
Atmos. Meas. Tech., 11, 1–14, 2018
https://doi.org/10.5194/amt-11-1-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Quantifying methane point sources from fine-scale satellite
observations of atmospheric methane plumes
Daniel J. Varon1,2, Daniel J. Jacob1, Jason McKeever2, Dylan Jervis2, Berke O. A. Durak2, Yan Xia3, and Yi Huang3

1School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
2GHGSat, Inc., Montréal, QC H2W 1Y5, Canada
3Department of Atmospheric and Oceanic Sciences, McGill University, Montréal, QC H3A 0B9, Canada

Correspondence: Daniel J. Varon (danielvaron@g.harvard.edu)

Received: 25 May 2018 – Discussion started: 6 June 2018
Revised: 11 September 2018 – Accepted: 16 September 2018 – Published:

Abstract. Anthropogenic methane emissions originate from
a large number of relatively small point sources. The planned
GHGSat satellite fleet aims to quantify emissions from indi-
vidual point sources by measuring methane column plumes
over selected ∼ 10× 10 km2 domains with ≤ 50× 50 m2

pixel resolution and 1 %–5 % measurement precision. Here
we develop algorithms for retrieving point source rates from
such measurements. We simulate a large ensemble of in-
stantaneous methane column plumes at 50× 50 m2 pixel
resolution for a range of atmospheric conditions using the
Weather Research and Forecasting model (WRF) in large
eddy simulation (LES) mode and adding instrument noise.
We show that standard methods to infer source rates by Gaus-
sian plume inversion or source pixel mass balance are prone
to large errors because the turbulence cannot be properly
parameterized on the small scale of instantaneous methane
plumes. The integrated mass enhancement (IME) method,
which relates total plume mass to source rate, and the cross-
sectional flux method, which infers source rate from fluxes
across plume transects, are better adapted to the problem.
We show that the IME method with local measurements
of the 10 m wind speed can infer source rates with an er-
ror of 0.07–0.17 t h−1

+ 5 %–12 % depending on instrument
precision (1 %–5 %). The cross-sectional flux method has
slightly larger errors (0.07–0.26 t h−1

+8 %–12 %) but a sim-
pler physical basis. For comparison, point sources larger than
0.3 t h−1 contribute more than 75 %CE1 of methane emis-
sions reported to the US Greenhouse Gas Reporting Pro-
gram. Additional error applies if local wind speed measure-
ments are not available and may dominate the overall error at

low wind speeds. Low winds are beneficial for source detec-
tion but detrimental for source quantification.

1 Introduction

Satellite instruments can measure atmospheric methane
columns from solar backscatter in the shortwave infrared
(SWIR) with near-uniform sensitivity down to the surface
(Frankenberg et al., 2005). There is considerable interest in
using these measurements to quantify methane emissions
(Jacob et al., 2016). Most current and planned instruments
have pixel resolutions of 1–10 km and column precisions
of 0.1 %–1 % (Bovensmann et al., 1999; Butz et al., 2011;
Veefkind et al., 2012; Polonsky et al., 2014; Kuze et al.,
2016). Jacob et al. (2016) show that these measurements
can successfully map regional methane emissions but have
limited ability to resolve individual methane point sources,
even with imaging capabilities, because the sources tend
to be relatively small and spatially clustered (e.g., oil/gas
fields, livestock operations, landfills, coal mine vents). The
GHGSat microsatellite fleet (Germain et al., 2017; McK-
eever et al., 2017) aims to address this gap by observing
methane columns over selected scenes of order 10× 10 km2

with ≤ 50× 50 m2 effective pixel resolution and moderate
precision (1 %–5 %). Here we present algorithms for inter-
preting the instantaneous plumes observed by this instrument
in terms of the implied point source (facility-level) emissions
and estimate the associated errors and detection limits as a
function of instrument precision.
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2 D. J. Varon et al.: Quantifying methane point sources

Aircraft remote sensing of methane columns over oil/gas
and coal mining facilities shows that the instantaneous
plumes have irregular shapes and detectable sizes of order
0.1–1 km (Thorpe et al., 2016; Thompson et al., 2015, 2016;
Frankenberg et al., 2016). A standard method used to retrieve
source rates from plume observations is to assume Gaussian
plume behaviour, as expected from statistically averaged tur-
bulence (Bovensmann et al., 2010; Krings et al., 2011, 2013;
Rayner et al., 2014; Fioletov et al., 2015; Nassar et al., 2017;
Schwandner et al., 2017). This method may induce large
errors for small instantaneous plumes, which generally do
not follow steady-state Gaussian behaviour. Several authors
have addressed this difficulty. Krings et al. (2011, 2013) pro-
posed a cross-sectional flux method to derive the source rate
as the product of the local wind and the concentration in-
tegrated over a plume cross section, expanding on a similar
method used for in situ plume measurements (White et al.,
1976; Cambaliza et al., 2014; Conley et al., 2016). Jacob et
al. (2016) described a mass balance method for inferring the
source rate solely based on the enhancement in the source
pixel. Frankenberg et al. (2016) inferred the source rate em-
pirically from the total detectable mass of methane in the
plume (integrated mass enhancement or IME).

A common feature of all these methods for retrieving the
point source rateQ from plume observations is their need for
independent knowledge of the wind speed U driving trans-
port of the plume. In the cross-sectional flux method applied
to in situ aircraft observations, methane and local wind speed
are measured concurrently (Conley et al., 2016). In remote
sensing, however, the wind speed for the instantaneous col-
umn plume is not directly measured and may be variable both
vertically and horizontally across the plume.

Here we use observing system simulation experiments
to develop algorithms for retrieving individual point source
rates from fine-scale satellite observations of instantaneous
methane plumes. We review previously used plume inver-
sion methods and show with large eddy simulations (LES)
that the IME and cross-sectional flux methods are best suited
to the problem. We further develop the IME method to pro-
vide a physical basis for its general application. We consider
different combinations of instrument precision, meteorolog-
ical environment, and wind information to test the methods
and quantify errors. Our work is motivated by GHGSat but
is more generally applicable to any fine-scale plume obser-
vations from space.

2 Review of methods for retrieving point sources from
observations of column plumes

A methane point source produces a turbulent plume of at-
mospheric methane with characteristics determined by the
strength of the source, the wind field, and turbulence that
depends on atmospheric stability and surface roughness.
Four different methods have been proposed to quantify point

source rates from plume observations: (1) the Gaussian
plume inversion method (Bovensmann et al., 2010; Krings
et al., 2011, 2013; Rayner et al., 2014; Fioletov et al., 2015;
Nassar et al., 2017; Schwandner et al., 2017), (2) the source
pixel method (Jacob et al., 2016; Buchwitz et al., 2017),
(3) the cross-sectional flux method (White et al., 1976; Con-
ley et al., 2016; Krings et al., 2011, 2013; Tratt et al., 2011,
2014; Frankenberg et al., 2016), and (4) the IME method
(Thompson et al., 2016; Frankenberg et al., 2016). Here we
discuss these methods for remote sensing observations of
column plumes. This is a somewhat different problem than
for in situ observations of plumes. In situ observations ben-
efit from a stronger signal but require characterization of the
plume in the vertical dimension, which is integrated in a col-
umn measurement.

Satellite remote sensing of methane plumes retrieves col-
umn concentrations with vertical sensitivity that depends on
atmospheric scattering and absorption. Clear-sky observa-
tions in the SWIR have near-unit sensitivity throughout the
tropospheric column, while observations in the thermal in-
frared (TIR) have strong vertical dependence determined by
temperature contrast with the surface (Worden et al., 2013).
Here we focus on SWIR observations, where we can ignore
vertical dependence in sensitivity. TIR remote sensing has
been used effectively to detect methane plumes from low-
flying aircraft (Tratt et al., 2014; Frankenberg et al., 2016)
but is not practical from space because of interference from
the background methane column above the plume (Jacob et
al., 2016).

Methane column concentrations retrieved from remote
sensing are commonly expressed in the literature as column-
average dry molar mixing ratio X [ppb]. The plume is then
characterized by an enhancement 1X =X−Xb relative to
the local background Xb. For our purposes of relating plume
observations to the source rate Q [kg s−1], a more useful
measure of plume concentration is the column mass enhance-
ment 1� with units [kg m−2]. 1� is related to 1X by

1�=
MCH4

Ma
�a1X, (1)

where MCH4 and Ma are the molar masses of methane and
dry air [kg mol−1] and �a is the column of dry air [kg m−2].

2.1 Gaussian plume inversion method

The Gaussian plume inversion method fits a Gaussian plume
model to the measured columns. Assuming a steady wind
U oriented along the x axis and integrating the three-
dimensional Gaussian plume equation vertically, one obtains
an expression forQ in terms of the vertical column enhance-
ment 1�(x,y) downwind of a point source located at the
origin (Bovensmann et al., 2010):

Q= U1�(x,y)

(
√

2πσy (x) e
y2

2σy (x)2

)
. (2)
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The empirical dispersion parameter σy(x) [m] describes the
horizontal spread of the plume along the y axis orthogonal to
the wind direction. It is commonly parameterized as (Martin,
1976)

σy (x)= a

(
x

x0

)0.894

, (3)

where x0 = 1000 m, and the dispersion coefficient a [m] de-
pends on atmospheric stability as defined by the Pasquill–
Gifford atmospheric stability categories (Pasquill, 1961).
The solution to Eq. (2) may involve non-linear optimal es-
timation fitting of a to the observed plume (Krings et al.,
2011). The fit may not be successful if the instantaneous
plume shows large departure from steady-state Gaussian be-
haviour.

2.2 Source pixel method

In the source pixel method used by Jacob et al. (2016) to
compare different satellite-observing configurations, emis-
sions are inferred solely from methane enhancements in the
source pixel relative to the local background. For an obser-
vation pixel of dimension W [m] containing a methane point
source ventilated by a uniform wind speed U [m s−1], the
source rate Q [kg s−1] is calculated from the mean source
pixel enhancement 1� [kg m−2]:

Q=
UWp

g�a
1�, (4)

where p is the surface pressure and g is the acceleration of
gravity. The source pixel method ignores additional informa-
tion from the plume downwind and is therefore not optimal.
In addition, the instantaneous wind U may have large uncer-
tainty for small pixels because of turbulence. The method is
also vulnerable to systematic errors in the column enhance-
ment retrieved over the source pixel (e.g., due to different re-
flectance properties of the emitter compared to the surround-
ing area) and errors in the local background estimate.

2.3 Cross-sectional flux method

In the cross-sectional flux method, the source rate is esti-
mated by computing the flux through one or more plume
cross sections orthogonal to the plume axis. This approach
is commonly used for aircraft in situ observations (White et
al., 1976; Mays et al., 2009; Cambaliza et al., 2014, 2015;
Conley et al., 2016). Krings et al. (2011, 2013) and Tratt et
al. (2011, 2014) extended it to methane columns observed
by aircraft remote sensing. By mass balance, the source rate
Q must be equal to the product of the wind speed and the
column plume transect along the y axis perpendicular to the
wind:

Q=

∫
+∞

−∞

U(x,y)1�(x,y)dy, (5)

where the integral is approximated in the observations as a
discrete summation of the productU(x,y)1�(x,y) over the
detectable width of the plume.

Compared to in situ aircraft measurements, an advantage
of remote sensing is that the full vertical extent of the plume
is covered by the measurement. A disadvantage is that the
wind U(x,y) is not as well characterized: it must describe
some vertical average over the plume extent and there is gen-
erally no information on its horizontal variability over the
scale of the plume. This may require estimation of an effec-
tive wind speed Ueff applied to the cross-plume integral C
[kg m−1] of the column along the y axis:

Q= CUeff, with C =

∫
+∞

−∞

1�(x,y)dy. (6)

If Ueff is assumed uniform with distance x downwind of
the source, then the integral C is independent of x and can
be computed for different values of x to improve accuracy
through averaging. We show in Sect. 6 how to estimate Ueff
for use in Eq. (6).

2.4 Integrated mass enhancement (IME) method

The IME method relates the source rate to the total plume
mass detected downwind of the source. The IME of an ob-
served column plume comprising N pixels of area Aj (j =
1. . .N) is

IME=
∑N

j=1
1�jAj . (7)

Frankenberg et al. (2016) defined an empirical linear rela-
tionship between IME and Q for their methane plumes de-
tected from aircraft by using independent estimates of a few
sources from the cross-sectional flux method. They then ap-
plied this linear relationship to all their observed plumes.

More fundamentally, the relationship between IME and
Q is defined by the residence time τ of methane in the de-
tectable plume: Q= IME/τ . One can express τ dimension-
ally in terms of an effective wind speed Ueff [m s−1] and a
plume size L [m]:

Q=
1
τ

IME=
Ueff

L
IME=

Ueff

L

∑N

j=1
1�jAj . (8)

Ueff and L would have simple physical meanings of wind
speed and plume length if dissipation of the plume occurred
by uniform transport to a terminal distance downwind of the
source. But the actual mechanism for plume dissipation is
turbulent diffusion, which takes place in all directions. Ueff
and L must therefore be viewed as operational parameters to
be related to observations of wind speed U and plume ex-
tent. In Sect. 5 we derive these relationships from synthetic
plumes generated by LES. The detectable plume size L de-
pends on Q and U , introducing non-linearity in Eq. (8).
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4 D. J. Varon et al.: Quantifying methane point sources

3 Synthetic GHGSat observations of methane plumes

We generate synthetic GHGSat plumes with the Weather Re-
search and Forecasting model in LES mode (WRF-LES; Mo-
eng et al., 2007; Skamarock et al., 2008) to evaluate the abil-
ity of the methods described in Sect. 2 to retrieve methane
point source rates from satellite observations. The WRF-LES
simulations are conducted at 50× 50 m2 resolution and are
sampled virtually with the GHGSat instrument by column
integration and with consideration of instrument precision.
In this section, we briefly describe the GHGSat instrument
and the application of LES to produce synthetic plumes.

3.1 The GHGSat instrument

GHGSat is a lightweight satellite instrument (∼ 15 kg) de-
signed by GHGSat, Inc. to detect atmospheric methane
plumes from individual point sources. A demonstration in-
strument (GHGSat-D) was launched in June 2016 into sun-
synchronous orbit (local solar viewing time of 09:30 on the
descending node) to test the instrument performance and col-
umn retrieval algorithm. The launch of the first operational
satellite is scheduled for early 2019. The long-term plan is
for a constellation of sun-synchronous GHGSat microsatel-
lites in low Earth orbit, providing frequent observations of
different sources of interest.

GHGSat measures backscattered solar SWIR radiation
at 1635–1670 nm (0.1 nm spectral resolution) over ∼ 10×
10 km2 targeted domains (12× 12 km2 for GHGSat-D) with
≤ 50× 50 m2 pixels. The design precision for the methane
column retrieval is 1 %–5 %. This is coarser precision than
that of other satellite instruments (e.g., 0.6 % for TROPOMI,
0.7 % for GOSAT), but for observations of point sources it
is more than offset by the finer pixel resolution (Jacob et al.,
2016).

3.2 Large eddy simulations (LES)

We apply WRF-LES to simulate turbulent plume transport
at 50× 50 m2 horizontal resolution and 30 m vertical reso-
lution over a 6× 6 km2 domain. We use a modified version
of the WRF v3.8 default LES case with cloud-free condi-
tions and no topography (WRF User’s Guide, 2018; Moeng
et al., 2007). Simulations are performed with one-way nest-
ing from an external simulation over a 7.5×7.5 km2 domain
with 150×150 m2 resolution and periodic boundary condi-
tions. A uniform sensible heat flux H = 100 W m−2 is ap-
plied at the surface to drive buoyant turbulence. Mechanical
turbulence is generated by surface drag with an aerodynamic
roughness height of 0.1 m. Forcing from a large-scale pres-
sure gradient maintains momentum across the domain.

Each LES simulates 5 h of atmospheric transport. The first
3 h spin up realistic turbulence and the final 2 h are used for
analysis. We use a range of initial mixing depths and wind
speed soundings to produce different simulations. The po-

tential temperature soundings are uniform at 290 K from the
surface to a mixing depth set at either 500, 800, or 1100 m al-
titude, with an inversion above that altitude and the model top
set 700 m above the inversion. For each of these three mixing
depths, we conduct simulations using five initially uniform
southerly wind profiles with speeds of 2–8 m s−1. The result-
ing LES ensemble of 15 simulations is broadly representative
of the range of meteorological conditions that could be sam-
pled with a SWIR daytime instrument.

We use the WRF-LES passive tracer transport capabil-
ity (Nottrott et al., 2014; Nunalee et al., 2014) to generate
a plume from a single constant point source in the WRF-
LES meteorological environment. From there we integrate
the plume over vertical columns and add random noise to
produce GHGSat pseudo-observations. We archive the tracer
column field every 30 s as an independent realization of the
instantaneous plume. From the 15 WRF-LES simulations we
thus archive a collection of 3600 scenes, representing our sta-
tistical ensemble for different possible realizations of turbu-
lence.

The WRF-LES point source in the archived ensemble
has a normalized source rate, which we subsequently scale
from the output to simulate source rates Q in the range
0.05–2.25 t CH4 h−1 (0.5–20 kt a−1). This range covers the
top 25 % of sources reporting to the US Greenhouse Gas
Reporting Program (GHGRP) and contributing 75 % of to-
tal GHGRP methane emissions (Jacob et al., 2016). A uni-
form background methane column of 0.01 kg m−2 (roughly
1850 ppb) is added to the tracer column. Uncorrelated mea-
surement noise is then added as a random increment of the
background sampled from a normal distribution with zero
mean bias and standard deviation σ = 1 %–5 %, correspond-
ing to the range of expected instrument precision. The col-
umn enhancement 1� is then inferred by subtracting the
0.01 kg m−2 background, which is therefore assumed to be
known.

Figure 1 shows examples of synthetic plume observations
produced in this manner for a source Q= 1 t h−1, assuming
different levels of instrument precision. As the precision de-
creases, the plume is increasingly difficult to detect.

4 Inadequacy of the Gaussian plume and source pixel
methods

Previous studies of CO2 column observations from the OCO-
2 satellite instrument with ∼ 1.3× 2.25 km2 nadir pixel res-
olution (Crisp et al., 2017) have shown that the Gaussian
plume inversion method can be effective for quantifying
very large CO2 emissions from power plants (Nassar et al.,
2017) and volcanoes (Schwandner et al., 2017). We find here
that the approach fails when applied to fine-scale methane
plumes, because the plumes depart too much from Gaussian
behaviour. CO2 point sources can be considerably larger rel-
ative to background concentrations and instrument precision

Atmos. Meas. Tech., 11, 1–14, 2018 www.atmos-meas-tech.net/11/1/2018/
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Figure 1. Examples of column plume pseudo-observations generated by an LES on a 50× 50 m2 grid. The circle identifies the location of
the source. Each panel shows the same synthetic plume observation for a source Q= 1 t h−1, with instrument precision σ varying from 1 %
to 5 %.

levels, and the resulting plumes can then be observed over
distances of tens of kilometres. Such a large size allows for
statistical averaging of eddies and hence better approxima-
tion of Gaussian behaviour, even for an instantaneous plume.
To demonstrate this, Fig. 2 shows an LES snapshot of a large
power plant emitting 3.75 kt CO2 h−1 in a 72 km domain with
300× 300 m2 pixel resolution. Fitting a Gaussian plume to
the 300 m pixel enhancements yields a coefficient of deter-
mination R2 of only 0.24, but R2 increases to 0.86 when the
LES image is averaged over 3× 3 km2 pixels. Spatial aver-
aging of turbulence over kilometre-scale pixels thus greatly
improves the accuracy of Gaussian plume models, but this
requires sufficiently large plumes. Methane plumes are gen-
erally too small to allow such averaging (Frankenberg et al.,
2016).

The source pixel retrieval method only considers the col-
umn enhancement over the point source pixel, thus inferring
the source rate from ventilation of that pixel by the local
wind. It assumes in effect that the near-field plume is di-
luted over the source pixel and neglects information from
the plume downwind. This can be an effective method when
pixel resolution is coarse, so that most of the information is
in the source pixel and the mean wind across the pixel can be
well defined (Buchwitz et al., 2017). However, it has three
major shortcomings when applied to GHGSat 50× 50 m2

pixels: (1) it does not exploit the information from down-
wind pixels, where most of the plume mass typically resides;
(2) small-scale turbulence generates strong variability in the
wind; and (3) source pixel ventilation may take place by tur-
bulent horizontal diffusion rather than advection by the mean
wind, leading to negative bias. With regard to (2), the res-
idence time in a GHGSat pixel is only ∼ 30 s, and there is
large variability in the wind on such a short timescale that
cannot be described deterministically. For example, in a typi-
cal LES under moderately unstable conditions we find a 10 m
wind speed of 2.45±0.8 m s−1, where the standard deviation

is for the 30 s data. This 30 s variability in wind speed alone
thus introduces a factor of 30 % uncertainty in the source es-
timate. With regard to (3), the relative importance of turbu-
lent diffusion and advection is diagnosed by the Péclet num-
ber Pe= UL/KH, where KH is the turbulent horizontal dif-
fusion coefficient (Brasseur and Jacob, 2017). For a typical
KH = 50 m2 s−1 (d’Isidoro et al., 2010) with U = 2 m s−1

and L= 50 m we find Pe∼ 1, so that turbulent diffusion and
advection are of comparable importance.

5 Computing the source rate by the IME method

We showed in Sect. 2.4 how the IME method for retriev-
ing the point source rate Q from the measured IME hinges
on knowledge of the residence time of methane in the de-
tectable plume. We refer to this residence time as the plume
lifetime τ = IME/Q, which in turn is related to two parame-
ters: an effective wind speed Ueff and a characteristic plume
size L. IME and L can be inferred from the plume observa-
tions, while Ueff can be inferred from the observable 10 m
wind speed U10 at the point of emission.

5.1 Inferring the plume mass (IME) and size (L)

Inferring IME and L from the plume observations requires
that we define the horizontal extent of the plume through a
pixel selection procedure that separates signal from noise.
Careful selection is important. Consider an array of N pix-
els of equal area and with retrieved column enhancements
1�j (j = 1. . .N). If each pixel enhancement includes a con-
tribution sj from signal (actual plume enhancement) and εj
from random noise, then as per Eq. (7),

IME
A
=

∑N

j=1
1�j =

∑N

j=1
(sj + εj )= εa +

∑N

j=1
sj , (9)
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6 D. J. Varon et al.: Quantifying methane point sources

Figure 2. CO2 column enhancements relative to background for a 3.75 kt CO2 h−1 (33 Mt CO2 a−1) power plant plume simulated by LES
at 300 m resolution. (a) shows the plume with 300 m pixel resolution and (b) shows the same plume but with pixel resolution degraded to
3000 m. The coefficient of determination (R2) inset measures the ability to fit each LES plume to a Gaussian form (Eqs. 2–3). (c) shows how
the coefficient of determination and the root-mean-square error (expressed as a percentage of the median pixel enhancement) vary with pixel
resolution.

where εa is the total measurement error. The relative error
εr TS1 is then εr = εa/

∑N
j sj . If the noise is normally dis-

tributed and uncorrelated, then the error standard deviation
is proportional to

√
N , so that the standard deviation σr of

the relative error scales as

σr ∝

√
N∑N
j sj

. (10)

Now consider two extreme cases: (1) all pixels contain the
same signal s0, and (2) only one pixel contains signal s0
and the other pixels contain only noise. In case (1), the to-
tal signal

∑N
j sj is proportional to N , meaning σr ∝ 1/

√
N .

By contrast, in case (2), the total signal is equal to s0, so
σr ∝
√
N . Thus, we see that aggregating plume pixels can ei-

ther decrease or increase the error on the IME depending on
whether these pixels have significant signal or not.

Figure 3 illustrates how we construct a plume mask to
select plume pixels with significant signal-to-noise ratios.
The background distribution (mean ± standard deviation)
is first characterized by an upwind sample of the measured
columns, mimicking what one would do with actual obser-
vations. Next, we sample the 5× 5 pixels neighbourhood
centred on each pixel in the viewing domain and compare
the sample distributions to the background distribution by
means of a Student’s t test. Pixels with 5× 5 neighbour-
hoods that follow a distribution significantly different than
the background at a confidence level of 95 % or higher are
assigned to the plume and others to the background. The re-
sulting Boolean plume mask contains some random classifi-
cation errors, so we smooth it with a median filter followed
by a Gaussian filter and thresholding. The median filter re-
places each pixel in the mask by the median value of its 3×3
neighbourhood. The Gaussian filter convolves the mask with

a two-dimensional Gaussian of standard deviation 2–5, with
larger values for higher noise levels.

We compute the IME by summing pixel enhancements
within the plume mask following Eq. (7). A simple measure
of the plume size L can be taken as

L=
√
AM, (11)

where AM [m2] is the area of the plume mask. Another pos-
sible estimate of L would be the mask’s perimeter, which
can be obtained by contour tracing. The definition of L is
not critical as long as it has some physical basis relating it to
the observed plume geometry. A different definition would
imply a different calculation of Ueff.

5.2 Inferring Ueff from the 10 m wind speed U10

The effective wind speed Ueff is a parameter of the IME
method that should be related to the measurable 10 m wind
speed at the location of the point source, and here we use
the LES to derive the Ueff = f (U10) relationship. If U10 is
not actually measured at the site, it can be estimated from
an operational meteorological database at the cost of some
representation error. We discuss that error in Sect. 7.

We derive the Ueff = f (U10) relationship from a training
set of column plumes comprising two-thirds of the LES en-
semble selected at random (i.e., 2400 plume instances). The
remaining plumes serve as a test set for evaluating the re-
trieval algorithm. For each plume in the training set, Ueff
is computed from Eq. (8) as Ueff =QL/IME, based on the
known source rate Q and with L and IME determined from
the plume masks. The corresponding U10 time series at the
location of the source is obtained from the LES, averaged
over the plume lifetime τ = IME/Q. Values of τ in our en-
semble range from 1 to 60 min depending on instrument pre-

Atmos. Meas. Tech., 11, 1–14, 2018 www.atmos-meas-tech.net/11/1/2018/
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Figure 3. Illustration of the procedure for constructing plume masks in the IME method. (a) Satellite pseudo-observation generated by LES
for a point source Q= 1 t h−1, with instrument precision σ = 1 % (same as in Fig. 1). (b) The output of the t test procedure for significant
signal. (c) The final plume mask after application of median and Gaussian filters.

cision, source rate, and wind speed. In practice, τ is un-
known a priori and must be inferred from the plume obser-
vations and local wind speed information. We discuss this in
Sect. 5.3.

Figure 4 shows the relationship between Ueff and U10 in-
ferred from the LES ensemble. We find that we can fit the
data to a logarithmic dependence:

Ueff = α1 logU10+α2, (12)

where α1 = 0.9–1.1, α2 = 0.6 m s−1, and the range on the
first coefficient is for the 1 %–5 % range of instrument preci-
sion. For 1 % instrument precision, the logarithmic function
plotted in Fig. 4 captures 75 % of the variance (R2

= 0.75).
This decreases to 35 % of the variance for 5 % instrument
precision. The convexity of the relationship is an important
result, as it implies that error in Ueff is smaller than error
in U10. One might expect Ueff from the IME method to be
proportional to U10, such that IME/L would be inversely
proportional to U10 as per Eq. (8). However, even though
that inverse relationship holds for plume concentrations (see
Eq. 6), it is much weaker for the IME because the concen-
trated plume in the near-field of the source remains in the
signal even at high wind speeds. Thus, the plume observa-
tions themselves interpreted with the IME method contain
some information on U10 that slackens the dependence of
Ueff on U10.

5.3 Computing the source rate

Figure 5 summarizes the algorithm for retrieving source rates
with the IME method. The algorithm accepts two inputs:
(1) a map of plume enhancements 1�(x,y) over the plume
mask, and (2) the 10 m wind speed U10 from either local
high-frequency measurements or an operational meteorolog-
ical database. If local high-frequency measurements of U10
are available, then there is an opportunity to iteratively re-

Figure 4. Relationship between the effective and local 10 m wind
speeds in the IME method, characterized with LES training plumes
assuming 1 % instrument precision. Each point represents a differ-
ent LES plume pseudo-observation from the training set. The red
line fits the data to a logarithmic dependence. The 1 : 1 line is shown
in black. See text for similar results with 3 % or 5 % instrument pre-
cision.

fine the plume lifetime τ over which U10 should be averaged,
and for this we make a first guess τ0 = 5 min. If only coarse-
resolution wind speed data are available, then we assume that
these are representative of the local value averaged over the
plume lifetime and add the associated error to the overall er-
ror budget (see Sect. 7).

Figure 6 shows the instantaneous source rates retrieved
from our IME algorithm when applied to the test set of LES
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Table 1. Error standard deviations for retrieving point source rates from column plume observations.

Method Instrument precisiona Wind speed estimation errorb

1 % 3 % 5 %

IME 0.07 t h−1
+ 5 % 0.13 t h−1

+ 7 % 0.17 t h−1
+ 12 % 15 %–50 %

Cross-sectional flux 0.07 t h−1
+ 8 % 0.18 t h−1

+ 8 % 0.26 t h−1
+ 12 % 30 %–65 %

a Sum of absolute and relative errors when local measurements of 10 m wind speed U10 are available (see text). b Additional relative error when local
wind speed data are not available. The values given here are inferred from a sample of the GEOS-FP global database over the US and should only be
viewed as illustrative. The range is for GEOS-FP wind speeds of 2–7 m s−1, with the larger errors for the smaller wind speeds.

Source rate retrieval by the IME method
Plume mask and

enhancements �⌦(x, y)
Input

Output
Compute IME and

plume size L

Local
measurements of 10 m wind speed

U10 available?
YesNo

Local measurements of
10 m wind speed U10

First guess ⌧i = ⌧0 for
plume lifetime (i = 0)

10-m wind speed U10

averaged over ⌧i

10 m wind speed U10

from meteorological
database

Yes No

⌧ = ⌧i+1 i = i + 1

Source rate Q =
IME

⌧

⌧i+1 � ⌧i

⌧i
 0.01 ?

⌧i+1 =
L

Ue↵

⌧ =
L

Ue↵

E↵ective wind speed
Ue↵ = f(Ue↵)

E↵ective wind speed
Ue↵ = f(Ue↵)

Figure 5. Flow chart describing the IME retrieval algorithm. Algorithm inputs are shown in green, operations in grey, and output in blue.
There are two possible paths depending on the availability of 10 m wind speed data: (a) local high-frequency wind speed measurements at
the location of the source (right branch), and (b) a temporally averaged meteorological database (left branch).

plumes in different instrument precision scenarios, compared
to the true source rates. There is good agreement with the
1 : 1 line in all cases (R2

≥ 0.86). Retrieval uncertainty (ex-
pressed as absolute and relative contributions and defined

by the standard deviation of departure from the 1:1 line) in-
creases from 0.07 t h−1

+5 % for σ = 1 %, to 0.13 t h−1
+7 %

for σ = 3 %, and 0.17 t h−1
+12 % for σ = 4 % (Table 1). For

sources 1.5 t h−1 or larger, retrieval error is less than 25 %

Atmos. Meas. Tech., 11, 1–14, 2018 www.atmos-meas-tech.net/11/1/2018/
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Figure 6. Evaluation of the IME method for retrieving source rates Q using the LES test set with three different instrument precisions (1 %,
3 %, 5 %). The inset gives the coefficient of determination, R2.

Figure 7. Relationship between the effective and local 10 m wind
speeds in the cross-sectional flux method, characterized with LES
training plumes assuming 1 % instrument precision. Each point rep-
resents a different LES plume pseudo-observation from the training
set. The red line fits the data to a linear function, excluding the low-
est wind speed population (U10 < 2 m s−1 andUeff < 2 m s−1). See
text for corresponding results with 3 % and 5 % instrument preci-
sion. Ueff for the cross-sectional flux method is different than for
the IME method (Fig. 4).

even with instrument precision up to 5 %. For Q= 1 t h−1,
instrument precision up to σ = 3 % yields uncertainty less
than 20 % of the true source rate. Source rates larger than
0.3 t h−1 contribute more than 75 % of total methane emit-
ted from point sources reporting to the US Greenhouse Gas
Reporting Program (Jacob et al., 2016). An instrument with
σ = 1 % measurement uncertainty can quantify these emis-
sions to within 20 %TS2 of the true source rate.

6 Computing the source rate by the cross-sectional flux
method

Much of our analysis of the IME method in Sect. 5 can be
applied to the cross-sectional flux method commonly used
for in situ aircraft observations and extended by Krings et
al. (2011, 2013) and Tratt et al. (2011, 2014) for remote sens-
ing observations. We compute the plume mask as described
in Sect. 5.1, and infer the wind direction from the axis of
the plume, based on a weighted average of plume pixel co-
ordinates using the column enhancements as weights. From
there, we obtain the mean cross-plume integral C of the col-
umn enhancements at different distances downwind of the
source (see Eq. 6).

We again use the LES training set to characterize the rela-
tionship between the effective wind speed Ueff in Eq. (6) and
the local 10 m wind speedU10.Ueff in the cross-sectional flux
method is different than Ueff in the IME method. For each
plume in the training set,Ueff is computed from Eq. (6) based
on C and the known source rate Q. The plume lifetime over
which to average local high-frequencyU10 measurements for
comparison with Ueff is computed as τ = L/Ueff, where the
plume size parameter L now has a specific physical meaning
as the maximum along-wind distance from the source over
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Figure 8. Evaluation of the cross-sectional flux method for retrieving source rates Q using the LES test set with three different instrument
precisions (1 %, 3 %, 5 %). The inset gives the coefficient of determination, R2.

Figure 9. Evaluation of 10 m wind speeds from the 3 h GEOS-
FP global database when used as estimate of local wind speed for
source rate calculations in the IME and cross-sectional flux meth-
ods. The figure compares 3 h average 10 m wind speeds from the
MesoWest database measured at 10 US airports (ABQ, ATL, BOS,
DFW, LAX, MCI, MSP, PDX, PHL, and PHX) to corresponding
values from the GEOS-FP database. The GEOS-FP data have been
corrected for a local roughness height z0,m = 0.025 m (see text).
The data are for daytime June 2017 (15:00–21:00 UTC). The fit to
a reduced major axis (RMA) regression line is also shown, which
closely overlaps the 1 : 1 line.

which transects can be computed (as defined by the plume
mask).

Figure 7 shows the resulting relationship between Ueff and
U10. The relationship is near-linear, as would be expected,

and the fit Ueff = βU10 with β = 1.3–1.5 (where the range
is for the 1 %–5 % range of instrument precisions) captures
25 %–75 % of the variance (0.25≤ R2

≤ 0.75) for U10 ≥

2 m s−1, depending on instrument precision. The 30 %–50 %
increase relative to U10 reflects the increase in wind speed
with the altitude at which the plume is transported. The de-
parture from the linear relationship for U10 < 2 m s−1 is be-
cause low winds are more variable in direction. The cross-
sectional flux method should not be used under calm-wind
conditions.

Figure 8 shows the results of the cross-sectional flux re-
trieval algorithm applied to the LES test plumes, excluding
those from the plume population with U10 < 2 m s−1 and
Ueff < 2 m s−1. In all instrument precision scenarios, the re-
trieved source rates are consistent with the 1 : 1 line. How-
ever, residuals are slightly larger than in the IME method (see
Fig. 6), as indicated by the smaller coefficients of determina-
tion. This results primarily from greater uncertainty in the ef-
fective wind speed compared to the IME method. Moreover,
analyzing orthogonal plume cross sections requires estima-
tion of the wind direction, which introduces an additional
source of error. Absolute and relative retrieval errors esti-
mated in the same way as for the IME method are listed in
Table 1. While retrieval uncertainty is slightly higher (0.07–
0.26 t h−1

+ 8 %–12 %, depending on instrument precision),
an advantage of the cross-sectional flux method is that there
is a simpler physical basis for relating U10, C, and Q.

7 Inferring the effective wind speed from
meteorological databases

Both the IME and cross-sectional flux methods require
knowledge of the local wind speed. In the absence of lo-
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cal wind speed measurements, the 10 m wind speed U10 at
the time of observation must be estimated from some me-
teorological database. Here we examine the option of us-
ing the GEOS-FP operational reanalysis produced by the
NASA Global Modelling and Assimilation Office, avail-
able globally as 3 h averages with 0.25

◦

×0.3125
◦

resolution
(≈ 25× 25 km2) at a lowest grid point level of 60 m above
the surface (Molod et al., 2012; https://gmao.gsfc.nasa.gov/
GMAO_products/, last access: 24 October 2017). The 10 m
wind speed can be obtained from the 60 m wind speed by

U10 =

 ln
(
z10
z0,m

)
−9m

ln
(
z60
z0,m

)
−9m

U60, (13)

where z0,m [m] is the surface roughness length for momen-
tum, z10 = 10 m, z60 = 60 m, and 9m = f (z/l) is a stabil-
ity correction parameter dependent on the Monin–Obukhov
length l (Brasseur and Jacob, 2017). The GEOS-FP data in-
clude values for z0,m and l, but one can use local estimates
of these variables if better information is available. Better
databases than GEOS-FP may be available to the user de-
pending on region, but an advantage of GEOS-FP is that it
can be used as a global default.

Figure 9 evaluates the GEOS-FP U10 data by compari-
son to 3 h average daytime measurements in June 2017 at 10
US airports obtained from the University of Utah MesoW-
est database (Horel et al., 2002; MesoWest database, 2018).
Here we use z0,m = 0.025 m as input to Eq. (13) to account
for the relatively smooth airport terrain. There is no bias
in the GEOS-FP data relative to MesoWest. The error stan-
dard deviation derived from the difference between the 3 h
GEOS-FP and MesoWest 10 m wind speeds is 1.6 m s−1,
largely independent of wind speed. Since wind speed is a
positive variable, errors at low wind speeds (< 2 m s−1) tend
to be systematic. There is additional error from using 3 h
wind data when the plume lifetime τ is much shorter. From
the 5 min resolution of the MesoWest data we find an addi-
tional error standard deviation of 2.0 m s−1 for τ = 5 min and
1.3 m s−1 for τ = 1 h when 3 h average wind speed data are
used. Adding these errors in quadrature, we conclude that
using GEOS-FP wind data incurs an error standard devia-
tion on the 10 m wind speed of 2.5 m s−1 for small plumes
(τ = 5 min) and 2.0 m s−1 for large plumes (τ = 1 h).

Substitution into the Ueff = f (U10) relations of the IME
and cross-sectional flux methods implies an additional er-
ror in inferring Q of 15 %–50 % for the IME method and
30 %–65 % for the cross-sectional flux method over the 10 m
wind speed range 2–7 m s−1, with largest errors at low wind
speeds. The error is larger for the cross-sectional flux method
where the dependence of Ueff on U10 is linear rather than
logarithmic. Comparison to the other retrieval errors for each
method is given in Table 1. At low wind speeds, the error
from using GEOS-FP wind data may dominate the overall er-
ror budget for inferring source rates. However, our estimate

of the error from using operational meteorological databases
is intended only to be illustrative. Different errors may apply
for other regions or seasons, or when using other meteoro-
logical databases than GEOS-FP.

8 Conclusions

We have developed new algorithms for quantifying methane
point sources from fine-scale satellite observations of atmo-
spheric column plumes, motivated by the planned fleet of
GHGSat instruments (≤ 50× 50 m2 pixel resolution, 1 %–
5 % precision). A challenge is that individual point sources
of methane are relatively weak, so that the detectable in-
stantaneous plumes are relatively small (∼ 1 km) and short
lived (< 1 h). Using a large ensemble of WRF large eddy
simulations (LES) of methane plumes from point sources,
we showed that Gaussian plume inversions are unsuccess-
ful because the instantaneous plumes are too small to follow
Gaussian behaviour. We also showed how a simple source
pixel mass balance method is inappropriate because of wind
variability and horizontal turbulent diffusion on the scales of
relevance.

Two more promising methods for quantifying source rates
from methane column plume observations are the integrated
mass enhancement (IME) method and the cross-sectional
flux method. Both methods require construction of a plume
mask to isolate the plume enhancements from the back-
ground noise. The IME method requires estimation of the
plume lifetime τ , which in turn depends on an effective
wind speed Ueff for the plume and a characteristic plume
size L. We showed how these quantities can be estimated
from knowledge of the plume mask and of the 10 m wind
speed U10 at the location of the source. The source rates
are then inferred from the plume observations with expected
errors of 0.07–0.17 t h−1

+ 5 %–12 % depending on instru-
ment precision (1 %–5 %). For reference, source rates larger
than 0.3 t h−1 contribute more than 75 % of total point source
emissions in the US Greenhouse Gas Reporting Program
(GHGRP) database.

The cross-sectional flux method requires an estimate of the
wind direction and of an effective wind speed Ueff reflecting
the vertical and horizontal spread of the plume. Again, the
LES simulations show how these can be reliably estimated
from the plume mask and local U10. We find that for U10 ≥

2 m s−1, Ueff = βU10 with β = 1.3–1.5 is a good approxima-
tion that accounts for vertical plume spreading. The cross-
sectional flux method should not be used for U10 < 2 m s−1.
The errors on the source rates are 0.07–0.26 t h−1

+ 8 %–
12 %, slightly worse than in the IME method. An advantage
of the cross-sectional flux method is its simpler physical ba-
sis.

Both the IME and the cross-sectional flux methods param-
eterize their effective wind speeds Ueff as a function of the
local wind speed U10. If local measurements of U10 are not
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available, then U10 must be estimated from an operational
meteorological database or from measurements some dis-
tance away. Using the global NASA GEOS-FP archive of
wind speeds in June 2017 as an illustrative example com-
pared to US airport data, we find that using this archive would
incur source rate errors of 15 %–50 % in the IME method
and 30 %–65 % in the cross-sectional flux method over the
2–7 m s−1 range of wind speeds. The largest errors are at low
wind speeds where they dominate the overall error budget.
Low wind speeds facilitate source detection by improving
signal to noise, but worsen source quantification by increas-
ing the uncertainty in the inference of Ueff.

Our source rate retrieval algorithms were motivated by the
need to interpret GHGSat plume observations but can readily
be applied to any fine-pixel remote sensing measurements of
methane column plumes from satellite or aircraft. The preci-
sion in retrieving point source rates is much better than can
be achieved by current or planned imaging satellites from
governmental space agencies, which have higher instrument
precision but coarser pixel resolution (Jacob et al., 2016).

Several questions remain to be explored. (1) How will
correlated errors in the retrieved methane columns, as ob-
served in GHGSat-D columns (Germain et al., 2017; McK-
eever et al., 2017), affect source quantification by the IME
and cross-sectional flux methods? Such errors would compli-
cate plume definition and plume enhancement calculations.
More advanced image segmentation techniques based on ma-
chine learning experiments may be useful to differentiate
plumes from correlated background errors. (2) How reliably
can we parameterize the relationship between effective and
10 m wind speeds given the range of topographies, source el-
evations, and meteorological environments observed in the
real world? Targeted LES experiments may be needed to bet-
ter constrain the Ueff–U10 relationship for sources in com-
plex topography. (3) How will scattering uncertainties in the
photon light paths influence mass enhancement estimates?
Clouds in the scene can introduce scattering errors while also
masking out portions of the plume. The masked pixels could
be estimated by interpolation but scattering errors may be too
severe.
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