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Abstract. This study applies Fuzzy K-Means (FKM) cluster analyses to a subset of the parameters reported in the CALIPSO 

lidar level 2 data products in order to classify the layers detected as either clouds or aerosols. The results obtained are used to 10 

assess the reliability of the cloud-aerosol discrimination (CAD) scores reported in the version 4.1 release of the CALIPSO data 

products. FKM is an unsupervised learning algorithm, whereas the CALIPSO operational CAD algorithm (COCA) takes a 

highly supervised approach. Despite these substantial computational and architectural differences, our statistical analyses show 

that the FKM classifications agree with the COCA classifications for more than 94% of the cases in the troposphere. This high 

degree of similarity is achieved because the lidar-measured signatures of the majority of the clouds and the aerosols are 15 

naturally distinct and hence objective methods can independently and effectively separate the two classes in most cases. 

Classification differences most often occur in complex scenes (e.g., evaporating water cloud filaments embedded in dense 

aerosol) or when observing diffuse features that occur only intermittently (e.g., volcanic ash in the tropical tropopause layer).  

The two methods examined in this study establish overall classification correctness boundaries due to their differing algorithm 

uncertainties. In addition to comparing the outputs from the two algorithms, analysis of sampling, data training, performance 20 

measurements, fuzzy linear discriminants, defuzzification, error propagation, and key parameters in feature type discrimination 

with the FKM method are further discussed in order to better understand the utility and limits of the application of clustering 

algorithms to space lidar measurements. In general, we find that both FKM and COCA classification uncertainties are only 

minimally affected by noise in the CALIPSO measurements, though both algorithms can be challenged by especially complex 

scenes containing mixtures of discrete layer types. Our analysis results show that attenuated backscatter, and color ratio are 25 

the driving factors that separate water clouds from aerosols; backscatter intensity, depolarization, and mid-layer altitude are 

most useful in discriminating between aerosols and ice clouds; and the joint distribution of backscatter intensity and 

depolarization ratio is critically important for distinguishing ice clouds from water clouds.  
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1 Introduction 

The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission has been developed through a 

close and on-going collaboration between NASA Langley Research Center (LaRC) and the French space agency, Centre 

National D’Etudes Spatial (CNES) (Winker et al., 2010). This mission provides unique measurements to improve our 

understanding of global radiative effects of clouds and aerosols in the Earth’s climate system. The CALIPSO satellite was 5 

launched in April 2006, as a part of the A-Train constellation (Stephens and Vane, 2007). The availability of continuous, 

vertically resolved measurements of the Earth’s atmosphere at global scale leads to great improvements in understanding both 

atmospheric observations and climate models (Konsta et al. 2013; Chepfer et al. 2008).  

The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), on-board CALIPSO, is the first satellite-borne polarization-

sensitive lidar that specifically measures the vertical distribution of clouds and aerosols along with their optical and geometrical 10 

properties. The level 1 CALIOP data products report vertically-resolved total atmospheric backscatter intensity at both 532 

nm and 1064 nm, and the component of the 532 nm backscatter that is polarized perpendicular to the laser polarization plane. 

The level 2 cloud and aerosol products are retrieved from the level 1 data and separately stored into two different file types: 

the cloud, aerosol, and merged layer product files (CLay, ALay, and MLay, respectively) and the cloud and aerosol profile 

product files (CPro and APro). The profile data are generated at 5 km horizontal resolution for both clouds and aerosols, with 15 

vertical resolutions of 60 m from -0.5 km to 20.2 km, and 180 m from 20.2 km to 30 km. The layer data are generated at 5 km 

horizontal resolution for aerosols and at three different horizontal resolutions for clouds (1/3 km, 1 km and 5 km). The layer 

products consist of a sequence of column descriptors (e.g., latitude, longitude, time, etc.) that provide information about the 

vertical column of atmosphere being evaluated. Each set of column descriptors is associated with a variable number of layer 

descriptors that report the spatial and optical properties of each layer detected in the column.  20 

The CALIOP level 2 processing system is composed of three modules, which have the general functions of detecting layers, 

classifying the layers, and performing extinction retrievals. These three modules are the Selective Iterated BoundarY Locator 

(SIBYL), the Scene Classifier Algorithms (SCA), and the Hybrid Extinction Retrieval Algorithms (HERA) (Winker et al. 

2009). The level 2 lidar processing begins with the SIBYL module that operates on a sequence of scenes consisting of segments 

of level 1 data covering 80 km in along-track distance. The module averages these profiles to horizontal resolutions of 5, 20 25 

and 80 km respectively, and detects features at each of these resolutions.  Those features detected at 5 km are further inspected 

to determine if they can also be detected at finer spatial scales (Vaughan et al., 2009). The SCA is composed of three main 

sub-modules: the cloud and aerosol discrimination (CAD) algorithm (Liu et al., 2004, 2009, 2018), the aerosol subtyping 

algorithm (Omar et al., 2009; Kim et al., 2018), and the cloud ice-water phase discrimination algorithm (Hu et al., 2009; Avery 

et al., 2018). Profiles of particulate (i.e., cloud or aerosol) extinction and backscatter coefficients and estimates of layer optical 30 

depths are retrieved for all feature types by the HERA module. 
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 Clouds and aerosols modulate the Earth’s radiation balance in different ways, depending on their composition and spatial and 

temporal distributions, and thus being able to accurately discriminate between them using global satellite measurements is 

critical for better understanding trends in global climate change (Trenberth et al., 2009). The CALIOP operational CAD 

algorithm (COCA) uses a family of multi-dimensional probability density functions (PDFs) to distinguish between clouds and 

aerosols (Liu et al., 2004, 2009, 2018). Using a larger number of layer attributes (i.e., higher dimension PDFs) generally yields 5 

increasingly accurate cloud and aerosol discrimination. While both V3 and V4 COCA algorithms use the same five attributes 

to derive their classifications, substantial improvements have been made in V4 due to much improved calibration, especially 

at 1064 nm (Liu et al, 2018; Vaughan et al., 2018). The V4 PDFs have been re-built to better discriminate dense dust over the 

Taklimakan desert, lofted dust over Siberia and the American Arctic regions, and high-altitude smoke and volcanic aerosol. 

Also, the application of the V4 PDFs has been extended, and they are now used to discriminate between clouds and aerosols 10 

in the stratosphere and to features detected at single-shot resolute (333 m) in the mid-to-lower troposphere.  

CALIPSO has been delivering separate cloud and aerosol data products throughout its 12+ year lifetime, and the reliable 

segregation of these products clearly depends on the accuracy of the COCA. However, to the best of our knowledge, no 

traditional validation study of the CALIOP CAD results has been published in the peer-reviewed literature.  Traditional 

validation studies typically compare coincident measurements of identical phenomena acquired by previously validated and 15 

well-established instruments to the measurements acquired by the instrument being validated.  For example, radiometric 

calibration of the CALIOP attenuated backscatter profiles have been extensively validated using ground-based Raman lidars 

(Mamouri et al., 2009; Mona et al., 2009) and airborne high spectral resolution lidars (HSRL) (Kar et al., 2018; Getzewich et 

al., 2018).  Furthermore, CALIOP level 2 products have also been thoroughly validated: cirrus cloud heights and extinction 

coefficients have been validated using measurements by Raman lidars (Thorsen et al., 2011), Cloud Physics Lidar (CPL) 20 

measurements (Yorks et., 2011; Hlavka et al. 2012), and in situ observations (Mioche et al., 2010); CALIOP aerosol typing 

has been assessed by HSRL measurements (Burton et al., 2013) and Aerosol Robotic Network (AERONET) retrievals 

(Mielonen et al., 2009); and CALIOP aerosol optical depth estimates have been validated using HSRL measurements (Rogers 

et al., 2014), Raman measurements (Teche et al., 2013), AERONET measurements (Schuster et al., 2012; Omar et al., 2013), 

and Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals (Redemann et al., 2012).  These level 2 validation 25 

studies implicitly depend on the assumption that the COCA classifications are essentially correct; however, this fundamental 

assumption has yet to be verified.  This paper is, therefore, a first step in an on-going process of verifying and validating the 

outputs of the CALIOP operational CAD algorithm. But unlike traditional validation studies in which coincident measurements 

are compared, this study will compare the outputs of two wholly different classificaiton schemes applied to the same measured 

input data.  Clearly one of these two schemes is COCA.  The other is the venerable fuzzy k-means (FKM) clustering algorithm, 30 

which has a long history of use in classifying features found in satellite imagery (Harr and Elsberry, 1995; Metternicht, 1999; 

Burrough et al., 2001; Olthof and Latifovic, 2007; Jabari and Zhang, 2013).   
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The rationale for comparing algorithm outputs rather than measurements is twofold. First, no suitable set of coincident 

observations is currently available for use in a global-scale validation study.  The spatial and temporal coincidence of ground-

based and airborne measurements is extremely limited, and thus any validation exercise would require assumptions about the 

compositional persistence of features being compared.  (Paradoxically, these are precisely the sorts of assumptions that should 

be obviated by well-designed validation studies.)  Coincident A-Train measurements can be used in simple cases (Stubenrauch 5 

et al., 2013), but have little to offer in the complex scenes where cloud and aerosol intermingle; e.g., passive sensors cannot 

provide comparative information in multi-layer scenes or at cloud-aerosol boundaries, and the CloudSat radar is only sensitive 

to large particles, and thus cannot help to distinguish between scattering targets that it cannot detect (e.g., lofted dust and thin 

cirrus). Second, COCA is a highly supervised classification scheme whose decision-making prowess depends on human-

specified probability density functions (PDFs).  FKM, on the other hand, is an unsupervised learning algorithm that, after 10 

suitable training, delivers classifications based on the inherent structure found in the data.  The results obtained from the two 

different algorithms will help us better understand global cloud and aerosol distributions, which is important for all the users 

of space lidar (e.g., atmospheric scientists, weather and climate modelers, instrument developers, etc.). The flexibility of the 

FKM approach can help determine which individual parameters are most influential in discriminating clouds from aerosols 

and help evaluate the degree of improvement to be expected if/when new observational dimensions are added to the COCA 15 

PDFs.  

Our paper is structured as follows.  Section 2 briefly reviews the fundamentals of the COCA PDFs and their application to the 

CALIOP measurements.  Section 3 provides an overview of the FKM algorithm and describes how we have adapted it for use 

in the CALIOP cloud-aerosol discrimination task.  Section 4 compares the FKM classifications to the V3 and V4 COCA 

results.  These comparisons, which are made for both individual cases and statistical aggregates, are designed to assess the 20 

accuracy of the COCA algorithm in general and to quantify changes in performance that can be attributed to the algorithm 

refinements incorporated in V4 (Liu et al., 2018).  Various FKM performance metrics are described in Sect. 5, including error 

propagation, key parameter analysis, fuzzy discriminant analysis and principle component analysis. Conclusions and 

perspectives are given in Sect. 6. 

2 CALIOP CAD PDF construction 25 

The CALIOP operational CAD algorithm uses manually-derived, multi-dimensional PDFs together with a statistical 

discrimination function to distinguish between clouds and aerosols.  Given a standard set of lidar measurements (X1, X2, … 

Xm), separate multidimensional PDFs are constructed for clouds (Pcloud(X1, X2, … Xm)) and aerosols (Paerosol(X1, X2, … Xm)).  

Discrimination between clouds and aerosols for previously unclassified layers is then determined using 
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 .  (1) 

The function f is a normalized differential probability, which value ranges from -1 to 1, and k is a scaling factor that is related 

to the ratio of the numbers of aerosol layers and cloud layers used to develop the PDFs (Liu et al. 2009; Liu et al. 2018). Within 

the CALIOP level 2 data products, a percentile (integer) value of 100 × f, ranging from -100 to 100, is reported as the “CAD 

score” characterizing each feature. Aerosol CAD scores range from -100 to 0, and cloud CAD scores range from 0 to 100. 5 

Because the nature of clouds is quite different from aerosols, most cloud and aerosols can be distinguished unambiguously.  

Transition regions where clouds are embedded in aerosols, volcanic ash injected into the upper troposphere, and optically 

thick, strongly-scattering aerosols at relatively high altitudes (e.g., haboobs) can still present significant discrimination 

challenges, but these cases occur relatively infrequently.  

The initial version of COCA used only three layer attributes: layer mean attenuated backscatter at 532 nm, <β′532>, layer-10 

integrated attenuated backscatter color ratio, χ′ = <β′1064>/<β′532>, and mid-layer altitude, zmid.  Since then the algorithm has 

been incrementally improved, and beginning in V3 the COCA PDFs were expanded to five dimensions (5-D) by adding layer-

integrated 532 nm volume depolarization, δv, and the latitude of the horizontal mid-point of the layer (Liu et al., 2018).  Within 

the CALIPSO analysis software these PDFs are implemented as 5-D arrays that function as look-up tables. 

3 Fuzzy k-means cluster analysis 15 

Cluster analysis is a useful statistical tool to group data into several categories and has been successfully applied to satellite 

observations to discriminate among different features of interest (Key et al., 1989; Kubat et al. 1998; Omar et al., 2005; Zhang 

et al., 2007; Usman, 2013; Luo et al., 2017; Gharibzadeh et al., 2018). There are many different types of clustering methods, 

such as connectivity-based, centroid-based, density-based, and distribution clustering, and these are typically trained using 

either supervised or unsupervised learning techniques.  In this paper, we focus on a centroid-based, unsupervised learning 20 

approach known as the fuzzy k-means (FKM) method.  As the name implies, classification ambiguities are expressed in terms 

of fuzzy logic (i.e., as opposed to “crisp”/binary logic) and thus every point processed by the clustering algorithm is assigned 

some degree of membership in all categories, rather than belonging solely to just one category.  FKM membership values 

range from 0 to 1, and thus are comparable to the operational CAD scores.  In addition, the shapes and density distributions of 

multi-dimensional observations of clouds and aerosols from lidar well-suited for the centroid-based clustering technique used 25 

by the FKM classification method. With the exception of latitude, our FKM implementation uses the same inputs as COCA; 

i.e., <β′532>, χ′, δv, and zmid.  We make this choice because clouds and aerosols show distinct centers in the <β′532>, δv, χ′, zmid 

attribute space, whereas adding latitude degrades the separation between cluster centers and adds significantly to class overlap.  
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A key parameter analysis (described in Sect. 5) demonstrates that latitude does not provide intrinsic information that helps to 

distinguish between aerosols and cloud, nor does it improve the reliability of the cluster membership values (e.g., Wilks’ 

lambda, a measure of the difference between classes also introduced in Sect 5., deteriorates from ~0.2 to ~0.5).  However, for 

probabilistic systems (e.g., COCA) latitude can be useful, simply because some feature types are more likely than others to 

occur within specific latitude-altitude bands (e.g., at altitudes of 9–11 km, significant aerosol loading is much more likely at 5 

45° N than at 60° S). 

3.1 FKM algorithm architecture 

Given a set of observations X = (X1, X2, …, Xn), where each observation is a p-dimensional real vector, FKM logical clustering 

aims to partition the n observations into k (≤ n) sets S = {S1, S2, …, Sk} so as to “minimize the within-cluster sum of squares 

(WCSS) and maximize the between cluster sum of squares (BCSS)” (Hartigan and Wang 1979). Points on the edge of a cluster 10 

may be in the cluster to have a lesser degree than points in the center of the cluster. The clustering results (i.e., fuzzy 

memberships, organized into a matrix, M, with elements mij, i = 1…n;  j = 1...k) are assigned values between 0 and 1 (Eq. 2). 

When elements of the membership matrix, m=1, an individual i belongs only to a single class j and has a class membership of 

0 in all other classes. Note also that in the standard (i.e., not fuzzy) k-means algorithm mij can be only 1 or 0 (i.e., a point can 

only belong to one cluster), but that intermediate values are permitted in the FKM method (i.e., a point can partially belong to 15 

a particular cluster). The sum of the fuzzy memberships for an individual over all classes is equal to one (Eq. 3), and there will 

be at least one individual with some non-zero membership belonging to each class (Eq. 4). These defining relationships are 

written as 

,  (2) 

, and  (3) 20 

.  (4) 

To determine the best solution, based on minimization of the WCSS, a classic objective function, J, is built so that the best 

solution is the one that minimizes J (Bezdek, 1981; Bezdek, 1984; McBratney and Moore, 1985). The functional form of J is 

,  (5) 
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where C (cjl; j=1,.., k; l =1,..., p) is a matrix of class centers, and d2(xil, cjl) is the squared distance between individual xil and 

class center cjl according to a chosen definition of distance (e.g., the Mahalanobis distance; see Sect. 2.3). The objective 

function is the squared error from class centers weighted by the ϕth power (fuzzy weighting exponent) of the membership 

values. For the least meaningful value, ϕ = 1, J minimizes only at crisp partitions (the memberships converge to either 0 or 1), 

with no overlap between cluster boundaries. Increasing the value of ϕ tends to degrade memberships towards fuzzier states 5 

where there are more overlaps between the boundaries of clusters. For a specified value of ϕ, minimization of objective function 

J optimizes the solutions for the membership matrix M and its associated centroid matrix C (Bezdek, 1981; McBratney and 

deGruijter, 1992; Minasny and McBratney, 2002). Class centers are the averages of the individual samples weighted by their 

class membership values raised to the ϕth power (Eq. 6). The membership (𝑚𝑚𝑖𝑖𝑖𝑖) of an individual belonging to a class is the 

distance between the individual and the class center divided by the sum of the distances between the individual and the centers 10 

of all classes (Eq. 7), or 

, and  (6) 

  .   (7) 

To obtain centroid (Eq. 6) and membership (Eq. 7) solutions, Picard iterations (Bezdek et al., 1984) are applied until the 

centers or memberships are constant to within some small value (see the algorithm flowchart in Fig. 1). We first initialize the 15 

memberships as random values using a uniform distribution that satisfies all conditions given by equations 2, 3 and 4. We 

then calculate class centers and recalculate memberships according to the new centers. If the new memberships do not change 

compared to the old ones (or change only within a small difference ε), the clustering process ends. Otherwise we recalculate 

the new centers and new memberships. If the algorithm does not converge after a fixed number of iterations, the procedure is 

reinitiated using newly (and again randomly) specified initial cluster centers. This process repeats until the algorithm 20 

converges to a point where the relative change in the objective function (calculated from Eq. 5, which quantifies the changes 

in both the memberships and centers) is less than ε (0.001) and saves the best memberships and centers that result from the 

optimum random initiation corresponding to the least objective function.  
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Figure 1: Flowchart illustrating the operation of the Fuzzy K-means algorithm 

1. data (xil) sample and filter, 
selection of class number (k), fuzzy exponent 
(ϕ), & distance d(xil ,clj)calculation method  

2. Initial membership m0 (random matrix 
meets Eq. 2, 3, & 4)

3. Calculate the membership mij (Eq. 7) and 
the centroid clj (Eq. 6)  

4. |J(i)-J(i-1)|<ε or reach maximun iteration 
number

min (J)

5. Stop, obtain output mij & clj
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Before running the FKM code (from Minasny and McBratney, 2002), we prepared our data by sampling, training and filtering 

(Sect. 2.1 and Sect. 2.2). We also selected a reasonable method to calculate the distance between individuals and centers (Sect 

2.3) and determined optimal values for class number and fuzzy exponent (Sect. 2.4). Note the FKM method is directly applied 

to data to get membership instead of building PDF as in operational algorithm. 

3.2 Data sample and training 5 

As mentioned above, four level 2 parameters are used for our cluster analysis: layer mean attenuated backscatter at 532 nm, 

<β′532>, layer integrated volume depolarization ratio at 532 nm, δv, total attenuated backscatter color ratio, χ′, and mid-layer 

altitude, zmid. The selection of four dimensions is based on many previous studies (e.g., Liu et al., 2004, 2009; Hu et al., 2009; 

Omar et al., 2009; Burton et al., 2013), which show that clouds, aerosols and their subtypes are quite different based on these 

observations. <β′532>, δv, and χ′ are the fundamental lidar-derived optical properties that form the basis for our discrimination 10 

scheme. We also include altitude, as the joint distributions of altitude with the various lidar optical properties have proved to 

be highly effective in identifying different feature types.  

In this study we apply FKM at a global scale. For any given region, results derived from a localized cluster analysis will likely 

give us better classifications compared to the results from a global scale analysis, but investigating and/or characterizing these 

differences lies well beyond the scope of this study. The data sample size also strongly influences the clustering results. For 15 

example, clustering into two classes with a full complement of CALIPSO data could identify clear and “not clear” scenes. If 

clear scenes are excluded, clustering could separate clouds and aerosols. If only clear scenes are included, clustering could 

possibly provide a means of identifying different surface types. With only cloudy data, clustering could be used to derive 

thermodynamic phase classification. With only aerosol data, clustering is actually aerosol subtyping. With only liquid cloud 

data, clustering could separate cumulus and stratocumulus. So, the size and composition of the dataset is very important for 20 

our analysis, which strongly depends on the objective of the classification.  

To extrapolate the classification of identifiable elements using FKM from a small subset to a broader population, we identify 

an appropriate training data set from which the classifications can be derived (Burrough et al., 2000). This training data should 

be representative of the broader sample for which the classification will be implemented (i.e., both must span similar domains). 

To ensure the selection of an appropriate training data set, the shapes of the PDFs of the relevant parameters derived from any 25 

proposed training set should closely match the shapes of the corresponding parameter PDFs derived from the global long-term 

data set.  Data from the month of January 2008 is used to determine the optimal number of classes (k) and fuzzy exponent (ϕ) 

required for classification and optimal values of the performance parameters, and to calculate class centroids for interpretation 

of similarities and differences between classes. To avoid errors due to small sample sizes, we used the same month of global 

observations (January 2008) to do the subsequent comparisons with COCA results. 30 
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Figure 2 shows approximate probability density functions (computed by normalizing the sum of the occurrence frequencies to 

1) for different lidar observables for liquid water clouds, randomly- and horizontal-oriented ice clouds, and aerosols during all 

of January 2008. Liquid water clouds have the largest <β′532> and χ′ values compared with other species. Aerosols generally 

have the smallest χ′, δv, and <β′532>, and ice clouds have the largest δv compared with the other two species. There is overlap 

between species, but these three parameters are still sufficient to separate aerosols and different phases of cloud in most cases. 5 

The three bottom panels (d, e, & f) in Figure 2 are from a single half orbit (2008-09-06T01-35-29ZN) of observations. The 

PDFs of one-half orbit and one month of observations appear to agree very well, which means that focused feature clustering 

studies that use the FKM method can be applied to a small sample such as one-half orbit of observations and not cause 

significant biases to the standard full dataset.  

10 
Figure 2: Comparisons of approximate probability density functions computed by normalizing the sum of the occurrence 

frequencies to 1; top row (panels a – c) shows data from all of January 2008; bottom row (panels d – f) shows data from a 

single half-orbit (06 Sep. 2008, 01:35:29 GMT). The left column (panels a and d) compares total attenuated backscatter PDFs; 

the center column (panels b and e) compares volume depolarization ratio PDFs; and the right column (panels c and f) compares 

total attenuated backscatter color ratio PDFs.  Black lines represent aerosols, blue lines represent liquid water clouds, red lines 15 

represent ice clouds dominated by horizontal oriented ice (HOI), and magenta lines represent ice clouds dominated by random 

oriented ice (ROI). 
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3.3 Data filtering 

We filtered the training data to eliminate outliers in the <β′532>, δv, and χ′ measurements that were physically unrealistic (i.e., 

either too high or too low). Eliminating these extreme values speeds up the processing, and the training algorithm converges 

more rapidly. The selected filter thresholds retain more than 98% of all features within the original data set. A summary of the 

thresholds is given in Table 1. The selection of these thresholds is based on the PDFs shown in Figure 2. 5 

Table 1: Filter thresholds for FKM lidar observables 

Lidar observable Filter criteria 
Mean attenuated backscatter at 532 nm 0 ≤  <β′532> ≤ 0.2 sr –1 km –1 
Integrated volume depolarization ratio 0 ≤ δv ≤ 2 
Total attenuated backscatter color ratio 0 ≤ χ′ ≤ 2 

3.4 Distance calculation 

The distances between attributes can be calculated in different ways (e.g., Euclidean distance, Diagonal distance and 

Mahalanobis distance). According to a study by Gorsevski et al. (2003), we should apply the Euclidean distance to uncorrelated 

variables on the same scale when attributes are independent and the clusters are spherically shaped clouds. The Diagonal 10 

distance is also insensitive to statistically-dependent variables but clusters are not required to have spherically-shaped clouds. 

The Mahalanobis distance can be used for correlated variables on the same or different scales and when the clusters are 

ellipsoidal-shape clouds. The Mahalanobis distance (dij) of an observation i from a set of observations (xil) with centers cjl  (xil 

- cjl is an l-dimensional vector) is defined in Eq. 8 (Mahalanobis, 1936).   

. (8) 15 

S-1 (an l×l matrix) is the inverse of the covariance matrix of the observations. Note superscript T indicates that the vector should 

be transposed. If covariance matrix is a diagonal matrix, the Mahalanobis distance calculation returns the normalized Euclidean 

distance.  In this work we use the Mahalanobis distance specifically because the three lidar observables used both in FKM and 

COCA are not independent.  Each is a sum (or mean) of the measured backscatter signal over some altitude range, with the 

relationships between them given as follows:  20 

〈𝛽𝛽532
′ 〉 =  

∑ 𝛽𝛽532,∥
′

𝑧𝑧 (𝑧𝑧)+∑ 𝛽𝛽532,⊥
′

𝑧𝑧 (𝑧𝑧)

𝑧𝑧
,  , and  . 
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In these expressions, the subscripts   and ⊥  represent contributions from the 532 nm parallel and perpendicular channels, 

respectively.  Note in particular that the signals measured in the 532 nm parallel channel contribute to all three quantities. 

 

3.5 The choice of class k and fuzzy exponent ϕ 5 

The selection of an optimal number of classes k (1 < k < n) and degree of fuzziness ϕ (ϕ > 1) has been discussed in many 

previous studies (Bezdek, 1981; Roubens, 1982; McBratney and Moore, 1985; Gorsevski, 2003). The number of classes 

specified should be meaningful in reality and the partitioning of each class should be stable. For each generated classification, 

analyses need to be performed to validate the results. Among different validation functions, the fuzzy performance index (FPI) 

and the modified partition entropy (MPE) are considered two of the most useful indices among seven examined by Roubens 10 

(1982) to evaluate the effects of varying class number. The FPI is defined as in Eq. 9, where F is the partition coefficient 

calculated from Eq. 10. The MPE is defined as in Eq. 11, with the entropy function (H) calculated from Eq. 12.  

The ideal number of continuous and structured classes (k) can be established by simultaneously minimizing both FPI and MPE. 

For the fuzziness exponent, if the value of ϕ is too low the classes become more discrete and the membership values either 

approach 0 or 1. But if ϕ is too high, the classes will not provide useful discrimination among samples and classification 15 

calculations may fail to converge. McBratney and Moore (1985) suggested that the objective function (Eq. 13, Bezdek, 1981) 

decreases with increasing of both fuzzy exponent (ϕ) and the number of classes (k). They plotted a series of objective functions 

versus the fuzzy exponent (ϕ) for a given class where the best value of ϕ for that class is at the first maximum of objective 

function curves (Odeh et al. 1992a, McBratney and Moore 1985). Therefore, choosing an optimal combination of class number 

(k) and fuzzy exponent (ϕ) is established on the basis of minimizing both values of FPI and MPE and the least maximum of 20 

the objective function.  

 , and (9) 
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; (10) 

 , and (11) 

; (12) 

. (13) 

Using one month of layer optical properties reported in the CALIOP level 2 merged layer products, we created Figure 3 to 5 

determine optimal values for k and ϕ. From this figure, we conclude that the ideal number classes for CALIOP layer 

classification is either 3 or 4, with corresponding fuzzy exponents equal to 1.4 or 1.6 (we use 1.4 for the analyses this paper). 

Before exploring the clustering results to see what each class represents, we can immediately confirm that using three classes 

would be physically meaningful (i.e., these 3 classes may be aerosols, liquid water clouds and ice clouds). Similarly, two 

classes could represent aerosols and clouds. In the following study, we will choose k equal to 2 or 3 and ϕ equal to 1.4.  10 

 

Figure 3: Determination of the number of classes, k, and the fuzzy exponent, ϕ, for the FKM cloud-aerosol discrimination 

algorithm: (a) FPI (y-axis) versus class number k (x-axis) for different values of fuzzy exponent ϕ (different colors); (b) MPE 

(y-axis) versus class number k (x-axis) for different values of fuzzy exponent ϕ (different colors); and (c) objective function 

values (y-axis) versus the fuzzy exponent ϕ (x-axis) for various class numbers (different colors).  15 
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4 Cluster results and comparison with V3 and V4 data 

4.1 CAD from the Fuzzy K-Means algorithm 

According to Liu et al. (2009), the CAD score for any layer is the difference between the probability of being a cloud and the 

probability of being an aerosol (Eq. 14). We calculate the FKM CAD score in a similar way, where the COCA probabilities 

are replaced with FKM membership values. For the 3-class FKM analyses, the cloud membership value is the sum of 5 

memberships of ice and water clouds (two classes). The FKM CAD score is found using 

 .  (14) 

Figure 4 compares the operational V3 and V4 CAD products and our CADFKM classifications for a single nighttime orbit 

segment (06 September 2008, beginning at 01:35:29 GMT). Generally speaking, CADFKM from both the 2-class and 3-class 

analyses are quite similar to both the V3 and V4 COCA values. When COCA CAD scores are positive (namely clouds, shown 10 

in whitish colors in Fig. 4) in V3 and V4, the 2-class and 3-class CADFKM values are also positive. Likewise, when COCA 

CAD scores are negative (namely aerosols, yellowish colors in Fig. 4), the 2-class and 3-class CADFKM values are also negative. 

Furthermore, the particular orbit selected here includes the observations of a plume of high, dense smoke lofted over low water 

clouds (latitudes between 0° and 20°S within the red oval). For these water clouds beneath dense smoke, both the V3 

operational CAD and the 2-class CADFKM label them as clouds with low positive values. On the other hand, the V4 operational 15 

CAD and the 3-class CADFKM return higher values much closer to 100. The reasons for these differences will be discussed in 

Sect. 5.2 and Sect. 5.4.  Note too that weakly scattering edges of cirrus clouds (hereafter, cirrus fringes) beyond 69.6°S are 

misclassified as aerosols by both the 2-class and 3-class CADFKM (Figure 4c and d) but are correctly classified as cloud by the 

operational V4 algorithms.  

 20 
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Figure 4: nighttime orbit segment from 6 September 2008, beginning at 01:35:29 UTC. The upper panel (a) shows 532 nm 

attenuated backscatter coefficients. The panels below show the CAD results as determined by (b) the V3 operational CAD 

algorithm, (c) the V4 operational CAD algorithm, (d) the 2-class FKM CAD algorithm, and (e) the 3-class FKM CAD 

algorithm. The red ellipse in the upper panel highlights a dense smoke layer lying above an opaque stratus deck. In the CAD 

images (panels b–e), stratospheric layers are shown in black, cirrus fringes are shown in pale blue, and regions of “clear air” 5 

where no features were detected are shown in pure blue. Latitude units in degrees; positive: north, negative: south. 

4.2 Uncertainties: class overlap 

The confusion index (CI) is a measure of the degree of class overlap or uncertainty between classes (Burrough and McDonnell, 

1998). In effect, it measures how confidently each individual observation has been classified. CI values are calculated from 

Eq. 15, where mmax denotes the biggest membership value and mmax-1 is the second biggest membership value for each individual 10 

observation (i): 

. (15) 

CI value approaches zero when mmax is much larger than mmax-1, indicating that the observation is more likely to belong to one 

dominant class. CI approaches one when mmax is almost equal to mmax-1. In such cases, the difference between the dominant 

and subdominant classes is negligible, which creates confusion in the classification of that particular observation. Note the 15 

value (1- CI) × 100 for the 2-class FKM algorithm is equivalent to the absolute value of the CADFKM score. 

Figure 5 shows CI values for 2-class and 3-class CADFKM calculated for all layers in the sample orbit. From the figure, we see 

that, in most cases, the CI values are low for both the 2-class and 3-class CADFKM classifications. The exceptions are 

stratospheric features (mostly near polar regions), cloud fringes, high altitude aerosols and, for 2-class CADFKM only, the liquid 

water clouds beneath dense smoke. Low CI values for the CADFKM classifications are analogous to high CAD scores assigned 20 

by the operational CAD algorithm: both indicate high confidence classifications. Similarly, CADFKM classifications with high 

CI values indicate low confidence classifications where the observation has roughly equal membership in two classes. For the 

liquid water clouds beneath dense smoke, the membership values determined by the 2-class CADFKM are larger than 0.5. 

However, the 3-class CADFKM results for these water clouds have low CI values, indicating high confidence classifications 

into one dominant class, and suggesting that the separation between the aerosols and low water clouds is better accomplished 25 

when 3 classes are used. For cloud fringes, the CI values are high for both the 2-class and 3-class CADFKM. According to the 

CADFKM results, cirrus fringes are somewhat different from the neighboring portions of the cirrus layer, as they also bear some 

similarity to the dust particles that are the predominant sources of ice nuclei (DeMott et al., 2010). 
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Figure 5: for the same data shown in Figure 4, the upper panel (a) shows the confusion index for 2-class CADFKM, and 

the lower panel (b) shows the confusion index for 3-class CADFKM.  The pure blue color once again indicates those regions 

where no atmospheric layers were detected.  

4.3 Statistical comparisons of clouds and aerosols 5 

In this sub-section, we present statistical analyses of our results for all of January 2008, followed by explorations of individual 

case studies in the next sub-section. We first compare the PDFs of the different lidar optical parameters used in the 2-class and 

3-class CADFKM classifications to the PDFs of those same parameters derived for the COCA classifications (Fig. 6). We also 

compare the spatial distribution patterns of the clouds and aerosols identified by FKM and COCA (Fig. 7) and use confusion 

matrices to quantify the similarity of the corresponding FKM and COCA classes (Table 2).  10 
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From Fig. 6, it is evident that the PDFs of <β′532>, δv, and χ′ that characterize the clouds and aerosols determined by the FKM 

classifications agree well with the PDFs from the V4 CAD classifications. Figures 6d, 6e, and 6f compare the 2-class CADFKM 

results to the operational algorithm. In these figures, the PDFs of   <β′532> (Fig. 6d), δv (Fig. 6e) and χ′ (Fig. 6f) of FKM class 

1 (blue dashed lines) agree well with those of V4 cloud PDFs (blue solid lines), while the PDFs of these different parameters 

of FKM class 2 (red dashed lines) agree well with those of V4 aerosol (red solid lines) PDFs. Figures 6a, 6b, and 6c compare 5 

the 3-class CADFKM results to the operational algorithm. Once again, the comparisons are quite good: the shapes of the PDFs 

of FKM class 1 (blue dashed) agree well with the V4 water cloud (blue solid) PDFs, while the PDFs of FKM class 2 (red 

dashed) and 3 (green dashed) individually agree well with, respectively, the V4 ice cloud (red solid) and aerosol (green solid) 

PDFs. The class means for <β′532> are smallest for aerosols/class 3 (0.0034 ± 0.0022 (km-1sr-1) and 0.0041 ± 0.0193 (km-1sr-

1), respectively) and slightly larger for ice clouds/ class 2 (0.0075 ± 0.0086 (km-1sr-1) and 0.0062 ± 0.0183 (km-1sr-1), 10 

respectively).  Water clouds/class 1 have the largest <β′532> mean values (0.0804 ± 0.0526 (km-1sr-1) and 0.0850 ± 0.0454 (km-

1sr-1), respectively).  For δv, the largest mean values are found for ice clouds/ class 2, followed by water clouds/class 1 and 

then aerosol/class 3.  Class mean χ′ is largest for water clouds/class 1 and smallest for aerosols/class 3. These means and 

standard deviations are also comparable between COCA and FKM classes.  
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Figure 6:  PDFs derived from all data from January 2008. The top row compares V4 operational CAD PDFs to the PDFs 

derived from CADFKM 3-class results. V4 CAD PDFs for liquid water clouds, ice clouds, and aerosols are plotted in, 

respectively, solid blue, red and green lines.  Similarly, CADFKM 3-class PDFs for classes 1, 2, and 3 are plotted in, respectively, 

dashed blue, red and green lines.  The bottom row compares V4 operational CAD PDFs to the PDFs derived from CADFKM 2-5 

class results, where once again the V4 CAD PDFs are shown in solid lines and the CADFKM 2-class PDFs are shown in dashed 

lines.  PDFs of <β′532> are shown in the left column (panels a and d), δv PDFs in the center column (panels b and e), and χ′ 

PDFs in the right column (panels c and f). 

Figure 7 compares the geographical (panels a-f) and zonally-averaged (panels g-1) distributions of 2-class CADFKM occurrence 

frequencies to the COCA cloud and aerosol occurrence frequencies for all data acquired during January 2008. The spatial 10 

distributions of clouds and aerosols are quite different. In January, clouds are mostly located in the storm tracks, to the east of 

continents, over the inter-tropical convergence zone (ITCZ) and in polar regions. Aerosols are more often found over the 

Sahara, over the subtropical oceans, and in south-central and east Asia (upper two rows of Fig. 7). In the zonal mean plots 

(lower two rows of Fig. 7), cloud tops are seen to extend up to the local tropopause, whereas aerosols are largely confined to 
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the boundary layer. The geographical and vertical distributions of FKM class 1 are quite similar to the COCA V4 cloud 

distributions. Likewise, the distributions of FKM class 2 closely resemble the COCA V4 aerosol distributions. Looking at the 

difference plots (righthand column of Fig. 7), some fairly large differences are seen in the polar regions, where the composition 

and intermingling of clouds and aerosols is notably different from other regions of the globe. Many of the layers observed in 

the polar regions are spatially diffuse and optically thin, and thus occupy the morphological “twilight zone” between clouds 5 

and aerosols (Koren et al., 2007).  Observationally-based validation of the feature types in these regions would likely require 

extensive in situ measurements coincident with CALIPSO observations. Consequently, correctly interpreting the 

classifications by the two algorithms in polar regions based on our knowledge is too challenging to draw useful conclusions 

and lies well beyond the scope of this work.  Nevertheless, the PDFs and geographic analyses presented here establish that, 

excluding the polar regions, the cloud-aerosol discrimination derived using an unsupervised FKM method is statistically 10 

consistent with the classifications produced by the operational V4 CAD algorithm.  

 
Figure 7: distributions of feature type occurrence frequencies during January 2008. Panels in the left column show V4 COCA 

results; panels in the center column show CADFKM 2-class results; and the panels in the right column show the percentages of 

differences between the left and center columns. The top two rows show maps of occurrence frequencies as a function of 15 
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latitude and longitude for clouds (panels a–c) and aerosols (panels d–f). The bottom two rows show the zonal mean occurrence 

frequencies of clouds (panels g–i) and aerosols (panels j–l). 

Above, we qualitatively show the operational classification algorithm agrees well with FKM algorithm. To quantify the degree 

to which the different methods agree with each other, we construct confusion matrices, which use the January 2008 5-km 

merged layer data between 60°S and 60°N to calculate the concurrent frequency of cloud and aerosol identifications made by 5 

the COCA and CADFKM algorithms. We summarize the occurrence frequency statistics in Table 2.  From the table we find that 

for our test month COCA V3 agrees with COCA V4 CAD for 96.6 % of the cases. The agreements are around 90% for the 

entire globe including regions beyond 60° (not shown here). The FKM 2-class and 3-class results agree with both V3 and V4 

for more than 93 % of the cases. The FKM results agree slightly better with V3 than with V4. All algorithms and versions 

agree on cloud coverage of around 58 % to 66 % of the globe. These values are well within typical cloud climatology estimates 10 

of 50 % to 70% (Stubenrauch et al. 2013). Compared to the 2-class CADFKM, results from the 3-class CADFKM agree somewhat 

better with the classifications from both the V3 and V4 CAD algorithms. Consistent with previous results in this paper, the 3-

class CADFKM appears better able to separate clouds and aerosols than the 2-class CADFKM. Figure 4 provides an additional 

example. For those water clouds beneath dense smoke, the 3-class CADFKM scores are substantially higher than both the 2-

class CADFKM scores and the operation V3 CAD scores, indicating that the 3-class CADFKM algorithm correctly identifies these 15 

features with much higher classification confidence. We also calculated the concurrent occurrence frequencies for only those 

features with CI values less than 0.75 (or 0.5). When the data are restricted to only relatively high confidence classifications, 

the FKM results agree with V3 and V4 for better than 96% (or 97%) of the samples tested.  

Table 2: Statistical confusion matrix of a 1-month (Jan. 2008) CAD analysis that shows the agreement percentages (detected as 
clouds: C, aerosols: A, or total of clouds and aerosols: T for both algorithms) between different methods (V3: version 3, V4: version 20 
4, FKM: fuzzy K-means). 

Agreement (%) V4 FKM 
(2-classes) 

FKM 
(3-classes) 

C A T C A T C A T 

V3 
C 66.1 2.1  63.8 4.5  64.6 3.7  
A 1.2 30.5  1.1 30.6  1.9 29.9  
T   96.6   94.4   94.5 

V4 
C  

- 

59.3 4.9  60.6 3.6  
A 1.5 34.4  2.4 33.4  
T   93.6   94.0 

FKM 
       (2-classes)  

C  
- 

 
- 

60.1 0.6  
A 2.8 36.5  
T   96.7 
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4.4 Special cases study 

In this section we investigate several of the challenging classification cases that motivated the extensive changes made in 

COCA in the transition from V3 to V4 (Liu et al. 2018).  Comparisons are done for those cases between different algorithms 

and different algorithm versions to see how well each algorithm or version compares to “the truth” (i.e., as obtained by expert 

judgments). In addition to the dense smoke over opaque water cloud case shown in Figure 4, the CADFKM
 algorithm, like the 5 

operational CAD algorithm, can occasionally have difficulty correctly identifying high altitude smoke, dense dust, lofted dust, 

cirrus fringes, polar stratosphere clouds (PSC) and stratospheric volcanic ash (Figure 8-10).  We briefly review each of these 

cases below. 

a. Dust 

Two different dust cases are selected for this study (Fig. 8). The first case examines nighttime measurements of a deep and 10 

sometimes extremely dense dust plume in the Taklamakan desert beginning at 20:15:32 UTC on 4 May 2008, as shown in 

Figs. 8 a-e.  The second case investigates spatially diffuse Asian dust lofted high into the atmosphere while being transported 

toward the Arctic during a nighttime orbit segment beginning at 18:28:54 UCT on 1 March 2008, as shown in Figs. 8 f-j. CAD 

classifications are color-coded as follows: regions where no features were detected are shown in pure blue; V3 stratospheric 

features are shown in black; cirrus fringes are shown in pale blue; aerosol-like features are shown using an orange-to-yellow 15 

spectrum, with orange indicating higher confidence and yellow lower confidence; and cloud-like features are rendered in gray 

scale, with brighter and whiter hues indicating higher classification confidence. Dust layers in Taklamakan exhibit high 532 

nm attenuated backscatter coefficients, high depolarization ratios (not shown), and attenuated backscatter color ratios close to 

1 (also not shown). As seen between ~44° N and ~40° N, layers with this combination of layer optical properties are frequently 

misclassified as ice clouds in COCA V3 (Fig. 8b).  However, in COCA V4 these same layers are much more likely to be 20 

correctly classified as aerosol (Fig. 8c).The 2-class and 3-class CADFKM classifications both agree with COCA V4 for the 

lofted aerosols, but misclassify the densest portions of the dust plume as low confidence cloud. For the lofted Asian dust case 

shown in Figure 8 f-j, COCA V3 frequently misclassifies dust filaments as cloud, whereas COCA V4 correctly identifies the 

vast majority as dust. (Note too that many more layers are detected in V4 as a consequence of the changes made to the CALIOP 

532 nm calibration algorithms (Kar et al., 2018; Getzewich et al., 2018; Liu et al., 2018).)  The 2-class and 3-class CADFKM 25 

classifications are essentially identical to those determined by COCA V4, but show higher confidence values for the aerosol 

layers.   
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Figure 8: top row shows 532 nm attenuated backscatter coefficients for (a) dust in the Taklamakan basin on 4 May 2008 and 

(f) lofted Asian dust being transported into the Arctic on 1 March 2008. The rows below show the CAD results reported by 

four different algorithms; COCA V3 (panels b and g), COCA V4 (panels c and h), the 2-class CADFKM (panels d and i), and 

the 3-class CADFKM (panels e and j).  5 
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b. High altitude smoke 

An unprecedented example of high-altitude smoke plumes was observed by CALIPSO during the “Black Saturday” fires that 

started 7 February 2009, quickly spread across the Australian state of Victoria, and eventually lofted well into the stratosphere 

(de Laat et al., 2012). Figure 9 shows extensive smoke layers at 10 km and higher on Monday 10 February between 20°S-

40°S. In the V3 CALIOP data products, stratospheric layers (i.e., layers with base altitudes above the local tropopause) were 5 

not further classified as clouds or aerosols, but instead were designated as generic ‘stratospheric features’ (Liu et al., 2018).  

Consequently, COCA V3 misclassifies these smoke layers as clouds when their base altitude is below the tropopause and as 

stratospheric features when the base altitude is higher (Fig. 9b). On the other hand, the V4 CAD correctly identifies them as 

aerosols (Fig. 9c). In analyzing this scene we used two separate versions of the FKM algorithm.  Our standard configuration 

used zmid as one of the classification attributions, while a second, trial configuration omitted zmid.  For the 2-classes FKM, both 10 

configurations successfully identified the high-altitude smoke as aerosol (Figs. 9d and 9e).  But for the 3-classes FKM, 

including zmid as a classification attribute introduced uniform misclassification of the lofted smoke as cloud (Fig. 9f).  However, 

when zmid is omitted the 3-class FKM correctly recognizes the smoke as aerosol (Fig. 9g). This is because including altitude 

information can introduce unwanted classification uncertainties when attempting to distinguish between high altitude clouds 

and aerosols, both of which are located at similar altitudes and have similar optical properties. Altitude is not a driving factor 15 

for classifications, and adds confusion in the memberships defined by the Mahalanobis distance (see Eqs. (7) and (8)) in these 

particular cases. More details are given in section 5.1. When high altitude depolarizing aerosols and ice clouds appear at the 

same time, either increasing the number of classes to four or omitting zmid as an input will resolve large fractions of the potential 

misclassifications from the FKM method.    
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Figure 9: top row shows 532 nm attenuated backscatter coefficients for (a) measurements acquired on 10 February 2009 

showing smoke injected into the upper troposphere and lower stratosphere by the Black Saturday fires in Australia. The solid 

line extending across (f) at altitudes between ~7 km and ~8.5 km shows the approximate tropopause altitude. The rows below 
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show the CAD results reported by six different algorithms; the V3 operational CAD (b), the V4 operational CAD (c), the 2-

class CADFKM with zmid (d) and without zmid (e), and the 3-class CADFKM with zmid (e) and without zmid (j).  

c. Volcanic ash 

Figure 10 shows an example of ash from the Kasatochi volcano (52.2°N, 175.5°W), which erupted unexpectedly on 7–8 August 

2008 in the central Aleutian Islands. Volcanic aerosols remained readily visible in the CALIOP images for over 3 months after 5 

the eruption (Prata, et al. 2017). On 5 October 2008, CALIOP observed the ‘aerosol plume’ near the tropopause at ~17:30:18 

UCT. COCA V3 classified those layers with base altitudes above the tropopause as ‘stratospheric features’ (black regions in 

Fig. 10b), and misclassified a substantial portion of the lower, tropospheric layers as cloud. Those segments that were correctly 

classified as aerosol were frequently assigned low CAD scores. In contrast, COCA V4 and both versions of the CADFKM with 

zmid as inputs show greatly reduced cloud classifications, and the aerosols have high confidence CAD scores. Again, when 10 

altitude information is not included, the FKM algorithm produces a better separation of clouds and aerosols at high altitudes, 

for the same reasons as in the high altitude smoke case. 
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Figure 10: top row shows 532 nm attenuated backscatter coefficients for (a) measurements acquired on 5 October 2008 

showing a layer of volcanic ash from the eruption of Kasatochi. The solid line extending across (f) at altitudes between ~7 km 
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and ~8.5 km shows the approximate tropopause altitude. The rows below show the CAD results reported by six different 

algorithms; the V3 operational CAD (b), the V4 operational CAD (c), the 2-class CADFKM with zmid (d) and without zmid (e), 

and the 3-class CADFKM with zmid (e) and without zmid (j).  

5 Discussion 

Section 5 compares FKM and COCA using statistical analyses and individual case studies. In this section, we explore the 5 

application of various metrics used to evaluate the quality of the FKM and COCA classifications. The questions we address 

are: (a) how much improvement can be made by adding additional measurements as classification inputs (Sec. 5.1); (b) how 

well are the classes separated (Sect. 5.2); (c) what are the essential measurements required for accurately discriminating 

between clouds and aerosols (Sect. 5.1 and Sect. 5.3); and (d) what effects do measurement uncertainties (noise) have on the 

classifications (section 5.4)? 10 

5.1 Key parameter analysis  

Underlying any feature classification task is this essential question: which observations are most important for accurate feature 

identification? COCA results were substantially improved from V2 to V3 by adding two additional dimensions (latitude and 

volume depolarization ratio) to the cloud and aerosol PDFs. In general, higher dimension PDFs should improve the 

classification accuracy so long as the additional dimensions provide some new useful information (i.e., they should be 15 

orthogonal, or at least semi-orthogonal, to the data already being used). It is therefore important to quantify how much 

improvement we can make by adding additional dimensions into the analysis. With the FKM method, it is relatively easy 

(though perhaps time-consuming) to add or remove one or multiple observational dimensions (i.e., inputs) and the reinitiate 

the training/learning algorithm. (This highly desirable flexibility is, unfortunately, wholly absent in the strictly supervised 

learning regime incorporated into COCA.) If a dimension is added (or removed) and the new classifications are essentially 20 

identical to the old ones, the added (or removed) dimension does not provide significant information in the classification 

processes. On the other hand, if the CAD values are improved (or degraded) by adding or removing a dimension, this dimension 

actually contributes dispositive information in the determination of the classification, and hence is key to separating clouds 

from aerosols. By using the FKM method, we can readily determine which parameters are required (and, importantly, which 

are non-essential) for the resulting classifications to meet predetermined accuracy specifications, either in general or for a 25 

particular class (e.g., dust).  We can also quantify the improvement (or degradation) that occurs when specific parameters are 

either added or removed.  

We demonstrate these capabilities using individual case study results. Figure 11 shows series of FKM classifications that omit 

individual dimensions from one half orbit of nighttime observations acquired 6 September 2008 (i.e., the same scene shown 

previously in Fig. 4.) This scene was chosen as an example specifically because it contains so many challenging CAD cases 30 
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(e.g., PSCs, dense water clouds beneath smoke, and many high-altitude aerosols). Comparisons with COCA V4 and 2-class, 

4-parameter CADFKM results are quantified by the confusion matrices shown in Table 3. From both the figure and the table we 

find that the cloud-aerosol partitioning obtained when any one dimension is omitted is reasonably similar to the partitioning 

reported by COCA and by the 2-class, 4-parameter FKM algorithm. Both algorithms are most sensitive to the removal of χ′ 

(75.0 % similarity for COCA and 77.4 % similarity for FKM), and least sensitive to the removal of <β′532> (89.8 % for COCA, 5 

93.1 % for FKM).  Note also from the figure we see that, for the low water clouds covered by a plume of heavy absorbing 

smoke, the 2-class 4-parameter FKM classifications have low CADFKM values. When either zmid or <β′532> is removed from 

the classification parameters, the CADFKM values actually improve. Without χ′ or δv, the CADFKM values get worse, which 

indicates that color ratios and depolarization ratios may play a more important role in separating aerosols from low water 

clouds.  In this example, the values of χ′ and  <β′532> measured in the water cloud can bias the resulting CADFKM values due 10 

to the strong absorption at 532 nm within the overlying smoke layer.  <β′532>for these water clouds decreases and gets closer 

to the backscatter magnitudes expected from classic aerosols (e.g., Figure 6a), while χ′ increases far beyond values typical of 

classic aerosols. Moreover, when omitting zmid, high altitude aerosols and ice clouds are more readily and correctly separated, 

as are low altitude aerosols and water clouds. χ′ or δv are key in separating high altitude aerosols and clouds. 

 15 
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Figure 11: CAD scores calculated using various techniques for an orbit segment on 6 September 2008 beginning at 01:35:29 

UTC.  The upper two rows show results from (a) the V4 operational CAD algorithm and (b) the 2-class FKM algorithm using 

all four standard inputs.  The remaining rows show 2-class CADFKM results calculated when omitting one of the four standard 

inputs: (c) omits backscatter intensity (<β′532>), (d) omits depolarization ratios, (e) omits color ratios, and (f) omits mid-layer 

height.  5 

Table 3: confusion matrices comparing COCA V4 and the CADFKM results shown in Figure 11; abbreviations as follows: C = cloud; 
A = aerosol; and T = total. 

(%) CADFKM CADFKM (no <β′532>) CADFKM (no δv) CADFKM (no χ′) CADFKM (no zmid) 
 C A T C A T C A T C A T C A T 

COCA V4 
C 45.1 3.3  45.6 2.8  43.7 1.7  40.1 11.4  44.9 3.5  
A 7.3 44.3  7.4 44.2  12.7 38.3  13.6 34.9  12.3 39.6  
T   89.4   89.8   82.0   75.0   84.5 

CADFKM 
C    56.9 2.6  52.3 7.2  49.6 10.0  55.6 3.2  
A    4.3 36.1  3.7 36.8  12.6 27.9  8.4 32.1  
T      93.1   89.1   77.4   87.8 

In addition to the case study described above, we also analyzed a full month (January 2008) of CALIOP level 2 data acquired 

between 60°S and 60°N.  To better focus on the troposphere, where the vast majority of detectable atmospheric layers occur, 

data from the polar regions were omitted in this test. We assessed the relative importance of various observational parameters 10 

by computing CADFKM classifications using only a limited number of inputs (i.e., either 1, 2, or 3 of the CALIOP layer 

descriptors used in the standard 2-class CADFKM classifications). These comparisons are summarized in Table 4.  The center 

column of Table 4 shows the agreement frequencies of these classifications with COCA V4; the right column shows the 

agreement frequencies with the 2-class, 4-parameter FKM classifications.  

Considering those comparisons where only one parameter is removed from the input data, it is clear that omitting χ′ has by far 15 

the most deleterious effect.  The classifications are relatively insensitive to omitting any of the other three parameters, though 

the comparisons are slightly worse when omitting zmid rather than <β′532> or δv. The conclusions to be drawn from the single 

parameter classifications are similar to the 3-parameter case, though perhaps not as stark: using only χ′ produced slightly better 

comparisons with both COCA V4 and the 2-class, 4-parameter CADFKM results than any of the other parameters.  Given this 

demonstrated sensitivity to χ′, it is perhaps not surprising that of the 2-parameter classifications, the combination of χ′ and zmid 20 

proves the most successful.  The combination of χ′ and δv also performed reasonably well relative to both COCA V4 and the 
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2-class, 4-parameter CADFKM. Unexpectedly, however, the combination of χ′ and <β′532> performed very poorly relative to 

COCA V4, with only ~67 % of the classifications being identical. 

In general, and as expected, the closest matches to the COCA V4 and the 2-class, 4-parameter CADFKM classifications are 

achieved by the 3-parameter classifications, with the single parameter classifications showing the poorest correspondences, 

and the 2-parameter rankings falling somewhere in between the 3-parameter and 1-parameter results. However, the 5 

performance of the most successful 2-parameter case (the combination of χ′ and zmid) was largely identical to that of the most 

successful 3-parameter case (the combination of <β′532>, χ′ and zmid). In fact, relative to COCA V4, the 2-parameter 

classifications were identical slightly more often (93.8 % of all cases) than the 3-parameter classifications (93.2%). For the 2-

class, 4-parameter FKM, the corresponding numbers rise to 95.5 % identity for the best performing 2-parameter classifications 

and 97.7 % identity for the best performing 3-parameter classifications. Both the COCA and FKM comparisons suggest that 10 

the addition of <β′532> adds little, if any, skill to the classification task but it contributes to the confidence of the classifications, 

as will be shown in Sect. 5.2. 

Table 4: Statistics of joint occurrence frequency during January 2008 from 60°S to 60°N between and the FKM classifications based 
on limited input parameter sets (i.e., 1, 2, or 3 CALIOP measurements, as listed in the left column), the COCA V4 classifications 
(center column), and the 2-class, 4-parameter (2-C, 4-P) CADFKM classifications (right column). 15 

Occurrence Frequency (%) V4 CAD 2-C, 4-P CADFKM 

CADFKM (<β′532>, δv, zmid, χ′) 93.61 - 

CADFKM (<β′532>, zmid, χ′) 93.21 97.69 

CADFKM (δv, zmid, χ′) 92.83 96.09 

CADFKM (<β′532>, δv, χ′) 90.25 94.39 

CADFKM (<β′532>, δv, zmid) 80.00 83.95 

CADFKM (χ′, zmid) 93.83 95.51 

CADFKM (δv, χ′) 90.96 93.77 

CADFKM (<β′532>, δv) 83.45 87.07 

CADFKM (<β′532>, zmid) 77.13 80.83 

CADFKM (δv, zmid) 75.66 79.42 

CADFKM (<β′532>, χ′) 66.89 70.11 

CADFKM (χ′) 66.60 64.80 

CADFKM (δv) 63.87 62.32 

CADFKM (zmid) 63.77 62.06 

CADFKM (<β′532>) 61.75 60.09 
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5.2 Fuzzy linear discriminant analysis 

Linear discriminant analysis (Fisher, 1936) is usually performed to investigate differences among multivariate classes, to 

validate the classification quality, and to determine which attributes most efficiently contribute to the classifications. Here we 

introduce Wilks’ lambda, which is the ratio of within-class variance (to evaluate the dispersion within class) and between-class 5 

variance (to examine the differences between the classes). Considering a data matrix X (n × p matrix, elements xil, i, data 

number =1,..,n; l, data dimension number = 1,..p), the FKM classification returns a membership matrix M (n × k matrix, 

elements mij, i, data number= 1,..,n; j, class number = 1,..,k) and centroid matrix C (k × p matrix, elements cjl, j, class number 

= 1,…,k; l, data dimension number = 1,…,p) where n is the number of data samples, p is the number of attributes/dimensions, 

and k is the number of classes. The sums of squares and products (SSP) within-classes covariance matrix Wlm (p × p matrix, 10 

l/m, data dimension number = 1,…,p), also called the within-classes fuzzy scatter matrix (Bezdek, 1981), is given as 

. (16) 

The SSP between-classes covariance matrix Blm  (p × p matrix, l/m, data dimension number = 1,…,p) are given as 

.  (17) 

The ratio of within-classes to the total SSP matrix is known as Wilks’ lambda (Eq. 18, Wilks, 1932). Wilks’ lambda for multi-15 

dimensional observations is the determinant of the p × p matrix, which represents the geometric volume of this object in p 

dimensions, written as 

( )
( )

det W
det W B

Λ =
+

 (18) 

 (Oh et al. 2005). Here we use Wilks’ lambda (Λ) as a measure of the difference between classes. The value Λ varies from 0 

to 1, where 0 suggests that classes differ (within-classes SSP is smaller compared to between-classes SSP), and 1 suggests that 20 

all classes are the same.  The magnitude of Wilks’ Λ indicates how distinct and well-separated the classes are. Smaller values 

of Wilks’ Λ indicate more distinct class separation with minimal between-class overlap thus the classification are more 

trustworthy and have higher confidence. Wilks’ Λ thus provides an additional metric to assess classification algorithm 

performance, augmenting the classification accuracy indicators shown in Sect. 5.1.  
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For the January 2008 data, Wilks’ Λ for different observational dimensions are calculated and summarized in Table 5. For 4-

dimensional (p=4) observations, Wilks’ Λ could be as small as 0.21 for 2-class FKM and even smaller (0.05) for 3-class FKM. 

This means that the classes generated by the FKM method are well separated, with clusters quite different from each other, 

and that the classes in 3-class FKM are much better separated (less overlap in the multi-dimensional observations) than the 

classes in 2-class FKM. For FKM 2-class, the value of Wilks’ Λ is largest for zmid, indicating that, relative to the other 5 

individual parameters, clustering using zmid is less efficient at generating well-separated classes. The large value of Wilks’ Λ 

occurs because clouds have two distinct altitude centers, one for low water clouds and the other for high ice clouds. (Mid-level 

clouds occur too infrequently to form a third dominant altitude center.) The center altitude of water clouds is comparable to 

that of boundary layer aerosols, and thus it is very difficult to separate these two classes using zmid alone. The distinct altitude 

centers of ice and water clouds induce large within-classes SSP and hence large values of Wilks’ Λ. For single parameter 10 

clustering, Wilks’ Λ from <β′532> is the smallest, followed by the values for δv and χ′ . The value of Wilks’ Λ from any 

combination of observational dimensions lies between the maximum and minimum values for the single parameter clustering. 

Wilks’ Λ values for 3-class FKM are much smaller compared to the 2-class FKM values because zmid can have an independent 

center for each class. For 3-class FKM analyses, the largest single parameter values of Wilks’ Λ are produced by δv, followed 

by zmid and χ′ .  As with 2-class FKM, yields the smallest value.  15 

Table 5: Wilks’ lambda (Λ) for 2-class (center column) and 3-class (right column) FKM classifications using different observational 
dimensions (left column). 

Input parameters Λ, 2 
classes 

Λ, 3 
classes 

<β′532>, δv, χ′, zmid  0.21 0.048 
δv, χ′, zmid 0.20 0.060 
<β′532>, χ′, zmid 0.20 0.060 
<β′532>, δv, zmid 0.17 0.035 
<β′532>, δv, χ′ 0.14 0.030 
<β′532>, δv 0.12 0.025 
<β′532>, χ′ 0.14 0.039 
<β′532>, zmid 0.14 0.052 
δv, χ′ 0.13 0.043 
δv, zmid 0.20 0.056 
χ′, zmid 0.23 0.077 
<β′532> 0.08 0.030 
δv 0.16 0.136 
χ′ 0.18 0.053 
zmid 0.28 0.121 
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5.3 Principal Component Analysis 

In this section we apply principal component analysis (PCA; Wold et al. 1987) to the FKM classification results to determine 

which of the input parameters account for the greatest variability in the outputs. These functions, or canonical variants, are 

therefore calculated from the eigenvalues and eigenvectors of matrix Wf / Bf (the ratio of within-class variance and between-5 

class variance). The first function (PCA-1) maximizes the differences between the classes and represents the dominant 

contribution to the classifications. Successive functions (PCA-2) will be orthogonal to, or independent of, the other functions 

and hence their contributions to the discrimination between classes will not overlap. We also project the inputs variable vectors 

along the principal component axes. Using this method helps to better understand how independent the input parameters are 

and how they individually contribute to the classifications.  10 

The scatter plots of PCA-1 and PCA-2 for FKM 2 classes and 3 classes are shown in Figure 12. The projection of vector 

lengths on PCA-1 and PCA-2 of different measurements (i.e., <β′532>, δv, and χ′ , and zmid) indicate how much each individual 

dimension contributes to the classifications. Longer projections mean stronger contributions. From the figure, we clearly see 

that water clouds, ice clouds and aerosols are quite different (i.e., their cluster centers are located in different positions). 

Different colors represent different classes, and darker colors indicate higher sample densities.  Class centers, marked with red 15 

crosses, are located where the class sample density is highest, with higher densities shown by darker colors. We reorient PCA-

2 to keep the C1-C2 line approximately diagonal, and thus better assess the relationship between PCA-1 and PCA-2. (In reality, 

the contribution of PCA-1 is always larger than PCA-2 while the diagonal line shows PCA-1 contribution is equal to PCA-2.) 

From both panels we see that class 1 (cloud) of 2-class FKM breaks into 2 classes (ice cloud and water cloud) when applying 

3-class FKM. The denser samples (centers) of water cloud, ice cloud and aerosol are quite separate from each other, and the 20 

overlap zone has fewer samples. We can also see that χ′ and δv contribute the most to PCA-1 (longer projections on the axis 

of PCA-1 in both subpanels) while and zmid contribute more to PCA-2. Hence, χ′ and δv are the driving components for the 

cloud-aerosol separation. From figure 12b, we could also argue that <β′532>and δv are the driving factors in classifying water 

and ice clouds (projections of the vectors on C2-C3, namely the combined projection of PCA-1 and PCA-2, are longer), while 

χ′ and zmid also contribute to the classification. zmid, and, to a greater extent, χ′ and δv are the driving factors that allow aerosols 25 

to be separated from ice clouds (projections of the vectors on C1-C2 are longer), whereas   and χ′ are the driving factors that 

separate water clouds from aerosols (projections of the vectors on C1-C3 are longer). Comparing contributions of individual 

measurements to different classes, zmid is most useful in helping discriminate aerosols and ice clouds, while simultaneously 

being the least useful in separating aerosols and water clouds.  <β′532> is the most useful parameter in distinguishing aerosols 

form water clouds and water clouds from ice clouds, and the least useful in differentiating between aerosols and ice clouds. δv 30 

is most useful in distinguishing between water clouds and ice clouds and between aerosols and ice clouds, and the least useful 
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in separating aerosols from water clouds. These observations agree very well with earlier findings in Fig. 6 and Tables 2, 3 

and 4.  

 

Figure 12: principle component analysis of the FKM classifications for the January 2008 test data.  PCA results for the 2-class 

CADFKM classifications are shown on the left (panel a), and the 3-class CADFKM classifications are shown on the right (panel 5 

b).  In both figures, the green points are projections of aerosol data onto the PCA axes with their center located at red crosses 

labeled C1.  Similarly, the blue and cyan (left panel only) points are projections of cloud data onto the PCA axes.  In panel a, 

the blue points represent all clouds, while in panel b the blue points represent ice clouds and the cyan points represent water 

clouds. Higher sample number condensations are in darker colors while lower condensations are in lighter colors.  Also shown 

in both panels are color-coded vectors representing each of the classification variables: backscatter intensity (<β′532>, in 10 

orange), depolarization ratio (δv, in brown), color ratio (χ′, in magenta), and altitude (zmid, in olive).  The projections of the 

variable vectors along the principal component axes indicate the degree to which each variable contributes to PCA1 and PCA2. 

Variable vectors that are parallel to either PCA1 or PCA2 contribute essential information to that component, while vectors 

that are perpendicular do not contribute at all.   

5.4 Error propagation 15 

By using PCA we can determine which parameters are most influential in arriving at different cluster memberships.  

Additionally, because all CALIOP measurements are contaminated to some degree by noise, we also want to see if/how noise 

in the individual parameters affects classification accuracy. These results can also guide us in understanding how the 

classification accuracy changes as the CALIOP laser energies deteriorate over the lifetime of the mission. In this section, we 

assess the impacts of instrument noise and measurement uncertainties on the FKM classifications. The observations from a 20 
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nighttime granule acquired 6 September 2008 beginning at ~01:35:29 UTC are used to investigate how noise in the lidar 

measurements affects the accuracy of the clustering results and what, if any, errors are introduced into the cloud and aerosol 

classifications for this particular case. To simulate the measurement uncertainties, two different methods are used. The first 

drew pseudo-random variables from Gaussian distributions having means equal to the various measured values and standard 

deviations between 10% and 200% of the means. As illustrated in Figure 13, using this method allows us to quantify the effects 5 

of varying measurement errors on the FKM classification algorithm results. A sequence of Monte Carlo tests was constructed 

in which one of the four classification variables was randomly perturbed (i.e., drawn from the aforementioned Gaussian 

distributions) while the other three remained unchanged. For each of the four tests, 100 realizations of simulated input were 

created. To estimate the propagation of measurement uncertainties, we calculated the shifts in classification, confusion indexes 

(CI, see section 3.2), and the changes in cluster centers between new clusters with added noise and the original clusters derived 10 

using unperturbed inputs. The shifts in cluster centers are the mean distances between the centers of the new clusters (Cn, 

obtained from perturbed dataset) and the old ones (Co, obtained from error free dataset) for both clouds and aerosols, calculated 

using Eq. 19 (Omar et al., 2005). These distances are normalized by the standard deviation of the distributions (Cstd) of 

individual record distances from unperturbed center as 

n 0

std

c c
d

cε

−
δ =  (19) 15 

where |x| represents the L1 norm of x.  Figure 13 plots (a) the shifts in cluster centers for each class, (b) the fraction of correct 

classifications, and (c) the revised confusion indexes as a function of relative uncertainties ranging from 10% to 200%. From 

Figure 13a we see that shifts in cluster centers between perturbed and unperturbed data are very small when the uncertainties 

are small. The largest shift comes from color ratio perturbations and the smallest shift comes from backscatter perturbations. 

Perturbations on class-2 (aerosol) are more important compared to class-1 (cloud). Figures 13b and 13c show that when the 20 

uncertainties in the measurements are small (i.e. less than 10%), the errors in the classifications are also small (e.g., less than 

2% in Figure 13b) with less overlaps between classes (e.g., small values of CI from 0.3 to 0.305 seen in Figure 13c). When 

the uncertainties increase, the classification accuracies slightly decrease and the shifts in cluster center and CI slightly increase. 

The rates of change in the accuracy and confusion index are rapid at first (i.e., between relative uncertainties between 10% and 

100%), but tend to stabilize for larger uncertainties. Large measurement uncertainties (i.e., 200%) in color ratio can introduce 25 

biases of 20% in the classification results, with CI values less than 0.335. This suggests that uncertainties in the measurements 

can cause misclassification, but that most of the classifications (~80%) are still robust. This is because cloud and aerosol 

properties are largely distinct and the misclassifications that do occur may come from features such as the few very thin clouds 

and dense aerosols in the transitional zone in Figure 6. 
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Figure 13: classification changes as a function of errors in the input parameters. The left panel (a) shows shifts in cluster centers 

for each class; the center panel (b) shows the relative accuracy of the FKM classifications; and the right panel (c) shows 

changes in the cluster confusion indexes. Panels b and c show perturbations in the classifications due to uncertainties in 

attenuated backscatter intensity (<β′532>, in red), depolarization ratio (δv, in blue), and color ratio (χ′, in green).  5 

Our first error propagation test used arbitrarily assigned relative uncertainties between 10% and 200% of the parameter mean 

values. In our second test we used the measured uncertainties reported in the CALIOP layer products to construct the Gaussian 

distributions from which pseudo-random variables were generated. By using this method, we can assess the actual impacts on 

the classifications due to noise in the CALIPSO measurements. To isolate the influence of the individual inputs, three test 

cases were constructed in which only one parameter was varied in each case. Figure 14 shows the results. Figure 14a shows 10 

the unperturbed results, while Figures 14b–14d show CADFKM scores averaged over 100 perturbations of the test parameter. 

Figure 14b shows the results when the attenuated backscatter intensities are varied, Figure 14c shows the results when the 

depolarization ratios are varied, and Figure 14d shows the results when the color ratios are varied.  

From Figure 14 we find that the averaged CADFKM scores from the perturbed datasets do not differ markedly from the CADFKM 

scores in the unperturbed dataset. In more than 88% of the cases, clouds are still classified as clouds and aerosols are still 15 

classified as aerosols. When examining perturbations to backscatter intensity alone (Figure 14b), we find that the perturbed 

and unperturbed classification results are identical more than 98% of the time. However, the CADFKM differences arising from 

perturbations to depolarization ratio and color ratio (Figures 14c and 14d, respectively) can be much larger. This finding is 

consistent with results shown earlier in Figure 13.  
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Figure 14: CAD scores for the same orbit shown in Fig. 4 (06 Sep. 2008, 01:35:29 GMT). The uppermost panel (a) shows 2-

class FKM results derived using unperturbed measurements.  Panels b, c, and d show, respectively, 2-class FKM results derived 

using perturbed measurements of attenuated backscatter intensity (<β′532>), depolarization ratio (δv), and color ratio (χ′). Panel 

e shows 2-class FKM results derived when all three variables are perturbed independently. 

Most often, the perturbed measurements only induce CADFKM changes for features that were originally classified with low 5 

confidence and for those challenging features such as water clouds beneath smoke, high altitude aerosols, and PSCs, whose 

input parameters frequently lie in the transition zone between clouds and aerosols. Water clouds beneath thick smoke layers 

are an especially difficult case, as the uncertainties introduced by the absorption of smoke at 532 nm can significantly reduce 

the confidence of the water cloud classification. Looking at Figure 14, together with Figures 2, 11 and 12, we find that this is 

a reasonable and even expected result. From Figures 11 and 14 we know that the most effective measurements for separating 10 

water clouds and aerosols are color ratio and backscatter intensity. But relative to measurements of water clouds in otherwise 

clear skies, the color ratios for water clouds lying under absorbing smoke layers have large positive biases while the backscatter 

intensities have large negative biases, and these biases will produce low confidence CAD scores, both for the FKM method 

and the V4 operational method (Liu et al., 2018). A somewhat similar scenario can occur in the classification of high altitude 

aerosols, where high biases (i.e., measurement errors) in δv and χ′ can lead to the misclassification of aerosols as ice clouds. 15 

6 Conclusions 

In this paper we use the fuzzy k-means (FKM) clustering algorithm to evaluate the classifications reported by the cloud-aerosol 

discrimination (CAD) algorithm used in the standard processing of the Cloud-Aerosol Lidar with Orthogonal Polarization 

(CALIOP) measurements.  Being able to accurately separate clouds from aerosols is an essential task in the analysis of the 

elastic backscatter lidar measurements being continuously acquired by Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 20 

Observations (CALIPSO) mission. When coupled to a well-validated CAD algorithm, the data products delivered by CALIOP 

can be used to reliably map the vertical distributions of clouds and aerosols on global and regional scales throughout the full 

12 years of the CALIPSO mission.   

The comparison between two different classification techniques helps us assess the performance of the operational CAD 

algorithm from the same scenes. The CALIOP operational CAD algorithm (COCA) is a supervised learning technique, in 25 

which classification decisions are tuned to match externally provided expert human judgements. FKM is an unsupervised 

learning scheme, which assigns class memberships based on similarities discovered in the inherent characteristics of the input 

data. While the two algorithms both rely on the same underlying lidar measurements, the underlying mathematical formulations 

are entirely different, as is the framework for expressing class membership values. These differences allow us to explore the 

classification uncertainties due to the algorithms. The flexibility of the FKM technique also allows us to investigate the relative 30 
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importance of various inputs in deriving the final classifications and to explore classification misclassification arising from 

current lidar measurement techniques. Establishing these performance metrics should enable the development of enhanced 

classification schemes for use with future space-based lidars. 

The key finding of this study is that the feature classifications assigned by COCA are very closely replicated by the FKM 

method. Having a totally unsupervised learning algorithm “discover” the same patterns in the data that are reported by COCA 5 

strongly suggests that the COCA classifications represent genuine data-driven differences in the CALIOP observations, and 

are thus largely free from artifacts that might be imposed by human misinterpretations when constructing the CAD probability 

density functions (PDFs). The classifications obtained from our independently derived FKM analyses compare well with the 

classifications determined by COCA and reported in the CALIOP V4 data products. Using a one-month test set, the 2-class 

and 3-class FKM classifications agreed with the V3 and V4 operational data products over 93 % of the time, and the 3-class 10 

FKM results agreed with the COCA results in 94~95 % of all cases. This strong agreement between two independent methods 

provides convincing evidence that V4 operational CAD algorithm is delivering robust and accurate classifications. 

Those instances where the two methods fail to agree (5~6 % of all cases) are typically highly ambiguous scenes in which the 

observables lie in the overlap regions between the peaks of the cloud and aerosol PDFs.  In particular, in scenes containing 

Taklamakan dust (or lofted Asian dust in general), high altitude smoke plumes, and/or volcanic ash, both the V4 operational 15 

CAD and the FKM algorithm struggle to make accurate classifications. The Taklamakan dust cases provide an instructive 

example that illustrates the classification conundrum. Over the Taklamakan, lofted dust layers and cirrus clouds occur in 

similar temperature regimes, and frequently have similar backscatter intensities (<β′532>) and depolarization ratios (δv). The 

most critical criterion for distinguishing clouds from aerosols is color ratio (χ′), and the characteristic color ratios of dust and 

cirrus are reasonably distinct (~0.75 vs. ~1.01). However, the natural variability within each feature type is quite broad (e.g., 20 

±0.25 for cirrus), and the measurements are very noisy, especially during daytime. 

To characterize the CAD improvements made in the most recent CALIOP data release, we used the FKM method to explore 

the capabilities of both the V3 and V4 operational CAD algorithms. As expected, the V4 operational algorithm was more 

effective than the V3 version. The primary differences are found by examining the results obtained for specific feature classes.  

The FKM classifications agree well with both the V3 CAD results in most cirrus fringe and dense aerosol cases and agree well 25 

with V4 CAD results for lofted Asian dust, high altitude smoke, and volcanic ash. FKM classifications of stratospheric features 

and polar region features had the largest uncertainties. More studies are needed to better understand why these specific types 

of features are proving so resistant to confident classification, irrespective of the algorithmic approach applied.  

Our investigation of error propagation in the FKM shows that while measurement uncertainties on the order of the CALIPSO 

measured noise will introduce biases into the cloud and aerosol classifications, more than 80% of the classifications stay 30 
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unchanged. For the rest of classifications (which are low confidence clouds or aerosols), as the uncertainties increase, the 

classification confidence decreases, as indicated by higher confusion indexes, and the classification accuracies decrease as 

well. The dependence and the number of measurements can also impact the classification efficiency. Key parameter analysis 

shows that higher classification accuracies are achieved by increasing the number of independent observational parameters 

used in the analyses.  Two-class FKM classifications using only a single input yield the same results as the operational CAD 5 

in only ~60 % of all classifications, a rate only marginally better than would be expected from random choice. While using 

three parameters achieved an agreement between the FKM and the V4 operational CAD in the neighborhood of ~80 %, raising 

the agreement to ~95 % required four parameters. When only three inputs were used, removing color ratio from the FKM 

caused the largest classification disparities between the two methods.   

Certain parameters are especially significant for the classification of particular feature types, and thus optimizing the number 10 

of successful classifications across all features requires the inclusion of all measurements that effectively contributed to any 

species-specific classification.  Principal component analysis and key parameter analysis together show that the most important 

dimensions for distinguishing between clouds and aerosols are δv and χ′; that <β′532> and δv are the driving factors in classifying 

water and ice clouds; and that altitude (zmid), χ′ and δv are the key inputs that allow aerosols to be separated from ice clouds, 

while is the critical factor for separating aerosols and water clouds. Moreover, from fuzzy linear discriminant analysis we 15 

found the values of Wilks’ lambda are close to 0, confirming that the FKM classification technique reliably separates clouds 

from aerosols. 

The flexibility of FKM method offers opportunities to explore the effectiveness of future classification schemes that potentially 

incorporate measurements from multiple sensors, perhaps even from multiple satellites. While the input data used by our 

implementation of the FKM technique is essentially synthetic to that required by the CALIOP V4 operational algorithm, the 20 

two decision-making frameworks are independently derived and rely on very different mathematics (i.e., probabilities vs. fuzzy 

logic). The very close similarity between the results produced by the two independent approaches argues strongly that the V4 

operational classifications are essentially correct at the 94% level.   

 

 25 
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