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Abstract. The objective of this paper and its companion (Wing et al., 2018b) is to show that ground

based lidar temperatures are a stable, accurate and precise dataset for use in validating satellite tem-

peratures at high vertical resolution. Long-term lidar observations of the middle atmosphere have

been conducted at the Observatoire de Haute-Provence (OHP), located in southern France (43.93◦ N,

5.71◦ E), since 1978. Making use of 20 years of high-quality co-located lidar measurements we have5

shown that lidar temperatures calculated using the Rayleigh technique at 532 nm are statistically

identical to lidar temperatures calculated from the non-absorbing 355 nm channel of a Differential

Absorption Lidar (DIAL) system. This result is of interest to members of the Network for the De-

tection of Atmospheric Composition Change (NDACC) ozone lidar community seeking to produce

validated temperature products. Additionally, we have addressed previously published concerns of10

lidar-satellite relative warm bias in comparisons of Upper Mesospheric and Lower Thermospheric

(UMLT) temperature profiles. We detail a data treatment algorithm which minimizes known errors

due to data selection procedures, a priori choices, and initialization parameters inherent in the li-

dar retrieval. Our algorithm results in a median cooling of the lidar calculated absolute temperature

profile by 20 K at 90 km altitude with respect to the standard OHP NDACC lidar temperature al-15

gorithm. The confidence engendered by the long-term cross-validation of two independent lidars

and the improved lidar temperature dataset is exploited in (Wing et al., 2018b) for use in multi-year

satellite validations.
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1 Introduction

Rayleigh lidar remote sounding of atmospheric density is an important tool for obtaining accurate,20

high resolution measurements of the atmosphere in regions which are notoriously difficult to mea-

sure routinely or precisely. A key strength of this technique is the ability to retrieve an absolute

temperature profile from a measured relative density profile with high spatio-temporal resolution,

accuracy and precision. This kind of measurement is exactly what is required to detect longterm

middle atmospheric temperature trends associated with global climate change is a great value for25

routine satellite and model validation (Keckhut et al., 2004).

Comparisons of middle atmospheric temperatures measured from satellites to those measured

from lidars have all noted a relative warm bias in lidar temperatures above 70 km. Several recent

examples of lidar-satellite relative warm bias in the upper mesosphere can be found in the work

of: (Kumar et al., 2003) (5-10 K relative to HALOE); (Sivakumar et al., 2011) (5-10 K relative to30

HALOE, 6-10 K relative to COSMIC/CHAMP, 10-16 K relative to SABER); (Yue et al., 2014) (13

K at 75 km relative to SABER); (García-Comas et al., 2014) (3-4 K at 60 km relative to SABER

and MIPAS); (Yue et al., 2014) (13 K at 75 km relative to SABER); (Dou et al., 2009) (4 K at 60

km relative to SABER); (Remsberg et al., 2008) (5-10 K at 80 km relative to SABER); and (Taori

et al., 2012; Taori et al., 2012) (25 K near 90 km relative to SABER). The bias is generally attributed35

to lidar ‘initialization uncertainty’ and model a priori contributions to the temperature retrieval but,

no systematic attempts are made to fully establish this conclusion. These authors also explore the

possible influences of tides, lidar-satellite co-incidence criteria, satellite vertical averaging kernels,

and satellite temperature accuracy as possible contributing factors.

The work of this paper is to evaluate the suitability of lidars as a reference dataset and to address40

the problem of systematic errors due to initialization of the lidar algorithm. The subsequent com-

parison of the improved lidar temperatures to satellite measurements is conducted in the companion

paper (Wing et al., 2018b).

The first part of this paper describes the current experimental setup, the specifications of two OHP

lidars, and the measurement cadence of two key NDACC (Network for the Detection of Atmospheric45

Composition Change) lidar systems.

The second part of this paper outlines techniques to minimize the magnitude of the aforementioned

lidar-satellite temperature bias by systematically detailing a rigorous procedure for the treatment and

selection of raw lidar data and will propose improvements to the standard NDACC lidar temperature

algorithm for the UMLT (Upper Mesosphere and Lower Thermospshere) region.50

The third part of this paper compares the lidar temperatures produced by an NDACC certified

temperature lidar at 532 nm with temperatures produced by the non-absorbing 355 nm line of a

co-located NDACC certified ozone DIAL (DIfferential Absorption Lidar) system. This comparison

is conducted using a large database of two co-located lidar systems with the goal of providing con-

fidence in the longterm stability of the lidar technique at both wavelengths. There are currently 1055
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certified temperature lidars, 6 of which are current in their data submission and have temperature

profiles freely accessible online. Similarly, there are 12 certified stratospheric ozone DIAL systems

of which 5 systems are current with data submission and are available through the NDACC web-

site. We hope that this work will encourage sites with outstanding data obligations to submit their

measurements and for DIAL ozone sites to seek validation for their temperature data products for60

inclusion in the NDACC database (nda). As an ancillary goal we will show that temperatures pro-

duced by the Rayleigh lidar technique are accurate, precise and stable over multiple decades and as

such are the ideal type of measurement for use in future ground based validation of satellite temper-

atures. The result of this demonstration will be used in the companion paper (Wing et al., 2018b) as

justification for validating satellite data with lidar temperatures.65

2 Instrumentation Description

2.1 Rayleigh Lidar

The OHP Rayleigh-Mie-Raman lidar, LTA (Lidar Température et Aérosols), uses a seeded Nd:YAG

to produce a 532 nm laser source with a maximum power of 24 W. The transmitted beam is passed

through a 13X beam expander and has a 30 Hz repetition rate, a 7 ns pulse width, and a beam70

divergence of less than 0.1 mrad.

The receiver assembly consists of a high and low gain elastic channel for 532 nm, a Mie scatter

channel for aerosols, a Raman channel at 607 nm for molecular nitrogen, and a Raman channel

at 660 nm for water vapour. A schematic of the telescope array is shown in Fig. 1. The high gain

Rayleigh channel consists of four telescopes. At the focal point of each telescope is an actuator-75

mounted 400 µm diameter fibre optic. The four fibre optics are bundled to project a single signal

onto a Hamamatsu R9880U-110 photomultiplier. The low gain Rayleigh, nitrogen Raman, water

vapour Raman and Mie channels all use a single telescope setup and actuator mounted fibre optic.

The two Raman channels rely on the largest telescope and the signals are separated by a dichroic

mirror. Specifications for each telescope are found in Table 1.80

LTA
Mirror

Diameter (mm)

Focal

Length (mm)

Field of

View (mrad)

Parallax

(mm)

Optical Filter

Width (nm)

Filter Maximum

Transmission (%)

High Gain Rayleigh 4X 50 1500 0.27 800 0.3 84

Low Gain Rayleigh 20 600-800 1.7 257 0.3 84

Nitrogen Raman 80 2400 0.6 600 1 ∼ 50

Water Raman 80 2400 0.6 600 1 ∼ 50

Aerosol Mie 20 600-800 1.7 257 0.3 84

Table 1: Specifications for the LTA receiver assembly.
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All channels are sampled using a Licel digital transient recorder with a record time of 0.1 µs

which corresponds to a vertical resolution of 15 m. The high and low gain Raleigh channels are

electronically gated at 22 km and 12 km, respectively, to avoid damaging the photomultipliers with

large signal returns. Further details can be found in (Keckhut et al., 1993).

Figure 1: Mirrors A1, A2, A3, A4 (50 cm) are combined for the high gain Rayleigh channel. B (20

cm) is low gain Rayleigh channel. Mirror C&D (80 cm) is the Raman channel for water vapour

and molecular nitrogen. E (20 cm) is the Mie channel. The beam expander for the transmitted laser

source is between mirrors E and B.

2.2 DIAL Ozone System (LiO3S)85

The OHP Differential Absorption Lidar (DIAL) uses two lasers to make a measurement of the ver-

tical ozone profile using the differential absorption by ozone at two different wavelengths. The first

laser is an XeCl eximer laser used to produce a 308 nm laser source with a maximum power of

10 W. The beam is passed through a 3X beam expander and has a final divergence of less than 0.1

mrad. The second laser is a tripled Nd:YAG which is used to produce a 355 nm laser source with90

a maximum power of 2.5 W. The beam is passed through a 2.5X beam expander and has a final

divergence of less than 0.2 mrad. Both transmitted beams have a repetition rate of 50 Hz, and a 7

ns pulse width.

The receiver assembly consists of four 530 mm mirrors each having a focal length of 1500 mm,

a field of view of 0.67 mrad, and an average parallax of 3100 mm. Each of these four telescopes95
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are focused onto an actuator-mounted 1 mm diameter fibre optic. The outgoing signals are bundled

before being passed through a mechanical signal chopper to block low altitude returns below 8 km

which would saturate the photon counting electronics. The combined signal is split using a Horiba

Jobin Yvon holographic grating with 3600 grooves/mm and a dispersion of 0.3 mm/mm. The light

from the grating is projected directly onto the photomultipliers for a high (92%) and low gain (8%)100

Rayleigh channel at 308 nm, a high gain (92%) and low gain (8%) Rayleigh channel at 355 nm, and

two Raman channels at 331.8 nm and 386.7 nm for molecular nitrogen. The spectral resolution of

the light incident on the photo cathode is on the order of 1 nm. Figure 2 shows a schematic of the

OHP DIAL system.

All channels are sampled using a Licel digital transient recorder with a record time of 0.25 µs105

which corresponds to a vertical resolution of 75 m. Further details can be found in (Godin-Beekmann

et al., 2003).

Figure 2: LiO3S DIAL system. 1 355 nm laser source, 2 308 nm laser source, 3 four 530 mm

mirrors, 4 four actuator mounted fibre optic cables, 5 mechanical chopper, 6 Horiba Jobin Yvon

holographic grating, 7 308 nm high and low gain photomultipliers, 8 331.8 nm photomultiplier, 9

355 nm high and low gain photomultipliers, 10 386.7 nm photomultiplier, 11 Licel transient signal

recorder, 12 Signal processing and analysis computer.
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3 Methods

In this section we will set forth rigorous and well defined procedures for the retrieval of lidar tem-

peratures in the middle atmosphere which will minimize the uncertainties at the upper limit of the110

lidar altitude range.

3.1 Rayleigh Lidar Equation

To calculate absolute temperature profiles from relative density profiles we exploit the gradient of

the measured profile of back-scattered photons collected by the receiver. From classical lidar theory

(Hauchecorne and Chanin, 1980), we know that the number of photons received is a simple product115

of transmitted laser power, atmospheric transmission, telescope geometry, and receiver efficiencies.

This quantity can be expressed numerically in Eq. (1):

N(z) = ξsys · τemitted(z,λ) · τreturn(z,λ) ·O(z) ·Plaser ·βcross ·n(z) · A

4πz2
·∆t ·∆z+B

(1)

N is the count rate of returned photons per time integration per altitude bin

z is altitude above the detector120

ξsys is the system specific receiver efficiency

τemitted(z,λ) is the transmittance of the photons through the atmosphere

τreturn(z,λ) is the return transmittance of the photons through the atmosphere

O(z) is the overlap function of the receiver field of view

Plaser is the laser power at a given wavelength125

βcross is the backscattering cross section of the target molecule

n(z) is the number density of scatterers in the atmosphere
A

4πz2 is the effective area of the primary telescope

∆t is the temporal integration for data collection

∆z is the spatial range over which photons in a bin are integrated130

B is the background count rate.

There are four simple assumptions we make when Eq. (1) is used. First, we assume that each

photon we count only scatters once. While this is almost certainly not the case, we can say that it

is approximately true. Visual wavelength photons have a very low probability of scattering in the

atmosphere and with a multiple-scatter process we must square that very small probability. Of these135

multiply scattered photons, only those with a scatter angle towards the lidar receiver assembly will

be seen with the vast majority scattering outside out field of view. Further, the tenuous nature of the

UMLT means that the small probability of detecting a photon which has scattered more than once

becomes exponentially negligible with increasing altitude.

Second, we assume that the atmospheric density is directly proportional to the number of re-140

turned photons incident on the receiver assembly. In the case of high signal returns from the lower
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atmosphere, when the number of returned photons can saturate the photon counting electronics, the

measured photon count rate will diverge from the received photon count rate. Multiple detection

channels, at different sensitivities, are used to compensate for this effect. In this work we are pri-

marily concerned with the UMLT, a region where lidars operate at very low count rates, so for the145

purposes of this work we can safely make this assumption.

Third, we assume that the atmosphere is in local hydrostatic equilibrium as well as local thermody-

namic equilibrium (LTE) and obeys the ideal gas law. This assumption is potentially problematic at

high altitudes where non-LTE processes can affect gravity wave dynamics and temperature profiles

(Apruzese et al., 1984). In this work we are unable to relax this assumption.150

Fourth, we assume that the atmosphere is generally free of aerosols above 30 km and the lidar

returns above this height are solely due to Rayleigh scattering processes (Hauchecorne and Chanin,

1980).

In the UMLT the signal to noise ratio and the model derived a priori assumptions for pressure and

density are the main sources of error for the lidar temperature retrieval method. This paper lays out155

a rigorous method for reducing the noise in this region of the lidar signal with the goal of producing

more robust mesospheric temperatures.

3.2 The Raw Counts Lidar Signal

When backscattered photons are incident on the lidar receiver they are co-added for a set period of

time in the counting electronics. This ensures that the recorded signals are based on a similar number160

of transmitted photons. In the case of LTA a photon count profile, as a function of arrival time, is

generated for every 5000 laser shots. Similarly for LiO3S a photon counts profile is produced for

every 8000 laser shots. These measurements can be further co-added for the entire night to increase

the signal to noise ratio at the upper limit of the measurement range. We use the speed of light to

convert our profiles of photon count rate per second as a function of arrival time at the detector to165

total photon count rate per second as a function of altitude.
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Figure 3: Nightly co-added scans for high and low gain Rayleigh signals for LTA and LiO3S. The

background for LTA extends to 246.23 km and for LiO3S extends to 154.13 km. A single lidar

scan for both LTA and LiO3S has a temporal resolution of roughly 2 minutes and 45 seconds and a

vertical resolution of 7.5 m.

Figure 3 shows four nightly co-added OHP lidar count rate profiles as a function of altitude. Both

lidar systems employ a high gain and a low gain channel to extend the measurements over a greater

altitude range. The lower altitudes (corresponding to the fastest signal return times) of each channel

are either blocked by a mechanical chopper or electronically blanked. This is done to avoid saturation170

of the receiver assembly from very large signals in the lower atmosphere. Additionally, each channel

has a set of optics designed to minimize the noise, with greater care being given to the high gain

channels. These optics are fully described in the instruments Sect. 2.

3.3 Identifying Outliers, Signal Spikes, Signal Induced Noise, and Transient Electronic In-

terference175

When retrieving lidar temperature profiles in the UMLT it is necessary to take extra precautions to

carefully remove outliers, spikes, and electronic contamination from each profile in both the back-

ground region and the signal regions. Any contamination of the signal in the background region will

be of the same order of magnitude as the true signal and thus, have a disproportionate effect on

the temperature. An overestimation of the noise will result in the removal of true photons, a lower180

estimated density, and by the ideal gas law, a warmer temperature. The opposite holds true for an

underestimation of the background (produces a colder profile). The shape of the temperature profile

itself will be distorted if there is a non-constant background. If it is not possible to fully correct the

issue it is highly recommended to exclude the entire scan from the nightly analysis.
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3.3.1 Spikes185

Spikes in fast integration photon counting data are not always easy to spot but can be defined as

anomalously large, isolated, signal rates which occur in only one altitude bin without affecting ad-

jacent data. If not properly identified and extracted from the data they can contribute to false tem-

perature features and inaccurate background estimations. It is particularly challenging to separate

small amplitude spikes when the signal to noise approaches 1. It is therefore necessary to establish190

a consistent criterion to determine which data points belong to the the population of real lidar re-

turns and which points are likely contamination spikes. We have chosen to employ a straight forward

Tukey Quartile test on the difference between consecutively binned lidar returns as this statistic is

relatively insensitive to signal drift during the course of the night. The quartile technique is equally

useful in both regions of high signal returns as well as the background regions and shows stability195

and consistency in identifying outliers. Figure 4 is a plot of photon count rate as a function of binned

arrival time and shows an example of several photon count acquisitions plotted as a stack plot with

the black line representing the 2σ limit on the population of lidar returns. Data points above the

black line are considered as signal contamination and are removed from the analysis.

Figure 4: Tukey Quartile spike identification based on the signal difference between consecutive

lidar time bins for short integration lidar returns. An entire night of lidar scans is over-plotted in the

stack plot. The black line is the 2 sigma limit and points above this line are removed.

3.3.2 Transient Electronic Signals200

Transient Electronic Signals (TES) are short lived bursts in the lidar acquisition chain and may

be internal to the system or related to nearby electronic interference. Possible sources for these

transients include photomultiplier ringing from signal saturation, voltage fluctuations in the power

supply, ambient RF signals, and ground loops between lidar electronics and Ethernet switches with
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metal sheathed cables. While these events are rare they can drastically alter the background and205

resulting temperature profile by inducing wavelike structures into the data.

Unlike simple spikes these features have an amplitude, a duration, and an effect on the downstream

counting rate. In the example shown in Fig. 5 (top) is a surface plot of counts differences between

consecutive bins for the first 100 bins of lidar data. This plot shows scans for a night of lidar data with

each scan accounting for roughly 1.6 minutes of lidar data. We can see that the 22nd and 46th scans210

are contaminated by a TES with a duration of about 0.5 µs. These signals cannot be detected using

the Tukey Quartile test as the time derivative of the photon return signal may not be sufficiently

far from the nightly population median. However, a 2-D kurtosis test will consistently detect this

type of signal contamination as a TES will induce a large skew in the photon count rate population

distribution. The kurtosis test is done in the time dimension as well as with altitude to exclude false215

positives in the photon count rate skew which may be due to clouds or aerosols. Figure 5 (bottom)

shows a plot of the kurtosis in the population of photon counts in each lidar scan and the red line

shows the 2σ estimation of total lidar scan skew. Isolated scans with a total kurtosis above this limit

are excluded.

Figure 5: Upper panel is a surface plot of lidar returns as a function of time bin and scan number.

Two instances of TES can be seen as anomalous peaks in the photon count rate. Lower panel is a

summation of the fourth statistical moment (kurtosis/skew) for each scan. The red line indicates a

2σ limit on the skew of the population. Points above the limit are excluded.
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3.3.3 Bad Scans220

After the removal of lidar scans which suffer from clear signal contamination, there may still be

scans which ought not be included in a lidar temperature analysis. Conceptually, ‘bad scans’ are

lidar scans with a high background and/or a low signal strength. These scans need to be positively

identified as not belonging to the general population of nightly lidar scans and excluded. Quanti-

tatively, identifying a ‘bad scan’ is a challenge as both the background and the signal can change225

abruptly over the night as the laser power drops or sky conditions change (see Fig. 6 for an exam-

ple). In the top panel of the figure we see the evolution of the background for a night of lidar data.

Intuitively, we might suggest that scans 1 through 23 and scans 36 through 46 might belong to one

population and the rest (excluding scan 69) belong to a second population. However, when we look

at the panel representing the signal our intuition becomes a bit more subjective. There are clearly230

four groups of similar signals which match fairly well with the changes in the backgrounds shown in

the panels above however, whether these four groups of signals represent two, three, or four distinct

populations is somewhat dependent on which statistics the author chooses to use.

We have shown two approaches for attempting to address the issue of changing signal quality.

Both have advantages and points for concern and illustrate just how subtle and challenging this235

aspect of lidar science can be. In Fig. 6 the green margin is an attempt to identify ‘bad scans’

based on a moving average approach however, this method cannot accommodate quick transitions

in signal strength and results in false positives when signal quality changes abruptly. The blue line

is an attempt to use Matlab Neural Network software to estimate the number of lidar signal-to-noise

populations for a given night. This approach was abandoned as the training process for the software240

requires an exhaustive set list of example ‘bad profiles’ which we cannot supply. Additionally, we

found that estimating the number of local medians for each sub-population of lidar scans in a given

night was too highly dependent on the number of degrees of freedom specified in the Matlab tool.

11

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-133
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 2 May 2018
c© Author(s) 2018. CC BY 4.0 License.



Figure 6: Example of lidar signal and noise during a night of measurements. Top panel shows the

total background counts summed from 120 km to 153 km and the bottom panel shows the total signal

summed between 35 km and 40 km. Green bounds are calculated based on a simple moving average

of the counts (red) and the blue line is an attempt to estimate local population medians using the

Matlab Neural Network tool.

The simple reality of ground based observation means that lidar signals clearly detect changes in

the viewing conditions such as moonrise, thin cirrus clouds, optically thick clouds, changing light245

pollution, as well as changes in signal quality. Systematically identifying outlier signals is further

complicated as there can be multiple signal to noise population medians during the course of the

night. To properly characterize the non-Gaussian distribution of scans and determine which should

be excluded requires a non-parametric statistic. We use a one sided non-parametric Mann-Whitney-

Wilcoxon rank-sum test to identify lidar scans which do not belong to the nightly population or250

subpopulations of lidar scans.
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Figure 7: Rank sum plots for a night of lidar data. Top panel is the cumulative background count and

the bottom panel is the cumulative signal count. The signal to noise ratio of the rank summed photon

counts in each profile is evaluated using a Mann-Whitney-Wilcoxon rank-sum test to determine if

an individual lidar scan belongs to the nightly population of lidar scans.

Figure 7 shows the ranked sum of the background (noise) and signal counts for a night of li-

dar data. We do not exclude the profiles which fail the test for having high quality. The benefit of

using this metric is that it allows us to have a standardized definition of a ‘bad scan’ which takes

into account the nightly median without the assumption that the quality of lidar scans is normally255

distributed. In this example the first 13 scans fail the rank-sum test and are discarded.

3.3.4 Good Scans

Given that our objective is to calculate accurate temperature profiles at the highest possible altitudes

we must quality test each scan that we choose to include in the nightly average. It is possible to

include partial scans but that is not done in this work. The conceptual difference between a ‘bad260

scan’ and a ‘good scan’ is that bad scans are positively identified as outliers to the general popu-

lation whereas good scans represent the portion of the population of scans which contribute more

information than noise to the nightly average at a given altitude. Consider that a poor quality lidar

scan which has a signal to noise ratio of 1 at 70 km contributes more information than noise at 60

km, but more noise than signal at 80 km. Thus, we need a flexible metric to determine signal quality265

over a diagnostic altitude which reflects the general signal quality of the night.
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Quantitatively, we express this with a signal, S, to noise, N , inequality in Eq. (2). The noise is

always evaluated between 120 km and 155 km and the altitude range for the evaluating the signal is

defined as the scale height below the point where the signal to noise equals one in the density profile.

Each individual scan has a value representing the signal, Si, and a noise, Ni. The scan values are270

compared to the nightly sum of the signal, Ssum and the nightly sum of the noise, Nsum. If a scan

fails the inequality test then it is not included in further nightly analysis.

√
Ssum +Nsum

Ssum
<

√
(Ssum−Si) + (Nsum−Ni)

Ssum−Si
(2)

3.4 Noise Reduction

Statistical uncertainty in photon counting can be described by a Poisson distribution based on the275

square root of the number of photons received. Systematic uncertainties in the photon counts are

introduced by ambient background light (light pollution, moonlight etc.), thermal excitation in the

photomultipliers (so-called dark current), and signal induced noise. The first two sources of error are

minimized by using narrow filters in the optical receiver chain and by cooling the photomultipliers.

The signal induced noise can be very difficult to correct experimentally and is usually estimated in280

data processing. This type of noise can occur if the photomultipliers have become saturated at any

point in the signal acquisition process and often manifest as non-linear artifacts superimposed upon

the true photon count profile.

Figure 8 shows the reduction in the background noise due to recent hardware improvements. The

first drop corresponds improvements made to the photomultiplier cooling system which reduces285

the number of thermally excited electrons detected at the photo cathode of the photomultiplier in

the absence of signal from the sky. The second drop in background counts results from replacing

the Hamamatsu R7600U-20 multi-alkali photomultiplier with the improved Hamamatsu R9880U-

110 photomultiplier having a super bi-alkali photo-cathode. The third and final drop in background

counts is a result of replacing a 532 nm optical filter which has a width of 1 nm with a newer filter290

having a bandwidth of 0.3 nm. These experimental modifications result in a 100 fold decrease in the

background noise and allows us greater confidence in our UMLT temperature retrievals. The regular

monthly variations in the signal which become apparent at lower noise levels are due to the phase of

the moon.
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Figure 8: This figure shows the improvements in the background count rate due to photomultiplier

cooling, new photomultipliers, and new optical filters. Note the logarithmic y-axis and the total

reduction of background counts by more than 2 orders of magnitude.

3.5 Corrections Applied Before Temperature Calculation295

In the previous subsection we detailed the process for removing bad scans from our nightly lidar

measurement. In this subsection we will detail several corrections to our remaining photon counts

profiles which correct for signal saturation, atmospheric transmission, and background estimation.

3.5.1 Deadtime Correction

The OHP lidars measure photons using photomultipliers and a digitizing signal counter. This sys-300

tem is highly efficient at detecting low signals and is optimized for single photon returns in the

UMLT. However, given that the returned lidar signal directly follows the exponential density of the

atmosphere, the photomultipliers and counting systems are susceptible to missing photons at lower

altitudes due to high count rates. To correct for this saturation effect we can estimate a correction

coefficient, τ , also referred to as a deadtime. The background theory and derivation of Eq. (3) is well305

described by (Donovan et al., 1993), where N is the photon count rate and ∆t is the measurement

time interval. This deadtime correction can be calculated based on factory specification of the count-

ing electronics, a theoretically derived deadtime, or it can be measured directly using a low gain

lidar channel. The OHP lidars measure the deadtime directly and correct for saturation in the high

gain channels with information from the low gain channels. If the low gain channel is not available310

a theoretical correction of 7 ns is applied to pre-2013 data and 4 ns is applied to more recent data

following the installation of a Licel digital recorder.
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Ncounted =Nreceived ∗ exp(
τ ∗Nreceived

∆t
) (3)

3.5.2 Atmospheric Transmission Correction

To correct for Rayleigh extinction we use MSIS-90 model (Picone et al., 2002) to generate a vertical315

profile of ozone, molecular oxygen, oxygen radical, molecular nitrogen, and argon, and then apply

the correct Rayleigh cross-section to each species. This method is adapted from (Argall, 2007) and

is important for accurate retrievals of density and neutral temperature in the UMLT. Correction for

aerosols is not done in this work as we assume that the atmosphere is generally clean above 30 km

(Hauchecorne and Chanin, 1980).320

3.5.3 Defining the Background

Normally, we assume that the rate of counted photons per laser shot is constant in the background

region during the signal acquisition time and can therefore be approximated by a simple Poisson

distribution. We further assume that in this background region we are not measuring returned photons

from the laser signal but instead are measuring ambient sky light. However, if there is a non-linear325

signal induced noise in the photon counting chain, the number of counted photons is not constant

with time during the acquisition period of a single laser shot. When this occurs we cannot assume

that the variation in the background is a strictly Poisson distribution around a constant expected

value.

If left uncorrected, we risk overestimating the number of ‘true’ photons returned from the upper330

atmosphere and the result is an artificially dense and cold UMLT. Erring on the side of caution we

fit three backgrounds (constant, linear, and quadratic) to each nightly summed profile, in a standard

diagnostic region, and choose the function with the best Chi-squared goodness of fit as our estimate

of signal induced noise. Shown in Fig. 9 is an example of a night where the low gain Rayleigh chan-

nel (blue) experienced signal induced noise which was best approximated by a quadratic function;335

the high gain Rayleigh channel (red) had a background best estimated by a small negative linear

function; and the nitrogen Raman channel (green) had no apparent signal induced noise and was fit

with a constant background. The optimal solution for non-linear signal induced noise is to determine

the contribution of both the signal and the noise using exponential fits however, we have found that

method to be extremely sensitive to the choice of background diagnostic region and was less stable340

than the simple quadratic approximation. Our standard altitude range for background selection is 120

km to 155 km but this number is system and channel specific. To illustrate this point we compare the

background regions of the high gain Rayleigh channel (red) and the nitrogen Raman channel (green)

in Fig. 9. The nitrogen Raman channel background could be calculated from 50 km to 155 km or

120 km to 155 km and yield the same result.345

16

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-133
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 2 May 2018
c© Author(s) 2018. CC BY 4.0 License.



Figure 9: An example of a non-linear signal induced noise in the low gain Rayleigh channel best

estimated by a quadratic background. Also shown is the high gain Rayleigh channel (red) with a

background best fit by a negative linear function and the nitrogen Raman channel (green) with no

apparent signal induced noise and a constant background.

3.6 Temperature Inversion Equation

The standard NDACC algorithm for Rayleigh temperature retrieval is the Hauchecorne-Chanin (HC)

method (Hauchecorne and Chanin, 1980) which makes a scalar normalisation of the photon-count

profile to an in-situ density measurement or to a density calculated from a model like CIRA-72,

SPARC-80, or MSIS-90. From a density gradient profile we calculate a pressure gradient profile Eq.350

(4) and using the ideal gas law, Eq. (5), we can arrive at an expression for pressure, Eq. (6). Here P

is pressure, z is altitude above the lidar station, ρ is density, g is the latitude dependent acceleration

due to gravity for an ellipsoid Earth given by the Somigliana formula, R is the ideal gas constant, T

is the temperature, and M is the molecular mass.

dP (z) =−ρ(z)g(z)dz (4)355

P (z) =
Rρ(z)T (z)

M
(5)

dP (z)
P (z)

=−Mg(z)
RT (z)

dz = d(log(P (z))) (6)

The crux of the challenge for initializing the lidar equation lies in the non-linear nature of Eq.

(6) which will necessitate the introduction of an a priori estimate of pressure at the top of the atmo-

sphere followed by an iterative approach to retrieving the profile at lower attitudes. A full theoretical360

description of this problem was well laid out by (Khanna et al., 2012). In this work we have chosen

to take our initial a priori seed pressure value, P (z1), from the MSIS-90 model. We now arrive at an

iterative expression for the generation of the pressure profile as a function of altitude Eq. (7).

P (zi)− ∆z
2

P (zi) + ∆z
2

= exp
Mg(zi)
RT (zi)

∆z (7)
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Given our iteratively generated pressure profile we can do an inverse calculation to map our pres-365

sures to a set of temperatures using Eq. (8) and Eq. (9). This iteration starts at the top of the atmo-

sphere, in an area low signal to noise and thus of large relative uncertainty, and proceeds downwards

in altitude and becomes exponentially less uncertain with each step as signal quality improves with

increasing atmospheric pressure. As we iterate downward the influence of our choice of a priori pres-

sure becomes less significant and the calculated temperature profile becomes entirely data driven.370

Xi =
ρ(zi)g(zi)∆z
P (zi) + ∆z

2

(8)

T (zi) =
Mg(zi)

R log(1 +Xi)
∆z (9)

In order to calculate a single temperature profile from 5 km to above 80 km we meld the photon

counts from the high and low gain Rayleigh channels together with the counts from the N2 Raman

channel. The slope of the logarithm of each of the three photon counts profiles is compared to a375

synthetic lidar counts profile generated based on the nightly average MSIS-90 density profile. The

comparison gives us a first estimation of the linearity and alignment of the lidar data. We then select

a clear linear region of each scan to use in calculating a MSIS derived scaling factor for each profile.

This procedure allows the top of the nitrogen Raman profile to be melded to the bottom of the low

gain Rayleigh profile and the top of the low gain Rayleigh profile to be melded to the bottom of380

the high gain Rayleigh profile. The melding calculation is conducted over a signal-to-noise defined

altitude range and is a straightforward weighted average. The resulting melded density and pressure

profiles are used to generate a single temperature profile like the one shown in Fig. 10. The use of

MSIS-90 as a scalar density reference for the synthetic lidar profile does not affect the final lidar

temperature profile which depends only on the relative density and not the absolute value. We follow385

similar procedures to those described by (Alpers et al., 2004).
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Figure 10: An example of a melded temperature profile from two Rayleigh channels and one Raman

channel. The profile is calculated at 300 m vertical resolution from a single combined photon count

profile and has a maximum relative error near 80 km of 30%. Black line is the MSIS-90 temperature

profile which corresponds to the MSIS-90 pressure and density information we used as an a priori.

3.6.1 Where to start the inversion

As can be seen in Eq. (8) and Eq. (9) the calculation of lidar temperature requires an a priori guess of

pressure at the top of the atmosphere and a relative density gradient. Given that the signal to noise in

the UMLT can be very low, the choice of a priori as well as the uncertainties in the density gradient390

can have a very large effect on the temperature profile (Khanna et al., 2011). As a result, it is prudent

to remove the top 15 km of the retrieval to minimize the contribution of the a priori (Leblanc et al.,

1998b).

In our treatment the a priori pressure is selected at the altitude where the signal to noise ratio in a

smoothed photon counts profile is 1. The resulting temperature profile is subsequently cut when the395

relative error exceeds 30 percent. This treatment is not the optimal solution for the retrieval altitude

as a fully Bayesian algorithm is required to properly characterize the influence of the a priori choice

(Sica and Haefele, 2015). However, we believe that our signal to noise metric is sufficiently rigorous,

and more importantly reproducible.

4 Net result of temperature algorithm modifications400

By implementing the changes from the previous section to both raw data processing and lidar tem-

perature retrieval described in this section we have cooled the UMLT lidar temperature retrievals

with respect to the standard NDACC temperature algorithm. This cooling reduces the lidar-satellite

warm bias which was noted in the introduction. The modifications cool the mesospheric retrievals
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by approximately 5 K near 85 km and 20 K by 90 km. There is no significant change to the lidar405

temperatures below 70 km.

Figure 11 shows the ensemble median difference between the temperatures produced using the

standard NDACC temperature algorithm on LTA data (black), with the modified algorithm (green),

the temperatures produced by LiO3S (orange), the satellites MLS (red) and SABER (blue), and

the MSIS-90 model (magenta). By implementing the techniques described in the sections above410

we can account for nearly half of the temperature difference between the lidar and the satellites at

90 km. The character change in the difference functions above and below 84 km is in part due

to the increasing contributions of the species specific Rayleigh backscattering correction and the

corrections to the gravity vector. The remaining temperature difference between the improved lidar

temperatures (green) and the satellites and model may be in part due to distortions in the satellite a415

priori for the geopotential vector. This possibility is explored further in the companion paper (Wing

et al., 2018b).

Figure 11: Ensemble temperature differences from NDACC standard LTA Rayleigh temperatures

(black). MLS (red), SABER (blue with ensemble variance), MSIS-90 (magenta), LiO3S (orange),

and LTA Rayleigh temperatures with corrections given in this work (green).

5 20 Year Comparison of OHP Lidar Temperatures

Conducting systematic inter-comparisons between independent lidar systems is essential for assur-

ing data quality and is a requirement for NDACC certified instruments. Most comparisons are con-420

ducted on a campaign basis where two or more lidar systems are co-located and make coincident

measurements. A good example of this type of work was the stratospheric lidar and Upper Atmo-

spheric Research Satellite (UARS) validation campaign (Singh et al., 1996). This study proposes

a completely novel type of inter-lidar study on the long-term stability of the Rayleigh lidar tech-

nique. The first step in our analysis is to compare the temperature profiles from the LTA and LiO3S425

systems. LTA temperatures were calculated using the OHP NDACC temperature code and LiO3S

20

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-133
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 2 May 2018
c© Author(s) 2018. CC BY 4.0 License.



temperatures were calculated using a modified version of the same code. There are very few sig-

nificant differences between these two codes. The most important difference involves the choice of

parameters for melding the high and low gain channels for the two systems. Given the differences

in the relative gain between the four lidar channels being considered, the melding of LiO3S often430

occurs at a lower altitude than LTA. This study considers temperatures in between 35 km and 75

km to ensure that we are well above any contamination from aerosols and below any significant ini-

tialization errors. From Fig. 11 we can see that there is no significant difference in the temperature

outputs of these two algorithms (black baseline and orange) or with the improved algorithm (green)

below 75 km.435

We selected the data from 1993 to 2013 for the comparison as both instruments operated regularly

and without significant design changes during this time. Since the two lidars are co-located and are

operated by the same technicians they often make measurements simultaneously. Figure 12 shows

the average number of measurements per month made by the LTA and LiO3S which were included

in in this study as well as the average number of common measurements per month. We defined440

common measurement times based on more than 80% temporal overlap, good quality scans in both

systems, and good internal alignment of both lidars. Of the 2482 nights of LTA data and 3194 nights

of LiO3S, 1496 nights met our criteria for coincidence.

Figure 12: Average number of OHP lidar temperature measurements per month during the period of

1993-2013.

Figure 13 shows the nightly temperature differences between the two lidar systems. The 20 year

data set contains 1496 coincident measurements lasting longer than four hours. Black vertical rect-445

angles indicate some of the time periods where the high or low gain channels were mis-aligned in

one or the other lidar. A few of these time periods can be associated with minor system modifica-
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tions. Misaligned lidar signals were identified by comparing the slopes of the density profiles in the

high (generally above 50 km) and low (below ~50 km) gain channels of each system. A simple

chi-squared test was used to detect these nights and exclude them from the rest of the analysis.450

Figure 13: Temperature differences between LTA and LiO3S OHP lidars for a 20 year period between

1993 and 2013. There are 1496 nights of comparison in this plot. Red indicates that LiO3S was

warmer than LTA and blue that it was colder. The black boxes highlight periods where the two lidars

were out of alignment with respect to each other.

Figure 14 shows four curves depicting the average temperature differences as a function of alti-

tude and year. The red curve is the average temperature difference between 65 km and 75 km with

an average standard deviation of 6.6 K; the green curve is the average temperature difference be-

tween 55 km and 65 km with an average standard deviation of 4.5 K; the blue curve is the average

temperature difference between 45 km and 55 km with an average standard deviation of 2.7 K; and455

the magenta curve is the average temperature difference between 35 km and 45 km with an average

standard deviation of 1.6 K. Examining the time evolution of the average temperature differences

between LTA and LiO3S at four altitude levels gives us confidence that both measurements are stable

in both time and altitude. Without excluding misaligned periods (example: winter 2006-2007 in Fig.

13 and Fig. 14) the lidar temperature differences are not significant as a function of altitude or year460

at the 2 sigma level.
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Figure 14: Average temperature differences between LTA and LiO3S OHP lidars for a 20 year period

between 1993 and 2013 at four altitude levels: 65-75 km (red), 55-65 km (green), 45-55 km (blue),

and 35-45 km (magenta). Shaded uncertainties are shown at 1 sigma for clarity and the black lines

are zero temperature difference displaced to 40, 50, 60 and 70 km. All measurements, including

periods of lidar misalignment, are included in this plot. The apparent anomalies (e.g. between 2005

and 2009) occur only during times where the lidars were often misaligned, as indicated in Fig. 13.

After removing comparisons between mis-aligned instruments we can calculate the ensemble me-

dian difference between the two systems. The ensemble median difference in Fig. 15 shows very

good agreement between the two co-located lidar instruments. The temperatures produced by LTA

and LiO3S are statistically equal above 45 km for the 20 year period between 1993 and 2013. There465

is a small –0.6 K systematic difference which reaches a maximum near 40 km. We believe this

slight cold bias is due to small differences in the signal melding technique between the high and low

gain channels in both systems. On a typical night, the LTA low gain channel starts to significantly

contribute to the combined signal near 50 km. If the photon count rate in the low gain channel is too

large at these altitudes (due to residual noise contributions or from a slight misalignment with the470

high channel) the counts will be artificially higher than expected, resulting in a colder temperature.

The converse holds true when the low gain channel is misaligned in the opposite sense, resulting in

a slight warming due to underestimation of the counts.

The effect of these small temperature perturbations is so small that they can’t be seen in single

nightly temperature comparisons and were not detected before this study. It is important to note that475

the 2σ distribution about our ensemble at 40 km has a magnitude of approximately 0.45 K while

the statistical error for a single night of lidar measurements near 40 km at 300 m vertical resolution

can be on the order of 2 K. Detecting and resolving this small disagreement will be extremely

challenging and will not be accomplished in this work.

Given that the primary interest of this work is the upper middle atmosphere (nominally above 50480

km), we will focus on the upper portions of Fig. 15 where the two lidars are in statistically perfect

agreement. To our knowledge, this is the first ever long-term study of the temperatures produced by
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co-located temperature lidars operating at 532 nm and 355 nm. The excellent agreement between

these two independent measurements gives us confidence that A) there is no vertical misalignment

between the lidars, B) there are no unaccounted for optical transmission effects which influence our485

temperatures, C) the lidar measurements are accurate and reproducible, D) we can now proceed with

some confidence that our ground based lidar measurements can be useful as a calibration source for

the space based satellite measurements.

Figure 15: Ensemble of median temperature differences between LTA and LiO3S based on temper-

ature measurements between 1993 and 2013. Shaded error is the two sigma distribution about the

ensemble.

6 Summary and Discussion

6.1 Changes to Lidar Temperature Algorithm490

In this work we have attempted to minimize systematic temperature bias at the top of the lidar

temperature retrieval which has been noted previously by several studies cited in the introduction.

We have done this by clearly and carefully outlining a rigorous, and complete algorithm for the

calculation of lidar temperatures in the UMLT. We have presented techniques for the detection of

signal contamination, the selection of the best data for inclusion in the calculation, criteria for where495

to initialized the inversion when assuming an a priori pressure at the top of the atmosphere, and

have demonstrated the benefit of photomultiplier cooling and narrow band pass filters to reduce lidar

backgrounds.

After applying our techniques we have seen a systematic cooling of the high altitude lidar tem-

peratures which brings them into better agreement with the temperatures measured by both MLS500

and SABER (Fig. 11). It is also important to note the large variance associated with these ensemble

differences can partially be attributed to the lack of control exerted on the error contribution from
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the choice of a priori initial pressure for lidar data and a priori contribution and non-LTE effects for

satellite data. Part of the difference may also be due to altitude offsets and coarse vertical resolution.

Having applied these new data filtering techniques we have produced an improved lidar tempera-505

ture data set which is exploited in the companion paper (Wing et al., 2018b) in an effort to validate

satellite temperatures.

6.2 OHP Lidar 20 Year Comparison

We have conducted the first ever decadal temperature inter comparison between a co-located 532

nm Rayleigh lidar and an ozone DIAL system calculating temperatures from a 355 nm line. We510

have shown that:

1) Rayleigh lidar temperatures calculated from ozone DIAL non-absorbing 355 nm line are sta-

tistically equal to temperatures from a traditional 532 nm Rayleigh temperature lidar over a large

altitude range. This finding is of particular interest for the NDACC lidar temperature database as

temperatures from ozone lidars may also be available for validation and inclusion.515

2) Further theoretical work must be done on algorithms for melding data from high and low gain

photon counting channels. The current techniques produce statistically identical nightly temperature

profiles however, a -0.6 K bias near 40 km becomes apparent when multiple years of data are

compared. It is doubtful that current data processing techniques can be easily adapted to address

this problem. However, an iterative, cost minimizing, Bayesian approach such as the one proposed520

by (Sica and Haefele, 2015) would be able to produce a single melded temperature profile with the

accompanying averaging kernels and an estimate of the error due to the photon count melding. As

a lidar development note, Fig. 13 demonstrates the need move towards the use of automated nightly

alignment of lidar system optics. Manual alignment by operators appears to lack consistency over

the time frame of multiple decades.525

3) The two independent lidars show no evidence of significant instrument drift over a 20 year

period. This means that ground based lidars are the ideal choice of instrument for detecting small

calibration drifts in satellite remote measurements over long time scales. We rely on this finding to

justify the use of lidars as a reference data set for satellite validation in the companion paper Wing

et al. (2018b).530

4) There is no evidence of a relative vertical offset between the two independently calibrated

lidar systems which would be seen as an ‘S’ shaped temperature bias in Fig. 15 due to the sign

change in temperature vertical gradient at the stratopause (Leblanc et al., 1998a). Based on personal

communication, recent July-August 2017 and March 2018 NDACC Ozone validation campaign at

OHP (LAVANDE) revealed no vertical shifts between either OHP lidar and the NASA STROZ535

mobile validation lidar (McGee et al., 1995).
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