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Abstract 10 

Accurate representation of surface reflectivity is essential to tropospheric trace gas retrievals 11 

from solar backscatter observations. Surface snow cover presents a significant challenge due to 12 

its variability and thus snow-covered scenes are often omitted from retrieval data sets; however, 13 

the high reflectance of snow is advantageous for trace gas retrievals. We first examine the 14 

implications of surface snow on retrievals from the upcoming TEMPO geostationary instrument 15 

for North America. We use a radiative transfer model to examine how an increase in surface 16 

reflectivity due to snow cover changes the sensitivity of satellite retrievals to NO2 in the lower 17 

troposphere. We find that a substantial fraction (>50%) of the TEMPO field of regard can be 18 

snow covered in January, and that the average sensitivity to the tropospheric NO2 column 19 

substantially increases (doubles) when the surface is snow covered.  20 

We then evaluate seven existing satellite-derived or reanalysis snow extent products against 21 

ground station observations over North America to assess their capability of informing surface 22 

conditions for TEMPO retrievals. The Interactive Multisensor Snow and Ice Mapping System 23 

(IMS) had the best agreement with ground observations (accuracy=93%, precision=87%, 24 

recall=83%). Multiangle Implementation of Atmospheric Correction (MAIAC) retrievals of 25 

MODIS observed radiances had high precision (90% for Aqua and Terra), but underestimated 26 

the presence of snow (recall=74% for Aqua, 75% for Terra). MAIAC generally outperforms the 27 

standard MODIS products (precision=51%, recall=43% for Aqua; precision=69%, recall=45% 28 
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for Terra). The Near-real-time Ice and Snow Extent (NISE) product had good precision (83%) 29 

but missed a significant number of snow covered pixels (recall=45%). The Canadian 30 

Meteorological Centre (CMC) Daily Snow Depth Analysis Data set had strong performance 31 

metrics (accuracy=91%, precision=79%, recall=82%). We use the F score, which balances 32 

precision and recall, to determine overall product performance (F = 85%, 82(82)%, 81%, 58%, 33 

46(54)% for IMS, MAIAC Aqua(Terra), CMC, NISE, MODIS Aqua(Terra) respectively) for 34 

providing snow cover information for TEMPO retrievals from solar backscatter observations. 35 

We find that using IMS to identify snow cover and enable inclusion of snow-covered scenes 36 

across North America in January can increase both the number of observations by a factor of 2.1 37 

and the average sensitivity to the tropospheric NO2 column by a factor of 2.7. 38 

 39 

1. Introduction 40 

 Satellite observations of solar backscatter are widely used as a source of information on 41 

atmospheric trace gases (Richter and Wagner, 2011). These observations have provided valuable 42 

information on vertical column densities of O3, NO2, SO2, CO, HCHO, CH4 and other important 43 

trace gases in the troposphere (Fishman et al., 2008). Satellite observations of trace gases have 44 

been used to assess air quality (Duncan et al., 2014; Martin, 2008) and to gain insight into 45 

atmospheric processes including emissions (Streets et al., 2013), lifetimes (Beirle et al., 2011; 46 

Fioletov et al., 2015; de Foy et al., 2015; Valin et al., 2013), and deposition (Geddes and Martin, 47 

2017; Nowlan et al., 2014). The utility of these observations is dependent on their quality, and 48 

thus ensuring retrieval accuracy is essential. 49 

Previous studies have found that retrieved NO2 vertical column densities are highly 50 

sensitive to errors in assumed surface reflectance (Boersma et al., 2004; Lamsal et al., 2017; 51 

Martin et al., 2002). Much of this error sensitivity results from observation sensitivity to trace 52 

gases in the lower troposphere. The observation sensitivity is accounted for in the air mass factor 53 

(AMF) conversion of observed line-of-sight “slant columns” to vertical column densities. 54 

Uncertainties in surface reflectance are a significant contributor to AMF uncertainty. 55 

Existing reflectivity climatologies (e.g. Kleipool et al., 2008; Koelemeijer et al., 2003; 56 

Liang et al., 2002; Herman and Celarier, 1997) do not represent snow cover well, since the 57 
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statistical methods to exclude reflective clouds from the climatologies also exclude variable 58 

snow cover; Correspondingly, surface snow may be mistaken for cloud, leading to errors in 59 

cloud fraction and pressure estimates used in trace gas retrievals (Lin et al., 2015; O’Byrne et al., 60 

2010; Vasilkov et al., 2017).  Therefore, snow cover is particularly challenging to retrievals. 61 

Misrepresenting surface snow cover can lead to large errors (20-50%) in retrieved NO2 columns 62 

over broad regions with seasonal snow cover (O’Byrne et al., 2010). For this reason, 63 

observations over snow are often omitted to avoid potential errors. This limits the ability of 64 

satellite retrieved data sets to offer adequate temporal and spatial sampling in winter months. 65 

Additionally, over highly reflective surfaces such as snow observation sensitivity to the lower 66 

troposphere is larger and has less dependence on a priori NO2 profiles (Lorente et al., 2017; 67 

O’Byrne et al., 2010); Thus, omitting snow-covered scenes means omitting the observations with 68 

the greatest sensitivity to the lower troposphere. This could be remedied by using a product that 69 

would allow for snow cover identification to be done with confidence.  70 

Several data products provide information on snow extent using surface station 71 

observations, satellite observed radiances, or visible imagery. Previous evaluations have found it 72 

difficult to determine which of these products is definitively the best, partly due to differences in 73 

resolution. Most products are more consistent during the winter months when persistent, deep 74 

snow is present (Frei et al., 2012; Frei and Lee, 2010). However, disagreements are common 75 

during accumulation and melting seasons, over mountains, and under forest canopies. These 76 

evaluations have largely focused on local or regional snow cover, or included only cloud-free 77 

observations.  78 

The upcoming geostationary Tropospheric Emissions: Monitoring of Pollution (TEMPO) 79 

satellite instrument will provide hourly observations of air quality relevant trace gases over 80 

North America at an unprecedented spatial and temporal resolution (Zoogman et al., 2017). As is 81 

the case for all nadir satellite retrievals, the quality of these observations will depend on the 82 

accuracy of the surface reflectance used in the retrieval. As a significant portion of the observed 83 

domain experiences snow cover, an accurate representation of snow cover is needed. Current 84 

plans to deal with snow cover for TEMPO are to rely on external observations. 85 

In this work, we examine the importance of accurate snow identification by using a 86 

radiative transport model to evaluate how the vertical sensitivity of a satellite retrieval is 87 
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impacted by surface reflectance. We then assess seven snow extent products that are expected to 88 

continue to be operational during the TEMPO mission using in situ observations across North 89 

America with the intent of determining which product is best suited for providing snow cover 90 

information for TEMPO and other future satellite retrievals. Finally, we combine radiative 91 

transfer model results with a snow extent product to show how including snow-covered scenes 92 

improves both the quantity and quality of information in a retrieval data set. 93 

 94 

2. Data and Algorithms 95 

2.1. Gridded Snow Products 96 

2.1.1. IMS 97 

One of the most widely used sources of snow extent data is the Interactive Multisensor 98 

Snow and Ice Mapping System (IMS). IMS provides daily, near-real-time maps of snow and sea 99 

ice cover in the Northern Hemisphere at 4km resolution (Helfrich et al., 2007). The maps are 100 

produced by a trained analyst using visible imagery from a collection of geostationary (e.g. 101 

GOES, MeteoSat) and polar orbiting (e.g. AVHRR, MODIS, SAR) satellite instruments, with 102 

additional information from microwave sensors (e.g. DMSP, AMSR, AMSU), surface 103 

observations (e.g. SNOTEL), and models (e.g. SNODAS) (Helfrich et al., 2007). By using 104 

multiple sources of information with different spatial resolution and temporal sampling, IMS can 105 

minimize interference from clouds.  106 

2.1.2. MODIS 107 

A second commonly used snow and ice product is derived from MODIS satellite 108 

observations from the Terra and Aqua satellites (Hall and Riggs, 2007). Terra and Aqua have 109 

sun-synchronous, near polar orbits with overpass times of 1030 and 1330 hr respectively. Snow 110 

cover is calculated using a Normalized Difference Snow Index (NDSI), which examines the 111 

difference between observed radiation at visible wavelengths (where snow is highly reflective) 112 

and short IR wavelengths (where there is little reflection from snow). Observations are made at 113 

500 m spatial resolution and aggregated to produce daily snow cover fractions on a 0.05° 114 

resolution grid. Past evaluations of the standard MODIS snow product show good agreement in 115 
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cloud-free conditions but often snow is misidentified as cloud (Hall and Riggs, 2007; Yang et al., 116 

2015). 117 

The Multiangle Implementation of Atmospheric Correction (MAIAC) algorithm is 118 

another algorithm processing MODIS observations. MAIAC retrievals uses radiances observed 119 

by the MODIS Aqua and Terra satellites to provide atmospheric and surface products including 120 

snow detection on a 1 km grid (Lyapustin et al., 2011a, 2011b, 2012). While the NDSI used by 121 

the standard MODIS product is also used by MAIAC as one of the criteria, the overall snow and 122 

cloud detection in MAIAC are different from the standard MODIS algorithm (Lyapustin et al., 123 

2008).  124 

2.1.3. NISE 125 

The Near-real-time Ice and Snow Extent (NISE) provides daily updated snow cover 126 

extent information on a 25x25 km grid (Nolin et al., 2005). NISE uses microwave measurements 127 

from the Special Sensor Microwave Imager/Sounder (SSM/I) on a sun-synchronous, quasi-polar 128 

orbit to observe how microwave radiation emitted by soil is scattered by snow. Products based 129 

on microwave measurements such as NISE are known to miss wet and thin snow, as wet snow 130 

emits microwave radiation similar to soil, and thin snow does not provide sufficient scattering.  131 

2.1.4. CMC 132 

The Canadian Meteorological Centre (CMC) Daily Snow Depth Analysis Data is a 133 

statistical interpolation of snow depth measurements from 8,000 surface sites across Canada and 134 

U.S. interpolated using a snow pack model (Brasnett, 1999). Unlike the aforementioned satellite 135 

products that provide snow extent, CMC provides snow depths. Daily snow maps are produced 136 

at 25 km resolution. As it a reanalysis product, there is a time delay in availability. The CMC 137 

snow depths show good agreement with independent observations over midlatitudes and is 138 

considered an improvement over previous snow depth climatologies (Brown et al., 2003). 139 

2.2 Surface observations 140 

These snow identification products are evaluated against surface station observations 141 

from the Global Historical Climatology Network-Daily (GHCN-D) database, an amalgamation 142 

of daily climate records from over 80,000 surface stations worldwide (Menne et al., 2012a). 143 
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Most observations over Canada and the United States are collected by government organizations 144 

(Environment and Climate Change Canada and NOAA National Climatic Data Center, 145 

respectively) with additional measurements from smaller observation networks. While the focus 146 

of the database is collecting temperature and precipitation measurements, many stations (1,279 in 147 

Canada, 13,932 in United States in 2015 used here) also offer snow depth measurements.  148 

A subset of the surface stations included in GHCN-D may also be used in the CMC 149 

reanalysis. It is difficult to definitively know which stations are used, as CMC does not routinely 150 

archive this information. However, we estimate that only 5% of the GHCN-D stations used here 151 

are located within 0.1° of a possible CMC station, and thus GHCN-D has sufficient independent 152 

information sources to evaluate the CMC product. 153 

2.3 Radiative transfer calculations 154 

The sensitivity of satellite observations of NO2 to its vertical distribution is calculated 155 

here using the LIDORT radiative transfer model (Spurr, 2002). The model is used to calculate 156 

scattering weights, which quantify the sensitivity of backscattered solar radiation to NO2 at 157 

different altitudes (Martin et al., 2002; Palmer et al., 2001). The observation sensitivity to lower 158 

tropospheric NO2 is represented by the air mass factor. Air mass factors for OMI satellite 159 

observations in January 2013 are calculated as a useful analog for future TEMPO observations as 160 

both instruments are spectrometers observing reflected sunlight at UV to visible wavelengths. 161 

AMFs are calculated at 440 nm, at the centre of the NO2 retrieval window for OMI and TEMPO 162 

where NO2 has strong absorption features. Vertical NO2 profiles, and other trace gas and aerosol 163 

profiles needed for the AMF calculation shown here, are obtained from a simulation of the 164 

GEOS-Chem chemical transport model version 11-01 (www.geos-chem.org).   165 

Figure 1 shows maps of snow-free and snow-covered reflectances used here. Snow-free 166 

surface reflectance at 470 nm is provided by Nadir BRDF-Adjusted reflectances from the 167 

MODIS CMG Gap-Filled Snow-Free Products (Sun et al., 2017). Reflectivities at 354 nm for 168 

snow-covered scenes are derived from OMI observations as described by O’Byrne et al. (2010). 169 

While this wavelength is different than the 440 nm wavelength used to calculate AMFs, snow 170 

reflectivity has weak spectral dependence in UV-Visible wavelengths (Feister and Grewe, 1995; 171 

O’Byrne et al., 2010). Snow can increase surface reflectance by over a factor of 10 in central 172 

North America where short vegetation is readily covered by snow. 173 
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3. Methods 174 

 Here we test daily snow cover products for 2015. Snow products are regridded from their 175 

native resolutions to a common 4 km grid (similar to the spatial resolution of TEMPO). A grid 176 

box is considered to be snow covered if any observations within that box are snow covered. 177 

MAIAC, NISE, and IMS give only a yes/no flag for presence of snow. MODIS products provide 178 

a pixel snow fraction, and we consider any pixels with nonzero snow fractions as snow covered.  179 

Any CMC grid box with nonzero snow depth is considered snow covered.  180 

GHCN-D surface measurements are used as the ground “truth” for evaluating the satellite 181 

and reanalysis snow data products tested here. If measurements from multiple surface data 182 

networks exist in the same grid box, the most reliable source is used per the priority order given 183 

by GHCN-D (Menne et al., 2012b). If observations from multiple surface stations within the 184 

most reliable network within a grid box disagree on the presence of snow on a given day, that 185 

day is excluded from the evaluation.  186 

 We assess the snow data sets using metrics that are commonly used for evaluating binary 187 

data sets (Rittger et al., 2013). These metrics are based on the possible outcomes for identifying 188 

snow: true positive (TP), true negative (TN), false positive (FP), and false negative (FN). 189 

Accuracy measures the likelihood that a grid box, with snow or without, is correctly classified: 190 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(1) 

Precision is the probability that a region identified as snow-covered has snow: 191 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(2) 

Recall is the likelihood that snow cover is detected when present: 192 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(3) 

The F score balances recall (which accounts for false negatives) and precision (which accounts 193 

for false positives) to measure correct classification of snow without the influence of frequent 194 

snow-free periods, and therefore is the metric which is most relevant for TEMPO: 195 
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𝐹 = 2 ∗

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

(4) 

4. Results 196 

 We first examine the effect of surface reflectivity on retrieval sensitivity by using the 197 

LIDORT radiative transfer model to calculate NO2 air mass factors for both snow-free and snow-198 

covered scenarios over North America. We calculate air mass factors over North America in 199 

January 2013. We assume cloud-free conditions in all AMF calculations, as the impact of surface 200 

reflectance on retrieved cloud fractions is beyond the scope of this paper. 201 

 Figure 2 shows the sensitivity of backscattered radiation (scattering weights) over snow-202 

covered and snow-free surfaces for two locations; a midlatitude location (US Midwest, 42°N, 203 

99°W) with a solar zenith angle of 60° and at a high latitude location (Northern Canada, 58°N, 204 

76°W) with a solar zenith angle of 79°. The snow-covered scattering weights are greater than the 205 

snow-free scattering weights throughout the troposphere, by factors of 2.0 (2.7) below 5 km, 2.7 206 

(3.7) below 2 km, and 2.6 (5.3) below 1 km at the mid (high) latitude location. This shows that 207 

satellite observed backscattered radiation is up to five times as sensitive to NO2 in the boundary 208 

layer in the presence of snow, due to the increased absorption by NO2 in the lower troposphere 209 

when the surface reflects more sunlight.  210 

Figure 3 shows the distribution of AMF values over North America with and without 211 

reflectance from snow. The snow-free AMF distribution is unimodal with a median of 1.2.  212 

Allowing for the presence of snow introduces a second mode with a median of 3.2. Mean AMFs 213 

increase by a factor 2.0 in the presence of snow, indicating an overall doubling in the sensitivity 214 

to tropospheric NO2 over snow covered surfaces across North America. The impact is larger over 215 

polluted regions, as mean AMFs increase by a factor of 2.2 in regions where NO2 columns 216 

exceed 1x1015 molec/cm2. Maps of AMF with and without snow cover for January 2013 show 217 

that AMF values increase over 69% of the land surface within the TEMPO domain.  218 

We next examine the snow datasets to identify the one most suited for the TEMPO 219 

retrieval algorithm. Figure 4 shows the spatial distribution of false positives and false negatives 220 

in the data sets. In all data sets, both false positives and negatives are most frequent over 221 

mountainous regions, particularly in the Rocky Mountain region, consistent with previous 222 

validation studies (Chen et al., 2012, 2014; Frei et al., 2012; Frei and Lee, 2010). These errors 223 
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are often attributed to differences in representativeness, as snow cover in mountain regions is 224 

often spatially inhomogeneous, and thus in situ measurements may not be representative of the 225 

pixel. A slight increase in the number of false positives in IMS over mid-western and prairie 226 

regions may result from crop regions with high snow-free albedos being mistaken for snow in 227 

visible imagery (Chen et al., 2012; Yang et al., 2015). NISE, MODIS Aqua, and MODIS Terra 228 

have more false negatives overall, especially in the Great Lakes and New England regions. False 229 

positives are less frequent than false negatives in all data sets. IMS and CMC have the lowest 230 

frequency of false negatives. NISE and MAIAC have the lowest frequency of false positives. 231 

Figure 5 shows the metrics used to evaluate data set performance. Table 1 summarizes 232 

these results. All data sets have high accuracy numbers, owing largely to a high number of true 233 

negatives during the summer months. MODIS Aqua and Terra have low recall and F scores. 234 

When only observations with MODIS cloud fractions less than 20% are used, MODIS has better 235 

agreement with the ground stations (F statistic increases from 0.38 to 0.49 at native resolution 236 

for Aqua, 0.43 to 0.63 for Terra), however this reduces the number of usable MODIS 237 

observations by up to 60%. NISE has high precision but low recall, indicating that while areas 238 

classified as snow-covered by NISE are likely correct, many snow-covered regions are missing 239 

in the data set. This is consistent with evaluations by McLinden et al. (2014) and O’Byrne et al. 240 

(2010). Although CMC, IMS, and MAIAC products show an increase in frequency of false 241 

negatives over the Rocky Mountains, they retain a high precision in this region due to frequent 242 

snow cover. While MAIAC Aqua/Terra have high accuracy and precision, lower recall values 243 

indicate that they are conservative in identifying the presence of snow. This is possibly a 244 

consequence of the method used for identifying cloud, which may incorrectly classify fresh 245 

snowfall as cloud (Lyapustin et al., 2008). Data sets were also evaluated by season with similar 246 

results (Appendix Table A1). All data sets have weaker performance metrics during the spring 247 

melt season, which has been observed in past evaluations (Frei et al., 2012). IMS has the highest 248 

F score in winter and autumn but is slightly outperformed by MAIAC in spring. Data sets were 249 

also evaluated at their native resolutions and at a common 25 km resolution (Appendix Tables 250 

A2-3). Results are similar at each resolution with two exceptions: MODIS Aqua and Terra 251 

products perform better when regridded from their native 0.05° resolution to a 4 km resolution as 252 

it reduces the number of grid boxes missing observations due to cloud, and MAIAC Aqua and 253 
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Terra perform better at their native resolution than at either 4 km or 25 km as degrading the 254 

spatial resolution results in a loss of information.  255 

For all data sets, recall is generally low in two regions: along the Pacific coastline where 256 

snow depths are relatively thin, and in the south when snow is rare and generally short lived. 257 

Thin snow is likely to be less homogenous across a pixel and more likely to be obscured by 258 

forest canopies or tall grasses, and thus is difficult to observe from satellite imagery. Short lived 259 

snow in the south is likely to be missed by satellite observations, especially since clouds are 260 

often present. However, as IMS uses multiple observations at multiple times of day in addition to 261 

incorporating ground station data, it is more likely to find snow in these cases than other satellite 262 

products (Hall et al., 2010). Overall, IMS has best agreement with in situ observations, with the 263 

highest accuracy, recall, and F statistic and relatively high precision.  264 

 While CMC also has strong performance metrics, it is important to consider the 265 

information source used to describe snow extent in each product. Products based on satellite 266 

observations are advantageous when assessing how surface reflectivity affects backscattered 267 

radiation observed from space. For example, thin snow, or snow obscured by tree canopies, may 268 

not affect the observed brightness from space, but would be considered snow-covered by a 269 

product based on surface observations (e.g. CMC). Also, the reflectivity of a snow-covered 270 

surface decreases over time as the snow ages (Warren and Wiscombe, 1980); This effect would 271 

not be captured by snow depth measurements. And while snow depth has been used as an 272 

indicator of brightness (Arola et al., 2003), it can not account for snow aging or canopy effects. 273 

IMS is based on visible satellite imagery and thus determines snow extent based on brightness 274 

from space, which is more applicable to satellite retrievals. And while most satellite-based 275 

products rely on observations made at a single overpass time and viewing geometry, IMS has the 276 

advantage of incorporating observations from multiple satellites with differing measurement 277 

times and geometries, including both geostationary and low Earth orbits. These reasons, in 278 

addition to a strong agreement with in situ measurements and near-real-time updates, make IMS 279 

best suited for informing TEMPO retrievals. 280 

We next examine the effect on both spatial sampling and sensitivity to the lower 281 

troposphere of a retrieval data set if observations with surface snow are included rather than 282 

omitted. We use IMS to identify the presence of snow for OMI observations over North America 283 
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in January 2015. We then use LIDORT to calculate AMFs for these observations using the 284 

corresponding snow-free (Sun et al., 2017) or snow-covered (O’Byrne et al., 2010) surface 285 

reflectance, and examine the results of either including or omitting snow-covered scenes. Figure 286 

6 shows that including snow-covered scenes results in a significant (factor of 2.1) increase in 287 

observation frequency, particularly in the northern US and Canada. Additionally, including 288 

snow-covered scenes increases the average AMF by a factor of 2.7 in regions with occasional 289 

snow cover. The increase in AMF demonstrates that including snow-covered scenes increases 290 

the quality of information about the tropospheric NO2 column by increasing the observation 291 

sensitivity to tropospheric NO2. 292 

 293 

5. Conclusion 294 

 An accurate representation of snow cover is essential to ensuring satellite retrieval 295 

accuracy, including those from TEMPO. Radiative transfer model calculations indicate that NO2 296 

retrievals over reflective snow-covered surfaces are more than twice as sensitive to NO2 in the 297 

boundary layer than over snow-free surfaces. This makes snow an attractive surface over which 298 

to observe tropospheric NO2. However, the lack of confidence in snow identification has 299 

previously led many retrieval procedures to omit observations over snow. We show that 300 

increasing this confidence such that these observations could be included not only improves 301 

spatial and temporal sampling, but also allows the inclusion of observations with higher quality 302 

information on the lower troposphere. 303 

We evaluated seven snow extent data sets to determine their usefulness for informing 304 

satellite retrievals of trace gas from solar backscatter observations. All products were more likely 305 

to misidentify snow over mountains or where snow cover is thin or short lived. IMS had the best 306 

agreement with in situ observations (F=0.85), and as a satellite based, operational, daily updated 307 

product, it is well suited for informing TEMPO satellite retrievals. The low recall value (0.45) 308 

for NISE indicated that a significant number of snow covered pixels are missed.  The standard 309 

MODIS products showed medium precision and low recall owing to cloud contamination. The 310 

MAIAC products had the highest precision (0.90 for both Aqua and Terra) of those tested, but is 311 

conservative in ascribing the presence of snow (recall=0.74 for Aqua, 0.75 for Terra). CMC had 312 

strong performance metrics (F=0.81), but as a reanalysis product based on ground observations it 313 
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may not appropriately represent how a surface snow reflectivity would affect TEMPO observed 314 

radiances.  315 

Future work should investigate snow reflectance products that could be used when snow 316 

is detected. This could potentially include Bidirectional Reflectance Distribution Functions 317 

(BRDF) that describe reflection at different viewing angles, as this effect has been shown to have 318 

significant impact on retrieved NO2 columns (Vasilkov et al., 2017). A retrieval algorithm that 319 

combines daily snow detection from IMS with a climatology of snow reflectance has the 320 

potential to greatly improve upon current methodologies.  321 

 322 

6. Data Availability 323 

 IMS (National Ice Center, 2008), NISE (Brodzik and Stewart, 2016), MODIS Aqua (Hall 324 

and Riggs, 2016a), MODIS Terra (Hall and Riggs, 2016b), and CMC (Brown and Brasnett, 325 

2010) data are available from the NASA National Snow and Ice Data Center (http://nsidc.org). 326 

MAIAC Collection 6 re-processing of MODIS data started in September 2017 and is expected to 327 

be completed by the end of year. This study used MAIAC data currently available via ftp at 328 

NASA Center for Climate Simulations (NCCS):  329 

ftp://maiac@dataportal.nccs.nasa.gov/DataRelease/. GHCN-D data are available from the 330 

NOAA National Climatic Data Center (Menne et al., 2012b; www.ncdn.noaa.gov). Code for 331 

calculating scattering weights and air mass factors, and snow-covered surface reflectances used 332 

here are available at http://fizz.phys.dal.ca/~atmos. Snow-free surface reflectances are available 333 

at ftp://rsftp.eeos.umb.edu/data02/Gapfilled/. The GEOS-Chem chemical transport model used 334 

here is available at www.geos-chem.org. 335 
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 515 

 516 

Figure 1: Surface reflectivity at UV-visible wavelengths for snow-covered and snow-free 517 

conditions for January 2013. White space in top panel indicates no snow reflectance information 518 

is available. 519 

 520 
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 521 

Figure 2: Observation sensitivity to NO2. Scattering weight profiles calculated for cloud-free 522 

OMI NO2 retrievals, with and without surface snow cover, for January 2013 at (Left) 42° N, 99° 523 

W with a solar zenith angle (ZA) of 60° and (Right) 58° N, 76° W with a solar zenith angle of 524 

79°. 525 
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 526 

 527 

Figure 3: (Left) Distribution of Air Mass Factors (AMFs) calculated for OMI NO2 retrievals over 528 

North America for observation geometry of January 2013, with and without surface snow cover. 529 

(Right) Maps of AMF for snow-covered and snow-free conditions. 530 
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 531 

Figure 4: Number of false positive (FP) and false negative (FN) snow attributions by the snow 532 

data sets in 2015. All data sets are evaluated at 4 km resolution. Total number of false snow 533 

attributions inset. White space indicates no ground stations present.  534 



24 
 

 535 

Figure 5: Statistical metrics to evaluate snow cover products. All data sets are gridded at 4 km 536 

resolution. White space indicates no ground stations present. 537 
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 538 

Figure 6: OMI observation frequency (top) and average AMFs (bottom) over North America in 539 

January using IMS to identify surface snow conditions. White space indicates a lack of 540 

observations. 541 
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 543 

 Accuracy Precision Recall F 

CMC 0.91 0.79 0.83 0.81 

IMS 0.93 0.87 0.83 0.85 

MAIAC AQUA 0.91 0.90 0.74 0.82 

MAIAC TERRA 0.91 0.90 0.75 0.82 

MODIS AQUA 0.76 0.51 0.43 0.46 

MODIS TERRA 0.82 0.69 0.45 0.54 

NISE 0.84 0.83 0.45 0.58 

Table 1: Evaluation of daily snow extent data set performance for 2015. GHCN-D surface 544 

observations are used as “truth”. All products are regridded to a common 4 km resolution. The 545 

highest value for each metric is shown in bold. 546 

Appendix 547 

Months Data Set Accuracy Precision Recall F 

DJF 

CMC 0.84 0.84 0.89 0.86 

IMS 0.88 0.90 0.88 0.89 

MAIAC AQUA 0.84 0.93 0.80 0.86 

MAIAC TERRA 0.84 0.92 0.80 0.86 

MODIS AQUA 0.58 0.84 0.34 0.48 

MODIS TERRA 0.60 0.88 0.37 0.52 

NISE 0.63 0.90 0.41 0.57 

MAM 

CMC 0.90 0.63 0.57 0.59 

IMS 0.93 0.74 0.67 0.70 

MAIAC AQUA 0.93 0.81 0.62 0.71 

MAIAC TERRA 0.93 0.81 0.63 0.71 

MODIS AQUA 0.86 0.43 0.39 0.41 

MODIS TERRA 0.89 0.62 0.40 0.49 

NISE 0.90 0.71 0.34 0.46 

SON 

CMC 0.91 0.73 0.81 0.76 

IMS 0.92 0.82 0.74 0.78 

MAIAC AQUA 0.91 0.86 0.60 0.71 

MAIAC TERRA 0.90 0.85 0.61 0.71 

MODIS AQUA 0.82 0.51 0.36 0.42 

MODIS TERRA 0.86 0.71 0.39 0.51 

NISE 0.85 0.85 0.25 0.39 

Table A1: Evaluation of daily snow extent data set performance by season for 2015. GHCN-D 548 

surface observations are used as “truth”. All products are regridded to a common 4 km 549 

resolution. The highest value for each metric/season is shown in bold.  550 

 551 
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 552 

 Resolution Accuracy Precision Recall F 

CMC 25 km 0.92 0.81 0.81 0.81 

IMS 4 km 0.93 0.87 0.83 0.85 

MAIAC AQUA 1 km 0.91 0.91 0.71 0.80 

MAIAC TERRA 1 km 0.91 0.90 0.71 0.80 

MODIS AQUA 0.05° 0.77 0.50 0.30 0.37 

MODIS TERRA 0.05° 0.81 0.65 0.32 0.43 

NISE 25 km 0.85 0.87 0.37 0.51 

Table A2: Evaluation of daily snow extent data set performance for 2015. GHCN-D surface 553 

observations are used as “truth”. The highest value for each metric is shown in bold. 554 

 555 

 Accuracy Precision Recall F 

CMC 0.92 0.81 0.81 0.81 

IMS 0.93 0.84 0.85 0.84 

MAIAC AQUA 0.87 0.69 0.73 0.71 

MAIAC TERRA 0.88 0.68 0.73 0.71 

MODIS AQUA 0.78 0.50 0.41 0.45 

MODIS TERRA 0.83 0.68 0.43 0.53 

NISE 0.85 0.87 0.37 0.52 

Table A3: Evaluation of daily snow extent data set performance for 2015. GHCN-D surface 556 

observations are used as “truth”. All products are regridded to a common 25 km resolution. The 557 

highest value for each metric is shown in bold.  558 


