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Abstract. This study applies Fuzzy K-Means (FKM) cluster analyses to a subset of the parameters reported in the CALIPSO 

lidar level 2 data products and compares the clustering results within order to classify the layers detected as either clouds or 10 

aerosols. The results obtained are used to assess the reliability of the cloud-aerosol discrimination (CAD) scores reported in 

the version 4.1 release of the CALIPSO data products. The selection of samplesFKM is an unsupervised learning algorithm, 

whereas the CALIPSO operational CAD algorithm (COCA) takes a highly supervised approach. Despite these substantial 

computational and architectural differences, our statistical analyses show that the FKM classifications agree with the COCA 

classifications for more than 94% of the cases in the troposphere. This high degree of similarity is achieved because the lidar-15 

measured signatures of the majority of the clouds and the aerosols are naturally distinct and hence objective methods can 

independently and effectively separate the two classes in most cases. Classification differences most often occur in complex 

scenes (e.g., evaporating water cloud filaments embedded in dense aerosol) or when observing diffuse features that occur only 

intermittently (e.g., volcanic ash in the tropical tropopause layer).  The two methods examined in this study establish overall 

classification correctness boundaries due to their differing algorithm uncertainties. In addition to comparing the outputs from 20 

the two algorithms, analysis of sampling, data training, performance measurements, fuzzy linear discriminants, defuzzification, 

error propagation, and key parameter analyses in feature type discrimination are discussed. Statistical results show that the 

FKM classification agrees with the CAD algorithm classification for more than 94% of the cases in troposphere. This is because 

the lidar-measured signatures of most clouds and aerosols are naturally different. Based on their different natures, objective 

methods can effectively separate clouds from aerosols in most cases. In addition to validating the current CAD algorithm, the 25 

FKM clustering can also provide new insights and supplemental information to help better understand the driving parameters 

in the scene classification process.parameters in feature type discrimination with the FKM method are further discussed in 

order to better understand the utility and limits of the application of clustering algorithms to space lidar measurements. In 

general, we find that both FKM and COCA classification uncertainties are only minimally affected by noise in the CALIPSO 

measurements, though both algorithms can be challenged by especially complex scenes containing mixtures of discrete layer 30 

types. Our analysis results show that attenuated backscatter, and color ratio are the driving factors that separate water clouds 
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from aerosols; backscatter intensity, depolarization, and mid-layer altitude are most useful in discriminating between aerosols 

and ice clouds; and the joint distribution of backscatter intensity and depolarization ratio is critically important for 

distinguishing ice clouds from water clouds.  

1 Introduction 

The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission has been developed through a 5 

close and on-going collaboration between NASA Langley Research Center (LaRC) and the French space agency, Centre 

National D’Etudes Spatial (CNES) (Winker et al., 2010). This mission provides unique measurements to improve our 

understanding of global radiative effects of clouds and aerosols in the Earth’s climate system. The CALIPSO satellite was 

launched in April 2006, as a part of the A-Train constellation (Stephens and Vane, 2007). The availability of continuous, 

vertically resolved measurements of the Earth’s atmosphere at global scale leads to great improvements in understanding both 10 

atmospheric observations and climate models (Konsta et al. 2013; Chepfer et al. 2008).  

The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), on-board CALIPSO, is the first satellite-borne polarization-

sensitive lidar that specifically measures the vertical distribution of clouds and aerosols along with their microphysical and 

optical and geometrical properties. The level 1 CALIOP data products report vertically-resolved total atmospheric backscatter 

intensity at both 532 nm and 1064 nm, and the component of the 532 nm backscatter that is polarized perpendicular to the laser 15 

polarization plane. The level 2 cloud and aerosol products are retrieved from the level 1 data and separately stored into two 

different file types: the cloud, aerosol, and merged layer product files (Clay, AlayCLay, ALay, and MLay, respectively) and 

the cloud and aerosol profile product files (CPro and APro). The profile data are generated at 5 km horizontal resolution for 

both clouds and aerosols, with vertical resolutions of 60 m from -0.5 km to 20.2 km, and 180 m from 20.2 km to 30 km. The 

layer data are generated at 5 km horizontal resolution for aerosols and at three different horizontal resolutions for clouds (1/3 20 

km, 1 km and 5 km). The layer products consist of a sequence of column descriptors (e.g., latitude, longitude, time, etc.) that 

provide information about the vertical column of atmosphere being evaluated.  Each set of column descriptors is associated 

with a variable number of layer descriptors that report the spatial and optical properties of each layer detected in the column.  

The CALIOP level 2 processing system is composed of three modules, which have the general functions of detecting layers, 

classifying the layers, and performing extinction retrievals. These three modules are the Selective Iterated BoundarY Locator 25 

(SIBYL), the Scene Classifier Algorithms (SCA), and the Hybrid Extinction Retrieval Algorithms (HERA) (Winker et al. 

2009). The level 2 lidar processing begins with the SIBYL module that operates on a sequence of scenes consisting of segments 

of level 1 data covering 80 km in along-track distance. The module averages these profiles to horizontal resolutions of 5, 20 

and 80 km respectively, and detects features at each of these resolutions (Vaughan et al.,.  Those features detected at 5 km are 

further inspected to determine if they can also be detected at finer spatial scales (Vaughan et al., 2009). The SCA is composed 30 
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of three main sub-modules: the cloud and aerosol discrimination (CAD) algorithm (Liu et al., 2004, 2009, 2018), the aerosol 

subtyping algorithm (Omar et al., 2009; Kim et al., 2018), and the cloud ice-water phase discrimination algorithm (Hu et al., 

2009; Avery et al., 2018). Profiles of particulate (i.e., cloud or aerosol) extinction and backscatter coefficients and estimates 

of layer optical depths are retrieved for all feature types by the HERA module. 

The CAD algorithm uses Clouds and aerosols modulate the Earth’s radiation balance in different ways, depending on their 5 

composition and spatial and temporal distributions, and thus being able to accurately discriminate between them using global 

satellite measurements is critical for better understanding trends in global climate change (Trenberth et al., 2009). The CALIOP 

operational CAD algorithm (COCA) uses a family of multi-dimensional probability density functions (PDFs) to distinguish 

between two classes, cloudclouds and aerosolaerosols (Liu et al., 2004, 2009, 2018). The CAD algorithm has been improved 

over many years, from using three independent measurements (Using a larger number of layer mean attenuated backscatter at 10 

532 nm, the layer-integrated 1064 nm to 532 nm volume color ratio, and the mid-layer altitude) in version 1 (V1) to five 

independent measurements (adding layer-integrated 532 nm volume depolarization and latitude) in version 4.1 (V4). For the 

operational CAD PDF method, using more measured independent information attributes (i.e., higher dimension PDFs) is 

expected to yieldgenerally yields increasingly accurate cloud and aerosol discrimination.  

In addition to the CALIPSO team, scientists over the globe also While both V3 and V4 COCA algorithms use the CALIOP 15 

data and products, and their work greatly contributes to the evaluation of the CAD products and helps to better understand 

lidar techniques for distinguishing clouds from aerosols (Chen et al. 2010; Jin et al., 2014; Di Pierro et al. 2011). Usingsame 

five attributes to derive their classifications, substantial improvements have been made in V4 due to much improved 

calibration, especially at 1064 nm (Liu et al, 2018; Vaughan et al., 2018). The V4 PDFs have been re-built to better discriminate 

dense dust over the Taklimakan desert, lofted dust over Siberia and the American Arctic regions, and high-altitude smoke and 20 

volcanic aerosol. Also, the application of the V4 PDFs has been extended, and they are now used to discriminate between 

clouds and aerosols in the stratosphere and to features detected at single-shot resolute (333 m) in the mid-to-lower troposphere.  

CALIPSO has been delivering separate cloud and aerosol data products throughout its 12+ year lifetime, and the reliable 

segregation of these products clearly depends on the accuracy of the COCA. However, to the best of our knowledge, no 

traditional validation study of the CALIOP CAD results has been published in the peer-reviewed literature.  Traditional 25 

validation studies typically compare coincident measurements of identical phenomena acquired by previously validated and 

well-established instruments to the measurements acquired by the instrument being validated.  For example, radiometric 

calibration of the CALIOP attenuated backscatter profiles have been extensively validated using ground-based Raman lidars 

(Mamouri et al., 2009; Mona et al., 2009) and airborne high spectral resolution lidars (HSRL) (Kar et al., 2018; Getzewich et 

al., 2018).  Furthermore, CALIOP level 2 products have also been thoroughly validated: cirrus cloud heights and extinction 30 

coefficients have been validated using measurements by Raman lidars (Thorsen et al., 2011), Cloud Physics Lidar (CPL) 
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measurements (Yorks et., 2011; Hlavka et al. 2012), and in situ observations (Mioche et al., 2010); CALIOP aerosol typing 

has been assessed by HSRL measurements (Burton et al., 2013) and Aerosol Robotic Network (AERONET) retrievals 

(Mielonen et al., 2009); and CALIOP aerosol optical depth estimates have been validated using HSRL measurements (Rogers 

et al., 2014), Raman measurements (Teche et al., 2013), AERONET measurements (Schuster et al., 2012; Omar et al., 2013), 

and Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals (Redemann et al., 2012).  These level 2 validation 5 

studies implicitly depend on the assumption that the COCA classifications are essentially correct; however, this fundamental 

assumption has yet to be verified.  This paper is, therefore, a first step in an on-going process of verifying and validating the 

outputs of the CALIOP operational CAD algorithm. But unlike traditional validation studies in which coincident measurements 

are compared, this study will compare the outputs of two wholly different classificaiton schemes applied to the same measured 

input data.  Clearly one of these two schemes is COCA.  The other is the venerable fuzzy k-means (FKM) clustering algorithm, 10 

which has a long history of use in classifying features found in satellite imagery (Harr and Elsberry, 1995; Metternicht, 1999; 

Burrough et al., 2001; Olthof and Latifovic, 2007; Jabari and Zhang, 2013).   

The rationale for comparing algorithm outputs rather than measurements is twofold. First, no suitable set of coincident 

observations is currently available for use in a global-scale validation study.  The spatial and temporal coincidence of ground-

based and airborne measurements is extremely limited, and thus any validation exercise would require assumptions about the 15 

compositional persistence of features being compared.  (Paradoxically, these are precisely the sorts of assumptions that should 

be obviated by well-designed validation studies.)  Coincident A-Train measurements can be used in simple cases (Stubenrauch 

et al., 2013), but have little to offer in the complex scenes where cloud and aerosol intermingle; e.g., passive sensors cannot 

provide comparative information in multi-layer scenes or at cloud-aerosol boundaries, and the CloudSat radar is only sensitive 

to large particles, and thus cannot help to distinguish between scattering targets that it cannot detect (e.g., lofted dust and thin 20 

cirrus). Second, COCA is a highly supervised classification scheme whose decision-making prowess depends on human-

specified probability density functions (PDFs).  FKM, on the other hand, is an unsupervised learning algorithm that, after 

suitable training, delivers classifications based on the inherent structure found in the data.  The results obtained from the two 

different algorithms will help us better understand global cloud and aerosol distributions, which is important for all the users 

of space lidar (e.g., atmospheric scientists, weather and climate modelers, instrument developers, etc.). The flexibility of the 25 

FKM approach can help determine which individual parameters are most influential in discriminating clouds from aerosols 

and help evaluate the degree of improvement to be expected if/when new observational dimensions are added to the COCA 

PDFs.  

Our paper is structured as follows.  Section 2 briefly reviews the fundamentals of the COCA PDFs and their application to the 

CALIOP measurements.  Section 3 provides an overview of the FKM algorithm and describes how we have adapted it for use 30 

in the CALIOP cloud-aerosol discrimination task.  Section 4 compares the FKM classifications to the V3 and V4 COCA 
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results.  These comparisons, which are made for both individual cases and statistical aggregates, are designed to assess the 

accuracy of the COCA algorithm in general and to quantify changes in performance that can be attributed to the algorithm 

refinements incorporated in V4 (Liu et al., 2018).  Various FKM performance metrics are described in Sect. 5, including error 

propagation, key parameter analysis, fuzzy discriminant analysis and principle component analysis. Conclusions and 

perspectives are given in Sect. 6. 5 

2 CALIOP CAD PDF construction 

The CALIOP operational CAD algorithm uses manually-derived, multi-dimensional PDFs together with a statistical 

discrimination function to distinguish between clouds and aerosols.  Given a standard set of lidar measurements (X1, X2, … 

Xm), separate multidimensional PDFs are constructed for clouds (Pcloud(X1, X2, … Xm)) and aerosols (Paerosol(X1, X2, … Xm)).  

Discrimination between clouds and aerosols for previously unclassified layers is then determined using 10 

f(X1, X2, … , Xm) = Pcloud(X1,X2,…,Xm)−Paerosol(X1,X2,…,Xm)k
Pcloud(X1,X2,…,Xm)+Paerosol(X1,X2,…,Xm)k

  .                

 .  (1) 

The function f is a normalized differential probability, which value ranges from -1 to 1, and k is a scaling factor that is related 

to the ratio of the numbers of aerosol layers and cloud layers used to develop the PDFs (Liu et al. 2009; Liu et al. 2018). Within 

the CALIOP level 2 layerdata products, a percentile (integer) value of 100 × f, ranging from -100 to 100, is reported as the 15 

“CAD score” characterizing each feature.  Aerosol CAD scores range from -100 to 0, and cloud CAD scores range from 0 to 

100. The algorithm has been applied to Cloud Physics Lidar (CPL) Data from 2003 THORPEX-PTOST campaign and to 

desert dust data acquired during the Lidar In-space Technology Experiment (LITE; Winker et al., 1996), and was shown to 

work well with both data sets (Liu et al., 2004). Because the nature of clouds is quite different from aerosols, distinguishing 

between the two should generallymost cloud and aerosols can be straightforwarddistinguished unambiguously.  Transition 20 

regions where clouds are embedded in aerosols, volcanic ash injected into the upper troposphere, and optically thick, strongly-

scattering aerosols at relatively high altitudes (e.g., haboobs) can still present significant discrimination challenges, but these 

cases occur relatively infrequently.  

The operational CAD algorithm uses manually-derived, multi-dimensional PDFs to distinguish clouds from aerosols using a 

statistical discrimination function.  In this paper, we introduce the Fuzzy K-Means (FKM) method, an unsupervised clustering 25 

algorithm, and use it for differentiating clouds from aerosols. The purpose of the study is twofold.  First, by using an 

unsupervised clustering algorithm that is quite different from and independent of the operational method, we can validate the 
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results of V4 CAD algorithm. Second, an unsupervised algorithm can help us better understand classifications made by the 

operational CAD algorithm. For example, the FKM approach can help determine which individual parameter is most crucial 

in the discrimination of clouds and aerosols. It can also evaluate the degree of improvement to be expected when adding 

observational dimensions to the PDFs and help estimate the biases that are coming from background noise.  

A description of cluster analysis and the FKM method is given in section 2.  In section 3, individual cases and statistical 5 

classification results from FKM clustering are produced and compared with classifications made by the operational V3 and 

V4 CAD algorithms. Error analyses are performed in the following section, including error propagation, key parameter 

analysis, fuzzy discriminant analysis and principle component analysis. Conclusions and perspectives are given in the last 

section.  

2 Cluster analysis 10 

Cluster analysis is a useful statistical tool to group data into several categories and can be applied to satellite observations to 

discriminate among different features of interest (Key et al., 1989; Kubat et al. 1998; Omar et al., 2005; Zhang et al., 2007; 

Usman, 2013; Luo et al., 2017; Gharibzadeh et al., 2018). In our study, we apply the FKM clustering algorithm to CALIOP 

level 2 observations to distinguish between clouds and aerosols. CALIOP directly observes three quantities: height-resolved 

profiles of parallel and perpendicular backscatter intensity at 532 nm and total backscatter intensity at 1064 nm. The V4 15 

CALIOP CAD algorithm distinguishes clouds from aerosols using five parameters reported in the level 2 layer products: layer 

mean attenuated backscatter at 532 nm, layer-integrated depolarization ratio at 532 nm, layer-mean total attenuated color ratio 

(1064 nm / 532 nm) and layer altitudes and latitudes (Liu et al., 2004, 2009). We use four of them (excluding latitude) as our 

set of observations and incorporate them directly into a neural network cluster analysis.  

There are many different types of neural network clustering methods, such as K-means (KM), fuzzy K-means (FKM), 20 

Expectation Maximization (EM) and k-harmonic means (Nock and Nielsen, 2006). In this paper, we focus on the FKM method 

because the memberships belong to [0 1], and thus are comparable to operational CAD score and more logical for the cloud-

aerosol discrimination task. The FKM algorithm is one of a popular class of center-based clustering algorithms. The initial 

version of COCA used only three layer attributes: layer mean attenuated backscatter at 532 nm, <β′532>, layer-integrated 

attenuated backscatter color ratio, χ′ = <β′1064>/<β′532>, and mid-layer altitude, zmid.  Since then the algorithm has been 25 

incrementally improved, and beginning in V3 the COCA PDFs were expanded to five dimensions (5-D) by adding layer-

integrated 532 nm volume depolarization, δv, and the latitude of the horizontal mid-point of the layer (Liu et al., 2018).  Within 

the CALIPSO analysis software these PDFs are implemented as 5-D arrays that function as look-up tables. 
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3 Fuzzy k-means cluster analysis 

Cluster analysis is a useful statistical tool to group data into several categories and has been successfully applied to satellite 

observations to discriminate among different features of interest (Key et al., 1989; Kubat et al. 1998; Omar et al., 2005; Zhang 

et al., 2007; Usman, 2013; Luo et al., 2017; Gharibzadeh et al., 2018). There are many different types of clustering methods, 

such as connectivity-based, centroid-based, density-based, and distribution clustering, and these are typically trained using 5 

either supervised or unsupervised learning techniques.  In this paper, we focus on a centroid-based, unsupervised learning 

approach known as the fuzzy k-means (FKM) method.  As the name implies, classification ambiguities are expressed in terms 

of fuzzy logic (i.e., as opposed to “crisp”/binary logic) and thus every point processed by the clustering algorithm is assigned 

some degree of membership in all categories, rather than belonging solely to just one category.  FKM membership values 

range from 0 to 1, and thus are comparable to the operational CAD scores.  In addition, the shapes and density distributions of 10 

multi-dimensional observations of clouds and aerosols from lidar well-suited for the centroid-based clustering technique used 

by the FKM classification method. With the exception of latitude, our FKM implementation uses the same inputs as COCA; 

i.e., <β′532>, χ′, δv, and zmid.  We make this choice because clouds and aerosols show distinct centers in the <β′532>, δv, χ′, zmid 

attribute space, whereas adding latitude degrades the separation between cluster centers and adds significantly to class overlap.  

A key parameter analysis (described in Sect. 5) demonstrates that latitude does not provide intrinsic information that helps to 15 

distinguish between aerosols and cloud, nor does it improve the reliability of the cluster membership values (e.g., Wilks’ 

lambda, a measure of the difference between classes also introduced in Sect 5., deteriorates from ~0.2 to ~0.5).  However, for 

probabilistic systems (e.g., COCA) latitude can be useful, simply because some feature types are more likely than others to 

occur within specific latitude-altitude bands (e.g., at altitudes of 9–11 km, significant aerosol loading is much more likely at 

45° N than at 60° S). 20 

3.1 FKM algorithm architecture 

Given a set of observations X = (X1, X2, …, Xn), where each observation is a p-dimensional real vector, FKM logical clustering 

aims to partition the n observations into k (≤ n) sets S = {S1, S2, …, Sk} so as to “minimize the within-cluster sum of squares 

(WCSS) and maximize the between cluster sum of squares (BCSS)” (Hartigan and Wang 1979).  

Different from the KM method, FKM clustering gives every point a degree of membership in all categories rather than 25 

belonging completely to just one category. Points on the edge of a cluster may be in the cluster to have a lesser degree than 

points in the center of the cluster. The clustering results (i.e., fuzzy memberships, organized into a matrix, M , with elements 

mij, i= = 1,…,…n;  j= = 1,...,...k) all are assigned values between 0 and 1 (Eq. 2). When elements of the membership matrix 

are equal to , m=1, an individual i belongs only to a single class j and has a class membership of 0 in all other classes. Note 

also that in the standard (i.e., not fuzzy) k-means algorithm mij can be only 1 or 0 in the KM method,(i.e., a point can only 30 

belong to one cluster), but that intermediate values are permitted in the FKM method. (i.e., a point can partially belong to a 



8 

 

particular cluster). The sum of the fuzzy memberships for an individual over all classes is equal to one (Eq. 3), and there will 

be at least one individual with some non-zero membership belonging to each class (Eq. 4),4). These defining relationships are 

written as 

𝑚𝑚𝑖𝑖𝑖𝑖 ∈ [0,1], 𝑖𝑖 = 1, … 𝑛𝑛; 𝑗𝑗 = 1, … , 𝑘𝑘,   (2) 

∑ 𝑚𝑚𝑖𝑖𝑖𝑖 = 1, 𝑖𝑖 = 1, … , 𝑛𝑛𝑘𝑘
𝑖𝑖=1 , ,  (2) 5 

, and   

   

(3) 

∑ 𝑚𝑚𝑖𝑖𝑖𝑖 > 0, 𝑗𝑗 = 1, … 𝑘𝑘𝑛𝑛
𝑖𝑖=1 .     (4) 

.  (4) 10 

To determine the best solution, based on minimization of the WCSS, a classic objective function, J, is built so that the best 

solution is the one that minimizes J (Bezdek, 1981; Bezdek, 1984; McBratney and Moore, 1985). The functional form of J is 

𝐽𝐽(𝑀𝑀, 𝐶𝐶) =  ∑ ∑ 𝑚𝑚𝑖𝑖𝑖𝑖
𝜙𝜙𝑑𝑑𝑖𝑖𝑖𝑖

2 (𝑥𝑥𝑖𝑖𝑖𝑖 , )𝑘𝑘
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 𝑐𝑐𝑖𝑖𝑖𝑖    (5) 

,  (5) 

where C (cjl; j=1,.., k; l =1,..., p) is a matrix of class centers, and d2(xil, cjl) is the squared distance between individual xil and 15 

class center cjl according to a chosen definition of distance (i.e.g., the Mahalanobis distance; see sectionSect. 2.3). The 

objective function is the squared error from class centers weighted by the ϕth power (fuzzy weighting exponent) of the 

membership values. For the least meaningful value, ϕ = 1, J minimizes only at crisp partitions (the memberships converge to 

either 0 or 1), with no overlap between cluster boundaries. Increasing the value of ϕ tends to degrade memberships towards 

the fuzziest statefuzzier states where there are more overlaps between the boundaries of clusters. MinimizationFor a specified 20 

value of ϕ, minimization of objective function J providesoptimizes the solutions for the best membership matrix M and its 

associated centroid matrix C (Bezdek, 1981; McBratney and deGruijter, 1992; Minasny and McBratney, 2002). Class centers 
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are the averages of the individual samples weighted by their class membership values raised to the ϕth functionpower (Eq. 6). 

The membership (𝑚𝑚𝑖𝑖𝑖𝑖) of an individual belonging to a class is the distance between the individual and the class center divided 

by the sum of the distances between the individual and the centers of all classes (Eq. 7); i.e.,), or 

𝑐𝑐𝑖𝑖𝑖𝑖 =
∑ 𝑚𝑚𝑖𝑖𝑖𝑖

𝜙𝜙𝑥𝑥𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1

∑ 𝑚𝑚𝑖𝑖𝑖𝑖
𝜙𝜙𝑛𝑛

𝑖𝑖=1
   𝑗𝑗 = 1,2, … 𝑘𝑘; 𝑙𝑙 = 1, 2, … 𝑝𝑝, and  (6) 

𝑚𝑚𝑖𝑖𝑖𝑖 =
𝑑𝑑𝑖𝑖𝑖𝑖

−2/(𝜙𝜙−1)

∑ 𝑑𝑑𝑖𝑖𝑖𝑖
−2/(𝜙𝜙−1)𝑘𝑘

𝑖𝑖=1
    𝑖𝑖 = 1,2, … , 𝑛𝑛;   𝑗𝑗 = 1, … , 𝑘𝑘.   (7) 5 

, and  (6) 

  .   (7) 

To obtain centroid (Eq. 6) and membership (Eq. 7) solutions, Picard iterations (Bezdek et al., 1984) are applied until the 

centers or memberships are constant to within some small value (Figure 1,see the algorithm flowchart in Fig. 1). We first 

initialize the memberships as random values using a uniform distribution that satisfies all conditions given by equations 1, 2, 10 

3 and 3. After that, we4. We then calculate class centers and recalculate memberships according to the new centers. If the new 

memberships do not change compared to the old ones (or change only within a small difference ε), the clustering process ends. 

Otherwise we recalculate the new centers and new memberships. This process is repeated untilIf the algorithm does not 

converge after a fixed number of iterations, the procedure is reinitiated using newly (and again randomly) specified initial 

cluster centers. This process repeats until the algorithm converges to a point where the relative change in the objective function 15 

(calculated from Eq. 5, which quantifies the changes in both the memberships and centers) is less than ε (0.001).) and saves 

the best memberships and centers that result from the optimum random initiation corresponding to the least objective function.  
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1. data (xil) sample and filter, 
selection of class number (k), fuzzy exponent (ϕ), & distance d(xil ,clj)calculation method  

2. Initial membership m0 (random matrix meets Eq. 1, 2, & 3)

3. Calculate the membership mij(Eq. 5) and the centroid clj (Eq. 6)  

4. |m(i)-m(i-1)|<ε or >max iteration number

5. Stop, obtain output mij & clj
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Figure 1: Flowchart of illustrating the operation of the Fuzzy K-means algorithm 

1. data (xil) sample and filter, 
selection of class number (k), fuzzy exponent 
(ϕ), & distance d(xil ,clj)calculation method  

2. Initial membership m0 (random matrix 
meets Eq. 2, 3, & 4)

3. Calculate the membership mij (Eq. 7) and 
the centroid clj (Eq. 6)  

4. |J(i)-J(i-1)|<ε or reach maximun iteration 
number

min (J)

5. Stop, obtain output mij & clj
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Before running the FKM code (from Minasny and McBratney, 2002), we prepared our data by sampling, training and filtering 

(sectionsSect. 2.1 and Sect. 2.2). We also selected optimal values for class number and fuzzy exponent (section 2.4) and chose 

a reasonable method to calculate the distance between individuals and centers (sectionSect 2.3).) and determined optimal 

values for class number and fuzzy exponent (Sect. 2.4). Note the FKM method is directly applied to data to get membership 

instead of building PDF as in operational algorithm. 5 

3.2.1 Data sample and training 

As mentioned above, four level 2 parameters are used for our cluster analysis: layer mean attenuated backscatter at 532 nm, 

<β′532>, layer integrated volume depolarization ratio at 532 nm, δv, total attenuated backscatter color ratio (mean 1064 nm 

divided by mean 532 nm),, χ′, and mid-layer altitude, zmid. The selection of four dimensions is based on many previous studies 

(e.g., Liu et al., 2004, 2009; Hu et al., 2009; Omar et al., 2009; Burton et al., 2013), which show that clouds, aerosols and their 10 

subtypes are quite different based on these observations. Latitude is not basic information to distinguish cloud from aerosol, 

but we can apply<β′532>, δv, and χ′ are the FKM method in particular locations or seasons depending onfundamental lidar-

derived optical properties that form the purposebasis for our discrimination scheme. We also include altitude, as the joint 

distributions of the study. altitude with the various lidar optical properties have proved to be highly effective in identifying 

different feature types.  15 

In this paper,study we apply FKM at a global scale. For any given region, results derived from a localized cluster analysis will 

likely give us better classifications compared to the results from a global scale analysis, but investigating and/or characterizing 

these differences lies well beyond the scope of this study. The data sample size also strongly influences the clustering results. 

For example, clustering into two classes with a full complement of CALIPSO data could identify clear and “not clear” scenes. 

If clear scenes are excluded, clustering could separate clouds and aerosols. If only clear scenes are included, clustering could 20 

possibly provide a means of identifying different surface types. With only cloudy data, clustering could be used to derive 

thermodynamic phase classification. With only aerosol data, clustering is actually aerosol subtyping. With only liquid cloud 

data, clustering could separate cumulus and stratocumulus. So, the size and composition of the dataset is very important for 

our analysis, which strongly depends on the objective of the classification.  

To extrapolate the classification of identifiable elements using FKM from a small subset to a broader population, we identify 25 

an appropriate training data set from which the classifications can be derived (Burrough et al., 2000). This training data should 

be representative of the broader sample for which the classification will be implemented (i.e., both must span similar domains). 

To select ensure the selection of an appropriate training data, a PDF for the smaller sample that set, the shapes of the PDFs of 

the relevant parameters derived from any proposed training set should closely matches the shape of match the shapes of the 

corresponding parameter PDFs derived from the global long-term dataset PDFs can be used to determine an appropriate 30 
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sample. The training sampledata set.  Data from the month of January 2008 is used to determine the optimal number of classes 

(k) and fuzzy exponent (ϕ) required for classification and optimal values of the performance parameters, and to calculate class 

centroids for interpretation of similarities and differences between classes. To avoid errors due to small sample sizes, we used 

one-the same month of global observations (January 2008) as our ‘standard full dataset’ for the analysis. to do the subsequent 

comparisons with COCA results. 5 

Figure 2 (panels a, b, & c) shows approximate probability density functions (computed by normalizing the sum of the 

occurrence frequencies ofto 1) for different lidar observationsobservables for liquid water clouds, randomly- and horizontal-

oriented ice clouds, and aerosols during all of January 2008. Liquid water clouds have the largest backscatter 

coefficients<β′532> and color ratiosχ′ values compared with other species. Aerosols generally have the smallest color ratios, 

depolarization ratiosχ′, δv, and backscatter coefficient,<β′532>, and ice clouds have the largest depolarization ratiosδv compared 10 

with the other two species. There are overlapsis overlap between species, but these three parameters are still sufficient to 

separate aerosols and different phases of cloud in most cases. The three bottom panels (d, e, & f) in Figure 2 are from a single 

half orbit (2008-09-06T01-35-29ZN) of observations. The PDFs of one -half orbit and one month of observations appear to 

agree very well, which means that focused feature clustering withstudies that use the FKM method can be trained usingapplied 

to a small sample as smallsuch as one-half orbit of observations and not cause significant biases to the standard full dataset.  15 

Figure 2: Comparisons of approximate probability density functions computed by normalizing the sum of the occurrence 
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frequencies to 1; top row (panels a – c) shows data from all of January 2008; bottom row (panels d – f) shows data from a 

single half-orbit (06 Sep. 2008, 01:35:29 GMT). The left column (panels a and d) compares total attenuated backscatter PDFs; 

the center column (panels b and e) compares volume depolarization ratio PDFs; and the leftright column (panels c and f) 

compares total attenuated backscatter color ratio PDFs.  Black lines represent aerosols, blue lines represent liquid water clouds, 

red lines represent ice clouds dominated by horizontal oriented ice (HOI,), and magenta linelines represent ice clouds 5 

dominated by random oriented ice (ROI.). 

2.23.3 Data filterfiltering 

We filtered the training data to eliminate outliers in the backscatter, depolarization<β′532>, δv, and color ratioχ′ measurements 

that were physically unrealistic (i.e., either too high or too low.). Eliminating these extreme values speeds up the processing, 

and the training algorithm converges more rapidly. The chosenselected filter thresholds are summarizedretain more than 98% 10 

of all features within the original data set. A summary of the thresholds is given in Table 1. The selection of these thresholds 

is based on the PDFs shown in Figure 2. 

Table 1: Filter thresholds for FKM lidar observables 

Dimension of the satellite observationsLidar observable Filter criteria 
1. Mean Layer Backscatter (AB)attenuated backscatter 
at 532 nm 

0 ≤ AB <β′532> ≤ 0.2 sr –1 km –1 

2. Layer Integrated Depolarization (DR)volume 
depolarization ratio 

0 ≤ DRδv ≤ 2 

3. Layer Integrated ColorTotal attenuated backscatter 
color ratio (CR) 

0 ≤ CRχ′ ≤ 2 

Table 1: Thresholds for individual satellite measurements. 

2.3.4 Distance calculation 15 

The distances between attributes can be calculated in different ways (e.g., Euclidean distance, Diagonal distance and 

Mahalanobis distance). According to a study by Gorsevski et al. (2003), we should apply the Euclidean distance to uncorrelated 

variables on the same scale when attributes are independent and the clusters have spherical shapeare spherically shaped clouds. 

The Diagonal distance is also insensitive to statistically-dependent variables but clusters are not required to have spherically-

shaped clouds. The Mahalanobis distance can be used for correlated variables on the same or different scales and is thus the 20 

best for FKM CAD analysis.when the clusters are ellipsoidal-shape clouds. The Mahalanobis distance (dij) of an observation i 

from a set of observations (xil) with centers cjl  (xil - cjl is an l-dimensional vector) is defined in Eq. 8 (Mahalanobis, 1936).   
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𝑑𝑑𝑖𝑖𝑖𝑖
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. (8) 

S-1 (an l×l matrix) is the inverse of the covariance matrix of the observations. Note superscript T indicates that the vector should 

be transposed.  When the covariance matrix is the identity matrix, the Mahalanobis distance becomes the Euclidean distance.  

If covariance matrix is a diagonal matrix, the Mahalanobis distance calculation returns the normalized Euclidean distance.  In 5 

this work we use the Mahalanobis distance specifically because the three lidar observables used both in FKM and COCA are 

not independent.  Each is a sum (or mean) of the measured backscatter signal over some altitude range, with the relationships 

between them given as follows:  
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In these expressions, the subscripts   and ⊥  represent contributions from the 532 nm parallel and perpendicular channels, 

respectively.  Note in particular that the signals measured in the 532 nm parallel channel contribute to all three quantities. 

 

3.5 The choice of class k and fuzzy exponent ϕ 

The selection of an optimal number of classes k (1 < k < n) and degree of fuzziness ϕ (ϕ > 1) has been discussed in many 15 

previous studies (Bezdek, 1981; Roubens, 1982; McBratney and Moore, 1985; Gorsevski, 2003). The number of classes 

specified should be meaningful in reality and the partitioning of each class should be stable. For each generated classification, 

analyses need to be performed andto validate the results validated. Among different validation functions, the fuzzy 

performance index (FPI) and the modified partition entropy (MPE) are considered two of the most useful indexesindices among 

seven examined by Roubens (1982) to evaluate the effects of varying class number. The FPI is defined as in Eq. 9, where F is 20 

the partition coefficient calculated from Eq. 10. The MPE is defined as in Eq. 11, with the entropy function (H) calculated 

from Eq. 12.  

The ideal number of continuous and structured classes (k) can be established by simultaneously minimizing both these two 



16 

 

measures (FPI and MPE).. For the fuzziness exponent, if the value of ϕ is too low, the classes arebecome more discrete and 

the membership values either approach 0 or 1. But if the value ϕ is too high, the classes will not provide useful discrimination 

among samples and classification calculations may fail to converge. McBratney and Moore (1985) suggested that the objective 

function (Eq. 13, Bezdek, 1981) decreases with increasing of both fuzzy exponent (ϕ) and the number of classes (k). They 

plotted a series of objective functions versus the fuzzy exponent (ϕ) for a given class where the best value of ϕ for that class is 5 

at the first maximum of objective function curves (Odeh et al. 1992a, McBratney and Moore 1985). Therefore, choosing an 

optimal combination of class number (k) and fuzzy exponent (ϕ) is established on the basis of minimizing both values of FPI 

and MPE and the least maximum of the objective function.  

𝐹𝐹𝐹𝐹𝐹𝐹 = 1 − 𝑘𝑘×𝐹𝐹−1
𝑘𝑘−1

 

 10 

 

 , 

and (9) 

𝐹𝐹 = 1
𝑛𝑛

∑ ∑ 𝑚𝑚𝑖𝑖𝑖𝑖
2𝑘𝑘

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1      (10) 

MPE = 𝐻𝐻
𝑖𝑖𝑙𝑙𝑙𝑙𝑘𝑘

  15 

 

 

 

 ;

 (10) 20 

 , and (11) 

𝐻𝐻 = 1
𝑛𝑛

∑ ∑ 𝑚𝑚𝑖𝑖𝑖𝑖 ×𝑘𝑘
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 log (𝑚𝑚𝑖𝑖𝑖𝑖)    (12) 
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𝛿𝛿𝛿𝛿(𝑀𝑀,𝐶𝐶)
𝛿𝛿𝜙𝜙

= ∑ ∑ 𝑚𝑚𝑖𝑖𝑖𝑖
𝜙𝜙𝑘𝑘

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1  log (𝑚𝑚𝑖𝑖𝑖𝑖)𝑑𝑑𝑖𝑖𝑖𝑖

2    (13) 

; (12) 

. (13) 

Using one month of “no clear scenes” datalayer optical properties reported in the CALIOP level 2 merged layer products, we 

created Figure 3 to determine optimal values for k and ϕ. From this figure, we concludedconclude that the ideal number classes 5 

for CALIOP layer classification is either 3 or 4, with corresponding fuzzy exponents equal to 1.4 or 1.6 (we use 1.4 for the 

analyses this paper). Before exploring the clustering results to see what each class represents, we can immediately confirm that 

using three classes would be physically meaningful (i.e., these 3 classes may be aerosols, liquid water clouds and ice clouds). 

Similarly, two classes could represent aerosols and clouds. In the following study, we will choose k equal to 32 or 23 and ϕ 

equal to 1.4.  10 
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Figure 3: Determination of the number of classes number, k, and the fuzzy exponent, ϕ, for the FKM cloud and -aerosol 

discrimination algorithm: (a) FPI (y-axis) versus class number k (x-axis) for different values of fuzzy exponent ϕ; (different 

colors); (b) MPE (y-axis) versus class number k (x-axis) for different values of fuzzy exponent ϕ; (different colors); and (c) 

objective function values (y-axis) versus the fuzzy exponent ϕ (x-axis) for various class numbers. (different colors).  5 

3.4 Cluster results and comparison with V3 and V4 data 

34.1 CAD from the Fuzzy K-Means algorithm 

According to Liu et al. (2009), the CAD valuescore for any layer is the difference between the probability of being a cloud 

and the probability of being an aerosol (Eq. 14). We calculate the fuzzy K-meansFKM CAD score in a similar way, where the 

probability is derived from theCOCA probabilities are replaced with FKM membership values. For the 3-class FKM analyses, 10 

the cloud membership value is the sum of memberships of ice and water clouds (two classes). The fuzzy K-meansFKM CAD 

of clouds and aerosolsscore is found using 

CAD𝐹𝐹𝐹𝐹𝑀𝑀 = 𝑀𝑀𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐−𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝑐𝑐𝑖𝑖
𝑀𝑀𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐+𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝑐𝑐𝑖𝑖

 × 100.                               (14) 

 .  (14) 

Figure 4 compares the operational V3 and V4 CAD products and our CADFKM classifications for a single nighttime orbit 15 

segment (06 September 2008, beginning at 01:35:29 GMT). Generally speaking, CADFKM from both the 2-class and 3-class 

analyses are quite similar to both the V3 and V4 operational CAD COCA values. When COCA CAD valuesscores are positive 

(namely clouds, shown in whitish colors in Fig. 4) in V3 and V4, the 2-class and 3-class CADFKM values are also positive. 
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Likewise, when COCA CAD valuesscores are negative (namely aerosols, yellowish colors in Fig. 4) in the operational data,4), 

the 2-class and 3-class CADFKM values are also negative. Furthermore, the particular orbit selected here includes somethe 

observations (latitudes between 0° and 20°S) of a plume of high, dense smoke lofted over low water clouds. (latitudes between 

0° and 20°S within the red oval). For these water clouds beneath dense smoke, both the V3 operational CAD and the 2-class 

CADFKM label them as clouds with low positive values. On the other hand, the V4 operational CAD and the 3-class CADFKM 5 

return higher values much closer to 100. The reasons for these differences will be discussed in section 3Sect. 5.2 and 3Sect. 

5.4.  Note too that weakly scattering edges of cirrus clouds (hereafter, cirrus fringes) around 74beyond 69.6°S are misclassified 

as aerosols by both the 2-class and 3-class CADFKM (Figure 4c and d) but are correctly classified as cloud by the operational 

V4 algorithms.  

 10 
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Figure 4: nighttime orbit segment from 6 September 2008, beginning at 01:35:29 UTC.  The upper panel (a) shows 532 nm 

attenuated backscatter coefficients. The panels below show the CAD results as determined by (b) the V3 operational CAD 

algorithm, (c) the V4 operational CAD algorithm, (d) the 2-class FKM CAD algorithm, and (e) the 3-class FKM CAD 

algorithm. The red ellipse in the upper panel highlights a dense smoke layer lying above an opaque stratus deck. In the CAD 

images (panels b–e), stratospheric layers are shown in black and, cirrus fringes are shown in pale blue, and regions of “clear 5 

air” where no features were detected are shown in pure blue. Latitude units in degrees; positive: north, negative: south. 

34.2 Uncertainties: class overlap 

The confusion index (CI) is a measure of the degree of class overlap or cluster uncertainty between classes (Burrough and 

McDonnell, 1998). In effect, it measures how wellconfidently each individual observation has been classified. CI values are 

calculated from Eq. 15, where mmax denotes the biggest membership value and mmax-1 is the second biggest membership value 10 

for each individual observation (i): 

CI = [1 − (𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖 − 𝑚𝑚(𝑚𝑚𝑚𝑚𝑥𝑥 −1)𝑖𝑖)].                     . (15) 

CI value approaches zero when mmax is much larger than mmax-1, indicating that the observation is more likely to belong to one 

dominant class. CI approaches one when mmax is almost equal to mmax-1. In such cases, the difference between the dominant 

and subdominant classes is negligible, which creates confusion in the classification of that particular observation. Note the 15 

value (1- CI) × 100 for the 2-class FKM algorithm is equivalent to the absolute value of the CADFKM score. 

Figure 5 shows CI values for 2-class and 3-class CADFKM calculated for all layers in the sample orbit. From the figure, we see 

that, in most cases, the CI values are low for both the 2-class and 3-class CADFKM classifications. The exceptions are 

stratospheric features (mostly near polar regions), cloud fringes, high altitude aerosols and, for 2-class CADFKM only, the liquid 

water clouds beneath dense smoke. Low CI values for the CADFKM classifications are analogous to high CAD scores assigned 20 

by the operational CAD algorithm: both indicate high confidence classifications. Similarly, CADFKM classifications with high 

CI values indicate low confidence classifications where the observation has roughly equal membership in two classes. For the 

liquid water clouds beneath dense smoke, the membership values determined by the 2-class CADFKM are larger than 0.5. 

However, the 3-class CADFKM results for these water clouds have low CI values, indicating high confidence classifications 

into one dominant class, and suggesting that the separation between the aerosols and low water clouds is better accomplished 25 

when 3 classes are used. For cloud fringes, the CI values are high for both the 2-class and 3-class CADFKM. According to the 

CADFKM results, cirrus fringes are essentiallysomewhat different from the neighboring portions of the cirrus and more closely 

resemblelayer, as they also bear some similarity to the dust particles that are the predominant sources of ice nuclei (DeMott et 
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al., 2010). 
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Figure 5: for the same data shown in Figure 4, the upper panel (a) shows the confusion index for 2-class CADFKM, and 

the lower panel (b) shows the confusion index for 3-class CADFKM.  The pure blue color once again indicates those regions 

where no atmospheric layers were detected.  

4.3.3 Statistic Statistical comparisons of clouds and aerosols 5 

In this sub-section, we present statistical analyses of our results for all of January 2008, followed by explorations of individual 

case studies in the next sub-section. We first compare the PDFs of the different lidar optical parameters used in the 2-class and 

3-class CADFKM classifications to the PDFs of those same parameters derived for the operational CADCOCA classifications 

(FigureFig. 6). ItWe also compare the spatial distribution patterns of the clouds and aerosols identified by FKM and COCA 

(Fig. 7) and use confusion matrices to quantify the similarity of the corresponding FKM and COCA classes (Table 2).  10 
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From Fig. 6, it is evident that the PDFs of backscatter coefficient, depolarization ratio<β′532>, δv, and color ratio ofχ′ that 

characterize the clouds and aerosols fromdetermined by the FKM classifications agree well with the PDFs from the V4 CAD 

classifications.  Figures 6d, 6e, and 6f compare the 2-class CADFKM results (dashed lines) to the operational algorithm (solid 

lines).. In these figures, the PDFs of backscatter  <β′532> (Fig. 6d), depolarizationδv (Fig. 6e) and color ratioχ′ (Fig. 6f) of FKM 

class 1 (blue dashed lines) agree well with those of V4 cloud PDFs (blue solid lines), while the PDFs of these different 5 

parameters of FKM class 2 (red dashed lines) agree well with those of V4 aerosol (red solid lines) PDFs. Figures 6a, 6b, and 

6c compare the 3-class CADFKM results to the operational algorithm. Once again, the comparisons are quite good: the 

PDFsshapes of the PDFs of FKM class 1 (blue dashed) agree well with the V4 water cloud (blue solid) PDFs, while the PDFs 

of FKM class 2 (red dashed) and 3 (green dashed) individually agree well with, respectively, the V4 ice cloud (red solid) and 

aerosol (green solid) PDFs. The class means for <β′532> are smallest for aerosols/class 3 (0.0034 ± 0.0022 (km-1sr-1) and 0.0041 10 

± 0.0193 (km-1sr-1), respectively) and slightly larger for ice clouds/ class 2 (0.0075 ± 0.0086 (km-1sr-1) and 0.0062 ± 0.0183 

(km-1sr-1), respectively).  Water clouds/class 1 have the largest <β′532> mean values (0.0804 ± 0.0526 (km-1sr-1) and 0.0850 ± 

0.0454 (km-1sr-1), respectively).  For δv, the largest mean values are found for ice clouds/ class 2, followed by water clouds/class 

1 and then aerosol/class 3.  Class mean χ′ is largest for water clouds/class 1 and smallest for aerosols/class 3. These means and 

standard deviations are also comparable between COCA and FKM classes.  15 
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Figure 6:  probability density functionsPDFs derived from all data from January 2008. The top row compares V4 operational 

CAD PDFs to the PDFs derived from CADFKM 3-class results. V4 CAD PDFs for liquid water clouds, ice clouds, and aerosols 

are plotted in, respectively, solid blue, red and green lines.  Similarly, CADFKM 3-class PDFs for classes 1, 2, and three3 are 

plotted in, respectively, dashed blue, red and green lines.  The bottom row compares V4 operational CAD PDFs to the PDFs 5 

derived from CADFKM 2-class results, where once again the V4 CAD PDFs are shown in solid lines and the CADFKM 2-class 

PDFs are shown in dashed lines.  Attenuated backscatter PDFs of <β′532> are shown in the left column (panels a and d), 

depolarization ratioδv PDFs in the center column (panels b and e), and color ratioχ′ PDFs in the right column (panels c and f). 

Figure 7 compares one month (January 2008) of the geographical (Fig. 7, panels a-f) and zonally-averaged (Fig. 7, panels g-

1) distributions of 2-class CADFKM occurrence frequencies to the COCA cloud and aerosol occurrence frequencies derived 10 

from the operational V4 CAD classifications, and the differences between V4 and FKMfor all data acquired during January 

2008. The spatial distributions of clouds and aerosols are quite different. In January, clouds are mostly located in the storm 

tracks, to the east of continents, over the inter-tropical convergence zone (ITCZ) and in polar regions. Aerosols are more often 
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found over the Sahara, over the subtropical oceans, and in south-central and east Asia (upper two rows of FigureFig. 7). In the 

zonal mean plots (lower two rows of FigureFig. 7), cloud tops are seen to extend up to the local tropopause, whereas aerosols 

are largely confined to the boundary layer. The geographical and vertical distributions of FKM class 1 are quite similar to the 

COCA V4 CAD cloud distributions. Likewise, the distributions of FKM class 2 closely resemble the COCA V4 CAD aerosol 

distributions. LargeLooking at the difference plots (righthand column of Fig. 7), some fairly large differences appearare seen 5 

in Polar Regionsthe polar regions, where the composition and intermingling of clouds and aerosols is notably different from 

other regions of the globe (last column of Figure 7). In summary,. Many of the layers observed in the polar regions are spatially 

diffuse and optically thin, and thus occupy the morphological “twilight zone” between clouds and aerosols (Koren et al., 2007).  

Observationally-based validation of the feature types in these regions would likely require extensive in situ measurements 

coincident with CALIPSO observations. Consequently, correctly interpreting the classifications by the two algorithms in polar 10 

regions based on our knowledge is too challenging to draw useful conclusions and lies well beyond the scope of this work.  

Nevertheless, the PDFs and geographic analyses showpresented here establish that, excluding the polar regions, the cloud-

aerosol discrimination derived using an unsupervised FKM method is largelystatistically consistent with the classifications 

produced by the operational V4 CAD algorithm beyond Polar Regions.  

 15 
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Figure 7: distributions of feature type occurrence frequencies during January 2008. Panels in the left column show V4 

operational CADCOCA results; panels in the center column show CADFKM 2-class results; and the panels in the right column 

show the absolutepercentages of differences between the left and center columns. The top two rows show maps of occurrence 

frequencies as a function of latitude and longitude for clouds (panels a–c) and aerosols (panels d–f). The bottom two rows 

show the zonal mean occurrence frequencies of clouds (panels g–i) and aerosols (panels j–l). 5 

Above, we qualitatively show the operational classification algorithm agrees well with FKM algorithm. To quantify the degree 

to which the different methods agree with each other, we usedconstruct confusion matrices, which use the January 2008 5-km 

Layermerged layer data between 60°S and 60°N to calculate the concurrent frequency of cloud and aerosol identifications 

made by the operational V4 5km CAD algorithmCOCA and CADFKM algorithms. We summarize the occurrence frequency 

statistics in Table 2.  From the table we find that for our test month COCA V3 CAD agrees with COCA V4 CAD for 96.6 % 10 

of the cases. The agreements are around 90% for the entire globe including regions beyond 60° (not shown here). The FKM 

2-class and 3-class results agree with both V3 and V4 for more than 93 % of the cases. The FKM results agree slightly better 

with V3 than with V4. All algorithms and versions agree on cloud coverage of around 58 % to 66 % of the globe. These values 

are well within typical cloud climatology estimates of 50 % to 70% (Stubenrauch et al. 2013). Compared to the 2-class 

CADFKM, results from the 3-class CADFKM agree somewhat better with the classifications from both the V3 and V4 CAD 15 

algorithms. Consistent with previous results in this paper, the 3-class CADFKM appears better able to separate clouds and 

aerosols than the 2-class CADFKM. Figure 4 provides an additional example. For those water clouds beneath dense smoke, the 

3-class CADFKM scores are substantially higher than both the 2-class CADFKM scores and the operation V3 CAD scores, 

indicating that the 3-class CADFKM algorithm correctly identifies these features with much higher classification confidence. 

We also calculated the concurrent occurrence frequencies for only those features with CI values less than 0.75 (or 0.5). When 20 

the data are restricted to only relatively high confidence classifications, the FKM results agree with V3 and V4 for better than 

96% (or 97%) of the samples tested.  

Agreement (%) V3 V4 FKM 
(2-classes) 

FKM 
(3-classes) 

C A T C A T C A T C A T 

V3 
C  

- 

66.1 2.1  63.2 5.4  65.1 3.2  
A 1.2 30.5  1.0 30.4  1.9 29.8  
T   96.6   93.6   94.9 

V4 
C  

- 
 
- 

58.9 5.3  60.9 3.2  
A 1.5 34.4  2.5 33.4  
T   93.2   94.3 

FKM C    63.2 5.1  
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       (2-classes)  A - - - 1.4 30.4  
T   93.6 

 

Table 2:2: Statistical confusion matrix of a 1-month (Jan. 2008) CAD analysis that shows the agreement percentages (detected as 
clouds: C, aerosols: A, or total of clouds and aerosols: T for both algorithms) between different methods (V3: version 3, V4: version 
4, FKM: fuzzy K-means). 

3 5 

Agreement (%) V4 FKM 
(2-classes) 

FKM 
(3-classes) 

C A T C A T C A T 

V3 
C 66.1 2.1  63.8 4.5  64.6 3.7  
A 1.2 30.5  1.1 30.6  1.9 29.9  
T   96.6   94.4   94.5 

V4 
C  

- 

59.3 4.9  60.6 3.6  
A 1.5 34.4  2.4 33.4  
T   93.6   94.0 

FKM 
       (2-classes)  

C  
- 

 
- 

60.1 0.6  
A 2.8 36.5  
T   96.7 

 

4.4 Special cases study 

We see from section 3.3 that, statistically, the CADFKM classifications agree well with the operational V3 and V4 CAD results. 

In this section, we investigate several of the challenging classification cases for whichthat motivated the extensive changes 

made in COCA in the classifications disagree between transition from V3 andto V4 CADs (Liu et al. 2018).  Comparisons are 10 

done for those cases between different algorithms and different algorithm versions to see how well each algorithm or version 

compares to “the truth” (i.e., as obtained by expert judgments). In addition to the dense smoke over opaque water cloud case 

shown in Figure 4, the CADFKM
 algorithm, like the operational CAD algorithm, also hascan occasionally have difficulty 

correctly identifying high altitude smoke, dense dust, lofted dust, cirrus fringes, polar stratosphere clouds (PSC) and 

stratospheric volcanic ash (Figure 8-10).  We briefly review each of these cases below. 15 

a. Dust 

Two different dust cases are selected for this study (FigureFig. 8). One dustThe first case locatedexamines nighttime 

measurements of a deep and sometimes extremely dense dust plume in the Taklamakan desert, is a night-time granule 

beginning at 20:15:32 UTC on 4 May 2008, as shown in FiguresFigs. 8 a-e.  The second case is lofted investigates spatially 

diffuse Asian dust fromlofted high into the atmosphere while being transported toward the Arctic during a night-time granule 20 
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atnighttime orbit segment beginning at 18:28:54 UCT on the 1 March 2008, as shown in FigureFigs. 8 f-j. These dust CAD 

classifications are color-coded as follows: regions where no features were detected are shown in pure blue; V3 stratospheric 

features are shown in black; cirrus fringes are shown in pale blue; aerosol-like features are shown using an orange-to-yellow 

spectrum, with orange indicating higher confidence and yellow lower confidence; and cloud-like features are rendered in gray 

scale, with brighter and whiter hues indicating higher classification confidence. Dust layers in Taklamakan exhibit stronghigh 5 

532 nm attenuated backscatter coefficientcoefficients, high depolarization ratio and color ratios and(not shown), and attenuated 

backscatter color ratios close to 1 (also not shown). As seen between ~44° N and ~40° N, layers with this combination of layer 

optical properties are frequently misclassified as ice clouds in V3 but COCA V3 (Fig. 8b).  However, in COCA V4 these same 

layers are much more likely to be correctly classified as aerosol in V4. The (Fig. 8c).The 2-class and 3-class CADFKM 

classifications for the 2-class and 3-class both agree with version 3 but with COCA V4 for the lofted aerosols, but misclassify 10 

the densest portions of the dust plume as low confidence in the dense dust case, suggesting that FKM does not cloud. For the 

lofted Asian dust case shown in Figure 8 f-j, COCA V3 frequently misclassifies dust filaments as cloud, whereas COCA V4 

correctly identify the dense dust.  But both FKMidentifies the vast majority as dust. (Note too that many more layers are 

detected in V4 as a consequence of the changes made to the CALIOP 532 nm calibration algorithms agree well with the version 

4 CAD in the lofted Asian dust case.(Kar et al., 2018; Getzewich et al., 2018; Liu et al., 2018).)  The 2-class and 3-class 15 

CADFKM classifications are essentially identical to those determined by COCA V4, but show higher confidence values for the 

aerosol layers.   
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Figure 8: top row shows 532 nm attenuated backscatter coefficients for (a) dust in the Taklamakan basin on 4 May 2008 and 

(f) lofted Asian dust being transported into the Arctic on 1 March 2008. The rows below show the CAD results reported by 

four different algorithms; theCOCA V3 operational CAD (panels b and g), theCOCA V4 operational CAD (panels c and h), 

the 2-class CADFKM (panels d and i), and the 3-class CADFKM (panels e and j).  5 
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b. High altitude smoke 

An unprecedented example of high -altitude smoke plumeplumes was observed by CALIPSO during the “Black Saturday” 

fires that started 7 February 2009 and, quickly spread across the Australian state of Victoria., and eventually lofted well into 

the stratosphere (de Laat et al., 2012). Figure 9 (panels f-j) shows extensive smoke layers at 10 km and higher on Monday 10 

February between 20°S-40°S. TheIn the V3 CAD algorithmCALIOP data products, stratospheric layers (i.e., layers with base 5 

altitudes above the local tropopause) were not further classified as clouds or aerosols, but instead were designated as generic 

‘stratospheric features’ (Liu et al., 2018).  Consequently, COCA V3 misclassifies these smoke layers as clouds (or when their 

base altitude is below the tropopause and as stratospheric features), and so too does the FKM 3-class analysis. when the base 

altitude is higher (Fig. 9b). On the other hand, the V4 CAD and FKM 2-class analysis correctly identifyidentifies them as 

aerosols (not shown here). Without altitude as inputsFig. 9c). In analyzing this scene we used two separate versions of the 10 

FKM algorithm.  Our standard configuration used zmid as one of the classification attributions, while a second, trial 

configuration omitted zmid.  For the 2-classes FKM, both FKM 2-class and 3 class algorithms identify the layers as aerosols 

(Figure 9 d, e, also see Figure 11).configurations successfully identified the high-altitude smoke as aerosol (Figs. 9d and 9e).  

But for the 3-classes FKM, including zmid as a classification attribute introduced uniform misclassification of the lofted smoke 

as cloud (Fig. 9f).  However, when zmid is omitted the 3-class FKM correctly recognizes the smoke as aerosol (Fig. 9g). This 15 

is because including altitude information can introduce unwanted classification uncertainties when attempting to distinguish 

between high altitude clouds and aerosols.   The reasons for this , both of which are discussedlocated at similar altitudes and 

have similar optical properties. Altitude is not a driving factor for classifications, and adds confusion in some detailthe 

memberships defined by the Mahalanobis distance (see Eqs. (7) and (8)) in these particular cases. More details are given in 

section 45.1. When high altitude depolarizing aerosols and ice clouds appear at the same time, either increasing the number of 20 

classes to four or omitting zmid as an input will resolve large fractions of the potential misclassifications from the FKM method.    
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Figure 9: top row shows 532 nm attenuated backscatter coefficients for (a) measurements acquired on 10 February 2009 

showing smoke injected into the upper troposphere and lower stratosphere by the Black Saturday fires in Australia. The solid 

line extending across (f) at altitudes between ~7 km and (f) measurements acquired on ~8.5 October 2008 showing a layer of 
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volcanic ash fromkm shows the eruption of Kasatochi.approximate tropopause altitude. The rows below show the CAD results 

reported by foursix different algorithms; the V3 operational CAD (panels b and g), the V4 operational CAD (panels c and h), 

the 2-class CADFKM (panels with zmid (d) and iwithout zmid (e), and the 3-class CADFKM (panels with zmid (e) and without zmid 

(j).  

c. Tropospheric Volcanic Ashash 5 

Figure 910 shows an example of ash from the Kasatochi volcano (52.2°N, 175.5°W), which erupted unexpectedly on 7–8 

August 2008 in the central Aleutian Islands. Volcanic aerosols remained readily visible in the CALIOP images for over 3 

months after the eruption (Prata, et al. 2017). On 5 October 2008, CALIOP observed the ejecta‘aerosol plume’ near the 

tropopause at ~17:30:18 UCT (Figure 9, panels f-j). The. COCA V3 operational CAD algorithm classified those layers with 

base altitudes above the tropopause as ‘stratospheric features’ (black regions in Fig. 10b), and misclassified a substantial 10 

portion of this ash plumethe lower, tropospheric layers as cloud, and those. Those segments that were correctly classified as 

aerosol were frequently assigned low CAD scores. In contrast, theCOCA V4 CAD algorithm and both versions of the CADFKM 

with zmid as inputs show greatly reduced cloud classifications, and the aerosols have high confidence CAD scores. Again, when 

altitude information is not included, the FKM algorithm produces a better separation of clouds and aerosols at high altitudes, 

for the same reasons as in the high altitude smoke case. 15 

d. Fringes 

The improved calibration coefficients in V4 facilitated the detection of optically thinner layers than were detected in V3 (Kar 

et al., 2018; Getzewich et al., 2018). A side effect of this improvement is an increased occurrence of optically-thin layers 

detected along the tenuous edges of ice clouds. These layers, named “cirrus fringes”, are detected at 20 km and 80 km horizontal 

resolutions, and occur along the sides of ice clouds or along their lower edges where overlying attenuation has substantially 20 

reduced the lidar signal. A “cirrus fringe amelioration” algorithm has been added in V4 as a CAD post-processor which detects 

cirrus fringes that have been misclassified as aerosol and reclassifies them as cloud (Liu et al., 2018). These layers are given a 

special CAD score of 106. The misclassification of cirrus fringes as aerosols is basically due to their special nature. Fringes 

are optically thin and weakly scattering layers that occupy the transition zone between cirrus and clear sky. They are 

characterized by cirrus-like depolarization ratios coupled with lower color ratios, suggesting a reduction in ice crystal sizes 25 

possibly due to sublimation.   

e. PSC 

Polar Stratospheric Cloud (PSC) is the generic name for a class of clouds of several different compositions that all form in the 

winter polar stratosphere (Höpfner et al., 2009; Pitts et al., 2013). Prior to the V4 data release, all layers having base altitudes 

above the local tropopause were assigned to a generic class of ‘stratospheric feature’, and no further subtyping was done for 30 

these layers. In V4, however, the operational CAD algorithm now distinguishes between clouds and aerosols in the stratosphere 
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(Liu et al., 2018), and stratospheric aerosols are further evaluated to determine aerosol type (Kim et al., 2018). For PSCs, the 

CALIPSO project also produces a dedicated PSC data product that reports PSC presence in 5 km horizontal by 180 m vertical 

bins and classifies each bin according to a composition classification scheme described by Pitts et al. (2018).  The compositions 

in the dedicated PSC product include water ice, supercooled ternary solutions (STS), and several mixtures of liquid droplets 

and nitric acid trihydrate (NAT). Figure 10 (panels f-j) shows an example of PSC measurements from ~15:25:28 UCT on 15th 5 

August 2008. The V4 classifications agree well with the composition classifications developed by Pitts et al. (2009). High 

confidence CAD scores are given to those PSCs containing water ice particles, while low confidence CAD scores are given to 

low concentrations of liquid/NAT mixtures. The FKM classifications of the stratospheric features in this case do not agree 

with the V4 CAD or Pitts composition results. While there are some cases that agree well, these are relatively few and are not 

shown here. Even when the altitude dimension is excluded from the input parameters, classification of PSCs remains 10 

challenging for the FKM algorithm.  
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Figure 10: top row shows 532 nm attenuated backscatter coefficients for (panel a) extensive ice cloudsa) measurements 

acquired on 10 July 2008 and (f) PSCs overlying tropospheric ice clouds on 15 August 2008.  The second row shows (panel 
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b) V3 operational CAD results for the 10 July 2008 data and (panel g) the PSC classifications5 October 2008 showing a layer 

of volcanic ash from the eruption of Kasatochi. The solid line extending across (f) at altitudes between ~7 km and ~8.5 km 

shows the approximate tropopause altitude. The rows below show the CAD results reported inby six different algorithms; the 

dedicated CALIPSO PSC data product for the 15 August 2008 data. The three remaining rows show CAD results for the two 

scenes computed by V3 operational CAD (b), the V4 operational CAD (panels c and h), the 2-class FKM algorithm (panels 5 

CADFKM with zmid (d) and iwithout zmid (e), and the 3-class FKM algorithm (panels e and j).  The 10 July 2008 results are 

always in the left column and the 15 August 2008 results are always in the right column.  For the PSC classifications in panel 

g, mix 1 and mix 2 (shown in yellow and green, respectively) represent different mixing ratios of STS and NAT.CADFKM with 

zmid (e) and without zmid (j).  

45 Discussion 10 

In Section 5 compares FKM and COCA using statistical analyses and individual case studies. In this section 3, we demonstrated 

that both the FKM and operational CAD algorithms generate very similar cloud and aerosol classifications. In this section, we 

discuss key parameter analysis, fuzzy linear discriminant analysis, principle component analysis and error propagation to 

explore several classification the application of various metrics used to evaluate the quality of the FKM and COCA 

classifications. The questions: we address are: (a) how much improvement can be made by adding additional measurements 15 

as classification inputs (section 4Sec. 5.1),); (b) how well are the classes separated are the current classifications (section 

4.2),(Sect. 5.2); (c) what are the essential measurements required for accurately discriminating between cloudclouds and 

aerosol (sections 4aerosols (Sect. 5.1 and 4Sect. 5.3),); and how(d) what effects do the measurement uncertainties (or noise) 

impacthave on the classifications (section 5.4.4)? )? 

45.1 Key parameter analysis  20 

CALIOP’s operational CAD algorithm wasUnderlying any feature classification task is this essential question: which 

observations are most important for accurate feature identification? COCA results were substantially improved from V2 to V3 

by adding two additional dimensions (latitude and volume depolarization ratio) to the cloud and aerosol CAD PDFs. HigherIn 

general, higher dimension PDFs should generally improve the classification accuracy so long as the additional dimensions 

provide some new useful information (i.e., they should be orthogonal, or at least semi-orthogonal, to the data already being 25 

used). It is therefore important to quantify how much improvement we can make by adding additional dimensions into the 

analysis. With the FKM method, it is easyrelatively easy (though perhaps time-consuming) to add or remove one or multiple 

observational dimensions and re-cluster without re-building new PDFs.(i.e., inputs) and the reinitiate the training/learning 

algorithm. (This highly desirable flexibility is, unfortunately, wholly absent in the strictly supervised learning regime 

incorporated into COCA.) If onea dimension is added (or removed) and the new classifications are similar (or 30 
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inferior)essentially identical to the old ones, the added (or removed) dimension does not provide significant new information 

toin the classification (i.e., it is not as important asprocesses. On the other dimensions in the classification). Ifhand, if the CAD 

values are improved (or degraded) by adding (or removing) a dimension, this dimension actually adds (or removes)contributes 

dispositive information in the determination of the classification, and hence is key to separating clouds from aerosols. 

Moreover, byBy using the FKM method, we can readily determine how many dimensionswhich parameters are enoughrequired 5 

(and, importantly, which are non-essential) for the cloud and aerosol classification accordingresulting classifications to our 

required classificationmeet predetermined accuracy specifications, either in general or for a particular class (e.g., dust), and 

how much).  We can also quantify the improvement (or degradation) that occurs additional dimensionswhen specific 

parameters are either added or removed.  

Re-We demonstrate these capabilities using individual case study results. Figure 11 shows series of FKM classifications that 10 

omit individual dimensions from one half orbit of nighttime observations are shown in Figure 11 and a summary ofacquired 6 

September 2008 (i.e., the same scene shown previously in Fig. 4.) This scene was chosen as an example specifically because 

it contains so many challenging CAD cases (e.g., PSCs, dense water clouds beneath smoke, and many high-altitude aerosols). 

Comparisons with COCA V4 and 2-class, 4-parameter CADFKM results are quantified by the confusion matrices are shown in 

Table 3. From both the figure and the table we find that withoutthe cloud-aerosol partitioning obtained when any one 15 

dimension, most new clusters and their CADFKM values are unchanged compared is omitted is reasonably similar to 

classification including the dimension (more than 75% of cases stay same).the partitioning reported by COCA and by the 2-

class, 4-parameter FKM algorithm. Both algorithms are most sensitive to the removal of χ′ (75.0 % similarity for COCA and 

77.4 % similarity for FKM), and least sensitive to the removal of <β′532> (89.8 % for COCA, 93.1 % for FKM).  Note also 

from the figure we see that, for the low water clouds covered by a plume of heavy absorbing smoke, both V3 and the 2-class 20 

4-parameter FKM classifications have low CADFKM values. When either mid-layer altitude zmid or backscatter<β′532> is 

removed from the classification parameters, the CADFKM values actually improve. Without color ratioχ′ or depolarization 

ratioδv, the CADFKM values get worse, which indicates that color ratios and depolarization ratios may play a more important 

role in separating aerosols from low water clouds in this case, as also explained later in section 4.3..  In this case, both color 

ratio and backscatterexample, the values of χ′ and  <β′532> measured in the water cloud can bias the resulting CADFKM values 25 

due to uncertainties in the measurements related to the the strong absorption at 532 nm fromwithin the overlying smoke above 

the layer. The attenuated backscatter of <β′532>for these water clouds decreases and gets closer to the backscatter magnitudes 

expected from classic aerosols (e.g., Figure 6a)), while color ratioχ′ increases and gets far away from thosebeyond values 

typical of classic aerosols (Figure 6c).. Moreover, when omitting zmid, high altitude aerosols and ice clouds are more readily 

and correctly separated, as are low altitude aerosols and water clouds. χ′ or δv are key in separating high altitude aerosols and 30 

clouds. 
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Figure 11: CAD scores calculated using various techniques for an orbit segment on 6 September 2008 beginning at 01:35:29 

UTC.  The upper two rows show results from (a) the V4 operational CAD algorithm and (b) the 2-class FKM algorithm using 

all four standard inputs.  The remaining rows show 2-class CADFKM results calculated when omitting one of the four standard 

inputs: (c) omits backscatter intensity, (<β′532>), (d) omits depolarization ratios, (e) omits color ratios, and (f) omits mid-layer 

height.  5 

Table 3: confusion matrices comparing COCA V4 and the CADFKM results shown in Figure 11; abbreviations as follows: C = cloud; 
A = aerosol; and T = total. 

(%) CADFKM CADFKM (no 
AB)<β′532>) CADFKM (no DRδv) CADFKM (no CR)χ′) 

CADFKM (no 
HHzmid) 

 C A T C A T C A T C A T C A T 

CAD4COCA 
V4 

C 45.1 3.3  45.6 2.8  43.7 1.7  40.1 11.4  44.9 3.5  
A 7.3 44.3  7.4 44.2  12.7 38.3  13.6 34.9  12.3 39.6  
T   89.4   89.8   82.0   75.0   84.5 

CADFKM 
C    56.9 2.6  52.3 7.2  49.6 10.0  55.6 3.2  
A    4.3 36.1  3.7 36.8  12.6 27.9  8.4 32.1  
T      93.1   89.1   77.4   87.8 

 Table 3: confusion matrices comparing V4 CAD and the CADFKM results shown in Figure 11; abbreviations as follows: AB 

= attenuated backscatter intensity; DR = depolarization ratio; CR = color ratio; H = mid-layer altitude (height); C = cloud; A 

= aerosol; and T = total. 10 

In addition to the single half-orbit testscase study described above, we also analyzed a full month (January 2008) of CALIOP 

level 2 data acquired between 60°S and 60°N.  To better focus on the troposphere, where the vast majority of detectable 

atmospheric layers occur, data from the polar regions were omitted in this test. We assessed the relative importance of various 

observational parameters by computing CADFKM classifications using only a limited number of inputs (i.e., either 1, 2, or 3 of 

the CALIOP layer descriptors used in the standard CADFKM classifications). The left panel of figure 12 shows the joint 15 

occurrence frequencies of these classifications and the V4 operational CAD classifications. Similarly, the right panel of figure 

12 shows joint occurrence frequencies of the limited input classifications and the standard CADFKM using 4-dimensional (4-

D) observations. Two distinct classes are considered, so that Figure 12 is, in effect, a linearized 2 x 2 confusion matrix, with 

values along the x-axis representing each of the four different types of comparisons. Values plotted for x = 1 indicate the 

fraction of cases where both the limited input FKM and the V4 operational CAD algorithm (or the 4-D CADFKM) identified 20 

features as being in class 1. The results are color-coded according to the number and type of the dimensions used in the limited 

input FKM method. Similarly, values plotted for x = 4 indicate the fraction of cases where both algorithms identified features 
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as being in class 2.  x =1 and x = 4 correspond to the diagonal elements of the confusion matrix (i.e., M[1,1] and M[2,2]). The 

off-diagonal elements – i.e., M[1,2] and M[2,1] – are represented by, respectively, x = 2 and x = 3. For x = 2, the limited input 

FKM identifies the feature as belonging to class 1, while the V4 CAD (or 4-D CADFKM) identifies it as belonging to class 2.  

For x = 3 the assignments are reversed: the limited input FKM identifies the feature as belonging to class 2, whereas the V4 

CAD (or 4-D CADFKM) identifies it as class 12-class CADFKM classifications). These comparisons are summarized in Table 4.  5 

The center column of Table 4 shows the agreement frequencies of these classifications with COCA V4; the right column shows 

the agreement frequencies with the 2-class, 4-parameter FKM classifications.  

From Figure 12b it is obvious that, even without any one observational dimension, more than 83% of classifications agree with 

results from four observational dimensions. Also, we notice that without color ratio, the agreement (only about 83%) between 

3-D and 4-D FKM classifications is somewhat worse compared to results when omitting any of the other observations 10 

(agreement > 94%). We also find that when using only a single dimension of observations (e.g. backscatter or depolarization 

ratio or color ratio), FKM classification can only correctly separate the clouds and aerosols for about 60% of the cases 

compared to using 4-D CADFKM and/or the V4 operational CAD. This means that the additional 3 dimensions improve the 

cloud and aerosol discriminations by 30~40%. The more independent measurements that are used, the more accurate the 

classification can be. From Figure 12a, we again see that with 4-dimensional observations, the agreement between the V4 15 

CAD and the FKM method is ~94%. This 6% differences may come from, for example, very thin, broken clouds, cloud fringes 

and dense aerosols that are inherently difficult to separate. When different combinations of observations are used in the 

classification, the disagreement between the two methods are different. V2 CAD algorithm used backscatter intensity, color 

ratio and mid-layer altitude, which is the best combination of three independent parameters, showing only 0.4% fewer 

agreements compared to using four parameters. To further improve the CALIOP CAD algorithm, multiple investigations into 20 

additional combinations of observations or the use of weighted observations could be pursued in the future.  
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Figure 12: statistics of Considering those comparisons where only one parameter is removed from the input data, it is clear 

that omitting χ′ has by far the most deleterious effect.  The classifications are relatively insensitive to omitting any of the other 

three parameters, though the comparisons are slightly worse when omitting zmid rather than <β′532> or δv. The conclusions to 

be drawn from the single parameter classifications are similar to the 3-parameter case, though perhaps not as stark: using only 5 

χ′ produced slightly better comparisons with both COCA V4 and the 2-class, 4-parameter CADFKM results than any of the other 

parameters.  Given this demonstrated sensitivity to χ′, it is perhaps not surprising that of the 2-parameter classifications, the 

combination of χ′ and zmid proves the most successful.  The combination of χ′ and δv also performed reasonably well relative 

to both COCA V4 and the 2-class, 4-parameter CADFKM. Unexpectedly, however, the combination of χ′ and <β′532> performed 

very poorly relative to COCA V4, with only ~67 % of the classifications being identical. 10 

In general, and as expected, the closest matches to the COCA V4 and the 2-class, 4-parameter CADFKM classifications are 

achieved by the 3-parameter classifications, with the single parameter classifications showing the poorest correspondences, 

and the 2-parameter rankings falling somewhere in between the 3-parameter and 1-parameter results. However, the 

performance of the most successful 2-parameter case (the combination of χ′ and zmid) was largely identical to that of the most 

successful 3-parameter case (the combination of <β′532>, χ′ and zmid). In fact, relative to COCA V4, the 2-parameter 15 

classifications were identical slightly more often (93.8 % of all cases) than the 3-parameter classifications (93.2%). For the 2-

class, 4-parameter FKM, the corresponding numbers rise to 95.5 % identity for the best performing 2-parameter classifications 

and 97.7 % identity for the best performing 3-parameter classifications. Both the COCA and FKM comparisons suggest that 

the addition of <β′532> adds little, if any, skill to the classification task but it contributes to the confidence of the classifications, 

as will be shown in Sect. 5.2. 20 
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Table 4: Statistics of joint occurrence frequency during January 2008, between 60°S and 60°N. The left panel (a) shows the joint 
occurrence of the V4 operational CAD classifications  from 60°S to 60°N between and the FKM classifications based on limited input 
parameter sets (i.e., 1, 2, or 3 CALIOP measurements).  The , as listed in the left column), the COCA V4 classifications (center 
column), and the 2-class, 4-parameter (2-C, 4-P) CADFKM classifications (right panel (b) shows the joint occurrence of the 4-D 
CADFKM classifications and the limited input FKM classifications. column). 5 

 4 
Occurrence Frequency (%) V4 CAD 2-C, 4-P CADFKM 

CADFKM (<β′532>, δv, zmid, χ′) 93.61 - 

CADFKM (<β′532>, zmid, χ′) 93.21 97.69 

CADFKM (δv, zmid, χ′) 92.83 96.09 

CADFKM (<β′532>, δv, χ′) 90.25 94.39 

CADFKM (<β′532>, δv, zmid) 80.00 83.95 

CADFKM (χ′, zmid) 93.83 95.51 

CADFKM (δv, χ′) 90.96 93.77 

CADFKM (<β′532>, δv) 83.45 87.07 

CADFKM (<β′532>, zmid) 77.13 80.83 

CADFKM (δv, zmid) 75.66 79.42 

CADFKM (<β′532>, χ′) 66.89 70.11 

CADFKM (χ′) 66.60 64.80 

CADFKM (δv) 63.87 62.32 

CADFKM (zmid) 63.77 62.06 

CADFKM (<β′532>) 61.75 60.09 
 

5.2 Fuzzy linear discriminant analysis 

Linear discriminant analysis (Fisher, 1936) is usually performed to investigate differences among multivariate classes, to 

validate the classification quality, and to determine which attributes most efficiently contribute to the classifications. Here we 10 

introduce Wilks’ lambda, which is the ratio of within-class variance (to evaluate the dispersion within class) and between-class 

variance (to examine the differences between the classes). Considering a data matrix X (n × p matrix, elements xil, i, data 

number =1,..,n; l , data dimension number = 1,..p), the FKM classification returns a membership matrix M (n × k matrix, 

elements mij, i , data number= 1,..,n; j, class number = 1,..,k) and centroid matrix C (k × p matrix, elements cjl, j, class number 

= 1,…,k; l, data dimension number = 1,…,p) where n is the number of data samples, p is the number of attributes/dimensions, 15 
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and k is the number of classes. The sums of squares and products (SSP) within-classes covariance matrix Wlm, (p × p matrix, 

l/m, data dimension number = 1,…,p), also called the within-classes fuzzy scatter matrix (Bezdek, 1981), is given as 

𝑊𝑊𝑖𝑖𝑚𝑚 = ∑ ∑ 𝑚𝑚𝑖𝑖𝑖𝑖
𝜙𝜙𝑛𝑛

𝑖𝑖=1
𝑘𝑘
𝑖𝑖=1 �𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑖𝑖��𝑥𝑥𝑖𝑖𝑚𝑚 − 𝑐𝑐𝑖𝑖𝑚𝑚�, ∀(𝑙𝑙, 𝑚𝑚), 𝑙𝑙, 𝑚𝑚 = 1, … , 𝑝𝑝 .      (16) 

. (16) 

The SSP between-classes covariance matrix Blm  (p × p matrix, l/m, data dimension number = 1,…,p) are given as 5 

𝐵𝐵𝑖𝑖𝑚𝑚 = ∑ (∑ 𝑚𝑚𝑖𝑖𝑖𝑖
𝜙𝜙𝑛𝑛

𝑖𝑖=1 )𝑘𝑘
𝑖𝑖=1 �𝑐𝑐𝑖𝑖𝑖𝑖 − �̿�𝑥𝑖𝑖��𝑐𝑐𝑖𝑖𝑚𝑚 − �̿�𝑥𝑚𝑚�,  ∀(𝑙𝑙, 𝑚𝑚), 𝑙𝑙, 𝑚𝑚 = 1, … . , 𝑝𝑝 .       (17) 

.  (17) 

The ratio of within-classes to the total SSP matrix is theknown as Wilks’ lambda (Eq. 18, Wilks, 1932; Oh et al. 2005). Wilks’ 

lambda for multi-dimensional observations is a p × p matrix and the determinant of the p × p matrix, which represents the 

geometric volume of this object in p dimensions, written as 10 

Λ = |𝑊𝑊𝑖𝑖𝑙𝑙|
|𝑊𝑊𝑖𝑖𝑙𝑙+𝐵𝐵𝑖𝑖𝑙𝑙|

  .                                 (18) 

( )
( )

det W
det W B

Λ =
+

 (18) 

 (Oh et al. 2005). Here we use Wilks’ lambda (Λ) as a measure of the difference between classes, although a scalar cannot 

replace a vector for investigating different aspects of Wilks’ lambda. The value Λ varies from 0 to 1, where 0 suggests that 

classes differ (within-classes SSP is smaller compared to between-classes SSP), and 1 suggests that all classes are the same.  15 

The magnitude of Wilks’ Λ indicates how distinct and well-separated the classes are. Smaller values of Wilks’ Λ indicate more 

distinct class separation with minimal between-class overlap thus the classification are more trustworthy and have higher 

confidence. Wilks’ Λ thus provides an additional metric to assess classification algorithm performance, augmenting the 

classification accuracy indicators shown in Sect. 5.1.  

For the January 2008 data, Wilks’ Λ for different dimensional observationsobservational dimensions are calculated and 20 

summarized in Table 45. For 4 -dimensional (p=4) observations, Wilks’ Λ could be as small as 0.21 for 2-class FKM and even 
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smaller (0.05) for 3-class FKM. This means that the classes generated by the FKM method are well separated, with clusters 

quite different from each other, particularlyand that the classes in 3-class FKM. are much better separated (less overlap in the 

multi-dimensional observations) than the classes in 2-class FKM. For FKM 2-class, the value of Wilks’ Λ is largest for the 

mid-layer altitude dimensionzmid, indicating a more overlaid classification comparedthat, relative to classificationthe other 

individual parameters, clustering using any other observational dimension.zmid is less efficient at generating well-separated 5 

classes. The reason for the large value of Wilks’ Λ for the dimension altitude isoccurs because clouds have two distinct altitude 

centers, one for low water clouds and the other for high ice clouds. (Mid-level clouds occur too infrequently to form a third 

dominant altitude center)..) The center altitude of water clouds is comparable to that of boundary layer aerosols. These , and 

thus it is very difficult to separate these two classes using zmid alone. The distinct altitude centers of ice and water clouds induce 

large within-classes SSP and hence large values of Wilks’ Λ. Following the values ofFor single parameter clustering, Wilks’ 10 

Λ from the dimension of altitude are the ones from color ratio and depolarization ratio, with the Wilks’ Λ from backscatter 

intensity being<β′532> is the smallest., followed by the values for δv and χ′ . The value of Wilks’ Λ from any combination 

observations is of observational dimensions lies between the maximum and minimum values of those dimensions. For FKM 

for the single parameter clustering. Wilks’ Λ values for 3-class FKM are much smaller compared to the 2-class FKM values 

because zmid can have an independent center for each class. For 3-class FKM analyses, largethe largest single parameter values 15 

of Wilks’ Λ are produced by depolarization, and δv, followed by altitude, color ratio and backscatter.zmid and χ′ .  As with 2-

class FKM, yields the smallest value.  

Table 5: Wilks’ lambda (Λ) for 2-class (center column) and 3-class (right column) FKM classifications using different observational 
dimensions (left column). 

Input parameters Λ, 2 
classes 

Λ, 3 
classes 

Backscatter intensity, depolarization ratio, 
color ratio, altitude<β′532>, δv, χ′, zmid  0.21 0.048 

Depolarization ratio, color ratio, altitudeδv, 
χ′, zmid 

0.20 0.060 

Backscatter intensity, color ratio, 
altitude<β′532>, χ′, zmid 0.20 0.060 

Backscatter intensity, depolarization ratio, 
altitude<β′532>, δv, zmid 0.17 0.035 

Backscatter intensity, depolarization ratio, 
color ratio<β′532>, δv, χ′ 0.14 0.030 

Backscatter intensity and depolarization 
ratio<β′532>, δv 

0.12 0.025 

Backscatter intensity and color ratio<β′532>, 
χ′ 0.14 0.039 

Backscatter intensity and altitude<β′532>, zmid 0.14 0.052 
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Input parameters Λ, 2 
classes 

Λ, 3 
classes 

Depolarization ratio and color ratioδv, χ′ 0.13 0.043 
Depolarization ratio and altitudeδv, zmid 0.20 0.056 
Color ratio and altitudeχ′, zmid 0.23 0.077 
Backscatter intensity<β′532> 0.08 0.030 
Depolarization ratioδv 0.16 0.136 
Color ratioχ′ 0.18 0.053 
Altitudezmid 0.28 0.121 

Table 4: Wilks’ lambda (Λ) for 2-class (center column) and 3-class (rightmost column) FKM classifications using different 

dimensional observations (left column) 

 4 

5.3 Principal Component Analysis 

In this section we apply principal component analysis (PCA,; Wold et al. 1987) to the FKM classificationsclassification results 5 

to determine which of the input parameters account for the greatest variability in the outputs. These functions, or canonical 

variants, are therefore calculated from the eigenvalues and eigenvectors of matrix Wf / Bf (the ratio of within-class variance 

and between-class variance). The first function (PCA-1) maximizes the differences between the classes and represents the 

dominant contribution to the classifications. Successive functions (PCA-2) will be orthogonal to, or independent of, the other 

functions and hence their contributions to the discrimination between classes will not overlap. These functions, or canonical 10 

variants, are calculated from the eigenvalues and eigenvectors of matrix Bf/Wf  (the ratio of within-class variance and between-

class variance). Using this method will help usWe also project the inputs variable vectors along the principal component axes. 

Using this method helps to better understand how independent the input parameters are and how they individually contribute 

to the classifications.  

The scatter plots of PCA-1 and PCA-2 for FKM 2 classes and 3 classes are shown in Figure 1312. The projection of vector 15 

lengths on PCA-1 and PCA-2 of different measurements (i.e., backscatter intensity, depolarization ratio, color ratio<β′532>, δv, 

and mid-layer altitudeχ′ , and zmid) indicate how much each individual dimension contributes to the classifications. Longer 

projections mean stronger contributions. From the figure, we clearly see that water clouds, ice clouds and aerosols are quite 

different (i.e., their cluster centers are located in different positions). ClassDifferent colors represent different classes, and 

darker colors indicate higher sample densities.  Class centers, marked with red crosses, are located where the class sample 20 

density is highest, with higher densities shown by darker colors. We reorient PCA-2 to keep the C1-C2 line approximately 

diagonal, and thus better assess the relationship between PCA-1 and PCA-2. (In reality, the contribution of PCA-1 is always 
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larger than PCA-2 while the diagonal line shows PCA-1 contribution is equal to PCA-2.) From both panels we see that class 

1 (cloud) of 2-class FKM breaks into 2 classes (ice cloud and water cloud) when applying 3-class FKM. The denser samples 

(centers) of water cloud, ice cloud and aerosol are quite separate from each other, and the overlap zone has fewer samples. We 

can also see that color ratioχ′ and depolarization ratioδv contribute the most onto PCA-1 (longer projections on the axis of 

PCA-1 in both subpanels) while backscatter and heightzmid contribute more onto PCA-2. Hence, color ratioχ′ and 5 

depolarizationδv are the driving components for the cloud and -aerosol classificationseparation. From figure 13b12b, we could 

also argue that the backscatter and depolarization<β′532>and δv are the driving factors in classifying water and ice clouds 

(projections of the vectors on C1-C2-C3, namely the combined projection of PCA-1 and PCA-2, are longer), while color ratioχ′ 

and altitudezmid also contribute to the classification. Altitudezmid, and, to a greater extent, color ratioχ′ and depolarization ratioδv 

are the driving factors that allow aerosols to be separated from ice clouds (projections of the vectors on C1-C3C2 are longer), 10 

whereas backscatter intensity  and color ratioχ′ are the driving factors that separate water clouds from aerosols (projections of 

the vectors on C2C1-C3 are longer). Comparing contributions of individual measurements to different classes, mid-layer 

altitudezmid is most useful in helping discriminate aerosols and ice clouds, while simultaneously being the least useful in 

separating aerosols and water clouds classification. Backscatter intensity.  <β′532> is the most useful parameter in 

thedistinguishing aerosols vs.form water clouds classification and the water clouds vs.from ice clouds classification, and the 15 

least useful in thedifferentiating between aerosols vs.and ice clouds classification. Depolarization. δv is most useful in 

distinguishing between water clouds and ice clouds and between aerosols and ice clouds, and the least useful in theseparating 

aerosols vs.from water clouds classifications.. These observations agree very well with earlier findings in figuresFig. 6 and 12 

and tablesTables 2, 3 and 4.  

 20 
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Figure 1312: principle component analysis of the FKM classifications for the January 2008 test data.  PCA results for the 2-

class CADFKM classifications are shown on the left (panel a), and the 3-class CADFKM classifications are shown on the right 

(panel b).  In both figures, the green points are projections of aerosol data onto the PCA axes with their center located at red 

crosses labeled C1.  Similarly, the blue and cyan (left panel only) points are projections of cloud data onto the PCA axes.  In 5 

panel a, the blue points represent all clouds, while in panel b the blue points represent ice clouds and the cyan points represent 

water clouds. Higher sample number condensations are in darker colors while lower condensations are in lighter colors.  Also 

shown in both panels are color-coded vectors representing each of the classification variables: backscatter intensity 

(AB,(<β′532>, in orange), depolarization ratio (DRδv, in brown), color ratio (CR,χ′, in magenta), and altitude (Hzmid, in olive).  

The projections of the variable vectors along the principal component axes indicate the degree to which each variable 10 

contributes to PCA1 and PCA2.  Variable vectors that are parallel to either PCA1 or PCA2 contribute essential information to 

that component, while vectors that are perpendicular do not contribute at all.   

45.4 Error propagation 

In this section, we assess the impactBy using PCA we can determine which parameters are most influential in arriving at 

different cluster memberships.  Additionally, because all CALIOP measurements are contaminated to some degree by noise, 15 

we also want to see if/how noise in the individual parameters affects classification accuracy. These results can also guide us 

in understanding how the classification accuracy changes as the CALIOP laser energies deteriorate over the lifetime of the 

mission. In this section, we assess the impacts of instrument noise and measurement uncertainties on the FKM classifications. 

The observations from a nighttime granule acquired 6 September 2008 beginning at ~01:35:29 UTC are used to investigate 

how noise in the lidar measurements affects the accuracy of the clustering results and what, if any, biaseserrors are introduced 20 

into the cloud and aerosol classifications. for this particular case. To simulate the measurement uncertainties, two different 
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methods are used. In theThe first method,drew pseudo-random variables were drawn from Gaussian distributions having means 

equal to the various measured values and standard deviations between 10% and 200% of the means. As illustrated in Figure 

1413, using this method allows us to quantify the effects of varying measurement errors on the FKM classification algorithm 

results. A sequence of Monte CarlosCarlo tests was constructed in which one of the four classification variables was randomly 

perturbed (i.e., drawn from the aforementioned Gaussian distributions) while the other three remained unchanged. For each of 5 

the four tests, 100 realizations of simulated input were created. To estimate the propagation of measurement uncertainties, we 

calculated the shifts in classification, confusion indexindexes (CI, see section 3.2)), and the changes in cluster centers between 

new clusters with added noise and the original clusters derived using unperturbed inputs. The shifts in cluster centercenters are 

the mean distances between the centers of the new clusters (Cn, obtained from perturbed dataset) and the old ones (Co, obtained 

from error free dataset) for both clouds and aerosols, calculated using Eq. 19 (Omar et al., 2005). These distances are 10 

normalized by the standard deviation of the distributions (Cstd) of individual record distances from unperturbed center as 

. 

δ𝑑𝑑𝑒𝑒 = |𝑐𝑐𝑛𝑛−𝑐𝑐𝑐𝑐���������|
𝐶𝐶𝑎𝑎𝑠𝑠𝑐𝑐

 .                               (19) 

n 0

std

c c
d

cε

−
δ =  (19) 

where |x| represents the L1 norm of x.  Figure 1413 plots (a) the shifts in cluster centers or (a)for each class, (b) the fraction of 15 

correct classifications, and (c) the revised confusion indexindexes as a function of relative uncertainties ranging from 10% to 

200%. From Figure 14a13a we see that shifts in cluster centers between perturbed and unperturbed data are very small when 

the uncertainties are small. The largest shift comes from color ratio perturbations and the smallest shift comes from backscatter 

perturbations. Perturbations on class-2 (aerosol) are more important compared to class-1 (cloud). Figures 14b13b and 14c13c 

show that when the uncertainties in the measurements are small (i.e. less than 10%), the errors in the classifications are also 20 

small (e.g., less than 2% in Figure 14b13b) with less overlaps between classes (e.g., small values of CI from 0.3 to 0.305 seen 

in Figure 14c13c). When the uncertainties increase, the classification accuracies slightly decrease and the shifts in cluster 

center and CI slightly increase.  The rates of change in the accuracy and confusion index are rapid at first (i.e., between relative 

uncertainties between 10% and 100%), but tend to be stablestabilize for larger uncertainties. Large measurement uncertainties 

(i.e., 200%) in color ratio can introduce biases of 20% in the classification results, with CI values less than 0.335. This suggests 25 

that uncertainties in the measurements can cause misclassification, but that most of the classifications (~80%) are still robust. 

This is because cloud and aerosol properties are largely distinct and the misclassifications that do occur may come from features 

such as the few very thin clouds and dense aerosols in the transitional zone in Figure 6. 
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Figure 1413: classification changes as a function of errors in the input parameters.  The left panel (a) shows shifts in cluster 

centers for each class; the center panel (b) shows the relative accuracy of the FKM classifications; and the right panel (c) shows 

changes in the cluster confusion indexes. Panels b and c show perturbations in the classifications due to uncertainties in 5 

attenuated backscatter intensity (AB,(<β′532>, in red), depolarization ratio (DRδv, in blue), and color ratio (CR,χ′, in green).  

Our first error propagation test used arbitrarily assigned relative uncertainties between 10% and 200% of the parameter mean 

values. In our second test we used the measured uncertainties reported in the CALIOP layer products to construct the Gaussian 

distributions from which pseudo-random variables were generated. By using this method, we can assess the actual impacts on 

the classifications due to noise in the CALIPSO measurements. To isolate the influence of the individual inputs, three test 10 

cases were constructed in which only one parameter was varied in each case. Figure 1514 shows the results. Figure 15a14a 

shows the unperturbed results, while Figures 15b–15d14b–14d show CADFKM scores averaged over 100 perturbations of the 

test parameter. Figure 15b14b shows the results when the attenuated backscatter intensities are varied, Figure 15c14c shows 

the results when the depolarization ratios are varied, and Figure 15d14d shows the results when the color ratios are varied.  
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From Figure 1514 we find that the averaged CADFKM scores from the perturbed datasets do not differ markedly from the 

CADFKM scores in the unperturbed dataset. In more than 88% of the cases, clouds are still classified as clouds and aerosols are 

still classified as aerosols. When examining perturbations to backscatter intensity alone (Figure 15b14b), we find that the 

perturbed and unperturbed classification results are identical more than 98% of the time. However, the CADFKM differences 

arising from perturbations to depolarization ratio and color ratio (Figures 15c14c and 15d14d, respectively) can be much larger. 5 

This finding is consistent with results shown earlier in Figure 1413.  
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Figure 1514: CAD scores for the same orbit shown in Fig. 4 (06 Sep. 2008, 01:35:29 GMT). The uppermost panel (a) shows 

2-class FKM results derived using unperturbed measurements.  Panels b, c, and d show, respectively, 2-class FKM results 

derived using perturbed measurements of attenuated backscatter intensity (AB),(<β′532>), depolarization ratio (DRδv), and 

color ratio (CR). χ′). Panel e shows 2-class FKM results derived when all three variables are perturbed independently. 

Most often, the perturbed measurements only induce CADFKM changes for features that were originally classified with low 5 

confidence and for those challenging features such as water clouds beneath smoke, high altitude aerosols, and PSCs, whose 

input parameters frequently lie in the transition zone between clouds and aerosols. Water clouds beneath thick smoke layers 

are an especially difficult case, as the uncertainties introduced by the absorption of smoke at 532 nm can significantly reduce 

the confidence of the water cloud classification. Looking at Figure 1514, together with Figures 2, 11 and 1312, we find that 

this is a reasonable and even expected result. From Figures 11 and 1514 we know that the most effective measurements for 10 

separating water clouds and aerosols are color ratio and backscatter intensity. But relative to measurements of water clouds in 

otherwise clear skies, the color ratios for water clouds lying under absorbing smoke layers have large positive biases while the 

backscatter intensities have large negative biases, and these biases will produce low confidence CAD scores, both for the FKM 

method and the V4 operational method (Liu et al., 2018). A somewhat similar scenario can occur in the classification of high 

altitude aerosols, where high biases (i.e., measurement errors) in depolarization ratiosδv and color ratiosχ′ can lead to the 15 

misclassification of aerosols as ice clouds. 

 5.6 Conclusions 

In this paper we use the Fuzzy K-Meansfuzzy k-means (FKM) clustering algorithm to validateevaluate the performance 

ofclassifications reported by the cloud-aerosol discrimination (CAD) algorithm used in the standard processing of the Cloud-

Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements.  Being able to accurately separate clouds from aerosols 20 

is an essential task in the analysis of the elastic backscatter lidar measurements being continuously acquired by Cloud-Aerosol 

Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission.  When coupled to a well-validated CAD algorithm, 

the data products delivered by CALIOP can be used to reliably map the vertical distributions of clouds and aerosols on global 

and regional scales throughout the full 12 years of the CALIPSO mission.   

ToThe comparison between two different classification techniques helps us assess the performance of the operational CAD 25 

algorithm, we have compared its outputs to those derived from the same scenes using an implementation of the FKM technique. 

. The CALIOP operational CAD algorithm (COCA) is a supervised learning technique, in which classification decisions are 

tuned to match externally provided expert human judgements.  Unlike the operational CAD, the FKM is an unsupervised 

learning scheme, which assigns class memberships based on similarities discovered in the inherent characteristics of the input 

data.  While the two algorithms use largely identical inputsboth rely on the same underlying lidar measurements, the underlying 30 
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mathematical formulations are entirely different, as is the framework for expressing class membership values. These 

differences allow us to explore the classification uncertainties due to the algorithms. The flexibility of the FKM technique also 

allows us to investigate the relative importance of various inputs in deriving the final classifications and to explore 

classification biasesmisclassification arising from current lidar measurement techniques.  Establishing these performance 

metrics should enable the development of enhanced classification schemes for use with future space-based lidars. 5 

The key finding of this study is that the feature classifications assigned by CALIOP operational CAD algorithm COCA are 

very closely replicated by the FKM method. Our assessment of parameter PDFs shows that,Having a totally unsupervised 

learning algorithm “discover” the same patterns in general, one half-orbit of the data is sufficient to that are reported by COCA 

strongly suggests that the COCA classifications represent a much largergenuine data set-driven differences in the cloud-aerosol 

classification process.CALIOP observations, and are thus largely free from artifacts that might be imposed by human 10 

misinterpretations when constructing the CAD probability density functions (PDFs). The classifications obtained from our 

independently derived FKM analyses compare well with the classifications determined by CALIOP’s operational V4 CAD 

algorithmCOCA and reported in the CALIOP V4 data products. Using a one-month test set, the 2-class and 3-class FKM 

classifications agreed with the V3 and V4 operational data products over 93 % of the time, and the 3-class FKM results agreed 

with the V4 operational CADCOCA results in 94~95 % of all cases. This strong agreement between two independent methods 15 

provides convincing evidence that V4 CAD operational CAD algorithm is delivering robust and accurate classifications. 

Those instances where the two methods fail to agree (5~6 % of all cases) are typically highly ambiguous scenes in which the 

observables lie in the overlap regions between the peaks of the cloud and aerosol PDFs.  In particular, in scenes containing 

Taklamakan dust (or lofted Asian dust in general), high altitude smoke plumes, cirrus fringes, and/or volcanic ash, both the 

V4 operational CAD and the FKM algorithm struggle to make accurate classifications.  The Taklamakan dust cases provide 20 

an instructive example that illustrates the classification conundrum.  Over the Taklamakan, lofted dust layers and cirrus clouds 

occur in similar temperature regimes, and frequently have similar backscatter intensities (<β′532>) and depolarization ratios.  

(δv). The most critical criterion for distinguishing clouds from aerosols is color ratio, (χ′), and the characteristic color ratios of 

dust and cirrus are reasonably distinct (~0.75 vs. ~1.01).  However, the natural variability within each feature type is quite 

broad (e.g., ±0.25 for cirrus), and the measurements are very noisy, especially during daytime. 25 

To characterize the CAD improvements made in the most recent CALIOP data release, we used the FKM method to explore 

the capabilities of both the V3 and V4 operational CAD algorithms.  As expected, the V4 operational algorithm was more 

effective than the V3 version, but the overall differences were not large. . The primary differences are found by examining the 

results obtained for specific feature classes.  The FKM classifications agree well with both the V3 and V4 CAD results in most 

cirrus fringe and dense aerosol cases and agree well with V4 CAD results for lofted Asian dust, high altitude smoke, and 30 

volcanic ash. FKM classifications of stratospheric features and polar region features had the largest uncertainties.  More studies 
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are needed to better understand why these specific types of features are proving so resistant to confident classification, 

irrespective of the algorithmic approach applied.  

Our investigation of error propagation in the FKM shows that while measurement uncertainties on the order of the CALIPSO 

measured noise will introduce biases into the cloud and aerosol classifications, more than 80% of the classifications stay 

unchanged. For the rest of classifications (which are low confidence clouds or aerosols), as the uncertainties increase, the 5 

classification confidence decreases, as indicated by higher confusion indexes, and the classification accuracies decrease as 

well. The dependence and the number of measurements can also impact the classification efficiency. Key parameter analysis 

shows that higher classification accuracies are achieved by increasing the number of independent observational parameters 

used in the analyses.  Two-class FKM classifications using only a single input yield the same results as the operational CAD 

in only ~60 % of all classifications, a rate only marginally better than would be expected from random choice.  While using 10 

three parameters achieved an agreement between the FKM and the V4 operational CAD in the neighborhood of ~80 %, raising 

the agreement to ~95 % required four parameters.   When only three inputs were used, removing color ratio from the FKM 

caused the largest classification disparities between the two methods.   

Certain parameters are especially significant for the classification of particular feature types, and thus optimizing the number 

of successful classifications across all features requires the inclusion of all measurements that effectively contributed to any 15 

species-specific classification.  Principal component analysis and key parameter analysis together show that the most important 

dimensions for distinguishing between clouds and aerosols are depolarization ratiosδv and color ratios;χ′; that backscatter 

intensity<β′532> and depolarizationδv are the driving factors in classifying water and ice clouds; and that altitude, color ratio 

(zmid), χ′ and depolarization ratioδv are the key inputs that allow aerosols to be separated from ice clouds, while backscatter 

intensity is the critical factor for separating aerosols and water clouds. Moreover, from fuzzy linear discriminant analysis we 20 

found the values of Wilks’ lambda are close to 0, confirming that the FKM classification technique reliably separates clouds 

from aerosols. 

While the FKM and official CAD classification methods both provide reliable discrimination between clouds and aerosols in 

the CALIOP data set, the FKM method is much more time consuming than the operational algorithm.  On the other hand, 

theThe flexibility of FKM method offers opportunities to explore the effectiveness of future classification schemes that 25 

potentially incorporate measurements from multiple sensors, perhaps even from multiple satellites.  While the input data used 

by our implementation of the FKM technique is essentially identicalsynthetic to that required by the CALIOP V4 operational 

algorithm, the two decision-making frameworks are independently derived and rely on very different mathematics (i.e., 

probabilities vs. fuzzy logic). The very close similarity between the results produced by the two independent approaches argues 

strongly that the V4 operational classifications are essentially correct at the 94% level.   30 
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Interactive comment on “Application of High-Dimensional 
Fuzzy K-means Cluster Analysis to CALIOP/CALIPSO Version 
4.1 Cloud-Aerosol Discrimination” by Shan Zeng et al.  
Anonymous Referee #1  

This manuscript describes a cluster analysis technique applied to CALIPSO data products as an 
alternative to the standard cloud-aerosol discrimination (CAD) algorithm(s). The stated objective of 
this activity is to validate the CAD algorithm and better understand what is important in the 
classification process.  

I believe the elements of a good paper are here, but the logical flow needs some significant work. I 
need to really dig to understand why you did this in the first place, and what specifically you learned 
when you were done. The authors used a large number of statistical and otherwise assessment 
techniques, but often gave little justification for the choices that were made during the assessment, 
and minimal description of the results. I think it would have been better to not describe every single 
analysis that was performed for this work, and instead focus on some of the most important and try 
for a better explanation of what you were doing, why you picked that technique, what you expected 
to find, and how the differences between expectations and results are significant to the CAD 
algorithms. The significance should be summarized both in the conclusions and the abstract. Before 
I start addressing specific portions of the manuscript, I have a few general questions and comments:  

Thanks for reviewing the manuscript and giving many valuable suggestions. We re-worked the 
logical flow of our paper, and we have clarified our working plan in the introduction. We better 
interlinked the sections and subsections to make the flow of the manuscript clear and easy for 
readers and reviewers to follow. We have also added more descriptions and explanations of the 
results in section 3 and 4, concentrated on and more clearly identified especially significant results, 
and better summarized them in the abstract and the conclusion. Please check details in the paper. 

1. It seems to me that hierarchical clustering, in one of its many forms, would be useful to CALIPSO 
data. Presumably, clouds are very different from aerosols, but ice and water clouds, while 
different, are much more similar to each other than to aerosols. This is not the topic of the paper, 
of course, by if one is to spend time looking into clustering algorithms as an alternative for CAD, 
why wasn’t this considered?  

It seems we’ve done a poor job of stating our objectives for this paper, as it was never meant to 
be an exercise in “looking into clustering algorithms as an alternative for CAD”.  Instead, as we 
say in the conclusions of the original draft, the purpose of this study is “to assess the performance 
of the cloud-aerosol discrimination (CAD) algorithm used in the standard processing”.  Having 
now read the referee’s comments, it’s quite apparent that we failed to clearly enunciate our 
primary goal.  

Unsupervised clustering schemes are frequently used to find patterns in data. The trick is to find 
patterns that have meaningful interpretations for human data users.  Having a totally 
unsupervised learning algorithm “discover” the same patterns in the data that we report when 
using our CAD PDF scheme gives us some confidence that our CAD classifications represent 
genuine data-driven differences in the CALIOP observations, and are thus largely free from 
artifacts that might be imposed by human misinterpretations or conceits.  Furthermore, 



interpreting our comparisons of the results obtained by the two methods is straightforward: the 
higher the correspondence between the “discovered” classes and our predetermined classes, the 
higher our confidence in the CALIOP operational CAD classifications. 

2. At no point do you discuss the possibility of the FKM acting as a potential replacement for the 
standard CAD algorithms. Why not?  

Once again it appears that we have failed to convey our goals for this study. We are not 
investigating potential replacements for our CAD algorithm.  Instead we are looking for methods 
to validate its performance and characterize its reliability. We will, of course, replace the standard 
CAD algorithms if/when some other algorithm(s) – be it FKM or anything else – can be shown to 
yield consistent and demonstrable improvement in distinguishing between clouds and aerosols 
on a global scale.  But that day has not yet arrived. The take-away message from this paper is (or 
least should be!) that the FKM classifications are essentially similar to the operational V4 results, 
and thus confirm that our operational CAD algorithms are performing quite well. In the testing 
we’ve conducted to date, we see no evidence of superior performance by the FKM algorithm. 

In the last paragraph, you mention that the “FKM method is much more time consuming than the 
operational algorithm.” I don’t understand this. Does this mean it is time consuming if one 
attempts to recreate the FKM for the entire dataset? I would think one would create the cluster 
centers with a subset of data and apply to the rest, which I couldn’t imagine would be slower than 
the CAD approach.  

We were regrettably imprecise in our comments about algorithm speeds. What’s time consuming 
is training the FKM on a suitably large subset of the measurements.  (In this regard, FKM is similar 
to our standard algorithm: building the CAD PDFs is also a time- and compute-intensive activity.)  
However, once the FKM training has been completed, the partitioning of features within any 
scene into clouds and aerosols should occur on time scales commensurate with (or perhaps faster 
than) our current CAD algorithm. 

Other than speed, I see no discussion about why FKM would be less desirable than CAD. In some 
ways (less dependence on non-scene information like latitude), I would think it would be 
preferable.  

Conceptually, both FKM and the existing algorithm are potentially good candidates for the CAD 
task. But practically speaking, our existing algorithm is the hands down winner: it’s already highly 
optimized for use with CALIOP measurements and tightly integrated into the CALIOP software 
architecture, and its performance has been extensively documented (e.g., see Liu et al., 2009 and 
Liu et al., 2018). 

Regarding the use of “non-scene information like latitude”, recall that the CALIOP CAD algorithm 
is fundamentally a probability-driven technique. And because (for example) the probability of 
observing lofted dust plumes at 60° S is significantly smaller than at 45° N, latitude can contribute 
relevant information in distinguishing cloud (e.g., cirrus) from aerosol (e.g., Asian dust). On the 
other hand, using attributes like latitude and altitude can introduce classification artifacts into 
unsupervised machine learning techniques like fuzzy k-means and Kohonen self-organizing 
maps. These techniques are likely to be much more successful if the inputs can be restricted to 
the intrinsic properties of the atmospheric layers being measured (e.g., particulate depolarization 
ratios, lidar ratios, Ångström exponents, etc.). Unfortunately, these quantities are not directly 



measured by elastic backscatter lidars like CALIOP and thus cannot be used in the classification 
phase of the analysis. Instead we have to make due with proxies like total attenuated backscatter 
color ratio, which, while readily measured, is also a rather awkward combination of intrinsic and 
extrinsic layer properties.  Having multi-wavelength high spectral resolution lidar measurements 
would remedy the situation…but, sadly, it’s likely to be many years before such a capable system 
is flown in space. 

3. Much of your validation relies on a comparison of various versions of CAD and FKM. In some 
cases this is just for a few specific scenes. Once we make the leap of faith that those scenes are 
representative of all scenes, the fact remains that you don’t know truth. So, is agreement between 
CAD and FKM the best metric when they could both be wrong? It seems the implicit assumption 
is that FKM could never reach CAD levels of correctness, but when if FKM does correctly identify 
the scene but CAD does not? In that case, ‘agreement’ isn’t appropriate as a means to validate the 
results. One way of addressing this problem is to apply both algorithms to synthetically generated 
scenes, where one knows the ‘truth’ and can verify its identification.  

To say that “much of your validation relies on a comparison of various versions of CAD and FKM” 
is perhaps being too kind.  A more realistic assessment might be that ALL of our validation 
currently relies on these comparisons. To the best of our knowledge, there are no published, 
observation-based validation studies of the CALIOP CAD results. This paper is our first attempt 
to evaluate the CALIOP cloud-aerosol discrimination problem within a different mathematical 
decision-making framework. (We note, though, that since our manuscript first appeared in the 
AMT discussion forum, another algorithm-comparison study using state vector machines has 
been published; see Brakhasi et al., 2018 at https://doi.org/10.1016/j.jag.2018.07.017.) 

While the use of synthetic data as an evaluation tool is generally an excellent and highly effective 
strategy, in the case of discriminating clouds from aerosols it’s also especially hard to implement 
in a useful way.  For ~90% of the cases, cloud and aerosol properties are very well separated and 
reliable classifications can be made using a single wavelength elastic backscatter lidar (e.g., CATS; 
see https://cats.gsfc.nasa.gov/media/docs/CATS_QS_L2O_Layer_3.00.pdf). In these cases, 
unambiguous synthetic data can be used to weed out those algorithms that are obviously 
deficient.  But the remaining cases fall into the cloud-aerosol overlap region (see Liu et al., 2009), 
where (to within the accuracy and precision of our measurements) aerosols and clouds layer can 
have essentially identical optical properties, and thus cannot be distinguished based only on the 
CALIOP measurements. Within the overlap region, the best an algorithm can hope to achieve is 
to avoid biases by reporting roughly equal correct and incorrect classification rates.  (Ideally, all 
‘overlap region’ classifications will be flagged as “low-to-no confidence”; i.e., assigned very low 
CAD scores). Unfortunately, given the available layer attributes, FKM cannot help resolve issues 
in the overlap region. To better resolve cloud and aerosol layers, additional measurements 
and/or information are needed.  

Even the most sophisticated human observers cannot always agree on the correct partitioning of 
those layers that occupy the overlap regions (e.g., see Koren et al., 2007; Tackett and Di Girolamo, 
2009; Varnai and Marshak, 2011; Balmes and Fu, 2018).  These especially difficult cases include 
separating thin cirrus from lofted Asian dusts, separating evaporating water cloud filaments from 
the surrounding aerosols in the marine boundary layer, and separating fresh volcanic ash from 
cirrus. Given the measurements available on the CALIPSO platform, the classification of these 
targets is always subject to some uncertainty.  So by using synthetic data to compare algorithm 
outputs versus “truth” we could perhaps choose an algorithm that best confirms our own 



prejudices; but whether that algorithm was delivering the correct classifications in the really 
hard cases would still be an open question. 

On to specific comments:  

Abstract: As mentioned previously, the abstract gives minimal details about why you’re undertaken 
this study, other than the rather vague “provide new insights” and validation of CAD. What are the 
new insights? Does it validate as expected?  

We added more detailed results as “insight” in the abstract. We also clarified that in addition to 
validating the CALIPSO operational CAD algorithm (COCA), the comparison work helps establish the 
boundaries of classification correctness regarding the individual classification algorithm. The 
comparison works in general as good as expected with more than 94% of classifications agreeing 
between different algorithms.  

Page 2, line 23: OK, so a difference between FKM and CAD is that the latter uses latitude as an input. 
I would think the arbitrary nature of the use of latitude is undesirable, so if FKM is successful than 
it’s ability to perform without the use of latitude is very important and should be highlighted more.  

The latitude information is used in operational V4 CAD algorithm to create the probability density 
function (PDF) to discriminate the cloud from the aerosol. For every five-degrees of latitude and 1km 
altitude, a look-up table of 3-dimentional probability cloud and aerosol is built according to the joint 
distributions of backscatter, depolarization and color ratio observation from lidar. This is because 
for different zones and altitudes, the sources and dynamics of cloud and aerosol are different.  
Applying a single, global scale look-up table would make it extremely difficult to identify local 
features. Latitude itself is not an intrinsic optical characteristic that can be universally used to 
separate cloud and aerosol. But because the probability for a particular class to be present is location 
dependent, latitude helps to shape the PDFs to provide better classifications at a local scales.  

The reason we don’t use latitude as an input is because we use FKM method, which is a centroid 
classification method, and geographic information about clouds and aerosols doesn’t provide good 
separation criteria (they both occur at all latitudes everywhere around the planet) and hence will 
confuse the FKM classification. When we add latitude as an additional input, the resulting Wilk’s 
lambda rises to 0.5, indicating that the classifications are no longer reliable.  

Page 2: here you mention the difference between CAD V1 and CAD V4, but later on you validate 
against V3 and V4, and even mention V2 at some point. It seems overly complicated to compare 
against anything other than the latest version, but if you must you need to describe what is in each of 
the versions, the important differences, and why you need to validate against 3 & 4.  

We added explanations about the differences between version 3 & 4 CAD algorithms. We also explain 
briefly why we have chosen to compare FKM to both CAD versions.  

Note too that our manuscript is a part of an AMT special issue on CALIPSO version 4 algorithms and 
data products, and thus is a companion to the paper by Liu et al. (2018) that describes the V3-to-V4 
updates to the CALIOP CAD algorithm.  Our comparisons of FKM to both V3 and V4 CAD are meant to 
provide additional insights into the improved performance of the V4 CAD. 



Page 4: OK, great, FKM doesn’t use Latitude. Why not also skip altitude? Or try with and without? 
Altitude to me also seems like an arbitrary input that may bias your results, although perhaps 
somewhat more justifiable than latitude.  

The relative occurrence frequencies of aerosols and clouds are quite different, depending on altitude 
(and, to a lesser extent, latitude), and thus altitude is likely to be a highly relevant characteristic for 
supervised learning approaches. How relevant it is for unsupervised learning is somewhat less 
obvious. (One might argue that mid-layer temperature would be a much better choice, as in some 
cases (e.g., T > 0 °C) temperature can be a determining factor in distinguishing between ice clouds 
and water clouds.) 

However, the reviewer is right that altitude is also not an intrinsic optical property that can be used 
to discriminate between clouds and aerosols. Instead it is an atmospheric dynamics property: 
aerosols and water clouds are most often found in the boundary layer, while ice clouds can reach as 
high as the tropopause.  So altitude can be crucial to discriminating between aerosol and ice clouds 
(though in some extreme cases their optical properties may be similar). For this reason we retain 
altitude in the FKM classifications. But, as the reviewer suggested, we have also experimented with 
omitting altitude for some particular cases in the paper (see section 4.4 in the revised manuscript).   
Throughout the paper we added more explanation saying why we choose these four parameters.  

Page 5, last paragraph: You’re using a random distribution of initial class memberships. How 
sensitive are you to that randomly selected distribution? Is there any difference in the results 
between one random seed and another? Also, is there any potential benefit in starting with class 
centers corresponding to preconceived notions of the class centers?  

Actually, the code includes a loop for the selection of the random initiations so that the algorithm 
converges and gets the best fit.  We now clarify this point in the text and in the flowchart in Figure 1. 
We did not check the impacts of initiation distributions on classification results in the paper. To 
response to the reviewer’s suggestion, we did a quick check on this and found the initial scattering 
does not impact the results much (please see the figures below). We used the uniform and normal 
random distributions for a 2-classes clustering and the results are almost the same; the difference 
for one orbit is 0.00000816%. While we could also use preconceived class centers, I don’t think this 
will change the class membership value, but it might change the speed that the algorithm converges. 



 

Figure 1, step 4: You have change in the norm of m as a metric to stop iteration (or max iteration 
number). Could other metrics also be used, such as change in c, or d? I’ve seen iterative methods that 
use multiple means of assessing when no further improvement can be provided as a means to reduce 
the number of time the max iteration number boundary is used.  

We modified the flowchart and explanations about the last step (step 4) to determine our final 
membership due to our mistake in the previous manuscript. We actually used the objective function 
instead of membership which is not moving to determine when the iterations terminate. The code 
stops when algorithm converges and objective function change is smaller than a small threshold or 
the iteration count larger than a certain number. And we loop through multiple initiations and choose 
the smallest objective function minimum among all loop to get our final clusters. In real-world runs, 
the algorithm stops before reaching the max iteration number, which means the algorithm converged 
and objective function is stable. Note, the objective function is a function of membership, center and 
distance. That is why we say using only the center may slow down the speed. But I think technically 
we can use only the center, the distance or the membership. As the objective function takes joint 
account of all three, it would be our best choice.  

Page 7, paragraph 1: could the FKM be used to improve the PDF used in CAD for the ‘arbitrary’ 
classification inputs (latitude and altitude)?  

Perhaps…although to us it’s not immediately clear how.  In particular, the CAD altitude increments 
are chosen to partition the PDFs in a manner consistent with atmospheric dynamics. To a lesser 
extent, so too are the latitude increments. In fact, one of the primary reasons for increasing the 
latitude resolution from 10° in V3 to 5° in V4 was to achieve more reliable separation between ice 
clouds and dust in the northern hemisphere dust belt. 

Page 7, second paragraph: “...sample is used to determine the optimal number of classes and fuzzy 
exponent required for classification. . .” How is this done? This is an important detail to skip.  

We added more details about the selection of training data. We actually used one month of data 
(January 2008) to determine the optimal number of classes and fuzzy exponent required for 
classification.  



Figure 2: how were these PDF’s defined? Also, caption needs to spell out HOI and ROI 

We added the definitions for PDFs in the text and the caption of Figure 2. We also add the definitions 
for HOI and ROI in the caption of Figure 2. The V4 CAD PDF is a five-dimension probability look-up 
table. Here the PDF is just the probability for one dimension, which is the occurrence frequency with 
sum normalized to unit. 

Table 1: Based on the PDF’s in Figure 2, it seems the filter criteria for AB is much tighter than what 
was selected for DR and CR. Why? Shouldn’t they be similar?  

Feature with AB larger than 0.2 are not majority of the cases and all of them are clouds. Aerosols with 
backscatter larger than 0.2 are relatively rare (e.g., only 3.5% of all tropospheric aerosol layers 
detected during 2012 at 5-km horizontal averaging had <β′532> > 0.2 sr –1 km –1). Setting the value as 
0.2 or 2 won’t change the results much. When we set the values larger than 0.2 to 2, it won’t change 
the classification results, but it will speed up the calculations and make it easy to converge. We added 
some more explanation about this in the paper. 

Page 9, paragraph 1: “Mahalanobis distance can be used for correlated variables. . .” This seems to 
imply that you expect AB, DR and CR to be correlated, but can you make it clearer if they are or not? 
If they are (and I suspect this is the case), this has implications for the uncertainty analysis later.  

As you suspect, the lidar observables are indeed correlated.  If we consider each of the three as sums 
(or means) of the measured backscatter signal over some altitude range, then  
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 (The subscripts   and ⊥  represent contributions from the 532 nm parallel and perpendicular 
channels, respectively.)  In particular, the signals measured in the 532 nm parallel channel contribute 
to all three quantities.  We now provide these details in (the new) section 3.4. 

Figure 3: (a) x-axis title should have caps (b) what is NCE? And more generally how do we know from 
these figures that the ideal # of classes is 3 or 4 and corresponding fuzzy exponents 1.4 or 1.6. It is 
not clear what I should be looking for in these plots.  

X-axis is the class number (k), and NCE is MPE instead. We modified them in figure and its caption. 
We choose the value based on that fuzzy exponents is “best value of ϕ for that class is at the first 
maximum of objective function curves”, which in subfigure c, for 3 classes (red color) the pick value 
corresponds to ϕ =1.4 and for 4 classes (light green) ϕ = 1.4 or 1.6. We choose the class number based 
on the minimum values of both FPI and MPE and also real class number in the atmosphere (cloud 
and aerosol). 

Page 11, second paragraph: mentioned before, but again: is it essential to compare against both V3 
and V4? It seems to be unnecessarily complicated.  



Not absolutely essential, perhaps, but certainly highly desirable from our point of view. See our 
previous response on this topic for a bit more detail. 

Page 11, line 17 “. . .around 74S are misclassified. . .” confused by this statement since the lowest 
latitude on the figure is 71.44S  

It actually extended to 71.55N and about 80S but the figure only shows 69.6S. We modified “around 
74S” to “beyond 69.6S”  

Page 13, line 15 “Note the value (1-CI)x100 for the 2-class FKM algorithm is equivalent to the 
CADFKM score” isn’t it equivalent to the absolute value of the CADFKM score?  

We modified “the CADFKM score” to “absolute value of the CADFKM score”.  

Page 14, line 6 “It is evident. . .” While I agree they do look this way, there are much more rigorous 
comparison ‘statistic’ out there than eyeballing a figure.  

We added statistics to support our “evident” claim.   

Figure 7: it appears there is a big difference at high latitudes between FKM and CAD for clouds. 
Considering that CAD uses latitude, isn’t this a very significant difference that should be highlighted 
and discussed further?  

Further analysis of CAD in high latitude is out of the scope of work at the moment. In the future we 
can apply FKM for different altitude, latitude and season so as to improve the classification at local 
level. For different latitudes, the atmosphere dynamics are different, also the clouds and aerosol 
source and their intrinsic properties are quite different as well. To solve the problem, we can’t 
simplify the problem by just adding/removing latitude with equal weighting. In this case sampled 
here, maybe the class number is not sufficient for the classification, so we may improve by adding 
classes number due to the large differences between stratospheric cloud and aerosol. This problem 
should be addressed in the future. Right now, the studies mainly discuss the comparisons of the 
classifications in the troposphere. We just want to highlight this information in the paper at the 
moment instead of trying to optimize FKM performance to resolve various problems. The paper 
already has a lot of information, and needs to stop somewhere so that we do not lose our focus (i.e., 
assessing the performance of the CALIOP operational CAD algorithm).  

Table 2: What should I be looking for in the C and A columns and rows? This would be more 
meaningful if I knew what the actual expectations for percentage C and A should be.  

The clouds global distribution is between 50%~70% according to Stubenrauch et al. (2013).  For all 
algorithms or versions discussed in the paper, the cloud coverages are well within ranges that are 
considered acceptable. We added this reference in the paper text to support the comparison work 
here. 

Figures 4, 8, 9, 10, 11 would be easier to understand if the colorbar/label at the bottom indicated 
which side was ‘aerosol like’ and which was ‘cloud like’.  

We add “cloud” and “aerosol” below the color bars to indicate cloud-like and aerosol-like colors. Since 
we still want to show the confidence of the classification, we added the following text just before 



Figure 8: “CAD classifications are color-coded as follows: regions where no features were detected 
are shown in pure blue; fill values are shown in black; cirrus fringes are shown in pale blue; aerosol-
like features are shown using an orange-to-yellow spectrum, with orange indicating higher 
confidence and yellow lower confidence; and cloud-like features are rendered in gray scale, with 
brighter and whiter hues indicating higher classification confidence.”  

Page 19, lines 12-13. This is an important point that must be emphasized! Use of altitude leads to 
mis-classification!  

Yes, in some cases, using altitude will lead more misclassifications (e.g., in regimes having roughly 
equal numbers of samples of high altitude aerosol and ice clouds that also have highly similar optical 
properties) but for other cases (i.e., for a majority of cases, when separating ice clouds and low 
altitude aerosols) it will improve the classification. This is now discussed briefly in the last section. 
Altitude adds more confusion in separating water clouds from aerosols (e.g., when water cloud 
backscatter is small in optically thin water clouds), and in separating PSCs from stratospheric 
aerosols. Because these layers are at similar altitudes, altitude does not provide useful distinguishing 
information. But on the other hand, the altitude information can improve the classification between 
ice clouds and aerosols even if their depolarization and backscatter are similar. Ice clouds are high-
altitude features, whereas aerosols are most often much lower. So it is hard to categorically say that 
the use of “altitude leads to misclassification”. From Table 4, we also know that the combination of 
altitude and color ratio provides the best FKM classification compared to the V4 operational 
classification. It depends on the cases sampled and studied. While backscatter intensity can also 
produce confusion in the separation of thin clouds and dense aerosols, this occurs in much fewer 
cases. In majority of the cases, altitude helps improve the separation. We don’t want to make an 
absolute conclusion just because of this case.  

Page 21, line 6: this is the first time we hear that a reason for the use of V4 is improved calibration 
coefficients. Version differences for CAD should be described in more detail in an earlier section.  

We added some brief explanations of the differences between V3 and V4 in the introduction. Detailed 
explanations of the differences between V3 and V4 are given in Liu et al. (2018), which we expect to 
be published part of this same AMT special issue. Our focus in this manuscript is on FKM and the 
comparison of the operational products with FKM products.  

Figure 10 caption: spell out PSC, STS and NAT acronyms 

We deleted the subsection discussing PSCs because the primary focus of our paper is on comparisons 
in troposphere.  

 
Page 23, line 14: this is a confusing statement – you’re using FKM to rebuild PDFs?  

The referee is 100% correct: as originally written, this is indeed a confusing statement. To clarify, we 
have replaced the original text with the following revision. 
 
Original 

With the FKM method, it is easy to add or remove one or multiple observational dimensions and 
re-cluster without re-building new PDFs. 

 



Revised 
With the FKM method, it is relatively easy (though perhaps time-consuming) to add or remove 
one or multiple observational dimensions (i.e., inputs dimensions) and the reinitiate the 
training/learning algorithm.  (This highly desirable flexibility is, unfortunately, wholly absent in 
the strictly supervised learning regime incorporated into COCA.) 

 

Page 23, line 20: under what circumstances does classification degrade with the addition of 
additional dimensions?  

According to my understanding, it really depends on the case.  This is also explained in the last section 
for the EOF analysis. If the dimension does not contribute information that helps segregate the data 
into distinct classes, it may instead degrade the accuracy of the classification. As an entirely 
speculative example, suppose we were to add UTC time-of-day as an additional input dimension.  
Since CALIPSO has a 16-day orbit repeat cycle, this sort of “information” may introduce subtle (or 
even not so subtle) artifacts into the derived clusters.  To provide further clarification on this issue, 
we have added a pointer to additional discussion later in the manuscript (i.e., “details provided in 
Sect. 4.3”).   

Figure 11: What is HH? I’m assuming altitude, but you use H elsewhere for that. It’s probably best to 
spell out AB, DR, CR, HH in caption.  

We spelled out AB, DR, CR and H in the caption and change the “AB, DR, CR, and HH” in the title to 
“<β′532>, δv, χ′, and zmid” to keep all symbols in this paper same as those in the CAD paper published 
by Liu et al. 2018. 

Page 25: I really don’t understand why you are avoiding high latitude and altitude regions. This is 
where FKM could presumably help, and differences with CAD might indicate problems with the 
latter’s use of altitude and latitude as dimensions. Or, it might indicate that FKM without altitude and 
latitude still can’t resolve well, in which case those dimensions are needed with CAD. This seems like 
a in important issue you’re sidestepping.  

At high altitudes or latitudes, the intrinsic properties of clouds and aerosols are often much different 
from those in the other areas of the globe. Consequently, 2 or 3 classes may be not enough for the 
classification at a global scale. To improve the performance, we most likely need to apply FKM at local 
scales. And while that has not been done in this paper, it is worth further study in the future. This 
paper is not meant to be an exhaustive analysis, but should instead be seen as an initial step in an on-
going CAD validation study.  Future, more focused investigations of CAD performance in polar regions 
and the stratosphere are highly desirable next steps.  

Figure 12: How can you expect anybody to understand this figure? After a bit of effort, I think I 
understand what you’re trying to show, but even if I am correct there’s no way for me to differentiate 
the 15+ different colors. What should this figure look like in a perfect case? I think this figure and the 
corresponding text are an example of something that should be cut so more focus can be given to 
other sections.  

We deleted the figure. Instead, we used a table to summarize the numbers so as they are more easily 
understood by the reviewers and other readers. These numbers provide information all of the 



information originally presented in the figure (e.g., how much improvement is made if we changed 
the inputs dimension from 3 parameters to 4 parameters, etc.). 

Equation 16: It would be nice if you said a sentence about what this matrix should look like (i.e square 
pxp matrix that is I in a perfect case)  

We added more the dimension information in the paper text i.e. “(k x p matrices)” in the text. 

Equation 18: What kind of norm is this?   

Equation 18 is not a norm, but instead shows the ratio of the determinant of W and the determinant 
of W + B.  To clarify this, we have replaced the |W| notation with det(W). Determinates represent the 
volume of matrices in multiple dimensions while norms quantify distance in multiple dimensions. 

Table 3. I’m having difficulty interpreting this. We want low Wilks’ lambda for best classification, 
right? So lowest values are for backscatter alone for 2 class, and backscatter and depol for 3 class. So, 
does higher lambda when adding other parameters mean classification become worse? Or is it that 
wilks lambda can’t be compared when the dimensionality is different? This is an example of an 
analysis that seems lacking in its description of what you are looking for, and what the results mean. 

The best classification needs to consider many factors. The Wilks’ lambda is only one indicator to 
help assess whether the clusters are sufficiently distinct or not. If clusters have no boundary between 
each other, although the classification accuracies are high, the classification results can’t be trusted 
either. The classification results can be trusted when the accuracy is high as well as the Wilks’ lambda 
is small, namely clusters are distinct to each other. I don’t think that the dimension number itself will 
cause the increase of Wilk’s lambda, it is how well a certain dimension bring in useful information for 
the distinction of the classification that matters. For example, the dimension of altitude adds more 
ambiguity to the classification confidence for the 2-classes classification because clouds are found at 
both high and low altitudes while aerosol are mostly found at low altitudes. For majority of the cases 
the backscatter intensity and depolarization ratio won’t contribute ambiguity for the 2-classes 
classification and the backscatter intensity and color ratio won’t contribute ambiguity for the 3-
classes classification. We have to jointly looking at how well the classification does according to all 
the subsections in the sections. Generally speaking, smaller values indicate higher confidence in the 
results. But once the dimension brings in fuzzy factor (to make the boundary overlap a lot), although 
the accuracy increases, the classification Wilks’ lambda will decreases. We added more explanation 
in the paper to clarify this.  

Section 4.3: why not just do PCA on the input parameters?  

We wanted to see what makes the classification distinct, so we have to use output instead of input to 
do PCA. We use Wilk’s lambda to do PCA to see how well the classification results are. If we use inputs 
to do PCA, it may indicate how independent the inputs are which will answers the question on page 
9 paragraph 1 from the reviewer. We reorganized the phrase to make it clear. 

Figure 13: I’m confused by the distribution here. Are we to understand that aerosols are a class 
completely (or mostly) surrounded by other classes? Also, why these axis ranges, at least make PCA 
(2) from -4 to 4 so we can see what is going on.   



It doesn’t means that aerosol is completely surrounded by other classes. It just means aerosols are 
completely separated classes, as you can see the more condensed samples (darker colors, or centers 
in red crosses) of each class are distinct from each other. For example, thin clouds and dense aerosols 
are more similar to each other, so the aerosol cluster will have overlapped zone with clouds but the 
overlapped samples are less (lighter colors). We added more details about the colorbar in the paper 
to explain this. To let reviewer to clearly see the relationship between PCA2 and PCA1, we have 
reoriented the axis. This is because PCA1 contribution to the classification is more significant 
compared to PCA2 so that C1-C2 line is approximately in diagonal when PCA1 and PCA2 contribution 
is equal. We added more details in the paper. 

Page 30, line 11: so, you’re using one second of observations for the error propagation? I understand 
the computational limitations but this seems exceedingly limited.  

Yes, the original text was not clear on that point.  What we claimed was that “the observations from 
6 September 2008 at ~01:35:29 UTC are used”, and certainly that implies that we used only one 
second of data.  What we used, however, was a full granule of data.  Our revised sentence now says 
“the observations from a nighttime granule acquired 6 September 2008 beginning at ~01:35:29 
UTC are used” 

Section 4.4 Aren’t your dimensions correlated to some extent, such that you should expect 
uncertainties to be related (correlated) as well?  

Yes, the inputs are correlated, so the covariance terms in the uncertainties could either magnify or 
mask our current uncertainty estimates. The paper is not designed to check those. 

Equation 19: What kind of norm?  

Equation 19 is the L1 norm.  We now say so explicitly in the revised manuscript.  

Figure 14: why not do this with actual CALIOP uncertainties, since these have been assessed? Also, 
why not use all three uncertainties simultaneously, like the real world?  

Figure 14 used the actual CALIOP uncertainties for each CALIOP observations. We also added, as the 
reviewer suggested, the results from the combination of the three uncertainties occurring 
simultaneously, as would be seen in real world.  

Figure 15: why is the 2-class case the only one investigated this way?  

Because the paper mainly discusses the CAD, which is a two class partitioning of the identified layers.   

Page 33, like 28: “While the two algorithms use largely identical inputs...” I heartily disagree with this 
statement. CAD uses altitude and latitude, which your analysis has shown to be important (even if 
you don’t emphasize as much as I would like).  

The revised text now says “While the two algorithms both rely on the same underlying lidar 
measurements…”, which is entirely accurate. 
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Interactive comment on “Application of High-Dimensional 
Fuzzy K-means Cluster Analysis to CALIOP/CALIPSO Version 
4.1 Cloud-Aerosol Discrimination” by Shan Zeng et al.  
Anonymous Referee #2  

Received and published: 28 September 2018  

The manuscript describes a methodology to discriminate between aerosol and cloud layers from 
CALIOP/CALIPSO lidar Level 2 data based on the high dimensional Fuzzy K-Means Cluster Analysis. 
The argument for sure is a good fit for the journal but some parts are not clear, probably suffering 
from hasty writing and need improvements before final publication. Moreover, other tests should be 
performed to improve scientific significance and clarity. I am however confident that the authors will 
brilliantly address all the issues I raised.  

Thanks for reviewing the paper and giving valuable feedback. It is very hard to validate the 
operational algorithm at global scale, because we know of no existing global in-situ data set that could 
be used for the task. A comparison between different classification schemes used by active and 
passive sensor has been done in previous work (Stubenrauch et al., 2013). However, as active sensors 
profile the full vertical extent of the atmosphere, it remains quite difficult to compare classification 
results with passive sensors that, at best, only measure the properties of a single layer.  (More often, 
properties of multiple layers are convolved into a single set of measurements, and thus tasks such as 
separately classifying cirrus clouds and boundary layer aerosols within the same pixel are extremely 
challenging retrievals for passive sensors.) Furthermore, comparisons between different algorithms 
have not yet been performed. Similar to the comparison between passive and active sensors, it’s hard 
to determine how accurate the algorithms are (see our previous comments about the use of synthetic 
data), but by combining data from multiple sensors we can estimate upper and lower boundaries for 
cloud and aerosol distributions over the globe, and these values give a distribution range to guide 
modelers. Similarly, the comparison between supervised and unsupervised algorithms can also give 
upper and lower boundaries for precision to guide modelers, instrument developers, and data 
processors. To address the referee’s concerns, we add detailed statements in the introduction to 
clarify these points.  As we say in the conclusions of the original draft, the purpose of this study is “to 
validate the performance of the cloud-aerosol discrimination (CAD) algorithm used in the standard 
processing”, and we are not suggesting FKM as a replacement for COCA. To this end we also added 
more introduction about the importance of discriminating between clouds and aerosols, and 
described the benefits for the study for different user communities.  

 

Major Comments: 

The FKM clustering methodology is well described and totally makes sense. But, as stated in the 
introduction, the FKM method is used to validate the result of V4 CAD algorithm and to better 
understand the classification, identifying the crucial parameters. It looks like that all the produced 
efforts have a very low return on investment. The V4 CAD is not validated vs. a reference dataset, i.e. 
using a synthetic lidar data where all the aerosol and cloud properties are well known and controlled, 
but with respect to another methodology that have comparable uncertainties.  



While the use of synthetic data as an evaluation tool is generally an excellent and highly effective 
strategy, in the case of discriminating clouds from aerosols it’s also especially hard to implement in 
a useful way. For ~90% of the cases, cloud and aerosol properties are very well separated and reliable 
classifications can be made using a single wavelength elastic backscatter lidar (e.g., CATS; see 
https://cats.gsfc.nasa.gov/media/docs/CATS_QS_L2O_Layer_3.00.pdf). In these cases, unambiguous 
synthetic data can be used to weed out those algorithms that are obviously deficient. But the 
remaining cases fall into the cloud-aerosol overlap region (see Liu et al., 2009), and for these layers 
even the most sophisticated human observers cannot always agree on the correct partitioning (e.g., 
see Koren et al., 2007; Tackett and Di Girolamo, 2009; Varnai and Marshak, 2011; Balmes and Fu, 
2018). These especially difficult cases include separating thin cirrus from lofted Asian dusts, 
separating evaporating water cloud filaments from the surrounding aerosols in the marine boundary 
layer, and separating fresh volcanic ash from cirrus. Given the measurements available on the 
CALIPSO platform, the classification of these targets is always subject to some uncertainty.  So, yes, 
we certainly could create “synthetic lidar data where all the aerosol and cloud properties are well 
known and controlled” and compare the classifications obtained from the CALIPSO operational CAD 
algorithm (COCA) and the FKM algorithm.  And by using this synthetic data to compare algorithm 
outputs versus “truth” we could perhaps choose an algorithm that best confirms our own prejudices; 
but whether that algorithm was actually delivering the correct classifications in the really hard cases 
would still be an open question. 

Moreover, It is completely missing an analysis on who is really using those data, i.e. climatologists, 
modelers. . ., and why it is critical to discriminate (defining a level of precision) between aerosols and 
clouds (and their subtypes). For example, how much is it the actual precision of the current 
operational V4 CAD algorithm in classifying the aerosol and cloud layers ? The final users are ok with 
this accuracy? Which benefits will be obtained reducing the misclassification? How the FKM will be 
used or implemented to reduce the V4 CAD misclassification? 

While this would certainly be interesting information, this kind of detailed analysis lies well beyond 
the scope of this paper.  (Simply counting up the number of different CALIPSO data user communities 
that make use of the CAD scores we provide would likely lead to some fascinating (and perhaps 
surprising!) insights.)  In this paper, our goal is limited to providing a performance assessment of the 
current CALIPSO operational CAD algorithm. 

In the manuscript is only marginally discussed why January 2008 measurement are a representative 
data sample. How the results are impacted changing the analyzed dataset?  

As one-month data is enough for the purpose of the study, we just randomly choose one month. For 
different dataset, the class number and the fuzzy exponent may be different, but classification results 
on cloud and aerosol should not be too different in theory. In reality, for different season, different 
features occur which may slightly impact the sample of classes and thus the results. The paper just 
focuses on the first step of comparison and didn’t go further. We mentioned this in the data 
preparation and added a summary of future work at the end of conclusion.  

The number of classes is predefined (2 or 3) after analyzing Figure 3. However, in operational 
contexts, some data subsets might belong only to two classes. FKM still will fill with observation the 
class that should be empty. Is there a reason why the authors used the FKM cluster analysis instead 
of some self-selecting class methods, i.e. MeanShift clustering (Cheng, Yizong. "Mean shift, mode 
seeking, and clustering." IEEE transactions on pattern analysis and machine intelligence 17.8 (1995): 
790-799) or classification algorithms as AdaBoost (Hu, Weiming, Wei Hu, and Steve Maybank. 



"AdaBoost-based algorithm for network intrusion detection." IEEE Transactions on Sys- tems, Man, 
and Cybernetics, Part B (Cybernetics) 38.2 (2008): 577-583) ?  

I think both Meanshift and Adaboost are very good algorithms to do clustering too. There are so many 
clustering methods (more than 100 maybe), supervised or unsupervised, connectivity-based, 
centroid based, density based and distribution clustering, we only try the Fuzzy K-means out, which 
is one of unsupervised centroid method that produces a membership which (between 0 and 1) is 
represent the probability of belonging to one class and is comparable to the official CAD scores 
(between -100 to 100, probability belong to one and the other). And also the shape of multi-
dimensional observations of cloud and aerosol are suitable for centroid based algorithms. Last, the 
FKM unsupervised approach is quite different from the highly supervised method used to train the 
operational algorithm, is what we need for the comparison and the objective of the study.  

Density based algorithms such as Meanshift expect some kind of density drop to detect cluster 
borders. Mean-shift is usually slower than k-Means. Besides that, the applicability of the mean-shift 
algorithm to multidimensional data is hindered by the unsmooth behavior of the kernel density 
estimate, which results in over-fragmentation of cluster tails (Achert et al. 2006). Clouds have two 
centers (ice and water) and aerosols may also have several sub-centers (e.g., dust and biomass 
burning), so a density based algorithm may not suitable for this classification in my opinion. Also, 
according to Kaur and Chawla (2015), FCM has higher accuracy compared to the Meanshift. AdaBoost 
is a machine learning method, and more complicated to understand. While using it may resolve the 
problem for FKM weighting problems in some future study, at the moment we want an easier 
understand method that is distinctly different from the COCA method investigate different algorithm 
inputs on the classifications. In the future we will consider to doing some machine learning 
classifications, but may not choose AdaBoost. 

The random initialization of the centroids is a well-known problem as the initial centroid selection 
not only influences the efficiency of the algorithm, but also the number of relative iterations (and 
consequently the needed time machine). Some optimal centroid selection techniques can be found in 
Nazeer, K.A. Sebastian, M.P Clustering biological data using enhanced k-means algorithm”. In: 
Electronic Engineering and Computing Technology, Springer, 2010, pp. 433–442 (chapter 37)  

The flowchart is wrong in previous version of manuscript. We have a loop to choose the best initiation 
and outcome results in FKM algorithm. With the loop to choose the best initiation, the larger the 
number of loops, the better the resulting clusters will be, but this is not time efficient. In application 
to real data, we have not yet found that using a larger number of loops will consistently improve the 
classification accuracies for the CALIPSO level 2 observations.  

Many thanks to the reviewer for introducing us to an efficient way to save the relative iteration 
number and time.  

Specific comments:  

Line 27 Pag. 1 Please add also “geometrical properties”  

We added it. 

Line 15 Pag. 5 How the random initialization influence the final result? I don’t recall any section 
where this issue is discussed. Are the results consistent with the random initialization?  



We misrepresented our algorithm, and so we modified our flowchart in Figure 1. As we do a loop to 
choose the best random initialization, outcome results do not change due to initiation as long as the 
iteration number and the loop number for selecting initiation are big enough.  

Line 16 Pag. 5 the authors mean Equations 2, 3 and 4?  

We corrected them. 

Figure 1: Third step it should be Eq. 6 and 7  

We corrected them. 

Line 2 Pag. 7: I am not sure that latitude is not useful to discriminate, as clouds at 16 km at polar 
latitudes may rise a flag, as cirrus clouds below 9km in the equatorial and tropical regions 

The region (i.e. latitude) and season information are of course useful auxiliary information because 
they can indicate the sources of particles and the dynamics of the atmosphere. The others are directly 
measured optical information of the particles due to their scattering nature. In the future, we can 
train and apply the FKM method at local scales, which could be a way to improve the current 
classifications.  

Figure 3: labels are difficult to read. The picture in the middle shows “NCE” that is not previously 
defined.  

We selected the bold font to the labels so as to see the label easier and changed the “NCE” to “MPE”. 

Line 14 Pag 11: please rephrase “water clouds. For these water clouds”.  

We rephrased it. 

Figure 4: it is very hard to see the zone of interest (smoke and cloud). Maybe reduce the vertical scale 
from 0 to 20 km?  

We modified it to 20km. 

Line 15 Pag 17 please read “We saw” instead of “We see”  

We corrected it. 

Paragraphs 3.4 a, 3.4 b and 3.4 c. How the authors assume that the layer are pure dust, smoke and 
ash respectively? Is there any other ancillary measurement that shows without any doubt the aerosol 
layer composition?  

This comment highlights one of the major difficulties in validating a global data set acquired by a 
first-of-its-kind active sensor: coincident measurements of interesting phenomena are extremely 
difficult to come by! For these events, we tracked these plumes by eye according to the event’s 
location, time period and our experience in evaluating spatial distributions and layer optical features 
(depolarization, color ratio and backscatter). This is very accurate though. 



Section 4. Figure 13 is not very intuitive and it is difficult to get meaningful information from it . It 
might be interesting to replace it (or add) the Screen Plot and the loading factors as barplot as showed 
in https://doi.org/10.1175/JTECH-D-15-0085.1.  

The figure includes a lot of information compared to the barplot, but we did not explain it well. We 
have now added more explanation about the figures and added the color bar. 

Line 4 Pag. 34: Even if the FKM Cluster Analysis closely replicate the CAD V4 operational algorithm, 
it is not validate it (see main comment section) 

We changed the “validation” to “comparison”. We explained more in the paper that the comparison 
between algorithms can set up boundaries for the uncertainness due to different algorithms 

Line 18 Pag. 35. FKM it is a time consuming algorithm because setting up random centroids can slow 
down the convergence process and in some cases can produce as result sub-optimal centroids virtual 
centroids (i.e. not corresponding to any observational measurement). See Main Comments section. 

Yes, we added more details to the related domain to clarify the reason for FKM “time consuming”. We 
modify the algorithm description in the paper and in Figure 1. 
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