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Abstract. This study applies Fuzzy K-Means (FKM) cluster analyses to a subset of the parameters reported in the CALIPSO 

lidar level 2 data products and compares the clustering results with cloud-aerosol discrimination (CAD) scores reported in the 10 

version 4.1 release of the CALIPSO data products. The selection of samples, data training, performance measurements, fuzzy 

linear discriminants, defuzzification, error propagation, and key parameter analyses in feature type discrimination are 

discussed. Statistical results show that the FKM classification agrees with the CAD algorithm classification for more than 94% 

of the cases in troposphere. This is because the lidar-measured signatures of most clouds and aerosols are naturally different. 

Based on their different natures, objective methods can effectively separate clouds from aerosols in most cases. In addition to 15 

validating the current CAD algorithm, the FKM clustering can also provide new insights and supplemental information to help 

better understand the driving parameters in the scene classification process.  

1 Introduction 

The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission has been developed through a 

close and on-going collaboration between NASA Langley Research Center (LaRC) and the French space agency, Centre 20 

National D’Etudes Spatial (CNES) (Winker et al., 2010). This mission provides unique measurements to improve our 

understanding of global radiative effects of clouds and aerosols in the Earth’s climate system. The CALIPSO satellite was 

launched in April 2006, as a part of the A-Train constellation (Stephens and Vane, 2007). The availability of continuous, 

vertically resolved measurements of the Earth’s atmosphere at global scale leads to great improvements in understanding both 

atmospheric observations and climate models (Konsta et al. 2013; Chepfer et al. 2008).  25 

The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), on-board CALIPSO, is the first satellite-borne polarization-

sensitive lidar that specifically measures the vertical distribution of clouds and aerosols along with their microphysical and 

optical properties. The level 1 CALIOP data products report vertically-resolved total atmospheric backscatter intensity at both 
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532 nm and 1064 nm, and the component of the 532 nm backscatter that is polarized perpendicular to the laser polarization 

plane. The level 2 cloud and aerosol products are retrieved from the level 1 data and separately stored into two different file 

types: the layer product files (Clay, Alay, and MLay) and the profile product files (CPro and APro). The profile data are 

generated at 5 km horizontal resolution for both clouds and aerosols, with vertical resolutions of 60 m from -0.5 km to 20.2 

km, and 180 m from 20.2 km to 30 km. The layer data are generated at 5 km horizontal resolution for aerosols and at three 5 

different horizontal resolutions for clouds (1/3 km, 1 km and 5 km). The layer products consist of a sequence of column 

descriptors (e.g., latitude, longitude, time, etc.) that provide information about the vertical column of atmosphere being 

evaluated.  Each set of column descriptors is associated with a variable number of layer descriptors that report the spatial and 

optical properties of each layer detected in the column.  

The CALIOP level 2 processing system is composed of three modules, which have the general functions of detecting layers, 10 

classifying the layers, and performing extinction retrievals. These three modules are the Selective Iterated BoundarY Locator 

(SIBYL), the Scene Classifier Algorithms (SCA), and the Hybrid Extinction Retrieval Algorithms (HERA) (Winker et al. 

2009). The level 2 lidar processing begins with the SIBYL module that operates on a sequence of scenes consisting of segments 

of level 1 data covering 80 km in along-track distance. The module averages these profiles to horizontal resolutions of 5, 20 

and 80 km respectively, and detects features at each of these resolutions (Vaughan et al., 2009). The SCA is composed of three 15 

main sub-modules: the cloud and aerosol discrimination (CAD) algorithm (Liu et al., 2004, 2009, 2018), the aerosol subtyping 

algorithm (Omar et al., 2009; Kim et al., 2018), and the cloud ice-water phase discrimination algorithm (Hu et al., 2009; Avery 

et al., 2018).  

The CAD algorithm uses multi-dimensional probability density functions (PDFs) to distinguish between two classes, cloud 

and aerosol (Liu et al., 2004, 2009, 2018). The CAD algorithm has been improved over many years, from using three 20 

independent measurements (layer mean attenuated backscatter at 532 nm, the layer-integrated 1064 nm to 532 nm volume 

color ratio, and the mid-layer altitude) in version 1 (V1) to five independent measurements (adding layer-integrated 532 nm 

volume depolarization and latitude) in version 4.1 (V4). For the operational CAD PDF method, using more measured 

independent information (i.e., higher dimension PDFs) is expected to yield increasingly accurate cloud and aerosol 

discrimination.  25 

In addition to the CALIPSO team, scientists over the globe also use the CALIOP data and products, and their work greatly 

contributes to the evaluation of the CAD products and helps to better understand lidar techniques for distinguishing clouds 

from aerosols (Chen et al. 2010; Jin et al., 2014; Di Pierro et al. 2011). Using a standard set of lidar measurements (X1, X2, … 

Xm), separate multidimensional PDFs are constructed for clouds (Pcloud(X1, X2, … Xm)) and aerosols (Paerosol(X1, X2, … Xm)).  

Discrimination between clouds and aerosols for previously unclassified layers is then determined using 30 
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fሺXଵ, Xଶ, … , X୫ሻ ൌ
୔ౙౢ౥౫ౚሺଡ଼భ,ଡ଼మ,…,ଡ଼ౣሻି୔౗౛౨౥౩౥ౢሺଡ଼భ,ଡ଼మ,…,ଡ଼ౣሻ୩

୔ౙౢ౥౫ౚሺଡ଼భ,ଡ଼మ,…,ଡ଼ౣሻା୔౗౛౨౥౩౥ౢሺଡ଼భ,ଡ଼మ,…,ଡ଼ౣሻ୩
  .                 (1) 

The function f is a normalized differential probability, which value ranges from -1 to 1, and k is a scaling factor that is related 

to the ratio of the numbers of aerosol layers and cloud layers used to develop the PDFs (Liu et al. 2009). Within the CALIOP 

level 2 layer products, a percentile (integer) value of 100 × f, ranging from -100 to 100, is reported as the “CAD score” 

characterizing each feature.  Aerosol CAD scores range from -100 to 0, and cloud CAD scores range from 0 to 100. The 5 

algorithm has been applied to Cloud Physics Lidar (CPL) Data from 2003 THORPEX-PTOST campaign and to desert dust 

data acquired during the Lidar In-space Technology Experiment (LITE; Winker et al., 1996), and was shown to work well 

with both data sets (Liu et al., 2004). Because the nature of clouds is quite different from aerosols, distinguishing between the 

two should generally be straightforward.  Transition regions where clouds are embedded in aerosols, volcanic ash injected into 

the upper troposphere, and optically thick, strongly-scattering aerosols (e.g., haboobs) can still present significant 10 

discrimination challenges, but these cases occur relatively infrequently.  

The operational CAD algorithm uses manually-derived, multi-dimensional PDFs to distinguish clouds from aerosols using a 

statistical discrimination function.  In this paper, we introduce the Fuzzy K-Means (FKM) method, an unsupervised clustering 

algorithm, and use it for differentiating clouds from aerosols. The purpose of the study is twofold.  First, by using an 

unsupervised clustering algorithm that is quite different from and independent of the operational method, we can validate the 15 

results of V4 CAD algorithm. Second, an unsupervised algorithm can help us better understand classifications made by the 

operational CAD algorithm. For example, the FKM approach can help determine which individual parameter is most crucial 

in the discrimination of clouds and aerosols. It can also evaluate the degree of improvement to be expected when adding 

observational dimensions to the PDFs and help estimate the biases that are coming from background noise.  

A description of cluster analysis and the FKM method is given in section 2.  In section 3, individual cases and statistical 20 

classification results from FKM clustering are produced and compared with classifications made by the operational V3 and 

V4 CAD algorithms. Error analyses are performed in the following section, including error propagation, key parameter 

analysis, fuzzy discriminant analysis and principle component analysis. Conclusions and perspectives are given in the last 

section.  

2 Cluster analysis 25 

Cluster analysis is a useful statistical tool to group data into several categories and can be applied to satellite observations to 

discriminate among different features of interest (Key et al., 1989; Kubat et al. 1998; Omar et al., 2005; Zhang et al., 2007; 

Usman, 2013; Luo et al., 2017; Gharibzadeh et al., 2018). In our study, we apply the FKM clustering algorithm to CALIOP 

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-168
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 28 June 2018
c© Author(s) 2018. CC BY 4.0 License.



4 

 

level 2 observations to distinguish between clouds and aerosols. CALIOP directly observes three quantities: height-resolved 

profiles of parallel and perpendicular backscatter intensity at 532 nm and total backscatter intensity at 1064 nm. The V4 

CALIOP CAD algorithm distinguishes clouds from aerosols using five parameters reported in the level 2 layer products: layer 

mean attenuated backscatter at 532 nm, layer-integrated depolarization ratio at 532 nm, layer-mean total attenuated color ratio 

(1064 nm / 532 nm) and layer altitudes and latitudes (Liu et al., 2004, 2009). We use four of them (excluding latitude) as our 5 

set of observations and incorporate them directly into a neural network cluster analysis.  

There are many different types of neural network clustering methods, such as K-means (KM), fuzzy K-means (FKM), 

Expectation Maximization (EM) and k-harmonic means (Nock and Nielsen, 2006). In this paper, we focus on the FKM method 

because the memberships belong to [0 1], and thus are comparable to operational CAD score and more logical for the cloud-

aerosol discrimination task. The FKM algorithm is one of a popular class of center-based clustering algorithms. Given a set of 10 

observations X (X1, X2, …, Xn), where each observation is a p-dimensional real vector, logical clustering aims to partition the 

n observations into k (≤ n) sets S = {S1, S2, …, Sk} so as to “minimize the within-cluster sum of squares (WCSS) and maximize 

the between cluster sum of squares (BCSS)” (Hartigan and Wang 1979).  

Different from the KM method, FKM clustering gives every point a degree of membership in all categories rather than 

belonging completely to just one category. Points on the edge of a cluster may be in the cluster to a lesser degree than points 15 

in the center of the cluster. The clustering results (i.e., fuzzy memberships organized into a matrix, M , with elements mij, 

i=1,…,n; j=1,...,k) all between 0 and 1 (Eq. 2). When elements of the membership matrix are equal to 1, an individual i belongs 

to a single class j and has a class membership of 0 in all other classes. Note also that mij can be only 1 or 0 in the KM method, 

but that intermediate values are permitted in the FKM method. The sum of the fuzzy memberships for an individual over all 

classes is equal to one (Eq. 3), and there will be at least one individual with some non-zero membership belonging to each 20 

class (Eq. 4), written as 

݉௜௝ ∈ ሾ0,1ሿ, ݅ ൌ 1,…݊; ݆ ൌ 1,… , ݇,   (2) 

∑ ݉௜௝ ൌ 1, ݅ ൌ 1,… , ݊௞
௝ୀଵ ,  and    (3) 

∑ ݉௜௝ ൐ 0, ݆ ൌ 1,…݇௡
௜ୀଵ .     (4) 

To determine the best solution, based on minimization of the WCSS, a classic objective function, J, is built so that the best 25 

solution is the one that minimizes J (Bezdek, 1981; Bezdek, 1984; McBratney and Moore, 1985). The functional form of J is 

,ܯሺܬ ሻܥ ൌ 	∑ ∑ ݉௜௝
థ݀௜௝

ଶ ሺݔ௜௟, ሻ
௞
௝ୀଵ

௡
௜ୀଵ ௝ܿ௟   (5) 
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where C (cjl; j=1,.., k; l =1,..., p) is a matrix of class centers, and d2(xil, cjl) is the squared distance between individual xil and 

class center cjl according to a chosen definition of distance (i.e., the Mahalanobis distance; see section 2.3). The objective 

function is the squared error from class centers weighted by the ϕth power (fuzzy weighting exponent) of the membership 

values. For the least meaningful value ϕ= 1, J minimizes only at crisp partitions (the memberships converge to either 0 or 1), 

with no overlap between cluster boundaries. Increasing the value of ϕ tends to degrade memberships towards the fuzziest state 5 

where there are more overlaps between the boundaries of clusters. Minimization of objective function J provides the solutions 

for the best membership matrix M and centroid matrix C (Bezdek, 1981; McBratney and deGruijter, 1992; Minasny and 

McBratney, 2002). Class centers are the averages of the individual samples weighted by their class membership values raised 

to the ϕth function (Eq. 6). The membership (݉௜௝) of an individual belonging to a class is the distance between the individual 

and the class center divided by the sum of the distances between the individual and the centers of all classes (Eq. 7); i.e., 10 

௝ܿ௟ ൌ
∑ ௠೔ೕ

ഝ௫೔೗
೙
೔సభ

∑ ௠೔ೕ
ഝ೙

೔సభ
			݆ ൌ 1,2, …݇; ݈ ൌ 1, 2, … 		and	,݌ (6)	

݉௜௝ ൌ
ௗ೔ೕ
షమ/ሺഝషభሻ

∑ ௗ೔ೕ
షమ/ሺഝషభሻೖ

ೕసభ

				݅ ൌ 1,2, … , ݊; 		݆ ൌ 1,… , ݇.		 	ሺ7ሻ 

To obtain centroid (Eq. 6) and membership (Eq. 7) solutions, Picard iterations (Bezdek et al., 1984) are applied until 

the centers or memberships are constant to within some small value (Figure 1, the algorithm flowchart). We first 

initialize the memberships as random values using a uniform distribution that satisfies all conditions given by 15 

equations 1, 2 and 3. After that, we calculate class centers and recalculate memberships according to the new centers. 

If the new memberships do not change compared to the old ones (or change only within a small difference ε), the 

clustering process ends. Otherwise we recalculate the new centers and new memberships. This process is repeated 

until the relative change in the objective function (calculated from Eq. 5, which quantifies the changes in both the 

memberships and centers) is less than ε (0.001).  20 
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Figure 1: Flowchart of illustrating the operation of the Fuzzy K-means algorithm 

Before running the FKM code (from Minasny and McBratney, 2002), we prepared our data by sampling, training and filtering 

(sections 2.1 and 2.2). We also selected optimal values for class number and fuzzy exponent (section 2.4) and chose a 

reasonable method to calculate the distance between individuals and centers (section 2.3). 5 

2.1 Data sample and training 

As mentioned above, four level 2 parameters are used for our cluster analysis: backscatter at 532 nm, depolarization ratio at 

532 nm, total attenuated color ratio (mean 1064 nm divided by mean 532 nm), and mid-layer altitude. The selection of four 

dimensions is based on many previous studies (e.g., Liu et al., 2004, 2009; Hu et al., 2009; Omar et al., 2009; Burton et al., 

1. data (xil) sample and filter, 

selection of class number (k), fuzzy exponent (ϕ), & distance d(xil ,clj)calculation method  

2. Initial membership m0 (random matrix meets Eq. 1, 2, & 3)

3. Calculate the membership mij(Eq. 5) and the centroid clj (Eq. 6)  

4. |m(i)-m(i-1)|<ε or >max iteration number

5. Stop, obtain output mij & clj
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2013), which show that clouds, aerosols and their subtypes are quite different based on these observations. Latitude is not basic 

information to distinguish cloud from aerosol, but we can apply the FKM method in particular locations or seasons depending 

on the purpose of the study. In this paper, we apply FKM at a global scale. For any given region, results derived from a 

localized cluster analysis will likely give us better classifications compared to the results from a global scale analysis, but 

investigating these differences lies well beyond the scope of this study. The data sample size also strongly influences the 5 

clustering results. For example, clustering into two classes with a full complement of CALIPSO data could identify clear and 

“not clear” scenes. If clear scenes are excluded, clustering could separate clouds and aerosols. If only clear scenes are included, 

clustering could provide a means of identifying different surface types. With only cloudy data, clustering could be used to 

derive thermodynamic phase classification. With only aerosol data, clustering is actually aerosol subtyping. With only liquid 

cloud data, clustering could separate cumulus and stratocumulus. So, the size and composition of the dataset is very important 10 

for our analysis, which strongly depends on the objective of the classification.  

To extrapolate the classification of identifiable elements using FKM from a small subset to a broader population, we identify 

an appropriate training data set from which the classifications can be derived (Burrough et al., 2000). This training data should 

be representative of the broader sample for which the classification will be implemented (i.e., similar domains). To select 

training data, a PDF for the smaller sample that closely matches the shape of global long-term dataset PDFs can be used to 15 

determine an appropriate sample. The training sample is used to determine the optimal number of classes (k) and fuzzy 

exponent (ϕ) required for classification and optimal values of the performance parameters, and to calculate class centroids for 

interpretation of similarities and differences between classes. To avoid errors due to small sample sizes, we used one-month 

of global observations (January 2008) as our ‘standard full dataset’ for the analysis.  

Figure 2 (panels a, b, & c) shows the occurrence frequencies of different lidar observations for liquid water clouds, randomly- 20 

and horizontal-oriented ice clouds, and aerosols during all of January 2008. Liquid water clouds have the largest backscatter 

coefficients and color ratios compared with other species. Aerosols generally have the smallest color ratios, depolarization 

ratios, and backscatter coefficient, and ice clouds have the largest depolarization ratios compared with the other two species. 

There are overlaps between species, but these three parameters are still sufficient to separate aerosols and different phases of 

cloud in most cases. The three bottom panels (d, e, & f) in Figure 2 are from a single half orbit (2008-09-06T01-35-29ZN) of 25 

observations. The PDFs of one half orbit and one month of observations appear to agree very well, which means that feature 

clustering with the FKM method can be trained using a sample as small as one-half orbit of observations and not cause 

significant biases to the standard full dataset.  
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Figure 2: Comparisons of probability density functions; top row shows data from all of January 2008; bottom row shows data 

from a single half-orbit (06 Sep. 2008, 01:35:29 GMT). The left column (panels a and d) compares attenuated backscatter 

PDFs; the center column (panels b and e) compares depolarization ratio PDFs; and the left column (panels c and f) compares 

color ratio PDFs.  Black lines represent aerosols, blue lines represent liquid water clouds, red lines represent ice clouds 5 

dominated by HOI, and magenta line represent ice clouds dominated by ROI. 

2.2 Data	filter 

We filtered the training data to eliminate outliers in the backscatter, depolarization and color ratio measurements that were 

either too high or too low. The chosen filter thresholds are summarized in Table 1. The selection of these thresholds is based 

on the PDFs shown in Figure 2. 10 

Dimension of the satellite observations Filter criteria 

1. Mean Layer Backscatter (AB) 0 ≤ AB ≤ 0.2 

2. Layer Integrated Depolarization (DR) 0 ≤ DR ≤ 2 

3. Layer Integrated Color ratio (CR) 0 ≤ CR ≤ 2 

Table 1: Thresholds for individual satellite measurements. 
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2.3 Distance	calculation 

The distances between attributes can be calculated in different ways (e.g., Euclidean distance, Diagonal distance and 

Mahalanobis distance). According to a study by Gorsevski et al. (2003), we should apply the Euclidean distance to uncorrelated 

variables on the same scale when attributes are independent and the clusters have spherical shape clouds. The Diagonal distance 

is also insensitive to statistically-dependent variables but clusters are not required to have spherically-shaped clouds. The 5 

Mahalanobis distance can be used for correlated variables on the same or different scales and is thus the best for FKM CAD 

analysis. The Mahalanobis distance (dij) of an observation i from a set of observations (xil) with centers cjl  (xil - cjl is an l-

dimensional vector) is defined in Eq. 8 (Mahalanobis, 1936).   

݀௜௝
ଶ ൌ ൫ݔ௜௟ െ ௝ܿ௟൯

்
ܵିଵ൫ݔ௜௟ െ ௝ܿ௟൯; 		݅ ൌ 1,…݊; 		݆ ൌ 1,…݇; 	݈ ൌ 1,… ,  (8)             . ݌

S-1 (an l×l matrix) is the inverse of the covariance matrix of the observations. Note superscript T indicates that the vector should 10 

be transposed.  When the covariance matrix is the identity matrix, the Mahalanobis distance becomes the Euclidean distance.  

If covariance matrix is a diagonal matrix, the Mahalanobis distance calculation returns the normalized Euclidean distance. 

2.4 The	choice	of	class	k	and	fuzzy	exponent	ϕ	

The selection of an optimal number of classes k (1 < k < n) and degree of fuzziness ϕ (ϕ > 1) has been discussed in many 

previous studies (Bezdek, 1981; Roubens, 1982; McBratney and Moore, 1985; Gorsevski, 2003). The number of classes 15 

specified should be meaningful in reality and the partitioning of each class should be stable. For each generated classification, 

analyses need to be performed and the results validated. Among different validation functions, the fuzzy performance index 

(FPI) and the modified partition entropy (MPE) are considered two of the most useful indexes among seven examined by 

Roubens (1982) to evaluate the effects of varying class number. The FPI is defined as in Eq. 9, where F is the partition 

coefficient calculated from Eq. 10. The MPE is defined as in Eq. 11, with the entropy function (H) calculated from Eq. 12.  20 

The ideal number of continuous and structured classes (k) can be established by simultaneously minimizing both these two 

measures (FPI and MPE). For the fuzziness exponent, if the value ϕ is too low, classes are discrete and the membership values 

either approach 0 or 1. But if the value ϕ is too high, the classes will not provide useful discrimination among samples and 

classification calculations may fail to converge. McBratney and Moore (1985) suggested that the objective function (Eq. 13, 

Bezdek, 1981) decreases with increasing of both fuzzy exponent (ϕ) and the number of classes (k). They plotted a series of 25 

objective functions versus the fuzzy exponent (ϕ) for a given class where the best value of ϕ for that class is at the first 

maximum of objective function curves (Odeh et al. 1992a, McBratney and Moore 1985). Therefore, choosing an optimal 

combination of class number (k) and fuzzy exponent (ϕ) is established on the basis of minimizing both values of FPI and MPE 

and the least maximum of the objective function.  
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ܫܲܨ ൌ 1 െ
௞ൈிିଵ

௞ିଵ
     (9) 

ܨ ൌ
ଵ

௡
∑ ∑ ݉௜௝

ଶ௞
௝ୀଵ

௡
௜ୀଵ      (10) 

MPE ൌ
ு

௟௢௚௞
       (11) 

ܪ ൌ
ଵ

௡
∑ ∑ ݉௜௝ ൈ

௞
௝ୀଵ

௡
௜ୀଵ log	ሺ݉௜௝ሻ    (12) 

ఋ௃ሺெ,஼ሻ

ఋథ
ൌ ∑ ∑ ݉௜௝

థ௞
௝ୀଵ

௡
௜ୀଵ 	log	ሺ݉௜௝ሻ݀௜௝

ଶ    (13) 5 

Using one month of “no clear scenes” data, we created Figure 3 to determine optimal values for k and ϕ. From this figure, we 

concluded the ideal number classes for CALIOP layer classification is either 3 or 4, with corresponding fuzzy exponents equal 

to 1.4 or 1.6 (we use 1.4 for the analyses this paper). Before exploring the clustering results to see what each class represents, 

we can immediately confirm that using three classes would be physically meaningful (i.e., these 3 classes may be aerosols, 

liquid water clouds and ice clouds). Similarly, two classes could represent aerosols and clouds. In the following study, we will 10 

choose k equal to 3 or 2 and ϕ equal to 1.4.  

 

Figure 3: Determination of classes number k and fuzzy exponent ϕ for the FKM cloud and aerosol discrimination algorithm: 

(a) FPI versus class number k for different values of fuzzy exponent ϕ; (b) MPE versus class number k for different values of 

fuzzy exponent ϕ; and (c) objective function values versus the fuzzy exponent ϕ for various class numbers.  15 
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3. Cluster results and comparison with V3 and V4 data 

3.1 CAD from the Fuzzy K-Means algorithm 

According to Liu et al. (2009), the CAD value for any layer is the difference between the probability of being a cloud and the 

probability of being an aerosol (Eq. 14). We calculate the fuzzy K-means CAD in a similar way, where the probability is 

derived from the membership values. For the 3-class FKM analyses, the cloud membership value is the sum of memberships 5 

of ice and water clouds (two classes). The fuzzy K-means CAD of clouds and aerosols is found using 

CADி௄ெ ൌ
ெ೎೗೚ೠ೏ିெೌ೐ೝ೚ೞ೚೗

ெ೎೗೚ೠ೏ାெೌ೐ೝ೚ೞ೚೗
	ൈ 100.                               (14) 

Figure 4 compares the operational V3 and V4 CAD products and our CADFKM classifications for a single nighttime orbit 

segment (06 September 2008, beginning at 01:35:29 GMT). Generally speaking, CADFKM from both the 2-class and 3-class 

analyses are quite similar to both the V3 and V4 operational CAD values. When CAD values are positive (namely clouds, 10 

shown in whitish colors in Fig. 4) in V3 and V4, the 2-class and 3-class CADFKM values are also positive. Likewise, when 

CAD values are negative (namely aerosols, yellowish colors in Fig. 4) in the operational data, the 2-class and 3-class CADFKM 

values are also negative. Furthermore, the particular orbit selected here includes some observations (latitudes between 0° and 

20°S) of dense smoke over low water clouds. For these water clouds beneath dense smoke, both the V3 operational CAD and 

the 2-class CADFKM label them as clouds with low positive values. On the other hand, the V4 operational CAD and the 3-class 15 

CADFKM return higher values much closer to 100. The reasons for these differences will be discussed in section 3.2 and 3.4.  

Note too that weakly scattering edges of cirrus clouds (hereafter, cirrus fringes) around 74°S are misclassified as aerosols by 

both the 2-class and 3-class CADFKM (Figure 4c and d) but are correctly classified as cloud by operational algorithms.  
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Figure 4: nighttime orbit segment from 6 September 2008, beginning at 01:35:29 UTC.  The upper panel (a) shows 532 nm 

attenuated backscatter coefficients. The panels below show the CAD results as determined by (b) the V3 operational CAD 

algorithm, (c) the V4 operational CAD algorithm, (d) the 2-class FKM CAD algorithm, and (e) the 3-class FKM CAD 

algorithm. The red ellipse in the upper panel highlights a dense smoke layer lying above an opaque stratus deck. In the CAD 

images (panels b–e), stratospheric layers are shown in black and cirrus fringes are shown in pale blue. 5 

3.2 Uncertainties: class overlap 

The confusion index (CI) is a measure of the degree of class overlap or cluster uncertainty between classes (Burrough and 

McDonnell 1998). In effect, it measures how well each individual observation has been classified. CI values are calculated 

from Eq. 15, where mmax denotes the biggest membership value and mmax-1 is the second biggest membership value for each 

individual observation (i): 10 

CI ൌ ሾ1 െ ሺ݉௠௔௫೔ െ ݉ሺ௠௔௫	ି ଵሻ೔ሻሿ.                     (15)	

CI value approaches zero when mmax is much larger than mmax-1, indicating that the observation is more likely to belong to one 

dominant class. CI approaches one when mmax is almost equal to mmax-1. In such cases, the difference between the dominant 

and subdominant classes is negligible, which creates confusion in the classification of that particular observation. Note the 

value (1- CI)	ൈ 100 for the 2-class FKM algorithm is equivalent to CADFKM score. 15 

Figure 5 shows CI values for 2-class and 3-class CADFKM calculated for all layers in the sample orbit. From the figure, we see 

that, in most cases, the CI values are low for both the 2-class and 3-class CADFKM classifications. The exceptions are 

stratospheric features (mostly near polar regions), cloud fringes, high altitude aerosols and, for 2-class CADFKM only, the liquid 

water clouds beneath dense smoke. Low CI values for the CADFKM classifications are analogous to high CAD scores assigned 

by the operational CAD algorithm: both indicate high confidence classifications. Similarly, CADFKM classifications with high 20 

CI values indicate low confidence classifications where the observation has roughly equal membership in two classes. For the 

liquid water clouds beneath dense smoke, the membership values determined by the 2-class CADFKM are larger than 0.5. 

However, the 3-class CADFKM results for these water clouds have low CI values, indicating high confidence classifications 

into one dominant class, and suggesting that the separation between the aerosols and low water clouds is better accomplished 

when 3 classes are used. For cloud fringes, the CI values are high for both the 2-class and 3-class CADFKM. According to the 25 

CADFKM results, cirrus fringes are essentially different from cirrus and more closely resemble the dust particles that are the 

predominant sources of ice nuclei (DeMott et al., 2010). 
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Figure 5: for	the	same	data	shown	in	Figure	4,	the	upper	panel	(a)	shows	the	confusion index for 2-class CADFKM, and 

the lower panel	(b)	shows	the	confusion index for 3-class CADFKM  

3.3 Statistic comparisons of clouds and aerosols 

In this section, we first compare the PDFs of the different lidar parameters used in the 2-class and 3-class CADFKM 5 

classifications to the PDFs of those same parameters derived for the operational CAD classifications (Figure 6). It is evident 

that the PDFs of backscatter coefficient, depolarization ratio and color ratio of clouds and aerosols from the FKM 

classifications agree well with the PDFs from the V4 CAD classifications.  Figures 6d, 6e, and 6f compare the 2-class CADFKM 

results (dashed lines) to the operational algorithm (solid lines). In these figures, the PDFs of backscatter (Fig. 6d), 

depolarization (Fig. 6e) and color ratio (Fig. 6f) of FKM class 1 (blue) agree well with those of V4 cloud PDFs (blue), while 10 

the PDFs of these different parameters of FKM class 2 (red) agree well with those of V4 aerosol (red) PDFs. Figures 6a, 6b, 

and 6c compare the 3-class CADFKM results to the operational algorithm. Once again, the comparisons are quite good: the 

PDFs of FKM class 1 (blue) agree well with the V4 water cloud (blue) PDFs, while the PDFs of FKM class 2 (red) and 3 

(green) individually agree well with, respectively, the V4 ice cloud (red) and aerosol (green) PDFs. 
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Figure 6:  probability density functions derived from all data from January 2008. The top row compares V4 operational CAD 

PDFs to the PDFs derived from CADFKM 3-class results. V4 CAD PDFs for liquid water clouds, ice clouds, and aerosols are 

plotted in, respectively, solid blue, red and green lines.  Similarly, CADFKM 3-class PDFs for classes 1, 2, and three are plotted 

in, respectively, dashed blue, red and green lines.  The bottom row compares V4 operational CAD PDFs to the PDFs derived 5 

from CADFKM 2-class results, where once again the V4 CAD PDFs are shown in solid lines and the CADFKM 2-class PDFs are 

shown in dashed lines.  Attenuated backscatter PDFs are shown in the left column (panels a and d), depolarization ratio PDFs 

in the center column (panels b and e), and color ratio PDFs in the right column (panels c and f). 

Figure 7 compares one month (January 2008) of geographical (Fig. 7, panels a-f) and zonally-averaged (Fig. 7, panels g-1) 

distributions of 2-class CADFKM occurrence frequencies to the cloud and aerosol occurrence frequencies derived from the 10 

operational V4 CAD classifications, and the differences between V4 and FKM. The spatial distributions of clouds and aerosols 

are quite different. In January, clouds are mostly located in the storm tracks, to the east of continents, over the inter-tropical 

convergence zone (ITCZ) and in polar regions. Aerosols are more often found over the Sahara, over the subtropical oceans, 

and in south-central and east Asia (upper two rows of Figure 7). In the zonal mean plots (lower two rows of Figure 7), cloud 

tops are seen to extend up to the local tropopause, whereas aerosols are largely confined to the boundary layer. The 15 

geographical and vertical distributions of FKM class 1 are quite similar to the V4 CAD cloud distributions. Likewise, the 
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distributions of FKM class 2 closely resemble the V4 CAD aerosol distributions. Large differences appear in Polar Regions, 

where the composition of clouds and aerosols is notably different from other regions of the globe (last column of Figure 7). In 

summary, these geographic analyses show that the cloud-aerosol discrimination derived using an unsupervised FKM method 

is largely consistent with the classifications produced by the operational V4 CAD algorithm beyond Polar Regions.  

 5 

Figure 7: distributions of feature type occurrence frequencies during January 2008. Panels in the left column show V4 

operational CAD results; panels in the center column show CADFKM 2-class results; and the panels in the right column show 

the absolute differences between the left and center columns. The top two rows show maps of occurrence frequencies as a 

function of latitude and longitude for clouds (panels a–c) and aerosols (panels d–f). The bottom two rows show zonal mean 

occurrence frequencies clouds (panels g–i) and aerosols (panels j–l). 10 

To quantify the degree to which the different methods agree with each other, we used the January 2008 5-km Layer data 

between 60S and 60N to calculate the concurrent frequency of cloud and aerosol identifications made by the operational V4 

5km CAD algorithm and CADFKM algorithms. We summarize the occurrence frequency statistics in Table 2.  From the table 

we find that for our test month V3 CAD agrees with V4 CAD for 96.6% of the cases. The FKM 2-class and 3-class results 
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agree with both V3 and V4 for more than 93% of the cases. The FKM results agree slightly better with V3 than with V4. 

Compared to the 2-class CADFKM, results from the 3-class CADFKM agree somewhat better with the classifications from both 

the V3 and V4 CAD algorithms. Consistent with previous results in this paper, the 3-class CADFKM appears better able to 

separate clouds and aerosols than the 2-class CADFKM. Figure 4 provides an additional example. For those water clouds beneath 

dense smoke, the 3-class CADFKM scores are substantially higher than both the 2-class CADFKM scores and the operation V3 5 

CAD scores, indicating that the 3-class CADFKM algorithm correctly identifies these features with much higher classification 

confidence. We also calculated the concurrent occurrence frequencies for only those features with CI values less than 0.75 (or 

0.5). When the data are restricted to only relatively high confidence classifications, the FKM results agree with V3 and V4 for 

better than 96% (or 97%) of the samples tested.  

Agreement (%) 
V3 V4 

FKM 
(2-classes) 

FKM 
(3-classes) 

C A T C A T C A T C A T 

V3 
C 

 
- 

66.1 2.1  63.2 5.4  65.1 3.2  

A 1.2 30.5  1.0 30.4  1.9 29.8  
T   96.6   93.6   94.9 

V4 
C 

 
- 

 
- 

58.9 5.3  60.9 3.2  

A 1.5 34.4  2.5 33.4  
T   93.2   94.3 

FKM 
    (2-classes)  

C 
 
- 

 
- 

 
- 

63.2 5.1  

A 1.4 30.4  
T   93.6 

 10 

Table 2: Statistical confusion matrix of a 1-month (Jan. 2008) CAD analysis that shows the agreement percentages (detected 

as clouds: C, aerosols: A, or total of clouds and aerosols: T for both algorithms) between different methods (V3: version 3, 

V4: version 4, FKM: fuzzy K-means). 

3.4 Special cases study 

We see from section 3.3 that, statistically, the CADFKM classifications agree well with the operational V3 and V4 CAD results. 15 

In this section, we investigate several challenging cases for which the classifications disagree between V3 and V4 CADs (Liu 

et al. 2018). In addition to the dense smoke over opaque water cloud case shown in Figure 4, the CADFKM
 algorithm, like the 

operational CAD algorithm, also has difficulty correctly identifying high altitude smoke, dense dust, lofted dust, cirrus fringes, 

polar stratosphere clouds (PSC) and stratospheric volcanic ash (Figure 8-10).  We briefly review each of these cases below. 

a. Dust 20 
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Two different dust cases are selected for this study (Figure 8). One dust case located in Taklamakan desert, is a night-time 

granule beginning at 20:15:32 UTC on 4 May 2008, shown in Figures 8 a-e.  The second case is lofted Asian dust from a night-

time granule at beginning at 18:28:54 UCT on the 1 March 2008, shown in Figure 8 f-j. These dust layers exhibit strong 

backscatter coefficient, high depolarization ratio and color ratios and are frequently misclassified as ice clouds in V3 but 

correctly classified as aerosol in V4. The CADFKM classifications for the 2-class and 3-class both agree with version 3 but with 5 

low confidence in the dense dust case, suggesting that FKM does not correctly identify the dense dust.  But both FKM 

algorithms agree well with the version 4 CAD in the lofted Asian dust case.  
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Figure 8: top row shows 532 nm attenuated backscatter coefficients for (a) dust in the Taklamakan basin on 4 May 2008 and 

(f) lofted Asian dust being transported into the Arctic on 1 March 2008. The rows below show the CAD results reported by 

four different algorithms; the V3 operational CAD (panels b and g), the V4 operational CAD (panels c and h), the 2-class 

CADFKM (panels d and i), and the 3-class CADFKM (panels e and j).  

b. High altitude smoke 5 

An example of high altitude smoke plume was observed by CALIPSO during the “Black Saturday” fires that started 7 February 

2009 and quickly spread across the Australian state of Victoria. Figure 9 (panels f-j) shows extensive smoke layers at 10 km 

and higher on Monday 10 February between 20°S-40°S. The V3 CAD algorithm misclassifies these smoke layers as clouds 

(or stratospheric features), and so too does the FKM 3-class analysis. On the other hand, the V4 CAD and FKM 2-class analysis 

correctly identify them as aerosols (not shown here). Without altitude as inputs, both FKM 2-class and 3 class algorithms 10 

identify the layers as aerosols (Figure 9 d, e, also see Figure 11). This is because including altitude information can introduce 

unwanted classification uncertainties when attempting to distinguish between high altitude clouds and aerosols.   The reasons 

for this are discussed in some detail in section 4.1. 
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Figure 9: top row shows 532 nm attenuated backscatter coefficients for (a) measurements acquired on 10 February 2009 

showing smoke injected into the upper troposphere and lower stratosphere by the Black Saturday fires in Australia and (f) 

measurements acquired on 5 October 2008 showing a layer of volcanic ash from the eruption of Kasatochi. The rows below 

show the CAD results reported by four different algorithms; the V3 operational CAD (panels b and g), the V4 operational 5 

CAD (panels c and h), the 2-class CADFKM (panels d and i), and the 3-class CADFKM (panels e and j).  

c. Tropospheric Volcanic Ash 

Figure 9 shows an example of ash from the Kasatochi volcano (52.2°N, 175.5°W), which erupted unexpectedly on 7–8 August 

2008 in the central Aleutian Islands. Volcanic aerosols remained readily visible in the CALIOP images for over 3 months after 

the eruption (Prata, et al. 2017). On 5 October 2008, CALIOP observed the ejecta near the tropopause at ~17:30:18 UCT 10 
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(Figure 9, panels f-j). The V3 operational CAD algorithm misclassified a substantial portion of this ash plume as cloud, and 

those segments classified as aerosol were frequently assigned low CAD scores. In contrast, the V4 CAD algorithm and the 

CADFKM show greatly reduced cloud classifications, and the aerosols have high confidence CAD scores. Again, when altitude 

information is not included the FKM algorithm produces a better separation of clouds and aerosols at high altitudes. 

d. Fringes 5 

The improved calibration coefficients in V4 facilitated the detection of optically thinner layers than were detected in V3 (Kar 

et al., 2018; Getzewich et al., 2018). A side effect of this improvement is an increased occurrence of optically-thin layers 

detected along the tenuous edges of ice clouds. These layers, named “cirrus fringes”, are detected at 20 km and 80 km horizontal 

resolutions, and occur along the sides of ice clouds or along their lower edges where overlying attenuation has substantially 

reduced the lidar signal. A “cirrus fringe amelioration” algorithm has been added in V4 as a CAD post-processor which detects 10 

cirrus fringes that have been misclassified as aerosol and reclassifies them as cloud (Liu et al., 2018). These layers are given a 

special CAD score of 106. The misclassification of cirrus fringes as aerosols is basically due to their special nature. Fringes 

are optically thin and weakly scattering layers that occupy the transition zone between cirrus and clear sky. They are 

characterized by cirrus-like depolarization ratios coupled with lower color ratios, suggesting a reduction in ice crystal sizes 

possibly due to sublimation.   15 

e. PSC 

Polar Stratospheric Cloud (PSC) is the generic name for a class of clouds of several different compositions that all form in the 

winter polar stratosphere (Höpfner et al., 2009; Pitts et al., 2013). Prior to the V4 data release, all layers having base altitudes 

above the local tropopause were assigned to a generic class of ‘stratospheric feature’, and no further subtyping was done for 

these layers. In V4, however, the operational CAD algorithm now distinguishes between clouds and aerosols in the stratosphere 20 

(Liu et al., 2018), and stratospheric aerosols are further evaluated to determine aerosol type (Kim et al., 2018). For PSCs, the 

CALIPSO project also produces a dedicated PSC data product that reports PSC presence in 5 km horizontal by 180 m vertical 

bins and classifies each bin according to a composition classification scheme described by Pitts et al. (2018).  The compositions 

in the dedicated PSC product include water ice, supercooled ternary solutions (STS), and several mixtures of liquid droplets 

and nitric acid trihydrate (NAT). Figure 10 (panels f-j) shows an example of PSC measurements from ~15:25:28 UCT on 15th 25 

August 2008. The V4 classifications agree well with the composition classifications developed by Pitts et al. (2009). High 

confidence CAD scores are given to those PSCs containing water ice particles, while low confidence CAD scores are given to 

low concentrations of liquid/NAT mixtures. The FKM classifications of the stratospheric features in this case do not agree 

with the V4 CAD or Pitts composition results. While there are some cases that agree well, these are relatively few and are not 

shown here. Even when the altitude dimension is excluded from the input parameters, classification of PSCs remains 30 

challenging for the FKM algorithm.  
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Figure 10: top row shows 532 nm attenuated backscatter coefficients for (panel a) extensive ice clouds measurements 

acquired on 10 July 2008 and (f) PSCs overlying tropospheric ice clouds on 15 August 2008.  The second row shows (panel 

b) V3 operational CAD results for the 10 July 2008 data and (panel g) the PSC classifications reported in the dedicated 5 

CALIPSO PSC data product for the 15 August 2008 data. The three remaining rows show CAD results for the two scenes 

computed by the V4 operational CAD (panels c and h), the 2-class FKM algorithm (panels d and i), and the 3-class FKM 

algorithm (panels e and j).  The 10 July 2008 results are always in the left column and the 15 August 2008 results are always 

in the right column.  For the PSC classifications in panel g, mix 1 and mix 2 (shown in yellow and green, respectively) 

represent different mixing ratios of STS and NAT. 10 
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4 Discussion 

In section 3, we demonstrated that both the FKM and operational CAD algorithms generate very similar cloud and aerosol 

classifications. In this section, we discuss key parameter analysis, fuzzy linear discriminant analysis, principle component 

analysis and error propagation to explore several classification questions: how much improvement can be made by adding 

additional measurements as classification inputs (section 4.1), how well separated are the current classifications (section 4.2), 5 

what are the essential measurements required for accurately discriminating between cloud and aerosol (sections 4.1 and 4.3), 

and how do the measurement uncertainties (or noise) impact the classifications (section 4.4)?  

4.1 Key parameter analysis  

CALIOP’s operational CAD algorithm was improved from V2 to V3 by adding two additional dimensions (latitude and volume 

depolarization ratio) to the cloud and aerosol CAD PDFs. Higher dimension PDFs should generally improve the classification 10 

accuracy so long as the additional dimensions provide some new information (i.e., they should be orthogonal, or at least semi-

orthogonal, to the data already being used). It is therefore important to quantify how much improvement we can make by 

adding additional dimensions into the analysis. With the FKM method, it is easy to add or remove one or multiple observational 

dimensions and re-cluster without re-building new PDFs. If one dimension is added (or removed) and the new classifications 

are similar (or inferior) to the old ones, the added (or removed) dimension does not provide significant new information to the 15 

classification (i.e., it is not as important as other dimensions in the classification). If the CAD values are improved (or degraded) 

by adding (or removing) a dimension, this dimension actually adds (or removes) dispositive information in the determination 

of the classification, and hence is key to separating clouds from aerosols. Moreover, by using the FKM method we can 

determine how many dimensions are enough for the cloud and aerosol classification according to our required classification 

accuracy, either in general or for a particular class (e.g., dust), and how much improvement (or degradation) occurs additional 20 

dimensions.  

Re-classifications that omit individual dimensions from one orbit of nighttime observations are shown in Figure 11 and a 

summary of the confusion matrices are shown in Table 3. From both the figure and the table we find that without any one 

dimension, most new clusters and their CADFKM values are unchanged compared to classification including the dimension 

(more than 75% of cases stay same). Note also from the figure we see that, for the low water clouds covered by a plume of 25 

heavy absorbing smoke, both V3 and the 2-class FKM have low CADFKM values. When either mid-layer altitude or backscatter 

is removed, the CADFKM values actually improve. Without color ratio or depolarization ratio, the CADFKM values get worse, 

which indicates that color ratios and depolarization ratios play a more important role in separating aerosols from low water 

clouds in this case, as also explained later in section 4.3.  In this case, both color ratio and backscatter can bias CADFKM values 

due to uncertainties in the measurements related to the strong absorption at 532 nm from smoke above the layer. The attenuated 30 
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backscatter of these water clouds decreases and gets closer to the backscatter magnitudes expected from classic aerosols (Figure 

6a) while color ratio increases and gets far away from those of classic aerosols (Figure 6c). 

 

Figure 11: CAD scores calculated using various techniques for an orbit segment on 6 September 2008 beginning at 01:35:29 

UTC.  The upper two rows show results from (a) the V4 operational CAD algorithm and (b) the 2-class FKM algorithm using 5 
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all four standard inputs.  The remaining rows show 2-class CADFKM results calculated when omitting one of the four standard 

inputs: (c) omits backscatter intensity, (d) omits depolarization ratios, (e) omits color ratios, and (f) omits mid-layer height. 

(%) 

CADFKM CADFKM (no AB) CADFKM (no DR) CADFKM (no CR) CADFKM (no HH) 

C A T C A T C A T C A T C A T 

CAD4 

C 45.1 3.3  45.6 2.8  43.7 1.7  40.1 11.4  44.9 3.5  

A 7.3 44.3  7.4 44.2  12.7 38.3  13.6 34.9  12.3 39.6  

T   89.4   89.8   82.0   75.0   84.5 

CADFKM 

C    56.9 2.6  52.3 7.2  49.6 10.0  55.6 3.2  

A    4.3 36.1  3.7 36.8  12.6 27.9  8.4 32.1  

T      93.1   89.1   77.4   87.8 

 Table 3: confusion matrices comparing V4 CAD and the CADFKM results shown in Figure 11; abbreviations as follows: AB 

= attenuated backscatter intensity; DR = depolarization ratio; CR = color ratio; H = mid-layer altitude (height); C = cloud; A 

= aerosol; and T = total. 5 

In addition to the single half-orbit tests, we also analyzed a full month (January 2008) of CALIOP level 2 data acquired between 

60°S and 60°N.  To better focus on the troposphere, where the vast majority of detectable atmospheric layers occur, data from 

the polar regions were omitted in this test. We assessed the relative importance of various observational parameters by 

computing CADFKM classifications using only a limited number of inputs (i.e., either 1, 2, or 3 of the CALIOP layer descriptors 

used in the standard CADFKM classifications). The left panel of figure 12 shows the joint occurrence frequencies of these 10 

classifications and the V4 operational CAD classifications. Similarly, the right panel of figure 12 shows joint occurrence 

frequencies of the limited input classifications and the standard CADFKM using 4-dimensional (4-D) observations. Two distinct 

classes are considered, so that Figure 12 is, in effect, a linearized 2 x 2 confusion matrix, with values along the x-axis 

representing each of the four different types of comparisons. Values plotted for x = 1 indicate the fraction of cases where both 

the limited input FKM and the V4 operational CAD algorithm (or the 4-D CADFKM) identified features as being in class 1. The 15 

results are color-coded according to the number and type of the dimensions used in the limited input FKM method. Similarly, 

values plotted for x = 4 indicate the fraction of cases where both algorithms identified features as being in class 2.  x =1 and x 

= 4 correspond to the diagonal elements of the confusion matrix (i.e., M[1,1] and M[2,2]). The off-diagonal elements – i.e., 

M[1,2] and M[2,1] – are represented by, respectively, x = 2 and x = 3. For x = 2, the limited input FKM identifies the feature 

as belonging to class 1, while the V4 CAD (or 4-D CADFKM) identifies it as belonging to class 2.  For x = 3 the assignments 20 
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are reversed: the limited input FKM identifies the feature as belonging to class 2, whereas the V4 CAD (or 4-D CADFKM) 

identifies it as class 1.  

From Figure 12b it is obvious that, even without any one observational dimension, more than 83% of classifications agree with 

results from four observational dimensions. Also, we notice that without color ratio, the agreement (only about 83%) between 

3-D and 4-D FKM classifications is somewhat worse compared to results when omitting any of the other observations 5 

(agreement > 94%). We also find that when using only a single dimension of observations (e.g. backscatter or depolarization 

ratio or color ratio), FKM classification can only correctly separate the clouds and aerosols for about 60% of the cases 

compared to using 4-D CADFKM and/or the V4 operational CAD. This means that the additional 3 dimensions improve the 

cloud and aerosol discriminations by 30~40%. The more independent measurements that are used, the more accurate the 

classification can be. From Figure 12a, we again see that with 4-dimensional observations, the agreement between the V4 10 

CAD and the FKM method is ~94%. This 6% differences may come from, for example, very thin, broken clouds, cloud fringes 

and dense aerosols that are inherently difficult to separate. When different combinations of observations are used in the 

classification, the disagreement between the two methods are different. V2 CAD algorithm used backscatter intensity, color 

ratio and mid-layer altitude, which is the best combination of three independent parameters, showing only 0.4% fewer 

agreements compared to using four parameters. To further improve the CALIOP CAD algorithm, multiple investigations into 15 

additional combinations of observations or the use of weighted observations could be pursued in the future.  

 
Figure 12: statistics of occurrence frequency during January 2008, between 60°S and 60°N. The left panel (a) shows the joint 

occurrence of the V4 operational CAD classifications and the FKM classifications based on limited input parameter sets (i.e., 
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1, 2, or 3 CALIOP measurements).  The right panel (b) shows the joint occurrence of the 4-D CADFKM classifications and 

the limited input FKM classifications.  

 4.2 Fuzzy linear discriminant analysis 

Linear discriminant analysis (Fisher, 1936) is usually performed to investigate differences among multivariate classes, to 

validate the classification quality, and to determine which attributes most efficiently contribute to the classifications. Here we 5 

introduce Wilks’ lambda, which is the ratio of within-class variance (to evaluate the dispersion within class) and between-class 

variance (to examine the differences between the classes). Considering a data matrix X (elements xil, i=1,..,n; l = 1,..p), the 

FKM classification returns a membership matrix M (elements mij, i = 1,..,n; j = 1,..,k) and centroid matrix C (elements cjl, j = 

1,…,k; l = 1,…,p) where n is the number of samples, p is the number of attributes, and k is the number of classes. The sums of 

squares and products (SSP) within-classes covariance matrix Wlm, also called the within-classes fuzzy scatter matrix (Bezdek, 10 

1981), is given as 

௟ܹ௠ ൌ ∑ ∑ ݉௜௝
థ௡

௜ୀଵ
௞
௝ୀଵ ൫ݔ௜௟ െ ௝ܿ௟൯൫ݔ௜௠ െ ௝ܿ௠൯, ∀ሺ݈,݉ሻ, ݈,݉ ൌ 1,… ,  (16)      . ݌

The SSP between-classes covariance matrix Blm are given as 

௟௠ܤ ൌ ∑ ሺ∑ ݉௜௝
థ௡

௜ୀଵ ሻ௞
௝ୀଵ ൫ ௝ܿ௟ െ ௟൯൫ݔ̿ ௝ܿ௠ െ , ∀ሺ݈,݉ሻ	௠൯,ݔ̿ ݈,݉ ൌ 1,… . ,  (17)       . ݌

The ratio of within-classes to the total SSP matrix is the Wilks’ lambda (Eq. 18, Wilks, 1932; Oh et al. 2005). Wilks’ lambda 15 

for multi-dimensional observations is a p  p matrix and the determinant of the matrix represents the geometric volume of this 

object in p dimensions, written as 

Λ ൌ
|ௐ೗೘|

|ௐ೗೘ା஻೗೘|
  .                                 (18) 

Here we use Wilks’ lambda (Λ) as a measure of the difference between classes, although a scalar cannot replace a vector for 

investigating different aspects of Wilks’ lambda. The value Λ varies from 0 to 1, where 0 suggests that classes differ (within-20 

classes SSP is smaller compared to between-classes SSP), and 1 suggests that all classes are the same.  

For the January 2008 data, Wilks’ Λ for different dimensional observations are calculated and summarized in Table 4. For 4 

dimensional (p=4) observations, Wilks’ Λ could be as small as 0.21 for 2-class FKM and even smaller (0.05) for 3-class FKM. 

This means that the classes generated by the FKM method are well separated, with clusters quite different from each other, 

particularly in 3-class FKM. For FKM 2-class, the value of Wilks’ Λ is largest for the mid-layer altitude dimension, indicating 25 

a more overlaid classification compared to classification using any other observational dimension. The reason for the large 
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value of Wilks’ Λ for the dimension altitude is because clouds have two distinct altitude centers, one for low water clouds and 

the other for high ice clouds. (Mid-level clouds occur too infrequently to form a third dominant altitude center). The center 

altitude of water clouds is comparable to that of aerosols. These distinct altitude centers induce large within-classes SSP and 

hence large values of Wilks’ Λ. Following the values of Wilks’ Λ from the dimension of altitude are the ones from color ratio 

and depolarization ratio, with the Wilks’ Λ from backscatter intensity being the smallest. The value of Wilks’ Λ from any 5 

combination observations is between the maximum and minimum values of those dimensions. For FKM 3-class analyses, large 

values of Wilks’ Λ are produced by depolarization, and followed by altitude, color ratio and backscatter. 

Input parameters Λ, 2 classes Λ, 3 classes 
Backscatter intensity, depolarization ratio, color ratio, altitude 0.21 0.048 
Depolarization ratio, color ratio, altitude 0.20 0.060 
Backscatter intensity, color ratio, altitude 0.20 0.060 
Backscatter intensity, depolarization ratio, altitude 0.17 0.035 
Backscatter intensity, depolarization ratio, color ratio 0.14 0.030 
Backscatter intensity and depolarization ratio 0.12 0.025 
Backscatter intensity and color ratio 0.14 0.039 
Backscatter intensity and altitude 0.14 0.052 
Depolarization ratio and color ratio 0.13 0.043 
Depolarization ratio and altitude 0.20 0.056 
Color ratio and altitude 0.23 0.077 
Backscatter intensity 0.08 0.030 
Depolarization ratio 0.16 0.136 
Color ratio 0.18 0.053 
Altitude 0.28 0.121 

Table 4: Wilks’ lambda (Λ) for 2-class (center column) and 3-class (rightmost column) FKM classifications using different 

dimensional observations (left column) 

 4.3 Principal Component Analysis 10 

In this section we apply principal component analysis (PCA, Wold et al. 1987) to the FKM classifications to determine which 

of the input parameters account for the greatest variability in the outputs. The first function (PCA-1) maximizes the differences 

between the classes and represents the dominant contribution to the classifications. Successive functions (PCA-2) will be 

orthogonal to, or independent of, the other functions and hence their contributions to the discrimination between classes will 

not overlap. These functions, or canonical variants, are calculated from the eigenvalues and eigenvectors of matrix Bf/Wf  (the 15 

ratio of within-class variance and between-class variance). Using this method will help us understand how independent the 

input parameters are and how they individually contribute to the classifications.  

The scatter plots of PCA-1 and PCA-2 for FKM 2 classes and 3 classes are shown in Figure 13. The projection of vector 

lengths on PCA-1 and PCA-2 of different measurements (i.e., backscatter intensity, depolarization ratio, color ratio, and mid-
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layer altitude) indicate how much each individual dimension contributes to the classifications. Longer projections mean 

stronger contributions. From the figure, we clearly see that water clouds, ice clouds and aerosols are quite different (i.e., their 

cluster centers are located in different positions). Class 1 (cloud) of 2-class FKM breaks into 2 classes (ice cloud and water 

cloud) when applying 3-class FKM. We can also see that color ratio and depolarization ratio contribute the most on PCA-1 

(longer projections on the axis of PCA-1 in both subpanels) while backscatter and height contribute more on PCA-2. Hence, 5 

color ratio and depolarization are the driving components for the cloud and aerosol classification. From figure 13b, we could 

also argue that the backscatter and depolarization are the driving factors in classifying water and ice clouds (projections of the 

vectors on C1-C2, namely combined projection of PCA-1 and PCA-2, are longer), while color ratio and altitude also contribute 

to the classification. Altitude, and, to a greater extent, color ratio and depolarization ratio are the driving factors that allow 

aerosols to be separated from ice clouds (projections of the vectors on C1-C3 are longer), whereas backscatter intensity and 10 

color ratio are the driving factors that separate water clouds from aerosols (projections of the vectors on C2-C3 are longer). 

Comparing contributions of individual measurements to different classes, mid-layer altitude is most useful in helping 

discriminate aerosols and ice clouds, while simultaneously being the least useful in aerosols and water clouds classification. 

Backscatter intensity is the most useful parameter in the aerosols vs. water clouds classification and the water clouds vs. ice 

clouds classification, and the least useful in the aerosols vs. ice clouds classification. Depolarization is most useful in 15 

distinguishing between water clouds and ice clouds and between aerosols and ice clouds, and the least useful in the aerosols 

vs. water clouds classifications. These observations agree very well with earlier findings in figures 6 and 12 and tables 2 and 

4.  

 

Figure 13: principle component analysis of the FKM classifications for the January 2008 test data.  PCA results for the 2-class 20 

CADFKM classifications are shown on the left (panel a), and the 3-class CADFKM classifications are shown on the right (panel 
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b).  In both figures, the green points are projections of aerosol data onto the PCA axes with their center located at red crosses 

labeled C1.  Similarly, the blue and cyan (left panel only) points are projections of cloud data onto the PCA axes.  In panel a, 

the blue points represent all clouds, while in panel b the blue points represent ice clouds and the cyan points represent water 

clouds. Also shown in both panels are color-coded vectors representing each of the classification variables: backscatter 

intensity (AB, in orange), depolarization ratio (DR, in brown), color ratio (CR, in magenta), and altitude (H, in olive).  The 5 

projections of the variable vectors along the principal component axes indicate the degree to which each variable contributes 

to PCA1 and PCA2.  Variable vectors that are parallel to either PCA1 or PCA2 contribute essential information to that 

component, while vectors that are perpendicular do not contribute at all.   

4.4 Error propagation 

In this section, we assess the impact of instrument noise and measurement uncertainties on the FKM classifications. The 10 

observations from 6 September 2008 at ~01:35:29 UTC are used to investigate how noise in the lidar measurements affects 

the accuracy of the clustering results and what, if any, biases are introduced into the cloud and aerosol classifications. To 

simulate the measurement uncertainties, two different methods are used. In the first method, pseudo-random variables were 

drawn from Gaussian distributions having means equal to the various measured values and standard deviations between 10% 

and 200% of the means. As illustrated in Figure 14, using this method allows us to quantify the effects of varying measurement 15 

errors on the FKM classification algorithm results. A sequence of Monte Carlos tests was constructed in which one of the four 

classification variables was randomly perturbed (i.e., drawn from the aforementioned Gaussian distributions) while the other 

three remained unchanged. For each of the four tests, 100 realizations of simulated input were created. To estimate the 

propagation of measurement uncertainties, we calculated the shifts in classification, confusion index (CI, see section 3.2) and 

cluster centers between new clusters with added noise and the original clusters derived using unperturbed inputs. The shifts in 20 

cluster center are the mean distances between the centers of the new clusters (Cn, obtained from perturbed dataset) and the old 

ones (Co, obtained from error free dataset) for both clouds and aerosols, calculated using Eq. 19 (Omar et al., 2005). These 

distances are normalized by the standard deviation of the distributions (Cstd) of individual record distances from unperturbed 

center as 

. 25 

δ݀௘ ൌ
|௖೙ି௖೚ധധധധധധധധധ|

஼ೞ೟೏
 .                               (19) 

Figure 14 plots the shifts in cluster centers or (a) each class, (b) the fraction of correct classifications, and (c) the revised 

confusion index as a function of relative uncertainties ranging from 10% to 200%. From Figure 14a we see that shifts in cluster 

centers between perturbed and unperturbed data are very small when the uncertainties are small. The largest shift comes from 
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color ratio perturbations and the smallest shift comes from backscatter perturbations. Perturbations on class-2 (aerosol) are 

more important compared to class-1 (cloud). Figures 14b and 14c show that when the uncertainties in the measurements are 

small (i.e. less than 10%), the errors in the classifications are also small (e.g., less than 2% in Figure 14b) with less overlaps 

between classes (e.g., small values of CI from 0.3 to 0.305 seen in Figure 14c). When the uncertainties increase, the 

classification accuracies slightly decrease and the shifts in cluster center and CI slightly increase.  The rates of change in the 5 

accuracy and confusion index are rapid at first (i.e., between relative uncertainties between 10% and 100%), but tend to be 

stable for larger uncertainties. Large measurement uncertainties (i.e., 200%) in color ratio can introduce biases of 20% in the 

classification results, with CI values less than 0.335. This suggests that uncertainties in the measurements can cause 

misclassification, but that most of the classifications (~80%) are still robust. This is because cloud and aerosol properties are 

largely distinct and the misclassifications that do occur may come from features such as the few very thin clouds and dense 10 

aerosols in the transitional zone in Figure 6. 

 

Figure 14: classification changes as a function of errors in the input parameters.  The left panel (a) shows shifts in cluster 

centers for each class; the center panel (b) shows the relative accuracy of the FKM classifications; and the right panel (c) shows 

changes in the cluster confusion indexes. Panels b and c show perturbations in the classifications due to uncertainties in 15 

attenuated backscatter intensity (AB, in red), depolarization ratio (DR, in blue), and color ratio (CR, in green).  

Our first error propagation test used arbitrarily assigned relative uncertainties between 10% and 200% of the parameter mean 

values. In our second test we used the measured uncertainties reported in the CALIOP layer products to construct the Gaussian 

distributions from which pseudo-random variables were generated. By using this method, we can assess the actual impacts on 

the classifications due to noise in the CALIPSO measurements. To isolate the influence of the individual inputs, three test 20 

cases were constructed in which only one parameter was varied in each case. Figure 15 shows the results. Figure 15a shows 

the unperturbed results, while Figures 15b–15d show CADFKM scores averaged over 100 perturbations of the test parameter. 

Figure 15b shows the results when the attenuated backscatter intensities are varied, Figure 15c shows the results when the 

depolarization ratios are varied, and Figure 15d shows the results when the color ratios are varied.  
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From Figure 15 we find that the averaged CADFKM scores from the perturbed datasets do not differ markedly from the CADFKM 

scores in the unperturbed dataset. In more than 88% of the cases, clouds are still classified as clouds and aerosols are still 

classified as aerosols. When examining perturbations to backscatter intensity alone (Figure 15b), we find that the perturbed 

and unperturbed classification results are identical more than 98% of the time. However, the CADFKM differences arising from 

perturbations to depolarization ratio and color ratio (Figures 15c and 15d, respectively) can be much larger. This finding is 5 

consistent with results shown earlier in Figure 14.  
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Figure 15: CAD scores for the same orbit shown in Fig. 4 (06 Sep. 2008, 01:35:29 GMT). The uppermost panel (a) shows 2-

class FKM results derived using unperturbed measurements.  Panels b, c, and d show, respectively, 2-class FKM results derived 

using perturbed measurements of attenuated backscatter intensity (AB), depolarization ratio (DR), and color ratio (CR).  

Most often, the perturbed measurements only induce CADFKM changes for features that were originally classified with low 

confidence and for those challenging features such as water clouds beneath smoke, high altitude aerosols, and PSCs, whose 5 

input parameters frequently lie in the transition zone between clouds and aerosols. Water clouds beneath thick smoke layers 

are an especially difficult case, as the uncertainties introduced by the absorption of smoke at 532 nm can significantly reduce 

the confidence of the water cloud classification. Looking at Figure 15, together with Figures 2, 11 and 13, we find that this is 

a reasonable and even expected result. From Figures 11 and 15 we know that the most effective measurements for separating 

water clouds and aerosols are color ratio and backscatter intensity. But relative to measurements of water clouds in otherwise 10 

clear skies, the color ratios for water clouds lying under absorbing smoke layers have large positive biases while the backscatter 

intensities have large negative biases, and these biases will produce low confidence CAD scores, both for the FKM method 

and the V4 operational method (Liu et al., 2018). A somewhat similar scenario can occur in the classification of high altitude 

aerosols, where high biases (i.e., measurement errors) in depolarization ratios and color ratios can lead to the misclassification 

of aerosols as ice clouds. 15 

 5. Conclusions 

In this paper we use the Fuzzy K-Means (FKM) algorithm to validate the performance of the cloud-aerosol discrimination 

(CAD) algorithm used in the standard processing of the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 

measurements.  Being able to accurately separate clouds from aerosols is an essential task in the analysis of the elastic 

backscatter lidar measurements being continuously acquired by Cloud-Aerosol Lidar and Infrared Pathfinder Satellite 20 

Observations (CALIPSO) mission.  When coupled to a well-validated CAD algorithm, the data products delivered by CALIOP 

can be used to reliably map the vertical distributions of clouds and aerosols on global and regional scales throughout the full 

12 years of the CALIPSO mission.   

To assess the performance of the operational CAD algorithm, we have compared its outputs to those derived from the same 

scenes using an implementation of the FKM technique.  The CALIOP operational CAD algorithm is a supervised learning 25 

technique, in which classification decisions are tuned to match externally provided expert human judgements.  Unlike the 

operational CAD, the FKM is an unsupervised learning scheme, which assigns class memberships based on similarities 

discovered in the inherent characteristics of the input data.  While the two algorithms use largely identical inputs, the underlying 

mathematical formulations are entirely different, as is the framework for expressing class membership values.  The flexibility 

of the FKM technique allows us to investigate the relative importance of various inputs in deriving the final classifications and 30 
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to explore classification biases arising from current lidar measurement techniques.  Establishing these performance metrics 

should enable the development of enhanced classification schemes for use with future space-based lidars. 

The key finding of this study is that the feature classifications assigned by CALIOP operational CAD algorithm are very 

closely replicated by the FKM method. Our assessment of parameter PDFs shows that, in general, one half-orbit of data is 

sufficient to represent a much larger data set in the cloud-aerosol classification process. The classifications obtained from our 5 

independently derived FKM analyses compare well with the classifications determined by CALIOP’s operational V4 CAD 

algorithm and reported in the CALIOP V4 data products. Using a one-month test set, the 2-class and 3-class FKM 

classifications agreed with the V3 and V4 operational data products over 93 % of the time, and the 3-class FKM results agreed 

with the V4 operational CAD in 94~95 % of all cases. This strong agreement between two independent methods provides 

convincing evidence that V4 CAD operational algorithm is delivering robust and accurate classifications. 10 

Those instances where the two methods fail agree (5~6 % of all cases) are typically highly ambiguous scenes in which the 

observables lie in the overlap regions between the peaks of the cloud and aerosol PDFs.  In particular, in scenes containing 

Taklamakan dust (or lofted Asian dust in general), high altitude smoke plumes, cirrus fringes, and/or volcanic ash, both the 

V4 operational CAD and the FKM algorithm struggle to make accurate classifications.  The Taklamakan dust cases provide 

an instructive example that illustrates the classification conundrum.  Over the Taklamakan, lofted dust layers and cirrus clouds 15 

occur in similar temperature regimes, and frequently have similar backscatter intensities and depolarization ratios.  The most 

critical criterion for distinguishing clouds from aerosols is color ratio, and the characteristic color ratios of dust and cirrus are 

reasonably distinct (~0.75 vs. ~1.01).  However, the natural variability within each feature type is quite broad (e.g., ±0.25 for 

cirrus), and the measurements are very noisy, especially during daytime. 

To characterize the CAD improvements made in the most recent CALIOP data release, we used the FKM method to explore 20 

the capabilities of both the V3 and V4 operational CAD algorithms.  As expected, the V4 operational algorithm was more 

effective than the V3 version, but the overall differences were not large.  The primary differences are found by examining the 

results obtained for specific feature classes.  The FKM classifications agree well with both the V3 and V4 CAD results in most 

cirrus fringe and dense aerosol cases and agree well with V4 CAD results for lofted Asian dust, high altitude smoke, and 

volcanic ash. FKM classifications of stratospheric features and polar region features had the largest uncertainties.  More studies 25 

are needed to better understand why these specific types of features are proving so resistant to confident classification, 

irrespective of the algorithmic approach applied.  

Our investigation of error propagation in the FKM shows that while measurement uncertainties on the order of the CALIPSO 

measured noise will introduce biases into the cloud and aerosol classifications, more than 80% of the classifications stay 

unchanged. For the rest of classifications (which are low confidence clouds or aerosols), as the uncertainties increase, the 30 
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classification confidence decreases, as indicated by higher confusion indexes, and the classification accuracies decrease as 

well. The dependence and the number of measurements can also impact the classification efficiency. Key parameter analysis 

shows that higher classification accuracies are achieved by increasing the number of independent observational parameters 

used in the analyses.  FKM classifications using only a single input yield the same results as the operational CAD in only ~60 

% of all classifications, a rate only marginally better than would be expected from random choice.  While using three 5 

parameters achieved an agreement between the FKM and the V4 operational CAD in the neighborhood of ~80 %, raising the 

agreement to ~95 % required four parameters.   When only three inputs were used, removing color ratio from the FKM caused 

the largest classification disparities between the two methods.   

Certain parameters are especially significant for the classification of particular feature types, and thus optimizing the number 

of successful classifications across all features requires the inclusion of all measurements that effectively contributed to any 10 

species-specific classification.  Principal component analysis and key parameter analysis together show that the most important 

dimensions for distinguishing between clouds and aerosols are depolarization ratios and color ratios; that backscatter intensity 

and depolarization are the driving factors in classifying water and ice clouds; and that altitude, color ratio and depolarization 

ratio are the key inputs that allow aerosols to be separated from ice clouds, while backscatter intensity is the critical factor for 

separating aerosols and water clouds. Moreover, from fuzzy linear discriminant analysis we found the values of Wilks’ lambda 15 

are close to 0, confirming that the FKM classification technique reliably separates clouds from aerosols. 

While the FKM and official CAD classification methods both provide reliable discrimination between clouds and aerosols in 

the CALIOP data set, the FKM method is much more time consuming than the operational algorithm.  On the other hand, the 

flexibility of FKM method offers opportunities to explore the effectiveness of future classification schemes that potentially 

incorporate measurements from multiple sensors, perhaps even from multiple satellites.  While the input data used by our 20 

implementation of the FKM technique is essentially identical to that required by the CALIOP V4 operational algorithm, the 

two decision-making frameworks are independently derived and rely on very different mathematics (i.e., probabilities vs. fuzzy 

logic). The very close similarity between the results produced by the two independent approaches argues strongly that the V4 

operational classifications are essentially correct at the 94% level.   

  25 
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