62 0.71 

MAIAC TERRA 0.93 0.81 0.63 0.71 

MODIS AQUA 0.86 0.43 0.39 0.41 

MODIS TERRA 0.89 0.62 0.40 0.49 

NISE 0.90 0.71 0.34 0.46 

SON 

CMC 0.91 0.73 0.81 0.76 

IMS 0.92 0.82 0.74 0.78 

MAIAC AQUA 0.91 0.86 0.60 0.71 

MAIAC TERRA 0.90 0.85 0.61 0.71 

MODIS AQUA 0.82 0.51 0.36 0.42 

MODIS TERRA 0.86 0.71 0.39 0.51 

NISE 0.85 0.85 0.25 0.39 

Table A1: Evaluation of daily snow extent data set performance by season for 2015. GHCN-D 556 

surface observations are used as “truth”. All products are regridded to a common 4 km 557 

resolution. The highest value for each metric/season is shown in bold.  558 

 559 
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 560 

 Resolution Accuracy Precision Recall F 

CMC 25 km 0.92 0.81 0.81 0.81 

IMS 4 km 0.93 0.87 0.83 0.85 

MAIAC AQUA 1 km 0.91 0.91 0.71 0.80 

MAIAC TERRA 1 km 0.91 0.90 0.71 0.80 

MODIS AQUA 0.05° 0.7977 0.7950 0.1130 0.1937 

MODIS TERRA 0.05° 0.8081 0.7965 0.1732 0.2843 

NISE 25 km 0.85 0.87 0.37 0.51 

Table A1A2: Evaluation of Metrics for evaluating daily snow extent data set performance for 561 

2015. GHCN-D surface observations are used as “truth”. The highest value for each metric is 562 

shown in bold. 563 

 564 

 Accuracy Precision Recall F 

CMC 0.92 0.81 0.810 0.810 

IMS 0.93 0.84 0.854 0.84 

MAIAC AQUA 0.87 0.69 0.6973 0.6971 

MAIAC TERRA 0.887 0.68 0.6873 0.6871 

MODIS AQUA 0.78 0.5049 0.41 0.45 

MODIS TERRA 0.83 0.68 0.43 0.53 

NISE 0.85 0.8687 0.37 0.5152 

Table A2A3: Metrics for evaluating Evaluation of daily snow extent data set performance for 565 

2015. GHCN-D surface observations are used as “truth”. All products are regridded to a common 566 

25 km resolution. The highest value for each metric is shown in bold.  567 


