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Abstract.  

The dominant hydrometeor types associated with Brazilian tropical precipitation systems are identified 25 

via research X-band dual-polarization radar deployed in the vicinity of the Manaus region (Amazonas) 

during both the GoAmazon2014/5 and ACRIDICON-CHUVA field experiments. The present study is 

based on an Agglomerative Hierarchical Clustering (AHC) approach that makes use of dual 

polarimetric radar observables (reflectivity at horizontal polarization ZH, differential reflectivity ZDR, 

specific differential phase KDP, and correlation coefficient ρHV) and temperature data inferred from 30 

sounding balloons. The sensitivity of the agglomerative clustering scheme for measuring the inter-

cluster dissimilarities (linkage criterion) is evaluated through the wet season dataset. Both the weighted 

and Ward linkages exhibit better abilities to retrieve cloud microphysical species, whereas clustering 

outputs associated with the centroid linkage are poorly defined. The AHC method is then applied to 

investigate the microphysical structure of both the wet and dry seasons. The stratiform regions are 35 

composed of five hydrometeor classes: drizzle, rain, wet snow, aggregates, and ice crystals, whereas 

convective echoes are generally associated with light rain, moderate rain, heavy rain, graupels, 

aggregates and ice crystals. The main discrepancy between the wet and dry seasons is the presence of 

both low- and high-density graupels within convective regions, whereas the rainy period exhibits only 

one type of graupel. Finally, aggregate and ice crystal hydrometeors in the tropics are found to exhibit 40 

higher polarimetric values compared to those at mid-latitudes. 

 

Keywords: hydrometeor identification, tropical microphysics, dual-polarization radar, clustering. 
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1. Introduction 45 

 The use of dual-polarization (DPOL) radars over several decades by national weather services as 

well as research laboratories has deeply changed the understanding and forecasting of many 

precipitation events around the world. By using a second orthogonal polarization, such weather radars 

enable inference of the size, shape, orientation, and phase state of different particles detected within the 

sampled cloud. To date, the major advances that have been made as a result of DPOL radar sensitivities 50 

are mainly related to improvement in the distinction between meteorological and non-meteorological 

echoes, attenuation correction, quantitative rainfall estimation, and bulk hydrometeor classification 

(Bringi and Chandrasekar 2001; Bringi et al., 2007). By combining DPOL radar observables (generally, 

reflectivity at horizontal polarization, ZH; differential reflectivity, ZDR; specific differential phase, KDP; 

and correlation coefficient, ρHV) with some extra information such as temperature to locate the freezing 55 

level, the hydrometeor identification task has been the subject of many research studies. Indeed, 

potential benefits from this research topic are numerous such as the evaluation of microphysical 

parametrization in high-resolution numerical weather prediction models (e.g., Augros et al., 2016; 

Wolfensberger and Berne, 2018), investigation of relationships between microphysics and lightning 

(e.g., Ribaud et al. 2016a), and improvement in weather nowcasting for high-impact meteorological 60 

events (hailstorms, flight assistance, road safety). 

 

 Three hydrometeor classification schemes have been developed since the emergence of DPOL 

radar in the 1980s: (i) supervised, (ii) unsupervised, and (iii) semi-supervised techniques (Figure 1).  
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i. The supervised method constitutes, by far, most of the literature and is subdivided into three 65 

different techniques: the boolean tree method, fuzzy logic and the Bayesian approach. Here, the 

supervised technique refers to a priori and arbitrarily identified hydrometeor types from which 

DPOL radar responses have been derived from either theoretical models or empirical 

knowledge. Polarimetric observations are then assigned to the most suitable hydrometeor types 

according to their similarities. 70 

 Boolean method. This technique is the easiest way to identify dominant hydrometeor 

populations and has consequently been the first to be used. The algorithm relies on the 

beforehand definition of the ranges of DPOL radar-observable values for each hydrometeor 

type by the user. Then, a simple Boolean decision is applied to retrieve the dominant 

hydrometeor type (Seliga and Bringi, 1976; Hall et al, 1984; Bringi et al, 1986; Straka and 75 

Zrnić, 1993; Höller et al, 1994). This approach, nevertheless, does not take into account the 

fact that different hydrometeor types can be defined on the same range of values for the 

same polarimetric radar observable and, therefore, frequently leads to misclassification. 

 Fuzzy logic technique (Mendel et al., 1995). This supervised algorithm type fixed the 

previous limitation by allowing a smooth transition of DPOL radar-observable ranges for all 80 

hydrometeor types. The originality of fuzzy logic is its ability to transform sets of nonlinear 

radar data into scalar outputs referring to different microphysical species. In this regard, each 

hydrometeor type distribution is characterized by a membership function coming from either 

T-matrix simulations (Mishchenko and Travis, 1998) or, less frequently, aircraft in situ 

measurements. The hydrometeor inference is finally the result of a combination of 85 
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membership functions and a set of a priori rules defined by the user (Straka et al., 1996; 

Vivekanandan et al., 1999; Liu and Chandrasekar, 2000; Marzano et al, 2006; Park et al., 

2009, Dolan and Rutledge, 2009; Al-Sakka et al., 2013; Thompson et al., 2014). This 

method is relatively simple to implement and computationally inexpensive. Few studies such 

as the Joint Polarization Experiment (Ryzhkov et al., 2005) for hail detection or even the 90 

recent use of a fuzzy logic algorithm as an operational tool for national weather services (Al-

Sakka et al., 2013) have demonstrated the robustness of this hydrometeor classification 

algorithm type in singular environments. 

 Bayesian approach. In this case, the hydrometeor identification task is expressed in a 

probabilistic form based on synthetic data derived from polarimetric radar simulation of 95 

different hydrometeor types (with each one being characterized by a centre and a covariance 

matrix). The final supervised hydrometeor inference is then performed by adapting the 

maximum a posteriori rule. Another interesting attribute of the Bayesian technique resides in 

the appealing possibility of retrieving the liquid water content associated with each 

hydrometeor type (Marzano et al., 2008; Marzano et al., 2010). 100 

ii. More recently, Grazioli et al. (2015) or even Grazioli et al. (2017) proposed an innovative 

unsupervised approach to identifying the dominant hydrometeor distribution within precipitation 

events, where hydrometeor types are retrieved by gathering DPOL radar data observable 

similarities. Indeed, the unsupervised technique refers to a set of unlabelled data observations in 

which the goal is to group them into clusters sharing similar properties based on innate 105 

structures of the data (variance, distribution, etc.) and without using a priori knowledge. To 
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achieve this goal, the authors used an agglomerative hierarchical clustering technique together 

with a spatial constraint on the consistency of the classification (homogeneity). This data-driven 

approach mainly avoids the numerical-scattering simulations used in fuzzy logic, which are 

well-designed for the liquid phase but questionable for ice-phase microphysics. Finally, 110 

interpretation of the clusters (labelling) is done manually.  

iii. Although initially mentioned by Liu and Chandrasekar (2000), the first complete study based on 

a semi-supervised approach was done by Bechini and Chandrasekar (2015), recently followed 

by the works of Wen et al. (2015), Wen et al. (2016) and Besic et al. (2016). This technique 

combines the advantages of the fuzzy logic and clustering methods. The algorithm initially 115 

begins with a fuzzy logic classification, which is then adjusted by a K-means clustering method 

that iteratively allows for rectifying the initial membership function of each hydrometeor type 

according to the observed DPOL radar measurements. In addition, constraints such as 

temperature limits and/or spatial distribution can be implemented in this self-adapting 

methodology. 120 

 

 Overall, these Hydrometeor Classification Algorithms (HCAs) still require in situ aircraft 

validations (especially within convective cores) that are problematic due to their cost and, obviously, 

the danger of obtaining such measurements. Only a few studies have had the opportunity to use limited 

aircraft measurements and generally compared a few isolated in situ images with HCA outputs (Aydin 125 

et al., 1986; El-Magd et al., 2000; Cazenave et al., 2016; Ribaud et al., 2016b). Another limitation of 

these studies using methods such as the fuzzy logic approach is the dependency of their validity, since 
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they are generally both wavelength- and climatically radar-dependent. Although T-matrix simulations 

for a radar wavelength have been theoretically demonstrated, each final algorithm is then tuned by 

giving weights to each DPOL radar observable to allow them to fit as closely as possible with local 130 

ground observations. Finally, one can also see that the related hydrometeor identification literature is 

mainly concerned with the middle latitudes. Indeed, the methods were initially developed for S-band 

radar before being adapted to both C- and X-band radars, and research studies have largely been done in 

North America, Europe, and Oceania.  

 135 

 The present study aims to develop the first HCA for Brazilian tropical precipitation systems via an 

X-band dual-polarization radar used in both the GoAmazon2014/5 and ACRIDICON-CHUVA field 

experiments (Martin et al., 2016; Wendisch et al.,2016; Martin et al., 2017; Machado et al., 2018). 

Although the area constitutes an intriguing location with both a high amount of rain and complex 

aerosol-cloud interaction (e.g., Cecchini et al., 2017; Machado et al., 2018), there are almost no 140 

references for hydrometeor classification over tropical land, especially for the Amazon region. In this 

regard, the studies by Dolan et al. (2013) and Cazenave et al. (2016) took place in singular locations 

(Darwin, Australia, and Niamey, Niger, respectively). Both of these studies used a supervised fuzzy 

logic approach to retrieve the hydrometeor distribution within precipitation events with a C- and 

adapted X-band scheme, respectively. As aforementioned, fuzzy logic algorithms use weights to 145 

constrain the final identification. Another issue that might be related to hydrometeor identification tasks 

is the use of the melting layer as a parameter to detect liquid-ice delineation. However, liquid water 

above the melting layer within the convective tower of tropical systems is not unusual (Cecchini et al., 
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2017; Jakel et al., 2017). For instance, Cecchini et al. (2017) retrieved liquid water at as low as -18 °C 

within polluted tropical convective clouds. Classification using cluster analysis allows the use of natural 150 

(non-imposed) classes of ice-water species. For all these reasons, the present paper deals with the first 

unsupervised clustering method based on X-band DPOL radar measurements in the Brazilian tropical 

region. Three main questions are addressed in this paper: (1) What is the sensitivity of the clustering 

algorithm to the different linkage methods, and how can one improve the liquid-solid delineation? (2) 

What are the hydrometeor classification output characteristics for both wet and dry tropical seasons in 155 

Amazonas? And (3) what are the microphysical distribution differences within tropical convective and 

stratiform cloud systems between the wet and dry seasons? 

 The article is organized as follows: section 2 provides a brief description of the radar dataset, 

while section 3 presents the AHC method. The sensitivity of the AHC to the linkage methods together 

with a potential temperature improvement is assessed and discussed in section 4. The hydrometeor 160 

identification for Brazilian tropical system events is presented in terms of wet-dry seasons and 

stratiform-convective regions in section 5, while a discussion of hydrometeor distribution comparisons 

is presented in section 6. 

 

2. Datasets and processing 165 

 The data used in this study are mainly based on DPOL radar data observations collected during 

both the GoAmazon2014/5 and ACRIDICON-CHUVA experiments that took place around the city of 

Manaus in the Amazonas state of Brazil (Figure 2). Both of these research experiments aimed to 

investigate the complex mechanisms at play within tropical weather through intriguing interactions 



9 

 

 

 

between human activities and the neighbouring tropical forested region. In this regard, the present study 170 

considers the wet and dry seasons as corresponding to the intensive operating periods (IOPs) of the 

GoAmazon2014/5 field experiment (Martins et al., 2016), which were from 1 Feb – 31 Mar 2014 (wet 

season: 59 days) and 15 Aug – 12 Oct 2014 (dry season: 60 days). 

 Among all the instruments deployed, a Selex-Gematronik X-band DPOL radar was located in the 

city of Manacapuru in 2014 to complete the radar coverage from the Manaus Doppler radar, as well as 175 

to provide more microphysical details about the South American monsoon meteorological systems 

(Oliveira et al., 2016). The X-band DPOL radar was operated at 9.345 GHz with a 1.3° beam width at -

3 dB and in simultaneous transmission and reception (STAR) mode (Schneebeli et al., 2012; and Table 

1). The latter characteristic allows the reflectivity at horizontal polarization ZH, differential reflectivity 

ZDR, differential phase ΦDP, and correlation coefficient ρHV to be obtained. The scanning strategy was 180 

designed to complete an entire volume scan in 10 minutes by combining 15 different plan position 

indicators (PPIs) ranging from 0.5° to 30°, as well as two range height indicators (RHIs) towards 

randomly different directions.  

 The raw radar dataset has been processed beforehand to be used for the hydrometeor identification 

task. In this regard, a four-step process has been applied to the DPOL radar dataset which consists of i) 185 

calibration of ZDR, ii) identification of meteorological and non-meteorological echoes, iii) ΦDP filtering 

and estimation of the derivative specific differential phase KDP (Hubbert and Bringi, 1995), and iv) 

attenuation correction applied to both ZH and ZDR based on the ZPHI method proposed by Testud et al. 

(2000). The calibration of ZDR has been adjusted by using vertically pointing scans for cases with no rain 

attenuation (drizzle/light rain). This method allows to temporally calculate the ZDR offset since 0 dB is 190 
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expected. The offset has been then removed in subsequent ZDR measurements. A second analysis of ZDR 

was occasionally realized by checking ZDR values within stratiform light rain medium and characterized 

by ZH values between 20 and 22 dBZ. The expected ZDR value was 0.2 dB as showed by Illingworth and 

Blackman 2002 or Segond et al. 2007. Note that the dataset has also been restricted to precipitation 

events wherein the radome of the X-band DPOL radar was dry in order to remove any additional 195 

attenuation (Bechini et al, 2010). In addition to these considerations, a signal-to-noise ratio of SNR ≥ 

+10 dB, as well as a reduced radar coverage ranging from 5 to 60 km have been considered for this 

study to mitigate potential remaining errors. The last processing step relies on the separation of 

stratiform and convective radar echoes. The methodology used in the present paper is the same as that 

used by Steiner et al. (1995) and has been applied from a horizontal reflectivity field at a constant 200 

altitude plan position indicator (CAPPI) generated at 3 km height (T > 0 °C). 

 The present study also deals with external temperature information coming from soundings 

launched near the X-band radar (downwind of Manaus) at 00, 06, 12, 15, and 18 UTC, respectively. The 

sounding with the closest time to the radar measurements has been considered to derive the temperature 

profile associated with both PPIs and RHIs. 205 

 

3. Unsupervised Agglomerative Hierarchical Clustering 

 The present hydrometeor classification algorithm is an unsupervised AHC method that aims to 

partition a set of n observations into N different clusters. This technique works as an iterative “bottom-

up” method where each observation starts in its own cluster and pairs of clusters are aggregated step by 210 

step until there is one final cluster, which comprises the entire dataset. Each cluster is composed of a 
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group of observations sharing more similar characteristics than the observations belonging to the other 

clusters. Here, there is no a priori information concerning the shape and size of each cluster or the final 

optimized number of clusters. A posteriori analysis is then performed through the final iterations to 

retrieve the optimal clustering partition and respective labels.  215 

 Since associated background already exists, the reader is especially referred to Ward (1963) and 

Jain et al. (2000) for detailed mathematical reviews of the technique. Additionally, the present 

clustering framework is mainly based on the methodology developed by Grazioli et al. (2015 – section 4 

and Figure 2), hereafter referred to as GR15, and only relevant and important information will be 

addressed hereafter to avoid being redundant. The main steps of the present AHC can be summarized as 220 

follows: 

 Vectorized objects of radar observations are defined for each valid radar resolution volume as 

    x = {ZH, ZDR, KDP, ρHV, Δz}, 

 where Δz is the difference between the radar resolution height and the altitude of the isotherm at 

0 °C, deduced from sounding balloons. 225 

 Since scales of radar polarimetric variables differ by orders of magnitude, data normalization is 

applied to concatenate all the observations into a [0;1] common space. The first four components 

of each object are based on the minimum-maximum boundaries rule. The temperature 

information is redistributed by applying a soft sigmoid transformation that allows setting a value 

of zero (one) for altitudes below (over) the bright band. Here, the thickness of the bright band 230 

over the whole GoAmazon2014/5 – ACRIDICON-CHUVA database has been manually 

estimated and set up to spread over a layer of ± 700 m. To obtain the maximum degrees of 
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freedom in the initial dataset coming from the DPOL radar measurements, here, the influence of 

the temperature information is mitigated by distributing its values into a [0;0.5] range space. 

 Although the radar data are now suitable for clustering, the choice of two criteria still remains. 235 

At each iteration of the AHC method, similarities/dissimilarities must be evaluated to determine 

which clusters merge. In this regard, the Euclidean metric is considered to calculate the distance 

between different single objects. The generalization of this distance metric to an ensemble of 

objects is called the merging linkage rule. Various methods exist to evaluate inter-dissimilarities 

such as single (nearest neighbour), complete (farthest neighbour), averaged, weighted, centroid, 240 

or even Ward (variance minimization) linkages (see Müllner, 2011). Herein, we consider the 

weighted, centroid and Ward linkage rules (see section 4.a).  

 Running such a clustering method over the whole dataset is computationally very expensive. To 

tackle this problem, a subset of approximately 25 000 initial observations is randomly chosen 

through the whole precipitation events database. The clustering method is initially applied to the 245 

subset and then extended to the whole dataset by using the nearest cluster rule at each iteration. 

 One of the major novelties proposed by GR15 relies on the implementation of a spatial 

constraint that aims to check the homogeneity of the clustering distribution at each iteration. 

More precisely, one assumes that a smooth, horizontal transition exists between the resulting 

hydrometeor field outputs. Therefore, a spatial smoothness index is calculated at the end of each 250 

iteration step and individual object by checking the four closest geographical radar gates. In the 

very same way as that used in GR15, results are summarized into a confusion matrix, from 
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which several spatial indexes can be extracted to analyse the individual and global spatial 

smoothness of a partition.  

 The merging of two clusters is realized by identifying the cluster which presents the lowest 255 

spatial similarities among all clusters. Objects belonging to this spatially poor cluster are then 

constrained to be redistributed through the other existing clusters according to the linkage 

method chosen. This final step allows decreasing the total number of clusters by one.  

 If the iteration process does not reach a single and unique cluster, the iteration loop then restarts 

at the initial PPIs classification and goes through the evaluation of spatial homogeneity. 260 

 Finally, an analysis of the variance explained has been implemented to evaluate the consistency 

of the clustering classification outputs. This quality metric allows definition of the theoretically 

appropriate number of clusters by analysing the ratio between the internal and external variance 

of each cluster at each step of the iteration. The main idea here is to find the optimal cluster 

distribution beyond which considering one more cluster is not meaningful. 265 

 

4. Methodology discussions  

 a) Linkage rule sensitivity  

 According to the setup described in section 3, different linkage rules have been tested through the 

special wet season observation period (February to March) of 2014. To perform this sensitivity test, 270 

three different linkage rules have been considered here: (i) weighted, (ii) centroid, and (iii) Ward (see 

Table 2 for their respective formulas). Since the clustering method randomly picks observations within 

the whole wet season period, a set of numerous runs for each linkage method have been performed to 
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extract, as much as possible, the most representative behaviour of each one. The general common setup 

is composed of a subset of 25 000 observations randomly picked through more than 50 precipitation 275 

days. The temperature information is based on radiosounding observations and is dispatched in a [0;0.5] 

interval to place twice as much importance on the initial DPOL radar observations. The number of 

clusters reached in the first step of the AHC method is set at 50 (far enough from the final partition and 

not too computationally expensive). Finally, the clustering method has been conducted separately on 

stratiform and convective regions. 280 

 

 In this respect, Figure 3 presents the evolution of the variance explained (the ratio between the 

internal and external variance) for the three different linkage rules as a function of the number of 

clusters considered, together with their associated precipitation regimes (stratiform or convective). 

Overall, the three methods exhibit an “elbow” curvature with an optimal number of clusters ranging 285 

from approximately 5 to 8 (orange background on Figure 3). One can see that from 2 to 5 clusters, the 

variances explained sharply increases, meaning that each added cluster within this interval contributes 

significantly to retrieving the most adequate cluster partition. From 5 to 8 clusters, the increase starts to 

slow down, indicating that considering a greater number of clusters is not meaningful. In this regard, the 

best “compromise” seems to be the weighted and/or Ward linkage method for both stratiform and 290 

convective regions. Indeed, these methods have the highest scores, with approximately 99 % reached 

within the 5-8 clusters interval.  
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 Due to the inherent complexity of representing all the potential combinations, manual analysis and 

selection have been performed beforehand to find the optimal number of clusters between the stratiform 295 

and convective regions. The results from this partitioning are presented through one stratiform and one 

convective RHI (Figures 4 and 5).  

 

In addition, fuzzy logic information has been implemented to make comparisons with cluster outputs. 

The fuzzy logic scheme is mainly based on the X-band algorithm of Dolan and Rutledge (2009), 300 

hereafter referred to as DR09, and has been slightly enriched for the wet snow and melting hail 

hydrometeor types by Besic et al (2016) through scattering simulations and a temperature membership 

function (Besic et al, 2016 – Appendix A). Finally, the adapted fuzzy logic allows discrimination 

between nine hydrometeor types: light rain (LR), rain (RN), melting hail (MH), wet snow (WS), 

aggregates (AG), low-density graupel (LDG), high-density graupel (HDG), vertically aligned ice (VI), 305 

and ice crystals (IC). 

 

Figure 4 shows a stratiform system exhibiting a well-defined bright band signature from polarimetric 

observations that occurred on the shores of the Amazon River on 21 February 2014. Overall, the 

centroid linkage method does not reproduce the event well, and the final representation is 310 

microphysically poor (Figure 4-f). Indeed, this linkage rule simply divides the cloud into three 

homogeneous regions (T > 0 °C, T ~ 0 °C, and T < 0 °C). Additionally, the centroid linkage fails to 

identify a clear bright band region (Figure 4f, clusters 2S and 3S). On the other hand, the weighted and 

Ward linkage methods are very close to the fuzzy logic output descriptions (Figure 4e-g-h). They both 
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exhibit two kinds of rain, and a bright band region sits below of what appears to be an aggregates-ice 315 

crystals mixture. The main discrepancy here concerns the representation of the rain structure. The Ward 

linkage rule retrieves two more distinct liquid species (as does fuzzy logic), whereas the weighted 

linkage method exhibits a smoother rainy region. 

 

Figure 5 presents a decaying convective cell that occurred on 02 February 2014 at 13:57 UTC (0-7 km 320 

from the radar: stratiform region, 7-40 km from the radar: convective region). As is the case for the 

stratiform RHI in Figure 4, the centroid linkage rule fails to retrieve a detailed microphysical structure 

and only presents very homogeneous liquid and solid regions. Once again, both the weighted and the 

Ward linkage rule stand out and display a more realistic hydrometeor description of the convective 

cloud in comparison to the DPOL radar observations and the fuzzy logic outputs (Figure 5 a-b-c-d-e-g-325 

h). Although they both present three clusters for T > 0 °C, the weighted linkage rule puts more emphasis 

on the convective region located ~ 20-30 km from the radar than does the Ward linkage (Figure 5-e, 

cluster 6C vs. Figure 5-g, cluster 11C). The representation of the solid region (T < 0 °C) is almost the 

same, except for in the aggregates region (Figure 5h), which seems to be smaller for the weighted 

linkage rule (Figure 5e cluster 8C) than for the Ward method (Figure 5g cluster 10C). Another 330 

discrepancy between the weighted and Ward linkages concerns the layer around the isotherm at 0 ºC. 

Although Figure 5 does not exhibit any bright band region, the Ward linkage rule does exhibit one due 

to the temperature input (Figure 5g cluster 12C), whereas the weighted rule does not. The bright band 

region is known to be well-defined for stratiform regimes but quasi-undetectable (if detectable at all) for 

convective areas (Leary and Houze, 1978; Smyth and Illingworth, 1998; Matrosov et al., 2007). 335 
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Throughout the present paper, one will thus consider only a bright band cluster for the stratiform 

regions, whereas convective areas will be lacking one. 

 

Overall, Figures 3, 4, and 5 have shown that the centroid linkage method is inappropriate for the present 

task, whereas both weighted and Ward linkage rules are able to retrieve a detailed microphysical 340 

structure within the sample cloud. Based on the present description and our personal analysis over the 

whole dataset, we chose to keep working with the weighted linkage rule throughout the remainder of the 

paper.  

 

 b) Potential improvement around isotherm 0 °C 345 

High amounts of liquid water a few kilometres above the isotherm at 0 °C are not rare within the core of 

convective tropical cells. Sometimes, super-cooled liquid drops can be maintained and even moved 

upward within the melting layer, thus occasionally giving distinctive column-shaped polarimetric 

signatures for ZDR/KDP (e.g., Kumjian and Ryzhkov, 2008). A simple liquid-solid delineation based only 

on the temperature profile is therefore unsuitable.  350 

Figure 6 presents an adaptive solution to tackle this issue based on the clustering outputs of the 

weighted linkage rule. The solution proposed here relies on a posteriori analysis of the clustering 

outputs associated with the convective regions. First, one proceeds to identify the convective core under 

the isotherm at 0ºC (here, cluster 6C). Then, all radar observations within the solid region are assigned 

by calculating their distance from the 6C cluster centroid without applying any temperature constraint 355 

(objects are thus defined only by the first four radar components). If the distance is smaller than D<0.25 
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and there is no discontinuity throughout the liquid-solid delineation, then the solid identification is 

switched to liquid (cluster 6C). Note that the distance D has been empirically chosen for the present 

radar observations and could consequently be adjusted by exploring more convective days. Overall, 

with this simple hypothesis, one can see the potential of a such method (Figure 6b). The liquid cluster 360 

can thus reach 8 km in the core of the convection at 25 km from the radar, which matches well with the 

convective tower (>35 dBZ) visible in Figure 5a. Around this convective core, the enhancement allows 

raising raindrops by about one kilometre upward in the 0ºC isotherm, restraining cluster 6C at ~ 5 km. 

In comparison to a simple binary delineation such as that used for the fuzzy logic outputs (Figure 6a), 

the focus on radar observables in a second phase is then promising.  365 

 

 

5. Wet and dry season dominant hydrometeor classifications 

 This section aims to interpret and label each cluster retrieved through both the wet and dry seasons 

over the Manaus region by using the AHC method setup described in section 3. As the use of 370 

classification allowing liquid water above the melting layer of convective towers needs further 

validation, a standard classification is used to classify and analyse the wet and dry hydrometeors using 

the temperature parameter. 

 

 a) Wet season clustering outputs 375 

 The distributions of ZH, ZDR, KDP, ρHV, and Δz for each cluster from the stratiform and convective 

clouds of the wet season together with their probability densities are presented in the violin plot in 
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Figure 7 and Figure 8, respectively. The contingency table between the stratiform (convective) 

clustering outputs and the nine microphysical species retrieved by the DR09 adapted fuzzy logic 

algorithm is shown in Table 3 (Table 4). The complete wet season cluster centroids are given in 380 

Appendix A.1. 

 

 

  1) Stratiform region 

 Cluster 1S is only defined for negative temperatures and is associated with high ρHV and low ZH, 385 

ZDR and KDP values (Figures 4e and 7). One can see from contingency Table 3 that the cluster 1S 

repartition is mostly associated with aggregates (~ 33 %) and ice crystals (~ 12 %) for high altitudes. 

Although the horizontal and differential reflectivity values are slightly higher than those for the DR09 

T-matrix microphysical outputs and polarimetric characteristics retrieved by GR15, one can make the 

assumption that the cluster 1S behaviour stands for ice crystals. On the other hand, cluster 2S is closer 390 

to the DR09 T-matrix aggregates microphysical features. This cluster is characterized by a mean 

horizontal (differential) reflectivity of ~ 27 dBZ (~ 1.3 dB), a low specific differential phase (~ 0.27 

degree/km) and a high coefficient of correlation (0.97). Overall, the polarimetric signatures of cluster 2S 

are mostly divided into the associated wet and dry snow (aggregates) from the microphysical categories 

of fuzzy logic (Table 3). Figure 4e allows discrimination between these categories, and one can consider 395 

that cluster 2S is here associated with aggregates. Once again, its polarimetric signatures are slightly 

higher than the DR09 T-matrix values or even the GR15 aggregates clustering output. One explication 

behind these distributions being slightly shifted to higher values can be the relative humidity, which is 
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higher in the tropics than at higher latitudes. The growth of ice crystals/aggregates by vapor diffusion 

within this cloud region (Houze, 1997) may lead to bigger solid particles (higher ZH and ZDR values).  400 

The bright band region is well-represented here by cluster 4S. Indeed, its global distribution spreads 

only at the altitude of the isotherm at 0 °C and exhibits high ZH and ZDR values, as well as low KDP and 

ρHV values. Finally, clusters 3S and 5S present rain characteristics since more than 90 % of these 

clusters are in agreement with the drizzle and rain fuzzy logic types from DR09. Although the two 

clusters have the same behaviours, cluster 3S is characterized by polarimetric signatures higher than 405 

those in cluster 5S, except for the coefficient of correlation (0.97 vs. 0.99, respectively). In this regard, 

one can consider that cluster 3S represents the rain microphysical species, whereas cluster 5S is related 

to drizzle characteristics.  

 

 2) Convective region 410 

Overall, one can see from Figures 5 and 8 that the convective regions of the wet season are composed of 

three types of hydrometeors for both positive (clusters 6C-10C-11C) and negative temperatures 

(clusters 7C, 8C and 9C).  

Hail precipitation in the Amazonas region is rare, and as expected, no clusters represent melting hail 

characteristics, as in Ryzhkov et al. (2013) or Besic et al. (2016) (Table 4). Therefore, clusters 6C, 10C, 415 

and 11C can be associated with three distinct rainfall precipitation regimes. In this regard, cluster 10C 

presents the same light rain characteristics as both DR09 and GR15. The cluster is characterized by ZH 

(ZDR) values approximately 13 dBZ (0.68 dB), and a KDP (0.14 degree/km) that is in high agreement 
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with the drizzle hydrometeor type from the adapted fuzzy logic (~ 97 %, Table 4). According to this 

description, one can attribute cluster 11C to the light rain precipitation type. The two remaining liquid 420 

clusters are associated with moderate and heavy rainfall types with almost the same polarimetric 

signatures as those given in GR15. Indeed, cluster 6C presents higher ZH (44 vs. 31 dBZ), ZDR (2.1 vs 

1.4 dB), and KDP (1.9 vs 0.8 degree/km) mean values than those for cluster 11C. In this regard, one can 

link cluster 6C to heavy rainfall and cluster 11C to moderate rainfall.   

Concerning negative temperatures, cluster 9C stands out by being spread at the highest altitudes (Figure 425 

8-e). This cluster is defined by low ZH, ZDR, and KDP values together with a moderate ρHV (~ 0.97). One 

can note that cluster 9C is close to the ice crystals/small aggregates retrieved by GR15 and is also the 

only cluster related to the T-matrix ice crystals species from DR09 (Table 4). Within the decaying 

convective cell presented in Figure 5, one can observe that cluster 7C is associated with the low-density 

graupel characteristics proposed by DR09 and exhibits ZH (ZDR) values approximately 36 dBZ (0.8 dB). 430 

In addition, cluster 7C is mainly classified (~ 69 %) as low-density graupel (Table 4). Finally, the last 

cluster, 8C, is surrounded by ice crystals and presents polarimetric signatures lower than those for 

cluster 7C. Although it is defined by higher values than those given by DR09 and GR15, one can 

associate cluster 8C with the aggregate microphysical species. Indeed, contingency Table 4 shows that 

45 % of the cluster 8C points are in agreement with this hydrometeor type.  435 
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 b) Dry season clustering outputs 440 

As for the previous section, the clustering outputs retrieved by the AHC method and the weighted 

linkage rule are identified and associated with their corresponding microphysical species through the 

dry tropical season. The corresponding cluster centroids are detailed in Appendix A.2. 

 

1) Stratiform region 445 

Figure 9 shows the clustering classification outputs extracted from an RHI presenting a melting layer 

region within a stratiform event that occurred on 08 September 2014 in the region of Manaus. Overall, 

the clustering outputs are close to the hydrometeor distribution retrieved by the adapted DR09 fuzzy 

logic. Clusters 1S-2S retrieved for positive temperatures appear well located in terms of polarimetric 

signatures and fuzzy logic outputs. One can see that the melting layer region is clearly characterized by 450 

cluster 4S, whereas for negative temperatures, clusters 3S-5S show patterns close to the fuzzy logic 

outputs.  

The violin plots in Figure 10 and contingency Table 5 allow discrimination and labelling of these 

clusters. For DR09 classification, clusters 1S and 2S exhibit rainfall signatures. Cluster 2S is in 

agreement with the fuzzy logic drizzle category (~ 92 %), whereas cluster 1S is divided into the drizzle 455 

(~ 76 %) and rain (~ 22 %) microphysical species. Between these two clusters, one can observe that 

cluster 1S contains the highest ZH, ZDR and KDP values, and one can consequently label it as a rainfall 

type. Cluster 2S is, however, associated with the drizzle/light rain category according to the polarimetric 

radar signatures (GR15).  
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The liquid-solid delineation is represented here by cluster 4S. It presents a low ρHV (~ 0.93) and a large 460 

ZH distribution around ~ 30 dBZ and is almost only defined for altitudes close to the 0ºC isotherm. In 

addition, contingency Table 5 matches well with this hydrometeor association.  

For the negative temperatures, the clustering outputs exhibit two clusters, 3S-5S. The first is located 

within the edge region of the cloud, whereas cluster 5S is distributed at lower altitudes and is closer to 

particles of greater densities (Figure 10). Cluster 5S is in ~ 70 % agreement with the aggregate fuzzy 465 

logic outputs (Table 5), and its polarimetric signatures are close to those of GR15 and T-matrix 

simulations from DR09. One can then define cluster 5S as the aggregate microphysical species. Finally, 

ice crystals/small aggregates are represented through cluster 3S, which is defined by low ZH, ZDR, and 

KDP values and a high ρHV.  

 470 

 2) Convective region 

Figure 11 shows an RHI of a convective system that occurred in the late afternoon on 06 October 2014 

in the region of Manaus. Overall, this RHI shows a convective cell (at 24-50 km from the radar) 

together with its relative stratiform region (0-23 km). Note that the abrupt transition from the convective 

and stratiform classification areas (Figure 5-6-11) is inherent to the Steiner et al. (1995) algorithm. In 475 

terms of microphysical distribution, there should be some consistency between the two cloud types. The 

implementation of continuity analysis may prevent the latter artefacts. The convective cell is 

characterized by ZH values up to 25 dBZ at 14 km, and the cloud top exceeds 16 km. According to the 

fuzzy logic outputs (Figure 11-f), the cell exhibits mostly rainfall precipitation for positive 

temperatures. The corresponding cluster outputs retrieve the same signatures, dividing the rain pattern 480 
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into three different clusters: 6C, 7C, and 12C. Once again, the fuzzy logic collocates a bright band 

around the isotherm at 0ºC, whereas neither polarimetric signatures nor clustering outputs exhibit a 

bright band. For negative temperatures, the AHC method retrieves four clusters (8C, 9C, 10C and 11C), 

the same as the fuzzy logic outputs. 

 485 

The violin plots in Figure 12 and contingency Table 6 allow discrimination and labelling of these 

clusters. For the convective regions observed during the wet season, hail precipitation is rare in the 

Amazonas. Contingency Table 6 is also in agreement with this description, since none of the clustering 

outputs exceed 3 %. Therefore, one can attribute clusters 6C, 7C, and 12C to three different rainfall 

precipitation regimes, ranking the cluster positions as follows: 12C presents weaker ZH, ZDR, and KDP 490 

values than does cluster 7C, which presents lower values than does cluster 6C (Figure 12). In addition, 

one can see from contingency Table 6 that all three are in very high agreement with the drizzle and rain 

microphysical species. Based on the aforementioned description together with Figure 11 analysis, one 

can attribute cluster 12C to light rainfall, cluster 7C to moderate rainfall and, finally, cluster 6C to the 

heavy rainfall type.  495 

Concerning all clusters spreading at negative temperatures, cluster 11C matches well with the high-

density graupel category defined by DR09 such as “graupel growing in regions of large supercooled 

water contents, melting graupel, and freezing of supercooled rain”. Based on contingency Table 6, this 

cluster is mainly associated with wet snow and slightly with the low-density graupel microphysical 

specie. Nevertheless, one can see that the ρHV distribution is pretty low (~ 0.94) and could also be the 500 

signature of wet graupel (due to melting or wet growth) or a mixture of graupel and hail, as suggested 
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by Straka et al (2000) and Kumjian et al (2008). This cloud region is surrounded by low-density 

graupel, characterized by cluster 9C (Figures 11-12). This hydrometeor type shows 60 % agreement 

with this microphysical type within contingency Table 6 and is close to the DR09 T-matrix outputs. 

Cluster 10C shares more than 50 % with the aggregates type and 30 % with the low-density graupel 505 

type, whereas cluster 8C is associated in general with ice crystals and aggregates types (Table 6). With 

Figures 11-12 and the aforementioned description, one can analyse cluster 9C as low-density graupel, 

cluster 10C as aggregates, and, finally, cluster 8C as ice crystals.  

 

6) Discussion 510 

 a) Impact of the clustering method and location 

 The present results allow making a brief comparison between the classical supervised fuzzy logic 

technique commonly used in the literature and the unsupervised AHC method. In opposition to the rigid 

structure of a fuzzy logic algorithm, the flexibility of the clustering approach allows better identification 

of the bright band region. Indeed, the liquid-solid delineation around the 0 °C isotherm is better 515 

captured and distinguished by the AHC method, which preferentially follows the polarimetric signatures 

instead of the stratified temperature region. Additionally, one can see the ability of the AHC method to 

fully exploit the high sensitivity of the X-band radar frequency to distinguish between three different 

(light, moderate, and heavy) rainfall regimes such as in GR15. This enhancement allows, for instance, 

putting more emphasis onto severe convective precipitation cells and may open new perspectives for 520 

nowcasting issues. 
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Note that the present clustering method has been distinctly subdivided into stratiform and convective 

regions. Although they are characterized by different thermodynamic structures (Houze, 1997), the 

stratiform and convective regions may be related in terms of microphysical distributions, such as ice 

particles which might be ejected from the top of an active convective cell into the upper part of the 525 

stratiform region. This microphysical continuity could be further considered either by merging 

stratiform and convective hydrometeor types that present close DPOL characteristics (Figures 7-8-10-

12), or by implementing an a posteriori continuity analysis. 

The location of the present study also offers the possibility to discuss mid-latitude and tropical 

microphysical differences. As described in section 5, the dominant tropical hydrometeor classification 530 

overlaps some mid-latitude microphysical species definitions. For instance, one can see that both the 

aggregate and ice crystal microphysical species are skewed to higher horizontal (differential) reflectivity, 

regardless of the season and region (stratiform/convective) considered. These discrepancies might be 

attributed either to an inaccurate attenuation correction or inherent tropical characteristics involved 

within microphysical ice growth. Although we considered a limited radar coverage, regions with high 535 

SNR values, as well as only precipitation events having a dry radome, the ZPHI method may still lead 

to overcorrection, especially on ZDR in strong convective cases when the Mie-scattering may dominate 

the precipitation regions. Another explanation of these discrepancies may rely on tropical atmospheric 

characteristics that present higher tropospheric humidity profiles together with higher incident solar 

radiation, playing an important role in comparison to mid-latitudes.  540 
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 b) Wet-Dry season differences 

The investigation of some Amazonian wet-dry season differences has already been explored by a few 

studies. For instance, Machado et al. (2018) noted that during both the GoAmazon2014/5 and 545 

ACRIDICON-CHUVA field campaigns, the wet season overall mean cumulative rain was four times as 

much as that during the dry season. However, though characterized by a low amount of total rainfall, 

the dry season presents the higher rainfall rate (Dolan et al, 2013; Machado et al, 2018). According to 

Machado et al (2018), these discrepancies can partly be explained by the fact that the dry season 

presents higher convective available potential energy (CAPE) and lower cloud cover than those during 550 

the wet season. Another study conducted by Giangrande et al (2017) also examined the wet-dry season 

differences through convective clouds. The authors showed that warm clouds exhibit larger cloud 

droplets and that the stratiform region during the wet season is much more developed than that during 

the dry season (due to surrounding monsoon ambient characteristics).  

All these differences are expected to contribute to the wet-dry season differences. Here, one can address 555 

for the first time these discrepancies through the dominant microphysical patterns in terms of 

stratiform/convection precipitation regimes associated with the Central Amazonas (Manaus region). 

Based on this new hydrometeor classification adapted to the tropical region, this section explores the 

differences among the clouds related to these two seasons.  

 560 

  1) Stratiform region 

Figure 13 presents a comparison of pairs of stratiform hydrometeor types between the wet and dry 

seasons. For positive temperatures, both the drizzle and rain microphysical species present higher ZH 
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and lower ZDR values during the dry season than during the wet season. These polarimetric signatures 

might be attributed to the evaporation and collisional processes that tend to reduce the particle diameters 565 

(Kumjian and Ryzhkov 2010; Penide et al, 2013). The separation between the drizzle/light rain and the 

rain microphysical species is defined for a rainfall rate of approximately 2.5 mm/h (American 

Meteorological Society, 2018). The classical Marshall-Palmer Z-R relationship allows estimation of the 

rainfall rate for stratiform precipitation. In this regard, the wet rain microphysical species is 

characterized, on average, by a rainfall rate of 1.84 mm/h, whereas the rate is up to 3 mm/h during the 570 

dry season. The general wet rain microphysical species distribution thus still contains drizzle/light rain 

observations, which might be due to the different cloud cover patterns associated with stratiform echoes 

during the two seasons. As noted by Machado et al (2018), stratiform cloud cover related to the rainy 

season is more associated with a monsoon cloud regime than during the remaining season. While the 

dry season stratiform regime is directly the result of the rain convective cells, the wet stratiform cover 575 

may also refer to large ambient unrelated residual precipitation far outside the original convective cloud. 

Overall, the melting layer, which is represented here through the wet snow microphysical species, is 

consistent with the results of previous studies (Durden et al, 1997; Giangrande et al, 2008; Heymsfield 

et al, 2015; Wolfensberger et al, 2015; Wang et al, 2018). The vertically restricted layer of wet snow 

presents the most widespread distribution of ZH, ZDR, KDP and ρHV of all the retrieved microphysical 580 

species and for both seasons. One can see that the wet season distribution differs from the dry season, as 

its distribution is more associated with lower (higher) ZH (ZDR) values. The main discrepancy here is 

related to the ZDR distribution, which has stronger values during the wet season by approximately 1 dB. 

According to the study of Wang et al. (2018) which put emphasis onto mature Mesoscale Convective 
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System events during the GoAmazon2014/5 experiment, the wet season always presents stronger bright 585 

band signatures that might be attributed to more prominent aggregation processes. Indeed, the moist 

conditions in midlevels could promote more ice growth in the stratiform regions (as compared to the dry 

season) and could lead to stronger bright band signatures when those aggregates melt. 

One of the main differences in the cloud structure between the wet and dry season relies on the cloud 

top altitudes. Indeed, during the dry season, clouds can easily reach 16-17 km in the tropics compared to 590 

only 13-14 km during the wet season. Therefore, the microphysical processes for negative temperatures 

are distributed over two different thickness layers and moisture profiles. In this cloud region, ice 

crystals grow by vapor diffusion until to have a sufficient weight to start falling and forming aggregates 

(Houze, 1997). Although they present quite similar distributions, they both spread at about a 1.5 km 

interval difference in altitude. Additionally, the ZDR values associated with aggregates and ice crystals 595 

are generally slightly higher than those retrieved in DR09 or GR15. However, this result is consistent 

with the study of Wendisch et al (2016) that identified shaped plates of aggregates/crystals in the anvil 

outflow with in situ airplane observations. 

 

  2) Convective region 600 

Figure 14 presents a comparison of pairs of convective microphysical species between the wet and dry 

seasons. As aforementioned in section 5, the dry season is composed of 7 hydrometeor types compared 

to 6 for the wet season. While the rainy season only has a graupel microphysical species, the dry season 

allows distinguishing between low- and high-density graupel. Therefore, the graupel microphysical 
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species defined during the wet season has been associated with the low-density graupel of the dry 605 

season to make this comparison possible.  

Convective regions are characterized by three different rainfall regimes: light, moderate and heavy rain. 

Overall, the ZH, ZDR, and KDP distributions associated with the dry season are generally shifted towards 

higher values. The dry season is known to exhibit the most intense convective cells (Machado et al, 

2018). Their corresponding precipitation formation mechanism is generally dominated by ice 610 

microphysical processes, wherein the melting of graupel particles lead to large raindrops (Rosenfeld and 

Ulbrich, 2003; Dolan et al., 2013). One can see here that although growth by coalescence could be very 

efficient during the wet season, the production of larger raindrops results mostly from ice microphysical 

processes.  

Overall, the combination of the wet season graupel microphysical species with the dry season low-615 

density graupel makes sense in Figure 14. Indeed, they have almost the same polarimetric range 

distributions and are in agreement with each other. By contrast, the high-density graupel signatures are 

correlated with high ZH, ZDR, and KDP values and low ρHV values. As mentioned in section 5.b.2, high-

density graupel would have been associated with a mixture of wet graupel/small hail. Nevertheless, 

these three related graupel categories are even consistent with the DR09 T-matrix definitions. 620 

The main discrepancy between the aggregate and ice crystal microphysical species concerns their 

altitude definitions, wherein the dry season allows generating these hydrometeor types at higher 

altitudes. Systematically, the aggregate and ice crystal ZH and ZDR distributions are shifted to higher 

values during the wet season. These shifts may be due to an unreliable estimation of the attenuation 

correction or explained by the results of Rosenfeld et al (1998) and Giangrande et al (2016). Both of 625 
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these studies showed that during the dry season, updrafts are more intense and, therefore, do not allow 

enough time for small ice crystals to properly develop. In terms of aerosol concentrations, the wet 

Amazonian season is known to be much cleaner than the dry season (Artaxo et al. 2002). With this 

regard, Williams et al (2002), Cecchini et al (2016), or even Braga et al (2017) highlighted its impact on 

the microphysical development of tropical cloud particles, showing that high aerosol concentrations 630 

may lead to smaller liquid particles within strong updraft regions. Well, small drops are known to freeze 

at colder temperatures by inhibiting the ice multiplication processes (Hallet and Mossop, 1974), and 

may account for the wet/dry season differences observed.  

 

 635 

7. Conclusions 

Based on an innovative clustering approach, the first hydrometeor classification for Amazon tropical-

equatorial precipitation systems has been realized by using research X-band DPOL radar deployed 

during both the GoAmazon2014/5 and ACRIDICON-CHUVA field experiments. The AHC method 

was broadly equivalent to GR15 and built using ZH, ZDR, KDP and pHV polarimetric radar variables 640 

together with temperature information extracted from sounding balloons. The clustering approach 

allowed gathering of polarimetric radar observations that exhibit similarities amongst themselves within 

both wet and dry seasons and both stratiform and convective regions. Sensitivity analysis during the wet 

season was performed through different linkage rules and showed that both the weighted and Ward 

linkage rules were the most suitable for this hydrometeor classification task. In this regard, a novel 645 

approach was tested to improve the 0 °C hydrometeor layer representation within the convective region. 
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While the 0 °C isotherm region is generally binarily represented, one can allow the liquid water content 

to overpass this region by setting simple rules. The final representation showed a realistic distribution 

and created new perspectives to respect polarimetric radar signatures as much as possible.  

The AHC clustering outputs for both the wet and dry seasons and the stratiform and convective regions 650 

were investigated over the Manaus region with the complete datasets collected during 2014. Although 

previous studies were conducted for different latitudes and/or wavelengths, the retrieved hydrometeor 

types were found to be generally in agreement. Overall, typical cloud microphysical distributions within 

the stratiform precipitation regimes are characterized by five hydrometeors: drizzle/light rain, rain, wet 

snow, aggregates, and ice crystals. On the other hand, convective regions exhibit more diversified 655 

microphysical populations with six (seven) retrieved hydrometeor types for the wet (dry) season: light 

rain, moderate rain, heavy rain, low-density graupel, (high-density graupel), aggregates, and ice 

crystals. 

The present study also highlighted the potential of the clustering approach in comparison to a more 

“classical” supervised fuzzy logic algorithm. For instance, the clustering results showed a better ability 660 

to delimit and distinguish the bright band region. The AHC method also allowed exploiting the higher 

sensitivity of the X-band radar and permitted retrieving three different rainfall regimes by exhibiting 

light, moderate, and heavy intensities.  

The retrieved labelled clusters allowed making comparisons of the dominant microphysical species 

involved during both the wet and dry seasons of Brazilian tropical precipitation systems. Thus, the main 665 

discrepancy relies on the presence of one more microphysical species within the convective region of 
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the dry season, defined as high-density graupel. This microphysical species is probably the result of a 

deeper convection associated with precipitation systems that occur during this period of the year.  

Overall, the dry season ZH, ZDR, and KDP distribution shapes were quite similar to those of the rainy 

period; however, the distributions were shifted towards higher (lower) values for positive (negative) 670 

temperatures. The different rainfall intensities associated with the dry season generally exhibited higher 

ZH, ZDR, and KDP values than those during the wet season, leading us to believe that ice microphysical 

processes outweigh warm rain microphysical mechanisms. Finally, the retrieved tropical microphysical 

species distribution showed that both aggregates and ice crystals were shifted towards higher radar 

observable values in comparison to the mid-latitude X-band definition. These signatures might be due to 675 

the presence of a higher humidity amount within tropical regions, which may allow more dendritic-plate 

growth of aggregates and ice crystals microphysical species. 

 

Although the year 2014 was representative and complied with typical tropical precipitation events, the 

present study could be strengthened by an extended dataset as well as the use of i) in situ observations 680 

for validation tasks and ii) aerosols information to investigate microphysical differences between the 

wet and dry season. Nevertheless, this first detailed analysis of dominant hydrometeor distributions 

within tropical precipitation systems is promising and could also be extended to other radar frequencies 

and operational DPOL radars. Such improvements could be useful to identify key microphysical 

parameters for nowcasting issues, which are expected to be investigated in the near future through both 685 

the SOS-CHUVA (Brazil) and RELAMPAGO (Argentina) research projects. In this regard, the 

clustering methodology could be enhanced by taking into account the Doppler velocities to explore the 



34 

 

 

 

microphysical processes involved within vigorous updraft/downdraft regions of the cloud. Finally, these 

results could also be helpful in evaluating the microphysical parameterization schemes used within 

high-resolution numerical weather prediction models. 690 

 

 

 

 

 695 

 

Acknowledgements 

The authors would like to especially thank Jacopo Grazioli for fruitful discussions about the clustering 

method that helped refine the ideas developed in this study. The contribution of the first author was 

supported by the São Paulo Research Foundation (FAPESP) under grants 2016/16932-8 and 700 

2015/14497-0 for the SOS-CHUVA project. Also, the ACRIDICON-CHUVA campaign was partly 

funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG Priority Program 

SPP 1294). 

 

 705 

 

 

 



35 

 

 

 

References 

Al-Sakka H, Boumahmoud AA, Fradon B, Frasier SJ and Tabary P. 2013. A New Fuzzy Logic 710 

Hydrometeor Classification Scheme Applied to the French X-, C-, and S-Band Polarimetric Radars. J. 

Appl. Meteor. Climatol., 52, 2328-2344. 

 

American Meteorological Society, cited 2018: Rain. Glossary of Meteorology. [Available online at 

http://glossary.ametsoc.org/wiki/rain.]  715 

 

Artaxo, P., Martins, J. V., Yamasoe, M. A., Procópio, A. S., Pauliquevis, T. M., Andreae, M. O., ... & 

Leal, A. M. C. 2002. Physical and chemical properties of aerosols in the wet and dry seasons in 

Rondônia, Amazonia. Journal of Geophysical Research: Atmospheres, 107(D20). 

 720 

Augros, C., Caumont, O., Ducrocq, V., Gaussiat, N., & Tabary, P. 2016. Comparisons between S‐, 

C‐and X‐band polarimetric radar observations and convective‐scale simulations of the HyMeX first 

special observing period. Quarterly Journal of the Royal Meteorological Society, 142(S1), 347-362. 

 

Aydin K, Seliga TA, Balaji V. 1986. Remote sensing of hail with a dual linear polarization radar. J. 725 

Clim. Appl. Meteorol. 25: 1475–1484. 

 

Bechini, R., Chandrasekar, V., Cremonini, R., & Lim, S. (2010, September). Radome attenuation at X-

band radar operations. In Proc. Sixth European Conf. on Radar in Meteorology and Hydrology. 

 730 

Bechini, R. and V. Chandrasekar, 2015: A Semisupervised Robust Hydrometeor Classification Method 

for Dual-Polarization Radar Applications. J. Atmos. Oceanic Technol., 32, 22–47, 

https//doi.org/10.1175/JTECH-D-14-00097.1 

http://glossary.ametsoc.org/wiki/climatology


36 

 

 

 

Besic, N., Figueras i Ventura, J., Grazioli, J., Gabella, M., Germann, U., and Berne, A.: Hydrometeor 

classification through statistical clustering of polarimetric radar measurements: a semi-supervised 735 

approach, Atmos. Meas. Tech., 9, 4425-4445, https://doi.org/10.5194/amt-9-4425-2016, 2016 

 

Braga, R. C., Rosenfeld, D., Weigel, R., Jurkat, T., Andreae, M. O., Wendisch, M., Pöschl, U., Voigt, 

C., Mahnke, C., Borrmann, S., Albrecht, R. I., Molleker, S., Vila, D. A., Machado, L. A. T., and 

Grulich, L.: Further evidence for CCN aerosol concentrations determining the height of warm rain and 740 

ice initiation in convective clouds over the Amazon basin, Atmos. Chem. Phys., 17, 14433-14456, 

https://doi.org/10.5194/acp-17-14433-2017, 2017. 

 

Bringi, V. N., and V. Chandrasekar. Polarimetric Doppler weather radar: principles and applications. 

Cambridge university press, 2001. 745 

 

Bringi, V. N., Thurai, R., and Hannesen, R.: Dual-Polarization Weather Radar Handbook, AMS-

Gematronik GmbH, 2007. 

 

Cazenave, F., Gosset, M., Kacou, M., Alcoba, M., Fontaine, E., Duroure, C., & Dolan, B. (2016). 750 

Characterization of hydrometeors in Sahelian convective systems with an X-band radar and comparison 

with in situ measurements. Part I: Sensitivity of polarimetric radar particle identification retrieval and 

case study evaluation. Journal of Applied Meteorology and Climatology, 55(2), 231-249. 

 

Cecchini, M. A., Machado, L. A. T., Wendisch, M., Costa, A., Krämer, M., Andreae, M. O., Afchine, 755 

A., Albrecht, R. I., Artaxo, P., Borrmann, S., Fütterer, D., Klimach, T., Mahnke, C., Martin, S. T., 

Minikin, A., Molleker, S., Pardo, L. H., Pöhlker, C., Pöhlker, M. L., Pöschl, U., Rosenfeld, D., and 

Weinzierl, B.: Illustration of microphysical processes in Amazonian deep convective clouds in the 

gamma phase space: introduction and potential applications, Atmos. Chem. Phys., 17, 14727-14746, 

https://doi.org/10.5194/acp-17-14727-2017, 2017.  760 



37 

 

 

 

 

Chandrasekar, V., Keranen, R., Lim, S., and D., M.: Recent advances in classification of observations 

from dual polarization weather radars, Atmos. Res., 119, 9–111, 2013. 

 

Dolan B. and Rutledge SA. 2009. A Theory-Based Hydrometeor Identification Algorithm for X-Band 765 

Polarimetric Radars. J. Atmos. Oceanic Technol., 26, 2071-2088. 

 

Dolan B, Rutledge SA, Lim S, Chandrasekar V and Thurai M. 2013. A robust C-Band hydrometeor 

identification algorithm and application to a long-term polarimetric radar dataset. J. Appl. Meteor. 

Climatol., 52, 2162-2186. 770 

 

Durden, S. L., Kitlyakara, A., Im, E., Tanner, A. B., Haddad, Z. S., Li, F. K., & Wilson, W. J. 1997. 

ARMAR observations of the melting layer during TOGA COARE. IEEE transactions on geoscience 

and remote sensing, 35(6), 1453-1456. 

 775 

El-Magd A, Chandrasekar V, Bringi V, Strapp W. 2000. Multiparameter radar and in situ aircraft 

observation of graupel and hail. IEEE Trans. Geosci. Remote Sens. 38: 570–578. 

 

Grazioli, J., Tuia, D., and Berne, A.: Hydrometeor classification from polarimetric radar measurements: 

a clustering approach, Atmos. Meas. Tech., 8, 149-170, https://doi.org/10.5194/amt-8-149-2015, 2015. 780 

 

Giangrande, S. E., Krause, J. M., & Ryzhkov, A. V. 2008. Automatic designation of the melting layer 

with a polarimetric prototype of the WSR-88D radar. Journal of Applied Meteorology and Climatology, 

47(5), 1354-1364. 

 785 

 

 



38 

 

 

 

Giangrande, S. E., T. Toto, M. P. Jensen, M. J. Bartholomew, Z. Feng, A. Protat, C. R. Williams, C. 

Schumacher, and L. Machado. 2017. Convective cloud vertical velocity and mass-flux characteristics 

from radar wind profiler observations during GoAmazon2014/5, J. Geophys. Res. Atmos., 121, 12,891–790 

12,913, doi:10.1002/2016JD025303. 

 

Grazioli, J., Genthon, C., Boudevillain, B., Duran-Alarcon, C., Del Guasta, M., Madeleine, J.-B., and 

Berne, A.: Measurements of precipitation in Dumont d'Urville, Adélie Land, East Antarctica, The 

Cryosphere, 11, 1797-1811, https://doi.org/10.5194/tc-11-1797-2017, 2017. 795 

 

Hall MPM, Goddard JW F and Cherry SM. 1984. Identification of hydrometeors and other targets by 

dual-polarization radar. Radio Science, 19, 132-140. 

 

Hallett, J. and Mossop, S. C. C.: Production of secondary ice particles during the riming process, 800 

Nature, 249, 26–28, 1974. 

 

Heymsfield, A.J., A. Bansemer, M.R. Poellot, and N. Wood, 2015: Observations of Ice Microphysics 

through the Melting Layer. J. Atmos. Sci., 72, 2902–2928, https://doi.org/10.1175/JAS-D-14-0363.1 

 805 

Höller H, Hagen M, Meischner PF, Bringi VN and Hubbert J. 1994. Life Cycle and Precipitation 

Formation in a Hybrid-Type Hailstorm Revealed by Polarimetric and Doppler Radar Measurements. J. 

Atmos. Sci., 51, 2500-2522. 

 

Houze, R.A., 1997: Stratiform Precipitation in Regions of Convection: A Meteorological Paradox?, 810 

Bull. Amer. Meteor. Soc., 78, 2179–2196, https://doi.org/10.1175/1520-

0477(1997)078<2179:SPIROC>2.0.CO;2 

 



39 

 

 

 

Hubbert, J., and V. N. Bringi. "An iterative filtering technique for the analysis of copolar differential 

phase and dual-frequency radar measurements." Journal of Atmospheric and Oceanic Technology 12.3 815 

1995: 643-648. 

 

Illingworth AJ, Blackman TM. 2002. The need to represent raindrop size spectra as normalized gamma 

distributions for the interpretation of polarization radar observations. J. Appl. Meteorol. 41:286–297. 

 820 

Jain, A. K., Duin, R. P. W., and Mao, J. C.: Statistical pattern recognition: A review, IEEE Trans. 

Pattern Analysis Machine Intell., 22, 4–37, doi:10.1109/34.824819, 2000. 

 

Jäkel, E., Wendisch, M., Krisna, T. C., Ewald, F., Kölling, T., Jurkat, T., Voigt, C., Cecchini, M. A., 

Machado, L. A. T., Afchine, A., Costa, A., Krämer, M., Andreae, M. O., Pöschl, U., Rosenfeld, D., and 825 

Yuan, T.: Vertical distribution of the particle phase in tropical deep convective clouds as derived from 

cloud-side reflected solar radiation measurements, Atmos. Chem. Phys., 17, 9049-9066, 

https://doi.org/10.5194/acp-17-9049-2017, 2017. 

 

Kumjian, M.R. and A.V. Ryzhkov, 2008: Polarimetric Signatures in Supercell Thunderstorms. J. Appl. 830 

Meteor. Climatol., 47, 1940–1961, https://doi.org/10.1175/2007JAMC1874.1  

 

Kumjian, M. R., & Ryzhkov, A. V. 2010. The impact of evaporation on polarimetric characteristics of 

rain: Theoretical model and practical implications. Journal of Applied Meteorology and Climatology, 

49(6), 1247-1267. 835 

 

Leary, C. A., & Houze Jr, R. A. (1979). Melting and evaporation of hydrometeors in precipitation from 

the anvil clouds of deep tropical convection. Journal of the Atmospheric Sciences, 36(4), 669-679. 

 



40 

 

 

 

Liu H and Chandrasekar V. 2000. Classification of Hydrometeors Based on Polarimetric Radar 840 

Measurements: Development of Fuzzy Logic and Neuro-Fuzzy Systems, and In Situ Verification. J. 

Atmos. Oceanic Technol., 17, 140-164. 

 

Machado, L. A. T., Laurent, H., Dessay, N., & Miranda, I. 2004. Seasonal and diurnal variability of 

convection over the Amazonia: a comparison of different vegetation types and large scale forcing. 845 

Theoretical and Applied Climatology, 78(1-3), 61-77. 

 

Machado, L. A. T., Calheiros, A. J. P., Biscaro, T., Giangrande, S., Silva Dias, M. A. F., Cecchini, M. 

A., Albrecht, R., Andreae, M. O., Araujo, W. F., Artaxo, P., Borrmann, S., Braga, R., Burleyson, C., 

Eichholz, C. W., Fan, J., Feng, Z., Fisch, G. F., Jensen, M. P., Martin, S. T., Pöschl, U., Pöhlker, C., 850 

Pöhlker, M. L., Ribaud, J.-F., Rosenfeld, D., Saraiva, J. M. B., Schumacher, C., Thalman, R., Walter, 

D., and Wendisch, M.: Overview: Precipitation characteristics and sensitivities to environmental 

conditions during GoAmazon2014/5 and ACRIDICON-CHUVA, Atmos. Chem. Phys., 18, 6461-6482, 

https://doi.org/10.5194/acp-18-6461-2018, 2018.  

 855 

Martin, S.T.; Artaxo, P.; Machado, L.A.T.; Manzi, A.O.; Souza, R.A.F.; Schumacher, C.; Wang, J.; 

Andreae, M.O.; Barbosa, H.M.J.; Fan, J.; et al. Introduction: Observations and Modeling of the Green 

Ocean Amazon (GoAmazon2014/5). Atmos. Chem. Phys. 2016, 16, 4785–4797.  

 

Martin, S.T., , and coauthors, 2017. The Green Ocean Amazon Experiment (GoAmazon2014/5) 860 

Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest. Bulletin of the 

American Meteorological Society 98, no. 5 (2017): 981-997. 

 

Marzano F, Scaranari D, Celano M, Alberoni PP, Vulpiani G and Montopoli M. 2006. Hydrometeor 

classification from dual-polarized weather radar: extending fuzzy logic from S-band to C-band data. 865 

Advances in Geosciences, 2006, 7, 109-114. 



41 

 

 

 

 

Marzano F, D. Scaranari, M. Montopoli, and G. Vulpiani, 2008: Supervised classification and 

estimation of hydrometeors from C-band dual-polarized radars: A Bayesian approach. IEEE Trans. 

Geosci. Remote, 46, 85–98, doi:10.1109/TGRS.2007.906476. 870 

 

Marzano, F. S., Botta, G., and Montopoli, M.: Iterative Bayesian retrieval of hydrometeor content from 

X-band polarimetric weather radar, IEEE T. Geosci. Remote Sens., 48, 3059–3074, 2010. 

 

Matrosov, S. Y., Clark, K. A., & Kingsmill, D. E. (2007). A polarimetric radar approach to identify 875 

rain, melting-layer, and snow regions for applying corrections to vertical profiles of reflectivity. Journal 

of applied meteorology and climatology, 46(2), 154-166. 

 

Mendel J. M., “Fuzzy logic systems for engineering: A tutorial,” Proc. IEEE, vol. 83, no. 3, pp. 345–

377, Mar. 1995. 880 

 

Mishchenko, M. I. and Travis, L. D.: Capabilities and limitations of a current Fortran implementation of 

the T-Matrix method for randomly oriented, rotationally symmetric scatterers, Journal of Quantitative 

Spectroscopy and Radiative Transfer, 60, 3, 309–324, 1998. 

 885 

Müllner D., 2011. Modern hierarchical, agglomerative clustering algorithms. arXiv preprint 

arXiv:1109.2378. 

 

Oliveira, R., Maggioni, V., Vila, D., & Morales, C. (2016). Characteristics and diurnal cycle of GPM 

rainfall estimates over the central amazon region. Remote Sensing, 8(7), 544. 890 

 

Park HS, Ryzhkov AV, Zrnić D and Kim KE. 2009. The Hydrometeor Classification Algorithm for the 

Polarimetric WSR-88D: Description and Application to an MCS. Wea. Forecasting, 24, 730-748. 

 



42 

 

 

 

Penide, G., Kumar, V. V., Protat, A., & May, P. T. (2013). Statistics of drop size distribution parameters 895 

and rain rates for stratiform and convective precipitation during the north Australian wet season. 

Monthly Weather Review, 141(9), 3222-3237. 

 

Ribaud J-F., O. Bousquet, S. Coquillat, Relationships between total lightning activity, microphysics and 

kinematics during the 24 September 2012 HyMeX bow-echo system, Quarterly Journal of the Royal 900 

Meteorological Society, 2016a, 142, 298 

 

Ribaud J-F., Bousquet O, Coquillat S, Al-Sakka H, Lambert D, Ducrocq V, Fontaine E. 2016b. 

Evaluation and application of hydrometeor classification algorithm outputs inferred from multi-

frequency dual-polarimetric radar observations collected during HyMeX. Q. J. R. Meteorol. Soc., 905 

doi:10.1002/qj.2589 

 

Rosenfeld, D., and C. W. Ulbrich, 2003: Cloud microphysical properties, processes, and rainfall 

estimation opportunities. Radar and Atmospheric Science: A Collection of Essays in Honor of David 

Atlas. Meteor. Monogr., No. 52, Amer. Meteor. Soc., 237–258. 910 

 

Ryzhkov, A. V., Schuur, T. J., Burgess, D. W., Heinselman, P. L., Giangrande, S. E., and Zrnic, D. S.: 

The joint polarization experiment, polarimetric rainfall measurements and hydrometeor classification, 

Bull. Amer. Meteor. Soc., 86, 809–824, doi:10.1175/BAMS-86-6-809, 2005. 

 915 

Ryzhkov, A. V., Kumjian, M. R., Ganson, S. M., & Khain, A. P. 2013. Polarimetric radar 

characteristics of melting hail. Part I: Theoretical simulations using spectral microphysical modeling. 

Journal of Applied Meteorology and Climatology, 52(12), 2849-2870. 

 

Schneebeli, M., Sakuragi, J., Biscaro, T., Angelis, C. F., Carvalho da Costa, I., Morales, C., Baldini, L., 920 

and Machado, L. A. T.: Polarimetric X-band weather radar measurements in the tropics: radome and 



43 

 

 

 

rain attenuation correction, Atmos. Meas. Tech., 5, 2183-2199, https://doi.org/10.5194/amt-5-2183-

2012, 2012.  

 

Segond M.-L., Tabary, P., Parent du Châtelet, J., 2007. Quantitative precipitation estimations from 925 

operational polarimetric radars for hydrological applications, Preprints. In: 33rd Int. Conf. on Radar 

Meteorology, AMS, Cairns, Australia, August 2007. 

 

Seliga, T. A., and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements at 

orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 69–76, doi:10.1175/1520-930 

0450(1976)015,0069:PUORDR.2.0.CO;2. 

 

Smyth, T. J., & Illingworth, A. J. (1998). Radar estimates of rainfall rates at the ground in bright band 

and non‐bright band events. Quarterly Journal of the Royal Meteorological Society, 124(551), 2417-

2434. 935 

 

Steiner M, Houze Jr RA, Yuter SE. Climatological characterization of three-dimensional storm structure 

from operational radar and rain gauge data. Journal of Applied Meteorology. 1995 Sep;34(9):1978-

2007. 

 940 

Straka J and Zrnić DS. 1993. An algorithm to deduce hydrometeor types and contents from 

multiparameter radar data. Preprints, 26th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. 

Soc., 513-515. 

 

Straka, J. M., 1996: Hydrometeor fields in a supercell storm as deduced from dual polarization radar. 945 

Preprints, 18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., 551–554. 

 



44 

 

 

 

Straka, Jerry M., Dusan S. Zrnić, and Alexander V. Ryzhkov. "Bulk hydrometeor classification and 

quantification using polarimetric radar data: Synthesis of relations." Journal of Applied Meteorology 

39.8 (2000): 1341-1372. 950 

 

Testud, J., E. Le Bouar, E. Obligis, and M. Ali-Meheni, 2000: The rain profiling algorithm applied to 

polarimetric weather radar. J. Atmos. Oceanic Technol., 17, 332–356. 

 

Thompson, E. J., S. A. Rutledge, B. Dolan, V. Chandrasekar, and B. L. Cheong, 2014: A dual-955 

polarization radar hydrometeor classification algorithm for winter precipitation. J. Atmos. Oceanic 

Technol., 31, 1457–1481, doi:10.1175/JTECH-D-13-00119.1. 

 

Vivekanandan J, Ellis SM, Oye  R,  Zrnić DS,  Ryzhkov AV and Straka J. 1999. Cloud Microphysics 

Retrieval Using S-band Dual-Polarization Radar Measurements. Bull. Amer. Meteor. Soc.,  80, 381-388. 960 

 

Wang, D., Giangrande, S. E., Bartholomew, M. J., Hardin, J., Feng, Z., Thalman, R., and Machado, L. 

A. T.: The Green Ocean: precipitation insights from the GoAmazon2014/5 experiment, Atmos. Chem. 

Phys., 18, 9121-9145, https://doi.org/10.5194/acp-18-9121-2018, 2018. 

 965 

Ward, J.: Hierarchical grouping to optimize an objective function, J. Am. Stat. Assoc., 58, 236–244, 

1963. 

 

Wen G, Protat A, May PT, Wang X, Moran W. A cluster-based method for hydrometeor classification 

using polarimetric variables. Part I: Interpretation and analysis. Journal of Atmospheric and Oceanic 970 

Technology. 2015 Jul;32(7):1320-40. 

 

Wen G, Protat A, May PT, Moran W, Dixon M. A cluster-based method for hydrometeor classification 

using polarimetric variables. Part II: Classification. Journal of Atmospheric and Oceanic Technology. 

2016 Jan;33(1):45-60. 975 



45 

 

 

 

 

Wendisch, M., and coauthors, 2016. ACRIDICON–CHUVA CAMPAIGN Studying Tropical Deep 

Convective Clouds and Precipitation over Amazonia Using the New German Research Aircraft HALO. 

Bull. Amer. Meteor. Soc., 97, 1885–1908, https//doi.org/10.1175/BAMS-D-14-00255.1 

 980 

Wolfensberger, D., Scipion, D., & Berne, A. 2016. Detection and characterization of the melting layer 

based on polarimetric radar scans. Quarterly Journal of the Royal Meteorological Society, 142(S1), 

108-124. 

 

Wolfensberger, D. and Berne, A.: From model to radar variables: a new forward polarimetric radar 985 

operator for COSMO, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-427, 2018 

Zrnić, D. S., A. Ryzhkov, J. Straka, Y. Liu, and J. Vivekanandan, 2001: Testing a procedure for 

automatic classification of hydrometeor types. J. Atmos. Oceanic Technol., 18, 892–913, 

doi:10.1175/1520-0426(2001)018,0892:TAPFAC.2.0.CO;2. 

 990 

 

 

 

 

 995 

 

 

 

 

 1000 

 

 



46 

 

 

 

List of Tables 

Table 1: X-band dual-polarization radar characteristics 

 1005 

Table 2: Distance formulas for the weighted, centroid and Ward linkage rules. Here, S and T are two 

clusters joined into a new cluster, whereas V is any another cluster. nS, nT, nV are the number of objects 

contained in the clusters S, T, V, respectively. 

 

Table 3: Confusion matrix comparing the clustering outputs from the stratiform region of the wet 1010 

season and hydrometeor species retrieved from the adapted fuzzy logic. 

 

Table 4: Same as Table 3, but for the convective region of the wet season. 

 

Table 5: Same as Table 3, but for the stratiform region of the dry season. 1015 

 

Table 6: Same as Table 3, but for the stratiform region of the dry season. 

 

 

 1020 

 

 

 

 

 1025 

 

 

 

 



47 

 

 

 

List of figures 1030 

Figure 1: Schematic representation of the different hydrometeor classification techniques and their 

principal associated benchmarks. 

 

Figure 2: (a) Geographical localization of the GoAmazon2014/5 and ACRIDICON-CHUVA 

experiments. (b) X-band DPOL radar coverage and its associated topography. 1035 

 

Figure 3: Evolution of the variance explained for different clustering linkage rules. Each linkage 

method is subdivided in terms of stratiform (dashed line) and convective (solid line) regions. The 

orange vertical span highlights the interval potentially associated with the optimal number of clusters. 

 1040 

Figure 4: X-band DPOL radar observables and the corresponding retrieved hydrometeor classification 

outputs at 12:07 UTC on 21 February 2014, along the azimuth 290°. DPOL radar observables are 

shown in panels: (a) ZH, (b) ZDR, (c) KDP, and (d) pHV. Comparisons of retrieved hydrometeors for 

clustering outputs based on (e) weighted, (f) centroid, and (g) Ward linkage rules and (h) fuzzy logic 

scheme outputs. In panels (e)-(f)-(g), each number corresponds to a different cluster. ‘S’ stands for 1045 

stratiform regimes, whereas ‘C’ is for convective regimes. 

 

Figure 5: Same as Figure 4, but for 13:57 UTC on 13 February 2014, along the azimuth 200°. 

 

Figure 6: Clustering hydrometeor classification retrieved from the X-band radar at 12:07 UTC on 21 1050 

February 2014, along the azimuth 290°. (a) With temperature constraint, (b) without temperature 

constraint. 

 

Figure 7: Violin plot of cluster outputs retrieved for the stratiform regime of the wet season (DZ: 

drizzle, RN: rain, WS: wet snow, AG: aggregates, IC: ice crystals). The thick black bar in the centre 1055 

represents the interquartile range, and the thin black line extended from it represents the 95 % 

confidence intervals, while the white dot is the median. 

 

Figure 8: Same as Figure 7, but for the convective regime of the wet season (LR: light rain, MR: 

moderate rain, HR: heavy rain, GR: graupel, AG: aggregates, IC: ice crystals).  1060 

 

Figure 9: X-band DPOL radar observables and the corresponding retrieved hydrometeor classification 

outputs at 21:26 UTC on 08 September 2014, along the azimuth 200°. DPOL radar observables are 

shown in panels: (a) ZH, (b) ZDR, (c) KDP, and (d) pHV. Comparisons of retrieved hydrometeors for 



48 

 

 

 

clustering outputs based on (e) weighted linkage rules and (f) the fuzzy logic scheme. In panels (e)-(f), 1065 

each number corresponds to a different cluster. ‘S’ stands for the stratiform region, whereas ‘C’ is for 

the convective region.  

 

Figure 10: Same as Figure 7, but for the stratiform regime of the dry season (DZ: drizzle, RN: rain, 

WS: wet snow, AG: aggregates, IC: ice crystals). 1070 

 

Figure 11: Same as Figure 9, but for an RHI at 18:16 UTC on 06 October 2014, along the azimuth 

200°. 

 

Figure 12: Same as Figure 7, but for the convective regime of the dry season (LR: light rain, MR: 1075 

moderate rain, HR: heavy rain, LDG: low-density graupel, HDG: high-density graupel, AG: 

aggregates, IC: ice crystals). 

 

Figure 13: Violin plot comparison of pairs of stratiform hydrometeor types between the wet and dry 

seasons (DZ: drizzle, RN: rain, WS: wet snow, AG: aggregates, and IC: ice crystals).  1080 

 

Figure 14: Same as Figure 13, but for the convective precipitation regime (LR: light rain, MR: 

moderate rain, HR: heavy rain, LDG: low-density graupel, HDG: high-density graupel, AG: aggregates, 

and IC: ice crystals). 

 1085 

 

 

 

 

 1090 

 

 

 

 

 1095 

 

 

 

 

 1100 



49 

 

 

 

 

 

Table 1: X-band dual-polarization radar characteristics 
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Table 2: Distance formulas for the weighted, centroid and Ward linkage rules. Here, S and T are two 

clusters joined into a new cluster, whereas V is any another cluster. nS, nT, nV are the number of objects 1115 

contained in the clusters S, T, V, respectively. 
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TYPE DZ RN MH WS AG LDG HDG VI CR 

1S 38.64 % 0.01 % 0.00 % 10.34 % 32.91 % 1.31 % 0.00 % 4.47 % 12.34 % 

2S 0.02 % 0.21 % 0.00 % 43.51 % 42.66 % 11.91 % 0.00 % 0.02 % 1.67 % 

3S 64.36 % 27.55 % 0.21 % 7.88 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 

4S 5.75 % 7.27 % 0.02 % 86.02 % 0.53 % 0.11 % 0.00 % 0.03 % 0.27 % 

5S 98.04 % 0.00 % 0.27 % 1.68 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 

 

Table 3: Confusion matrix comparing the clustering outputs from the stratiform region of the wet 1120 

season and hydrometeor species retrieved from the adapted fuzzy logic. 
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TYPE DZ RN MH WS AG LDG HDG VI CR 

6C 77.00 % 21.70 % 0.99 % 0.31 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 

7C 0.00 % 0.16 % 0.00 % 21.69 % 7.70 % 69.01 % 1.44 % 0.00 % 0.00 % 

8C 0.78 % 2.70 % 0.02 % 27.24 % 44.51 % 23.71 % 0.00 % 0.27 % 0.77 % 

9C 0.10 % 0.00 % 0.00 % 9.86 % 55.90 % 5.83 % 0.00 % 9.15 % 19.16 % 

10C 96.47 % 0.14 % 1.46 % 1.92 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 

11C 31.42 % 62.98 % 1.24 % 4.36 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 

 

Table 4: Same as Table 3, but for the convective region of the wet season. 
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TYPE DZ RN  MH WS AG LDG HDG VI CR 

1S 76.30 % 22.17 % 0.10 % 1.43 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 

2S 92.32 % 4.36 % 0.65 % 2.63 % 0.02 % 0.00 % 0.00 % 0.01 % 0.00 % 

3S 0.25 % 0.00 % 0.00 % 2.65 % 41.61 % 2.19 % 0.00 % 21.18 % 32.12 % 

4S 0.97 % 1.30 % 0.00 % 49.30 % 18.46 % 26.83 % 0.23 % 0.44 % 2.48 % 

5S 0.30 % 0.03 % 0.00 % 8.28 % 68.48 % 3.99 % 0.00 % 5.29 % 13.62 % 

 

Table 5: Same as Table 3, but for the stratiform region of the dry season. 
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 1145 

TYPE DZ RN  MH WS AG LDG HDG VI CR 

6C 73.71 % 23.34 % 2.60 % 0.34 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00 % 

7C 21.61 % 73.56 % 1.00 % 3.83 % 0.01 % 0.00 % 0.00 % 0.00 % 0.00 % 

8C 0.07 % 0.01 % 0.00 % 5.62 % 51.01 % 2.70 % 0.00 % 12.72 % 27.87 % 

9C 0.16 % 2.32 % 0.00 % 27.80 % 7.41 % 60.40 % 1.86 % 0.00 % 0.04 % 

10C 0.79 % 0.17 % 0.00 % 13.48 % 51.19 % 30.91 % 0.00 % 0.83 % 2.63 % 

11C 0.00 % 15.29 % 0.51 % 64.19 % 0.19 % 11.4 % 7.72 % 0.00 % 0.00 % 

12C 97.19 % 0.00 % 0.41 % 2.34 % 0.06 % 0.00 % 0.00 % 0.01 % 0.00 % 

 

Table 6: Same as Table 3, but for the convective region of the dry season. 
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 1155 

Figure 1: Schematic representation of the different hydrometeor classification techniques and their 

principal associated benchmarks. 

 

 

 1160 

 

 

 

 

 1165 

 

 

 



53 

 

 

 

 

 1170 

 

 

 

Figure 2: (a) Geographical localization of the GoAmazon2014/5 and ACRIDICON-CHUVA 

experiments. (b) X-band DPOL radar coverage and its associated topography. 1175 
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Figure 3: Evolution of the variance explained for different clustering linkage methods. Each linkage 

method is subdivided in terms of stratiform (dashed line) and convective (solid line) regions. The 

orange vertical span highlights the interval potentially associated with the optimal number of clusters. 1210 
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Figure 4: X-band DPOL radar observables and corresponding retrieved hydrometeor classification 

outputs at 12:07 UTC on 21 February 2014, along the azimuth 290°. DPOL radar observables are 1250 

shown in panels (a) ZH, (b) ZDR, (c) KDP, and (d) pHV. Comparisons of retrieved hydrometeors for 

clustering outputs based on (e) weighted, (f) centroid, and (g) Ward linkage rules and (h) fuzzy logic 

scheme outputs. In panels (e)-(f)-(g), each number corresponds to a different cluster. ‘S’ stands for 

stratiform regimes, whereas ‘C’ is for convective regimes.  
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 1255 

Figure 5: Same as Figure 4, but for 13:57 UTC on 13 February 2014, along the azimuth 200°. 
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Figure 6: Clustering hydrometeor classification retrieved from the X-band radar at 12:07 UTC on 21 1260 

February 2014, along the azimuth 290°. (a) With temperature constraint, (b) without temperature 

constraint. 
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Figure 7: Violin plot of cluster outputs retrieved for the stratiform regime of the wet season (DZ: 

drizzle, RN: rain, WS: wet snow, AG: aggregates, IC: ice crystals). The thick black bar in the centre 1305 

represents the interquartile range, and the thin black line extended from it represents the 95 % 

confidence intervals, while the white dot is the median. 
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Figure 8: Same as Figure 7, but for the convective regime of the wet season (LR: light rain, MR: 

moderate rain, HR: heavy rain, GR: graupel, AG: aggregates, IC: ice crystals). 
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Figure 9: X-band DPOL radar observables and corresponding retrieved hydrometeor classification 1340 

outputs at 21:26 UTC on 08 September 2014, along the azimuth 200°. DPOL radar observables are 

shown in panels (a) ZH, (b) ZDR, (c) KDP, and (d) pHV. Comparisons of the retrieved hydrometeor for 

clustering outputs based on (e) weighted linkage rules and (f) the fuzzy logic scheme. In panels (e)-(f), 

each number corresponds to a different cluster. ‘S’ stands for the stratiform region, whereas ‘C’ is for 

the convective region.  1345 



61 

 

 

 

Figure 10: Same as Figure 7, but for the stratiform regime of the dry season (DZ: drizzle, RN: rain, 

WS: wet snow, AG: aggregates, IC: ice crystals). 
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Figure 11: Same as Figure 9, but for an RHI at 18:16 UTC on 06 October 2014, along the azimuth 

200°. 1350 
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Figure 12: Same as Figure 7, but for the convective regime of the dry season (LR: light rain, MR: 

moderate rain, HR: heavy rain, LDG: low-density graupel, HDG: high-density graupel, AG: 

aggregates, IC: ice crystals). 
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 1355 

Figure 13: Violin plot comparison of pairs of stratiform hydrometeor types between the wet and dry 

seasons (DZ: drizzle, RN: rain, WS: wet snow, AG: aggregates, and IC: ice crystals).  
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Figure 14: Same as Figure 13, but for the convective precipitation regime (LR: light rain, MR: 

moderate rain, HR: heavy rain, LDG: low-density graupel, HDG: high-density graupel, AG: aggregates, 

and IC: ice crystals). 1360 
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APPENDIX A: Wet and Dry Season cluster centroids 

 

 

 

Cluster Label ZH [dBZ] ZDR [dB] KDP [degree/km] ΡHV [-] Δz [km] 

1S 
Ice Crystals 

Small Aggregates 
17.18 1.17 0.21 0.98 + 2.23 

2S Aggregates 27.09 1.31 0.27 0.97 + 1.25 

3S Rain 27.28 1.43 0.10 0.97 - 2.49 

4S Wet Snow 27.54 1.83 0.07 0.95 - 0.10 

5S Drizzle 13.84 1.21 0.02 0.99 - 3.00 

6C Heavy Rain 44.18 2.09 1.88 0.98 - 2.81 

7C Graupel 36.28 0.74 0.34 0.98 + 2.76 

8C Aggregates 28.94 0.75 0.20 0.98 + 2.32 

9C 
Ice Crystals 

Small Aggregates 
17.62 0.91 0.22 0.97 + 3.07 

10C Light Rain 13.21 0.68 0.14 0.96 - 2.81 

11C Moderate Rain 31.09 1.39 0.50 0.98 - 2.74 

 1365 

Table A.1: Cluster centroids for the wet season. 
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Cluster Label ZH [dBZ] ZDR [dB] KDP [degree/km] ΡHV [-] Δz [km] 

1S Rain 31.43 1.27 0.25 0.98 - 3.12 

2S Drizzle 20.66 0.89 0.07 0.98 - 3.16 

3S 
Ice Crystals 

Small Aggregates 
13.61 0.11 0.06 0.98 + 3.65 

4S Wet Snow 29.18 0.85 0.17 0.93 + 1.40 

5S Aggregates 19.65 0.71 0.11 0.98 + 3.04 

6C Heavy Rain 46.7 2.38 3.12 0.97 - 2.90 

7C Moderate Rain 34.18 1.24 1.06 0.97 - 2.82 

8C 
Ice Crystals 

Small Aggregates 
16.69 0.43 0.11 0.97 + 3.85 

9C 
Low-Density 

Graupel 
36.79 0.78 0.59 0.97 + 1.96 

10C Aggregates 24.75 0.45 0.18 0.98 + 3.20 

11C 
High-Density 

Graupel 
46.36 2.20 2.50 0.94 + 0.50 

12C Light Rain 14.47 0.27 0.21 0.97 - 2.89 

 

Table A.2: Cluster centroids for the dry season. 

 

 


