
We thank the reviewers for their positive reception of our work, insightful comments, and valuable
suggestions that helped to improve this paper.

The replies to both reviews are given below. We do not discuss small technical or typesetting
remarks and typos spotted by reviewers here, those were simply applied as recommended. The original
referee comments are indented, excerpts from the revised version of the paper are given in italic.

1 Reply to Referee 1

1.1 High level comments

My only high-level concern is that the end results, based on simulations for GLORIA, do not
necessarily show the instrument or technique off at its best. In part, as I see it, this is because
of the tight nature of the a priori constraints imposed, specifically the 0.645 K a priori precision
estimate for temperature. As an aside, although the choice of the associated correlation lengths
is well described in the manuscript, I was unable to find discussion of how the 0.645K number
was arrived at (apologies if I missed it). A consequence of this very tight constraint is that the
instrument has to ”work very hard” to add useful information, as witness the similarity between
the magnitude of the fields in figures 6 and 4 to those in the bottom row of figure 3. In other
words, the instrument hasn’t been ”allowed” to tell you that much more than you already knew.

The following explanation was added to section 4.3: Our choice of σ value for temperature, in par-
ticular, may seem rather low. This is related to the choice of a priori: smoothed ECMWF data was
used instead of climatologies that would have been more typical in this case. Such an a priori can be
expected to match the large scale structures of real temperature more closely, thus reducing the forward
model errors in poorly resolved areas and improving the results. It is particularly useful for resolving
fine structures, such as gravity waves, which were the main scientific interest of the measurment flight
used as a basis for test retrievals [Krisch et al., 2017]. A likely closer match between a priori and
retrieval thus requires a lower σ value, that, in this setup, represents expected strength of gravity wave
disturbances, rather than full thermal variability of the atmospheric region in question.
It must also be noted that the σ value is not an hard limit for deviations from a priori. A gravity wave
with an amplitude of 3-3.5 K, which is considered to be among 1% of strongest gravity wave events
expected in the measured region, was succesfully retrieved with this setup [Krisch et al., 2017].

1.2 Details

Another common thread in my more minor comments is the author’s use of the word ”accuracy”
to describe quantities that I believe are more commonly referred to as ”precision”.

This was corrected in several places, as suggested.

Finally, the figures, while arguably numbered logically are not introduced in the text in that
order. The current order has 3 first then, 6, 1a, 4, 5, then 2.

The figures and references were rearranged in the revised paper, now order of figure references in the
text matches their numerical order. The old Figure 3 hence became Figure 1, bringing it closer to its
first reference, and the old Figures 1 and 2, that were strongly related, were joined into a single figure.
The color scale of the old Figure 3 was also changed, as suggested.

Page 2, Line 3: ”quality” is rather a loose term. Consider clarifying it further (e.g., information
content, effective resolution, faithfulness to ”true” atmosphere, etc.).

Adding detail to this, admittedly vague, statement would repeat the ideas at the end of the paragraph
(or those in the previous paragraph). Hence the sentence was simply removed.

Page 2, Line 6: Is the ”classic Tikhonov” approach necessarily first order? I know of some teams
using second-order Tikhonov routinely.
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This statement was made more specific in the revised paper: In this paper, we introduce an improved,
more physically and statistically motivated approach to regularisation, that requires less tuning. It relies
on the calculation of both the first spatial derivative and Laplacian of atmospheric quantities, which
provide more complete information about smoothness and feasibility of a particular atmospheric state.
We are not aware of anyone else in the atmospheric community using a combination of first order
derivatives and Laplacian for 2D or 3D problems.

Page 3, Line 27: I’m not sure that characterizing the alpha terms as ”unphysical” is that fair.
One could easily scale them with some suitable length term to cast them into constraints on
spatial variability (which is more or less what you yourselves are doing). Also, such scaling
would arguably render them less ”grid dependent”.

One could, of course, use a physical length instead of each α parameter. That would also allow to, for
example, change the grid constant of a regular grid and retain the regularisation strength. Such an
approach would, however, result in a large number of tunable parameters (especially if derivatives of
higher order than one are to be used). Estimating all of them from model or observation data would be
difficult without establishing some relations between them. Our approach provides one way to obtain
such relations. Also, a regularisation scheme derived in the form of an integral, as in equation (13)
of the revised paper, is relatively easy to adopt to different kinds of grids (e.g. irregular). This gives
much more “grid independence” than a mere rescaling that one could do while preserving the form of
Tikhonov matrices.

Page 4, Line 19: The term ”covariance kernel” was new to me. Is it widely used? Is there some
reference for it?

Covariance kernel, also known as covariance function (https://en.wikipedia.org/wiki/Covariance function)
is just a real function that describes a spatial covariance of the (continuum) random variable. In gen-
eral, if one defines an operator X by means of an integral of a real (or complex) function over the whole
space in question, it is common in applied mathematics to call this function an “X kernel”. This is
why we chose this term here. It was also used in [Lim and Teo, 2009]. A remark about covariance
kernel being the same as the covariance function was added to the revised paper.

Page 4 Equation 5: Doesn’t Cˆ{-1} need a k subscript?
No. The scalar product (and hence the norm) associated with the covariance operator is induced by
volume integral of the inverse of the operator, not the inverse of it’s kernel. If one would represent
a scalar field φ(r) by a state vector xφ on some grid, and similarly for ϕ(r) and Hxϕ, then the
discrete equivalent to the integral in equation (5) would be xTφS

−1
a xϕ. Hopefully the more explicit

statement about the equivalence between continuous and discrete formulations (equation (6) in the
revised manuscript) will make things clearer for the readers.

Page 5, Line 23 and 25: Not sure how, if L h is constant (line 23) you can have ”different
correlation lengths...”. Are you implying L h only has to be horizontally homogeneous, not
vertically constant?

The equation (12) (10 in the original manuscript) holds if, as it was stated in lines 20-21, the correlation
lengths are functions of altitude only: Lh = Lh(z), Lv = Lv(z). If, in addition, Lh is constant (i.e.
Lh = const., Lv = Lv(z)), then the algebra is further simplified, as was described in lines 23-24.

Page 10, Line 28: I like the term ”Precision matrix” because, as with the word itself, ”more”
implies ”better”. However, is it in common use?

Precision, the reciprocal of variance, and precision matrix, the inverse of the covariance matrix, seem
to be standard statistical terms (https://en.wikipedia.org/wiki/Precision (statistics)).

Discussion starting around line 11, and through the remainder of the section: It’s not clear to
me how the matrix M in the lines 11-16 relates to the matrix A in equation 22 and beyond.
Also, I don’t believe A is the Rodgers-style ”Averaging kernel” matrix in this context is it (as
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Rodgers’ A is not s.p.d.)? Again, I’d suggest using a different letter than A. If is intended to
be a measure of S a, as the discussion on Line 30 (page 11) seems to imply, then why not use
S a itself, perhaps with some suitable diacritic (a tilde, or hat or something)? Apologies if I’m
missing a critical point here.

The notation and organisation of section 3 was found to be confusing by both reviewers. Therefore,
the section was significantly reorganised and notation changed. Please refer to the section 3 in the
revised manuscript for details.

2 Reply to Referee 2

2.1 General comments

It should be clarified to what extent the new approaches are relevant for the more standard 1D
and 2D inversions. Most importantly, can 1D and 2D regularisation matrices be constructed in
the same manner?

Applicability to 1D and 2D retrievals is discussed in the newly added Appendix B.

The new way to construct the regularisation matrix is presented as an extension of Tikhonov
regularisation, but I rather see it as a way to approximate the precision matrix of Equation 1?
In any case, the approach bridges the gap between Bayesian and Tikhonov regularisation. This
is important and should be stressed (depending a bit on if your approach works for 1D and
2D). To be clear, you argue that the simplest way to set the Tikhonov regularisation matrix is
to consider statistics of the atmosphere. You use correlation structures, but that approach is
essentially identical to the Bayesian approach. That is, you basically argue that the Bayesian
approach is to prefer. I am trying to provoke here, on purpose, to encourage you to extend the
discussion and clarify the nice link you provide between Bayesian and Tikhonov regularisation.

A remark about the similarity to Bayesian approach was added, and some statements in section 2.2
clarified.

Title: Should be changed. The present title is too generic, especially considering that the
manuscript doesn’t involve any real observations. The manuscript deals only with technical im-
provements of the retrieval step. On the other hand, I don’t see any reason to make a restriction
to “limb sounding” and“airborne”, the new methods are relevant for any 3D observations (also
1D and 2D?).

The title was changed to 3D tomographic limb sounder retrieval techniques: irregular grids and Lapla-
cian regularisation.

Abstract: I find the abstract vague. See comment about Delaunay triangulation above. Some
hard facts would be nice. For example, what reduction in the number of grid points was
achieved?

Explicit mention of Delaunay triangulation and the achieved reductions in computational cost were
added to the abstract. The new version reads: Multiple limb sounder measurements of the same
atmospheric region taken from different directions can be combined in a 3D tomographic retrieval.
Mathematically, this is a computationally expensive inverse modelling problem. It typically requires an
introduction of some general knowledge of the atmosphere (regularisation) due to its underdetermined
nature. This paper introduces a consistent, physically motivated (no ad-hoc parameters) variant of the
Tikhonov regularisation scheme based on spatial derivatives of first order and Laplacian. As shown by
a case study with synthetic data, this scheme, combined with irregular grid retrieval methods employing
Delaunay triangulation, improves both upon the quality and the computational cost of 3D tomography.
It also eliminates grid dependence and the need to tune parameters for each use case. The few physical
parameters required can be derived from in situ measurements and model data. Tests show that 82%
reduction in the number of grid points and 50% reduction in total computation time, compared to
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previous methods, could be achieved without compromising results. An efficient Monte Carlo technique
was also adopted for accuracy estimation of the new retrievals.

As a concrete example, despite Section 2.2 is detailed it is not yet clear to me, after several
readings, how the result of Equation 11 shall be used to actually construct the regularisation
matrix. Maybe I miss something obvious but I don’t see how the result of Eq 11 shall be used
to generate S−1a.

Explanations of how to use the equation (11) for obtaining the precision matrix have been added.
Refer to equations (6) and (14) in the revised manuscript and the paragraphs above them.

The nomenclature should also be revised. For example, the symbol used on the left hand side of
Equation 11 is not defined. Or rather, I assume it’s should the same as in Equation 9. Further,
it’s unlucky to use y in Equation 14, as y represents the observation in Equation 1.

Φ instead of φ in equation 11 was indeed a typo. The notation in most of the section 2.4 was revised
not to cause confusion with equation (1).

With respect to Eq.2 and related text: I don’t know how Tikhonov formulated the approach (and
it was introduced independently by others), and your reference may be correct. On the other
hand, I don’t think it is fair to say that Tikhonov regularisation is today restricted to consider the
first derivative. For example, the description of Tikhonov regularisation in “Numerical recipes”
says “... measures of smoothness that derive from first or higher derivatives.” An example from
the atmospheric field where the second derivative was considered: Steck, Tilman. ”Methods
for determining regularization for atmospheric retrieval problems.” Applied Optics 41.9 (2002):
1788-1797. The text can be interpreted as that considering the second derivative is novel, which
is not true.

This statement was made more specific in the revised paper: In this paper, we introduce an improved,
more physically and statistically motivated approach to regularisation, that requires less tuning. It relies
on the calculation of both the first spatial derivative and Laplacian of atmospheric quantities, which
provide more complete information about smoothness and feasibility of a particular atmospheric state.
We are not aware of anyone else in the atmospheric community using a combination of first order
derivatives and Laplacian for 2D or 3D retrievals.

Section 3: This section has similar problems as Sec 2.
The notation and organisation of section 3 was found to be confusing by both reviewers. Therefore,
the section was significantly reorganised and notation changed. Please refer to the section 3 in the
revised manuscript for details.

Section 4.1: Title and content do not agree. The section deals also with the forward model.
The title was changed to The GLORIA instrument and data processing

Section 4.4: A demonstration of the new features is, of course, nice to see, and maybe even a
demand. However, showing results for a single retrieval case does not prove much. Statistics of
an ensemble of retrievals are required to judge if one retrieval is better than another one. For a
single case, specifics of the case can make the poorer method to look better. Further, it is also
very unclear how “optimal” the regularisation weights used in A actually are? Anyhow, can
really optimal weights be found by manually tuning? There are in fact objective methods for
setting the weights.

One of the aims of this paper is to progress towards a robust and standardised regularisation technique,
that could be employed to perform 3D retrievals in various atmospheric conditions without much
manual effort. The authors are aware of some of the objective methods for setting the weights for the
classic Tikhonov approach, but they, so far, did not prove sufficient to achieve this goal. Therefore,
adequately testing both regularisation methods on a large and representative set of atmospheric states
and performing appropriate statistical analysis on the results was deemed to be beyond the scope
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of this paper. A well-understood test case was used as an example instead. Performing statistical
analysis of in situ or model data to determine correlation lengths and standard deviations of various
atmospheric quantities, as well as further testing of retrieval methods on larger data sets is an option
for further work.

Some of the new features can be tested in a more direct manner, compared to doing full retrievals.
For example, a basic demand when selecting a grid is that discretisation errors are kept at a
sufficiently small level. That is, for me, the first test when introducing a new grid scheme (here
Delaunay) is to simply compare forward model simulations and check that results only change in
a tolerable way. This test is most critical for D. By the way, is the same simulated measurement
inverted in A to D (presumably based on A)? If a new simulated measurement is done for each
case, then a possible discretisation errors are swept under the carpet.

The authors are very grateful for pointing this out, this important part of test retrieval description was
indeed overlooked. The following was added to section 4.2: The same set of simulated measurements
was used for all test retrievals described in this paper. These measurements were obtained by running
the forward model on a very dense grid (about twice as dense in each dimension as those of the densest
test retrievals). This was done to ensure that the discretisation errors in the simulated measurements
would be minimal and would not give any one retrieval an advantage (as it could happen, if they
were generated on the same grid as this test retrieval). Also, a new appendix (Appendix C) with a
comparison of forward model output in the case of each retrieval was added to the revised paper.

In my mind, the most interesting question in the manuscript is how well the calculations ac-
tually manage to estimate the exponential covariance assumed (Equation 7)? Is it possible to
derive/estimate the Sa implied by the derived S−1 a , and check how well the obtained Sa
follows the start assumptions? Either for a sub-volume or a smaller test case. My interpretation
of Section 2.4 is that you ensure S−1a to be positive definite and it should then be invertible
(for a reasonable large case).

We have come up with two ways to test whether the precision matrix constructed as in equation (14)
indeed represents the exponential covariance assumption (8). One way is to construct a covariance
matrix directly for a relatively small grid, invert it, and compare the result with the directly obtained
precision matrix. Matrix norms are poorly suited for such a comparison, since small test cases are
prone to significant edge effects (finite differences perform poorly on grid boundaries, among other
issues). Therefore, we simply constructed some test “atmospheric states” – Gaussian wave packets –
for the small grid and compared their norms based on the two precision matrices obtained in different
ways. This comparison was added to the revised paper as an Appendix A.
An alternative approach would be to construct the precision matrix, invert it, and see if the matrix
elements satisfy the exponential relation. These results are harder to interpret: covariance matrix
elements do not directly enter any retrieval calculations, it is hard to quantify what errors are acceptable
in this case. We will therefore just provide such a comparison here.
We use 20x20x20 regular grid with grid constant equal to 1 in each direction. We set σ = 1 and
consider two cases: Lh = Lv = L = 2 and L = 3. For each case, a precision matrix is obtained as
a discretisation of equation (13) for rectilinear grid. Then the precision matrix is inverted to obtain
a covariance matrix. One point near the centre of the grid, the reference point, is selected, and then
covariances between every grid point and the reference point are read from the covariance matrix and
plotted, as a function of distance between grid point and reference point, in Figure 1 of this document.
The plots show the theoretical covariance value as a blue line. Also, the points with distance from
reference point lower or equal to 7 were used to perform a least squares fit for covariance function of
the form Ck(r) = σ2 exp (−‖r‖/L) with respect to the parameters σ2 and 1/L. The fits are shown
as green lines in Figure 2.1. Best fit was achieved with σ̂ = 1.05, L̂ = 1.89 in the L = 2 case and
σ̂ = 1.04, L̂ = 2.66 in the L = 3 case. Hence, in these cases, the precision matrix constructed with our
method is in good agreement with theoretical assumptions. One can see from the figures, however,
that agreement is worse near the edges of the grid. This is not a surprise, since derivatives, upon
which the precision matrix construction is based, cannot be properly evaluated at grid boundaries.
The results would also look worse for large L values, those would need a larger grid to properly test.
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Figure 1: Covariance to the reference point as a function of distance to the reference point for corre-
lation lengths L = 2 and L = 3. Blue line – theoretical covariance value, green line – least squares fit
for exponential covariance.
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Conclusions: Should be extended a bit. Are all problems solved? Or something lacking to attack
real observations? Are the new methods applicable in other cases

The following was added to conclusion: At the time of writing, the methods developed in this paper
were already in use to process GLORIA limb sounder data. Better approximations for regularisation
parameters could help to improve the retrievals in the future.

2.2 Details

Page 1, line 8, and elsewhere: It should be considered how the word “accuracy” is used. Accuracy
equals systematic error or at least includes this term.

This was corrected in several places.

Page 1, lines 22-23: This is not a specific 3D issue.
We were not trying to claim that it is. To make this more explicit, the word “typically” was replaced
with: as it often happens with remote sensing retrievals.

Page 2, line 3: The choice of regularisation constraint does affect the output of the retrieval,
but I don’t agree that it changes the quality. The regularisation methods are mathematical
tools, and, assuming that there is no numerical issues or similar problems, they simply optimize
what you have told them to do. That is, if you change regularisation constraint, you select to
optimize another metrics, and the result will differ. But can it be claimed generally that one
metrics is better than another one? I would say that it depends on the application.

The (admittedly vague) sentence about retrieval quality was removed.

Sec 2.3: I assume you are using some kind of external library to derive the Delaunay triangula-
tion. Which one should be specified? Any other libraries that should be mentioned?

Delaunay triangulation was generated using CGAL (the Computational Geometry Algorithms Li-
brary). This statement was added to section 2.3. CGAL was the only major library that needed
to be added to JURASSIC2 code to implement the new methods described in this paper. For more
information about JURASSIC2 and other libraries used by this software, refer to [Hoffmann et al.,
2008,Ungermann et al., 2011,Ungermann, 2013].

Page 9, line 26: I don’t agree that this is in general a difficult problem. As you point out,
Rodgers (2000) explains how it should be done. Basically, all retrievals come with an error
estimation, so it is, in general, a feasible task.

The beginning of the paragraph was condensed to clarify the main point: theoretical derivations for
detailed error estimates do exist, but are usually prohibitively computationally expensive for large
problems. In these cases, one needs to resort to other means, such as Monte Carlo. The revised
formulation: Estimating the precision of remote sensing data products generated by means of inverse
modelling is essential for the users of the final data and also valuable for evaluation and optimisation
of the inverse modelling techniques. Detailed quantitative descriptions of data accuracy can be derived
in theory (see validation in section 4.6 and Rodgers (2000)) but they are, in case of large retrievals,
too numerically expensive to calculate in practice.

Page 13, line 15: The figures shall be introduced in order. You start with Figure 3.
The figures and references were rearranged in the revised paper, now order of figure references in the
text matches their numerical order. The old Figure 3 hence became Figure 1, bringing it closer to its
first reference, and the old Figures 1 and 2, that were strongly related, were joined into a single figure.

Page 16, lines 3 and 13: Join these two comments about weights, to more clearly describe what
has been done.
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Descriptions of the regularisations for retrievals A and B were extended slightly. For the case of A:
[Regularisation weights] are typically tuned ad-hoc (adjusted by trial-and-error until optimal retrieval
results can be achieved), validated against model data and, when using real observations, in situ mea-
surements. For the case of B: The grid and interpolation methods were identical to retrieval A, but
the regularisation was replaced with the second order scheme from equation (12) and the correlation
lengths derived in section 4.3 from in situ observations. No subsequent tuning of these parameters was
performed.

Page 18, lines 30-33: I don’t follow the explanation. Why can’t you compare apples with apples?
If this is not possible, there is little value in the exercise.

A Monte Carlo run that can be compared “apples to apples” with the retrieval results shown has been
added to the revised manuscript (Figure 5 Ds). This description of the old and newly added Monte
Carlo results should clarify what has been done: Results for retrievals B and D are presented in Figure
5 B, D. They show the total error estimate for temperature based on the sensitivity of temperature
value to (simulated) instrument noise and all other retrieved atmospheric quantities as well as expected
error of non-retrieved quantities (e.g. pressure). These results tell us what temperature errors we could
expect if the retrievals in question were performed with real data. The panel Ds shows an error estimate
based on (simulated) instrument noise and uncertainties of retrieved parameters only. In the case of
a synthetic retrieval, unretrieved parameters, upon which the simulated measurements are based, are
known exactly. Therefore, panel Ds is a direct Monte Carlo prediction of the temperature deviation we
see in Figure 3D, and the magnitude of this deviation is indeed similar.
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Abstract. Multiple limb sounder measurements of the same atmospheric region taken from different directions can be com-

bined in a 3D tomographic retrieval. Mathematically, this is a computationally expensive inverse modelling problem. It typically

requires an introduction of some general knowledge of the atmosphere (regularisation) due to its underdetermined nature.

This paper introduces a consistent, physically motivated (no ad-hoc unphysical parameters) variant of the Tikhonov regu-

larisation scheme based on spatial derivatives of first and second order
::::
order

::::
and

::::::::
Laplacian. As shown by a case study with5

synthetic data, this scheme, combined with irregular grid retrieval methods
::::::::
employing

::::::::
Delaunay

:::::::::::
triangulation, improves both

upon the quality and the computational cost of 3D tomography, while eliminating .
::
It
::::
also

:::::::::
eliminates grid dependence and the

need to tune parameters for each use case. The few physical parameters required can be derived from in situ measurements and

model data.
::::
Tests

::::
show

::::
that

::::
82%

::::::::
reduction

::
in

:::
the

::::::
number

::
of

::::
grid

:::::
points

::::
and

::::
50%

::::::::
reduction

::
in

::::
total

::::::::::
computation

::::
time,

:::::::::
compared

::
to

:::::::
previous

::::::::
methods,

:::::
could

:::
be

:::::::
achieved

:::::::
without

::::::::::::
compromising

:::::::
results. An efficient Monte Carlo technique was adopted for10

retrieval accuracy estimation
::::
also

:::::::
adopted

::
for

::::::::
accuracy

:::::::::
estimation

::
of

:::
the

::::
new

::::::::
retrievals.

1 Introduction

Dynamics and mixing processes in the upper troposphere and lower stratosphere (UTLS) are of great interest. They control

the exchange between these layers (Gettelman et al., 2011) and have a strong influence on the composition and thereby on

radiative forcing (Forster and Shine, 1997; Riese et al., 2012). High spatial resolution observations are required to understand15

the low length-scale processes typical of this region.

Infrared limb-sounding is an important tool for measuring the temperature and volume mixing ratios of trace gases in UTLS

with high resolution, especially in the vertical direction, which is critical for resolving typical structures there (e.g. Birner,

2006; Hegglin et al., 2009). Modern limb sounders are capable of high frequency operation resulting in many measurements

taken close from
::
to one another, which are best exploited if the data from these measurements can be combined. Producing a20

2D curtain of an atmosphere along the flight path of the instrument by combining the observations close to each other is already
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an established technique .
::::
(e.g.

:::::::::
Steck et al.,

:::::
2005

:
;
:::::::::::
Worden et al.,

:::::
2004

:
). With suitable measurement geometries, this technique

can be extended to obtain 3D data.

A tomographic data retrieval uses multiple measurements of the same air mass, taken from different directions, to obtain high

resolution 3D temperature and trace gas concentration data. There is, typically
:
as

::
it

::::
often

:::::::
happens

::::
with

::::::
remote

::::::
sensing

::::::::
retrievals,

a large number of atmospheric states that would agree with the given observations within their expected accuracy
:::::::
precision. A5

regularisation algorithm is employed to pick the solution that is in best agreement with our prior knowledge of the atmospheric

state and general understanding of the physics involved. The mathematical framework of the tomographic retrieval is outlined

in section 2.1.

The choice of regularisation algorithm has profound influence on retrieval quality. The classic Tikhonov regularisation

scheme given in equation (2)
::::::::::::::::::::::::
(Tikhonov and Arsenin, 1977) is an established technique used for infrared limb sounding in-10

struments such as the Michelson Interferometer for Passive Atmospheric Sounding (Steck et al., 2005; Carlotti et al., 2001)),

GLORIA (Ungermann et al., 2010; Ungermann et al., 2011). It quantifies the spatial continuity of an atmospheric state by

evaluating first order spatial derivatives of the retrieved quantities. This technique serves the purpose of ruling out very patho-

logical, oscillatory retrieval results, but requires fine tuning of several unphysical ad-hoc parameters and subsequent validation.

In this paper, we introduce an improved, more physically and statistically motivated approach to regularisation, that requires15

less tuning. It relies on the calculation of both first and second spatial derivatives
:::
the

:::
first

::::::
spatial

:::::::::
derivative

:::
and

::::::::
Laplacian

:
of

atmospheric quantities, which provide more complete information about smoothness and feasibility of a particular atmospheric

state. The regularisation parameters we use are physical, in the sense that they can be estimated from in situ measurements or

model data, and less grid dependant: their values, once established, can be more readily used for new retrievals.

Data retrievals from limb sounders are typically performed on a rectilinear grid. In this paper, we define rectilinear grid by20

taking a set of longitudes, a set of latitudes and a set of altitudes and placing a grid point at each of the possible combinations of

these coordinates. Such grids can be a limiting factor for efficiency of numerical calculations. Due to the exponential nature of

atmosphere density distribution with altitude, most of air
::
the

:
radiance along any line of sight of a limb imager comes from the

vicinity of the lowest altitude point on a given line of sight (called tangent point). The resolution of the retrieved data depends on

the density of tangent points in the area. For airborne observations this density is highly inhomogeneous. The densely measured25

regions are limited in size, located below flight altitude only and rarely rectangular. The large, poorly resolved areas with little

or no tangent points still need to be included in the grid as long as lines of sight of any measurements pass through them.

A rectilinear grid retrieval tends to either underresolve the well-measured area, or waste memory and computation time for

regions with few measurements. To avoid this problem, a tomographic retrieval on irregular grid with Delaunay triangulation

was developed (section 2). It allows for significant computational cost improvements without compromising retrieval quality.30

Most retrieval error estimation techniques would be unreasonably computationally expensive in the case of a 3D tomographic

retrieval. Monte Carlo methods allow a relatively quick error estimation. In order to apply Monte Carlo for a 3D tomographic

retrieval on an irregular grid and using our newly developed regularisation, dedicated algorithms have to be developed. These

are presented in section 3.
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The new methods described in sections 2 and 3 were tested with synthetic measurement data to compare their results and

computational costs. The tests, and their results, are described in detail in section 4.

2 Regularisation improvements and irregular grids

2.1 The retrieval

The main focus of this paper is the algorithm for retrieving atmospheric quantities, such as temperature or trace gas mixing5

ratios, from limb sounder measurements in 3D. In this section, we outline the general inverse modelling approach to this

problem and identify some aspects we aim to improve upon.

Let an atmospheric state vector x ∈ Rn represent the values of some atmospheric quantities on a finite grid and let y ∈ Rm

be a set of m remote measurements taken within the region in question. The physics of the measurement process itself has to

be understood for the instrument to be practical, so one can usually build a theoretical model of the measurement (the forward10

model) F : Rn→ Rm. The inverse problem of determining x given y is then typically both underdetermined and ill-posed:

many atmospheric states would result in the same measurement, but due to instrument and model errors no states would yield

the exact measurement result y. One can solve this problem by finding an atmospheric state x that minimises the following

quadratic cost function

J(x) = (F (x)−y)
T
S−1ε (F (x)−y) + (x−xa)

T
S−1a (x−xa) (1)15

The first term of (1) quantifies the difference between the actual measurement and a simulated one (given the atmospheric

state is x). The matrix S−1ε ∈ Rm×Rm represents the expected instrument errors. The second term introduces regularisation,

i.e. it is larger for x that are unlikely given our general, measurement unrelated, knowledge about the atmosphere. In practice

this is achieved using an a priori state xa, usually derived from climatologies. It is meant for introducing the best of our prior

knowledge into the retrieval process without imposing any features of the kind to be measured. The precision matrix S−1a (the20

inverse of a covariance matrix for atmospheric states Sa) contains the prior knowledge about the probability distribution of

atmospheric states. For a more detailed discussion of this approach refer to Rodgers (2000).

Finding the precision matrix S−1a that would correctly represent the physical and statistical properties of the atmosphere is

challenging. The Tikhonov regularisation approach (Tikhonov and Arsenin, 1977)

S−1a = α2
0L0L

T
0 +α2

vLzL
T
z +α2

hLxL
T
x +α2

hLyL
T
y (2)25

is widely used for this purpose. Here the matrix L0 is diagonal and contains
:::::::::
reciprocals

::
of

:
standard deviations of atmospheric

quantities, and Lx, Ly , Lz represent spatial derivatives in the respective directions on regular rectangular grid, estimated by

forward differences. The positive constants α0, αh, αv are chosen ad-hoc. This is a convenient way to construct S−1a , and it

serves the purpose of ruling out very pathological, oscillatory retrievals. The constants α0, αh, αv are, however, unphysical, grid

dependent, and hence have to be estimated (typically by trial-and-error) for each use case. They are not related to the properties30
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of the atmosphere in any simple fashion. Also, the usage of first order derivatives only is justified mostly by simplicity and the

need to keep the computations cheap.

We chose a slightly different, more physically and statistically motivated approach to regularisation, which is introduced in

the following section.

2.2 Covariance5

This section describes the theoretical background for the regularisation algorithm used for our retrieval, i.e. the motivation for

S−1a in equation (1).

If the atmospheric state x has the mean xapr and covariance matrix Sa then its entropy is maximised if x has multivariate

normal distribution (proved e.g. by Tarantola, 2013)
:::::::::::::::
(proved e.g. by ?). Hence by treating x as a random vector with this distri-

bution we impose the smallest restriction possible while still introducing a priori information from Sa into our retrieval. Also,10

the probability density of x is then

fx (x̂)∼ exp
(
−(x̂−xapr)

T
S−1a (x̂−xapr)

)
(3)

This immediately justifies the second term of equation (1), provided that S−1a represents, to some extent, the actual statistics of

the atmosphere.
::::
This

:
is
:::::
often

:::::::
referred

::
to

::
as

:::
the

:::::::
Bayesian

::::::::
approach

::
to

::::::::::::
regularisation

:::::::::::::
(Rodgers, 2000).

:
The precision matrix from

equation (2), is, however, just a mathematical device not meant to represent the physical world, as discussed in the previous15

section. Furthermore, we would like to derive a coordinate independent expression for the regularisation term of cost function

(also unlike equation (2)), as this would be useful for work with irregular grids and allow us to use the same regularisation on

completely different grid geometries. To achieve these goals, we go back to the theoretical foundations of the classic Tikhonov

approach, but do not limit ourselves to just minimising first-order spatial derivatives of the result.

:::
use

:::::::::
continuous

:::::::::
covariance

::::::::
operators

::::
and

::::
their

:::::::::
associated

::::::
norms

:::
and

:::::
only

::::::::
discretise

:::::
them

::
as

:
a
::::

last
::::
step,

::::::
hence

:::::::::
preserving20

::
the

::::
grid

::::::::::::
independence

::::
and

::::
their

:::::::::
statistical

::::::::::::
interpretation.

::::
The

::::::::
resulting

:::::::
discrete

:::::::::::
regularisation

::
is
::

a
::::::
variant

:::
of

::::::::
Tikhonov

:::
in

::
its

::::
final

:::::::::
numerical

:::::
form,

:::
but

::::
can

:::
be

:::::::::
interpreted

::
as
::

a
:::::::::
realisation

:::
of

::::::
general

::::::::::
continuous

:::::::::
covariance

::::::::
relations.

::::
The

:::::::::
following

::::::::
paragraph

:::::::::
introduces

:::::
some

::
of

:::
the

:::::::
required

::::::::
formalism

:::::::::::::::::::::::::::::::
(Lim and Teo, 2009; Tarantola, 2013).

:
Let us denote the departure of the

atmospheric quantity f (r) from the a priori by φ(r) = f (r)− fapr (r) for some r ∈ R3. In some finite volume V ⊂ R3, we

define the covariance operator C by25

Cφ(r) =

∫
r′∈V

φ(r′)Ck (r, r′)dV (4)

where Ck : R3×R3→ R is the covariance kernel
::::
(also

:::::
known

:::
as

:::::::::
covariance

:::::::
function). Then we can treat the scalar fields φ(r)

as elements of Hilbert space with the product

〈φ, ϕ〉=

∫
V

φ(x)C−1ϕ(x)dV (5)

It
:::::
which induces the norm ‖φ‖2 = 〈φ, φ〉, which is represented, in our discrete numerical approach, by the second term of (1).30

:
.
::::
Once

:::
the

:::::::
explicit

:::::::::
expression

::
for

:::
the

:::::
norm

::
is

:::::
found

::
it

:::
can

::
be

::::::::::
discretised,

::::::::::
representing

:::
the

:::::
scalar

::::
field

:::::
φ(r)

:::
by

::
the

:::::::::::
atmospheric
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::::
state

:::::
vector

::::::::
x−xapr.:::::

Then
:::
we

:::
can

:::::
write

‖φ‖2 = (x−xapr)
T
S−1a (x−xapr)

:::::::::::::::::::::::::::::
(6)

It now remains to find an appropriate covariance kernel Ck. Let us first consider an atmosphere that is isotropic and has the

same physical and statistical properties everywhere. Then one would expectCk (r,r′) = g (‖r− r′‖) with some monotonously

decreasing function g : [0,∞)→ [0,∞). The most common kernel used in literature for fluid dynamics, meteorology and5

similar applications is the parametric Matérn covariance kernel (introduced, e.g. by Lim and Teo (2009))

Cν (r,r′) = σ2 21−ν

Γ(ν)

(√
2ν
d

L

)ν
Kν

(√
2ν
d

L

)
(7)

where d= ‖r− r′‖, σ and L are the standard deviation and typical length scale of structures (correlation length), respectively,

of the atmospheric quantity in question. Kν is the modified Bessel function of the second kind, Γ(ν) is the Gamma function.

Exponential and Gaussian covariance kernels are special cases of the kernel (7), with ν = 0.5 and ν = 1 respectively. We10

choose the exponential covariance

Ck (r,r′) = σ2 exp

(
−‖r− r

′‖
L

)
(8)

as it closely resembles the Matérn with ν values that are typically used for fluid problems and allows for analytic derivation of

the subsequently required quantities. Also, having a significant number of parameters to estimate theoretically, we could not

make a good use of the flexibility provided by the free parameter of the Matérn covariance in any case.15

It can be shown (Tarantola, 2013) that the norm associated with the covariance (8) is

‖φ‖2 =
1

8πσ2

∫
r∈V

[
φ2

L3
+

2‖∇φ‖2

L
+L(∆φ)

2

]
dV (9)

:::::::::
Neglecting

::::
some

::::::::
boundary

::::::
terms. In a more realistic picture of the atmosphere, the correlation length L depends on altitude and

strongly depends on direction: correlation between vertically separated air parcels is much weaker than between air parcels

separated by the same distance horizontally. We propose to deal with anisotropic or variable L by performing a coordinate20

transformation such that L would be isotropic and constant in resulting coordinates. In particular, let U,V ⊂ R3 and consider

a bijective map ξ : V → U such that both ξ and ξ−1 are twice differentiable on their respective domains and have non-zero

first and second derivatives everywhere. Then, using integration by substitution and basic vector calculus identities, equation

(9) can be written as∥∥∥∥φ:
∥∥∥∥2 =

∫
u∈ξ−1(V )

|det(Dξ)|
8πσ2

:::::::::::::::::::

(
(φ(ξ))

2

L3
+

2‖δ (φ(ξ))‖2

L
+ LTr2

::::::::::::::::::::::::::::

[(
D
:
ξ
)
−T
::

[
D2φ
:::

(ξ)−
:
δ

(
φ
:

(ξ)

)
·D2
::
ξ
](

D
:
ξ
)
−1
::

])
dU
::

(10)25

δ (φ(ξ)) = (Dξ)
−T ∇(φ(ξ))

:::::::::::::::::::::::
(11)
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Here (Dξ)ij = ∂ξi/∂uj is the Jacobian, and we define the matrix (D2f)ij = (∂2f)/(∂ui∂uj). ξ can be chosen so that all its

spatial derivatives could be computed analytically, and ∇(φ(ξ)), D2(φ(ξ)) are the derivatives of φ in the transformed space,

so numerical evaluation of (10) is similar in complexity to that of (9), the only notable difference being the need to compute the

mixed derivatives ∂2φ/(∂ui∂uj), i 6= j if Dξ is not diagonal. A large and relevant class of suitable maps ξ can be defined, for

example, by assuming that the correlation lengths in vertical and horizontal direction are smooth functions of altitude Lv(z),5

Lh(z) (we use Cartesian coordinates (x, y, z) where z axis is vertical). Then the map

ξ−1 (x, y, z) =
1

L

xLh(z), yLh(z),

z∫
0

Lv(z
′)dz′

 (12)

defines a corresponding transformation. If, in addition, Lh is constant, mixed derivatives are not required and we can simply

evaluate ∇(φ(ξ)), ∆(φ(ξ)) in transformed space. Transformations of this type could be used, for example, to perform regu-

larisation in tropopause-based coordinates and use different correlation lengths for troposphere and stratosphere. For the study10

described in this paper, we only introduce anisotropy (i.e. Lv and Lh are different, but do not depend on altitude) and equation

(10) becomes∥∥∥∥Φφ
:

∥∥∥∥2 =
1

8πσ2

[∫
V

φ2dV

L2
hLv

+
2

Lh

∫
V

Lh
Lv

(
∂φ

∂x

)2

+
Lh
Lv

(
∂φ

∂y

)2

+
Lv
Lh

(
∂φ

∂z

)2

dV +Lv

∫
V

(
Lh
Lv

∂2φ

∂x2
+
Lh
Lv

∂2φ

∂y2
+
Lv
Lh

∂2φ

∂z2

)2

dV

]
(13)

::::
This

::::::
general

::::::::::
expression

:::
can

::::
now

:::
be

:::::::::
discretised

::::
for

:::
use

::
in
::::

the
::::::::
retrieval.

:::
We

::::
can

::::::::
represent

:::
the

:::::
scalar

:::::
field

:::::
φ(r)

::
by

::::
the

::::::::::
atmospheric

::::
state

::::::
vector

::::::::
x−xapr::::

and
::::
then

::::::::
calculate

::
a
:::::::
discrete

:::::::::::::
approximation

::
to

:::
the

:::::::
integral

:::
in

:::::
(13).

::::
This

::::
can

::::
then

:::
be15

:::::::::
interpreted

::
as

::::::::::::::::::::::::
(x−xapr)

T
S−1a (x−xapr)::

as
:::::
seen

::::
from

:::
the

::::::::
equation

::::
(6).

:::
For

::::::::
example,

::
if
::

a
::::::
matrix

:::
Lz:::::::::

represents
::
a
:::::
finite

::::::::
difference

:::::::
scheme

::
to

::::::::
calculate

:::
the

:::::::::
derivative

::
in

::
z
::::::::
direction,

:::
i.e.

:::::::::::::::::
(Lzx)j ≈

∂φ
∂z |r=rj ,

:::
and

::::
the

:::::::
diagonal

::::::
matrix

:::
V

:::::::::
represents

::
the

::::::::
volumes

::
of

::::
grid

::::
cells

::::
(Vii:::::

being
:::
the

::::::
volume

::
of

::::
grid

:::
cell

:::::::::
containing

::::
grid

:::::
point

:::
ri),::::

then
:∑

i

(VLzx)i ≈
∫
V

∂φ

∂z
dV xTLTz VLzx≈

∫
V

(
∂φ

∂z

)2

dV

:::::::::::::::::::::::::::::::::::::::::::::::::

(14)

:::::
Other

:::::
terms

::
of

:::
the

:::::::
integral

::
in

::::
(13)

::::
can

:::
be

::::::::
computed

::::::::
similarly.

:
To implement the calculation of this cost function on an20

irregular grid one needs to have a triangulation for that grid, an interpolation algorithm (both described in section 2.3), a

method for calculating the spatial derivatives ∇φ and ∆φ (section 2.4), and a way to compute volume integrals (section 2.5).

The estimation of the physical parameters in equation (13) is discussed in section 4.3.
:::
The

:::::
errors

:::::::::
introduced

:::::
while

:::::::::::
constructing

::
the

:::::::::
precision

::::::
matrix

::::
S−1a :::

are
::::::::
estimated

:::
in

::::::::
Appendix

:::
A.

:::::::::::
Applicability

:::
of

:::::::
methods

:::::::::
presented

::
in

::::
this

::::::
section

:::
to

:::
1D

::::
and

:::
2D

:::::::
retrievals

::
is
::::::
briefly

:::::::::
introduced

::
in

::::::::
Appendix

:::
B.25

6



2.3 Delaunay triangulation and interpolation

We aim to perform a retrieval on an arbitrary, finite grid. This section explains how vertically stretched Delaunay triangulation

with linear interpolation is employed for that purpose.

To maintain generality and compatibility with arbitrary grids, we partition the retrieval volume into Euclidean simplexes

(tetrahedrons in our 3D case) with vertices at grid points. Many such partitions exist, but it is beneficial to ensure that the5

number of very elongated tetrahedrons, that increase interpolation and volume integration errors, are kept to a minimum.

The standard technique to achieve this is to use a Delaunay triangulation (Delaunay (1934), Boissonnat and Yvinec (1998)),

which maximizes the minimum solid angle of any tetrahedron employed. Recall, also, from section 2.2 that atmospheric

quantities in UTLS and the stratosphere above tend to have much more variation vertically than they do horizontally within

similar length scales. This difference can be quantified by comparing horizontal and vertical correlation lengths Lh and Lv .10

Hence, stretching the space vertically by means of coordinate transformation (x, y, z) 7→ (x, y, ηz) with η ∼ Lh/Lv before

constructing a Delaunay triangulation ensures that, on average, the amount of variation of the retrieved quantity in vertical and

horizontal directions is similar. This, in turn, allows us to make use of the aforementioned benefits of Delaunay partitioning.

In our implementation, we retrieve several quantities on the same grid, and Lh and Lv may differ for each of them. The

cost function of equation (13) is evaluated separately for each quantity, so regularisation can still be calculated correctly as15

long as spatial structures of every quantity are adequately sampled by the grid. In practice, this means that as long as Lh/Lv

are of the same order of magnitude for all quantities, they can all be retrieved on one grid. Fortunately this is usually the case

(see section 4.3). For test retrievals in this paper Lh/Lv = 200 for trace gas concentrations and Lh/Lv = 67 for temperature,

therefore we set η = 100. Retrieval results do not indicate systematic oversampling or undersampling in either horizontal or

vertical directions and are not sensitive to a change in η.20

In order to keep the computational costs low, we use a simple linear interpolation scheme: in each Delaunay cell we express

an atmospheric quantity f at any point x as

f (r) = f (r0) +k · (r− r0) , k = const. (15)

If ri, 0≤ i≤ 4 are the four vertices of the Delaunay cell, the (unique) constant gradient k can obtained from a system of 3

linear equations25

f (ri) = f (r0) +k · (ri− r0) , 1≤ i≤ 3 (16)

This method ensures that the interpolated quantity is continuous and consistent with the volume integration scheme described

in section 2.5. Implementation is simple and fast, as any point inside a given Delaunay cell can be interpolated with data about

that cell only. The gradient ∇f of the atmospheric quantity, is, however, generally discontinuous at cell boundaries making

the interpolation unsuitable for direct use in spatial derivative evaluation.
:::
The

:::::::::::::
Computational

::::::::
Geometry

::::::::::
Algorithms

:::::::
Library30

:::::::
(CGAL,

:::::::::::::::::
https://www.cgal.org)

::::
was

::::
used

::
to

::::::::
construct

::::::::
Delaunay

::::::::::::
triangulations

:::
for

:::
our

:::::
grids.
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2.4 Derivatives

In order to evaluate the cost function based on 3D exponential covariance (13), we need to estimate ∇φ and ∆φ at every grid

point (as before, φ= f−fapr is the departure of atmospheric quantity f from the a priori). This section describes the algorithm

we use to achieve that on irregular Delaunay grids.

We begin by establishing some requirements that our derivative-estimation algorithm will have to meet. Firstly, recall that5

our inverse model assembles the precision matrix S−1a so that (y−yapr)
T
S−1a (y−yapr):::::::::::::::::::::::

(x−xapr)
T
S−1a (x−xapr):would

be a numerical representation of (13) (or, more generally, (10)). Let us write S−1a = A+B, where A is a diagonal matrix repre-

senting the first integral of (13) (or first term of (10)), and B represents the remaining terms. If B were an exact representation,

it would be positive definite by construction, but this may not hold with ∇φ and ∆φ obtained numerically for a finite grid. If

indeed an atmospheric state vector q exists so that qTBq = 0, then for every atmospheric state y
:
x
:

10

(x± q−xapr)
T
B(x± q−xapr) = (x−xapr)

T
B(x−xapr)± 2(x−xapr)

T
Bq (17)

hence one of the states y± q
:::::
x± q

:
would be favoured (have a smaller cost function) over y

::
x by the inverse modelling

algorithm. Therefore, a scaled version of q would appear on any retrieval as noise. This particular type of noise would only be

suppressed by the cost function term from (y−yapr)
T
A(y−yapr):::::::::::::::::::::

(x−xapr)
T
A(x−xapr). This guarantees only that y

::
x

is not very far from a priori, but does nothing to ensure that it is even continuous. This often results in retrievals with unphysical15

periodic structures (noise) and is unacceptable.

We deal with this problem by explicitly ensuring that B is positive definite. Consider the estimation of derivatives at a single

grid point a ∈ R3.∇φ(a) and ∆φ(a) are numerically estimated from the values of φ in some (say m) grid points near a. We

can write this as a map

Da (φ) :Rm→ R6, {φ(ri)−φ(a) : 1≤ i≤m} 7→
{
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z
,
∂2φ

∂x2
,
∂2φ

∂y2
,
∂2φ

∂z2

}
(18)20

Now qTBq = 0, q 6= 0 implies that at every grid point a ∈ R3 we have∇φ(a) = 0, ∆φ(a) = 0 for the φ(a) corresponding to

state q. Hence such q will not exist if we require thatDa ::
Da:have trivial null space for all grid points a (i.e.Da (φ) = {0, . . . , 0}

only if φ(xi) = φ(a)
:::::::::::::::::
Da (φ) = {0, . . . , 0}

::::
only

::
if

:::::::::::
φ(ri) = φ(a), 1≤ i≤m). The converse is not always true, so the trivial

null space requirement is a stronger condition than absolutely necessary. It is, however, advantageous because it restricts

the derivative-estimation algorithm at each grid point independently and hence can be implemented without computationally25

expensive operations on S−1a as a whole.

Since (18) will be used directly to construct S−1a , which does not depend on atmospheric state y
:
x
:
and hence on φ(a), Da

must be a linear map, so null space is a vector space of dimension max{0,m− 6}, hence we need m≤ 6. We also want to

avoid the derivative estimation to be underdetermined (m≥ 6), so we choose m= 6, i.e. we aim to construct a linear map (18)

that estimates derivatives at grid point a using atmospheric quantity values at 6 points around a. This prevents us from using30

interpolation for derivative calculations, since each interpolated value depends on atmospheric quantity values at multiple (in

our case 4) grid points and consequently, even if the same grid point is reused for several interpolated values, the total number

of grid points employed exceeds 6 in any interpolation-based scheme we could come up with.
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A solution satisfying the above criterion and able to deal with grid points with neighbours at irregular positions is based on

polynomial fitting. For 6 grid points around a grid point a= (xa, ya, za) denoted as ri = (xa +xi, xa + yi, xa + zi) , 1≤ i≤
6 we write

φ(ri)−φ(a) = φxxi +φyyi +φzzi +
φxx
2
x2i +

φyy
2
y2i +

φzz
2
z2i , 1≤ i≤ 6 (19)

We solve this as a linear system for the unknowns φx, φy, φz, φxx, φyy, φzz which can then be directly identified with the5

derivatives we seek. Note that, as we required, the system can be solved by inverting a 6-by-6 matrix that only depends on ri

and not φ(ri), so we can use this method to precompute a matrix that would act on the atmospheric state vector to return the

value of the volume integral over the derivative (13).

The only remaining issue is selecting a suitable set of grid points ri so that the resulting matrix that needs to be inverted

would not be singular or have a very high condition number. We found that this is much easier to achieve by imposing simple10

geometric criteria for point selection rather than algebraic conditions.

Let a be a point on Delaunay grid. The main idea of the algorithm we propose is to pick, for each spatial dimension d, a pair

of points r1, r2 suitable for estimating the derivative in that direction. Points of such a pair should be sufficiently separated in

d direction (i.e. projections of the vectors ri−a to d direction sufficiently different), be on the opposite sides of a (unless a is

at the boundary of the grid and this is not possible), and be reasonably close to a. We obtain the required 6 points by choosing15

one pair of points for each of the 3 dimensions. This can be implemented as follows.

Let a= (xa, ya, za), and let us write the coordinates of other points on this grid as ri = (xa +xi, ya + yi, za + zi) with

ri = ‖ri−a‖. Let 0< β < 1 and γ > 1 be constants, suitable numeric values will be discussed further on. Then:

1. For each Delaunay grid neighbour ri of a, compute αix = xi/ri, αiy = yi/ri, αiz = zi/ri.

2. If i, j such that |αix|> β, |αjx|> β, αixαjx < 0 exist, then pick xi, xj :::::
ri, rj:for derivative calculation. Else if k, l20

such that |αkx|> |αlx|> β, αkx/αlx > γ exist, then pick xl, xk:::::
rl, rk:for derivative calculation.

3. Repeat step 2 for y and z dimensions. Each point can be only picked for one of the dimensions.

4. If neither condition of step 2 is satisfied for at least 1 dimension, repeat steps 1-3 with not only direct Delaunay grid

neighbours of a, but also second neighbours (i.e. neighbours of neighbours). If this fails as well, do not calculate deriva-

tives at the point a and simply assume them to be zero.25

We found that the polynomial interpolation method is robust and a rather low value of β = 0.3 was sufficient to produce suitable

sets of neighbouring points (i.e. almost all 6-by-6 matrices resulting from such choice of points can be reliably inverted for

polynomial fitting). In practice this means that the algorithm can find a suitable pair of points for dimension d unless all the

Delaunay neighbours of the point a are located very close to the other two axes w.r.t. the point a.

2.5 Volume integration30

Computing (13) requires a way to estimate volume integrals on Delaunay grid, which is described in this section.

9



Let a Delaunay cell have vertices ri and face areas Si for 0≤ i≤ 3, and volume V . Then integrating an atmospheric quantity

f as interpolated in (15) over V we get

∫
V

f (r)dV =
V

4

3∑
i=0

f (ri) (20)

One can prove this by writing (15) with ri, 0≤ i≤ 3 instead of r0 and adding up the resulting 4 equations to obtain

f (r) =
1

4

3∑
i=0

f (ri) +k ·

(
r− 1

4

3∑
i=0

ri

)
(21)5

Now choose Cartesian coordinates (x′, y′, z′) where r0 = (H, 0, 0) and ri, 1≤ i≤ 3 lie in the plane x′ = 0 and consider the

x′ component of the integral I =
∫
V

(
r− 1/4

∑3
i=0 ri

)
dV

Ix′ =

∫
V

(
x′− H

4

)
dV =

H∫
0

x′S0

(
H −x′

H

)2

dx′− HV

4
=
H2S0

12
− HV

4
= 0 (22)

As we can choose such coordinates for any vertex instead of r0, the integral I has zero component in 3 linearly independent

directions, so I = 0. Then integrating (21) over V yields (20) and completes the proof.10

We can now see that (20) gives an exact value to the volume integral of f provided that f behaves exactly as prescribed by

our interpolation scheme. Since the interpolation is linear we may expect the values of volume integrals to be correct to the first

order in cell dimensions. Since, generally, all data fed into the inverse modelling problem is interpolated beforehand, there is

little reason to expect that a more elaborate and accurate volume integration scheme would improve the accuracy of retrievals

on its own. A method based on Voronoi cells was also attempted and did not produce meaningfully different results.15

3 Monte Carlo diagnostics

Estimating the accuracy
:::::::
precision

:
of remote sensing data products generated by means of inverse modelling is , in general,

rather difficult due to the indirect manner in which they are obtained from the actual measurements. These estimates are,

however, very valuable not only
:::::::
essential

:
for the users of the final data , but also

:::
and

::::
also

:::::::
valuable

:
for evaluation and optimi-

sation of the inverse modelling techniques. Detailed quantitative descriptions of data accuracy can be derived in theory (see20

validation in section 4.6 and Rodgers (2000)) but they are, in case of large retrievals, too numerically expensive to calculate in

practice. The accuracy calculation typically requires O
(
n3
)

operations for an atmospheric state vector of n elements (for 3D

tomography n might be of the order 106). One way of reducing computational cost is is employing the Monte Carlo technique

to generate a set of random (Gaussian) atmospheric state vectors with the required covariance. One can then add these random

vectors to the result of the retrieval and run the forward model on the perturbed atmospheric states. The magnitude of pertur-25

bations that is required to produce a variation of forward model output similar to the expected error of measurements would

then be an estimate of the retrieval error (Ungermann et al., 2011).
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In order to implement this technique, one needs a way to generate a random vector y
::
x with the required covariance, repre-

sented by a known, symmetric, positive definite covariance matrix Sa. This can be done by generating a vector x
:
u
:
of indepen-

dent standard normal random variables and finding a square matrix L̃ such that L̃L̃T = Sa. Then we can set y = L̃x
::::::
x= L̃u,

and indeed 〈yyT 〉=
〈
L̃xxT L̃T

〉
= L̃〈xxT 〉L̃T = Sa ::::::::::::::::::::::::::::::::::

〈xxT 〉=
〈
L̃uuT L̃T

〉
= L̃〈uuT 〉L̃T = Sa, i.e. the vector y

:
x
:
has the

required covariance (the angle brackets in the expression above denote the expected value).5

A widely used technique for obtaining the matrix L is the Cholesky decomposition. Given the covariance matrix Sa = {sij}
it explicitly provides a lower triangular matrix root L̃ = {lij} satisfying L̃L̃T = Sa as shown in (23).

lij =



√
sij −

∑i−1
k=1 l

2
ik, i= j

l−1jj

(
sij −

∑j−1
k=1 likljk

)
, i > j

0, i < j

(23)

In practice we do not usually assemble the covariance matrix Sa, but rather its inverse: the precision matrix S−1a , because the

latter is sparse. This is not an issue, since S−1a is then also symmetric positive definite, so one can compute its root L such that10

LLT = S−1a in the same way as above, and then obtain y
:
x

:
from the linear system S−1a y = Lx

::::::::::
S−1a x= Lu. We will refer to

the components of precision matrix by S−1a = {aij}.
Cholesky decomposition does not preserve the sparse structure of S−1a , i.e. the L obtained in this way will typically have

many more non-zero entries than S−1a . It follows from (23), however, that if S−1a has lower half-bandwidth w (definition in

equation (24) below), then so has L15

w = min{k ≥ 0 : i− j > k⇒ aij = 0} (24)

In practice, this means that if S−1a is a sparseN×N matrix with half-bandwidth w�N , L will have approximatelyN(w+1)

non zero entries. Cholesky decomposition is hence well suited for computing diagnostics of 1D retrieval: assuming that the

value of the retrieved atmospheric parameter at one point only directly correlates with its w nearest neighbouring points in each

direction, one gets a precision matrix with half-bandwidth w and can compute L cheaply with O(Nw2) operations.20

The situation is very different in the higher dimensions. We will use some results of graph theory to show that Cholesky

decomposition is not practical in those cases. The n-dimensional lattice graph Pnk consists of an n-dimensional rectangular

grid of size k in each direction, with edge between any two grid neighbours. Let us label the vertices of Pnk with integers: Pnk =

{vi : 1≤ i≤ kn}, and let q be the maximum difference of indexes of neigbouring vertices (q = max{|i− j| : vi,vjadjacent}).
Then the bandwidth ϕ(Pnk ) of Pnk is defined as the minimum possible value of q among all possible ways to label the vertices.25

Now say we have some physical quantity defined on each vertex of this grid. Then any reasonable precision matrix S−1a for

this grid would at least give non-zero correlations between grid neighbours, i.e.
(
S−1a

)
ij
6= 0 if vi and vj are neighbours. Then,

by comparing the definitions of ϕ(Pnk ) and lower-half bandwidth w of the precision matrix from the last paragraph, one can

see that 2w+ 1≥ ϕ(Pnk ). FitzGerald (1974) showed that ϕ
(
P 2
k

)
= k and ϕ

(
P 3
k

)
= b3k2/4 + k/2c. Therefore, the narrowest

possible half-bandwidths of S−1a are w =O (k) in 2D and w =O
(
k2
)

in 3D. It follows that if the grid contains a total of N30
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points, the computational cost of Cholesky decomposition would beO(N2) in 2D andO
(
N7/3

)
in 3D, which is unsatisfactory

for large retrievals.

For these higher dimensions, we need to use sparse matrix iterative techniques to reduce computational cost and memory

storage requirements, such as Krylov subspace methods. These allow to solve a linear system Mx= b, where M is a linear

map, for x iteratively. The cost of each iteration is proportional to the number of non-zero elements in M. In general, it is5

rather difficult to find a simple iteration scheme that would compute a square root of a matrix and converge reasonably fast.

Here we will follow an algorithm proposed by Allen et al. (2000). Consider a system of linear ordinary differential equations

(ODEs) with initial conditiondv/dt=− 1
2

(
S−1a t− (1− t)I

)−1 (
I−S−1a

)
v (t)

v (0) = u
(25)

where x(t)
::::
v (t) is a column vector of size N , I is the identity matrix and A

:::
S−1a :

is a N ×N
::::::::
symmetric

:::::::
positive

:::::::
definite10

:
(s. p. d.matrix, ‖A‖∞ < 1 (so that A− I )

::::::
matrix,

:::::::::
prescaled

::
so

:::
that

:::::::::::
‖S−1a ‖∞ < 1

:::
(i.

::
e.

:::::::
S−1a − I is non-singular). (A− I) and

(At+ (1− t)I)−1
:::::::::

(
S−1a − I

)
:::
and

::::::::::::::::::

(
S−1a t+ (1− t)I

)−1
commute for 0≤ t≤ 1, because both of them have the same set of

eigenvectors as A. This
:::::
which

:
makes it easy to verify that

v (t) =

(
At−S−1a t−

:::::
(1− t)I

)1/2

u (26)

is the solution of (25). Hence we can obtain x(1) = A1/2c
:::::::::::::
v (1) = S

−1/2
a u

:
by solving (25) numerically. Note

:
,
:::
and

::::
then

:::::
solve15

::
the

:::::
linear

::::::
system

::::::::::::
S−1a x= v (1)

:::
for

:::
the

:::::
vector

::
x,

:::
so

:::
that

:::::::::::::
x= SaS

−1/2
a u.

::::
The

::::::
matrix

:::::
S
−1/2
a :::::

above
::
is

:::::::::
symmetric

::
by

:::::::::::
construction

::::
(sum

:::
of

::::::::
products

::
of

:::::::::
symmetric

::::::::
matrices),

:::::
hence

:

〈xxT 〉= SaS
−1/2
a 〈uuT 〉S−1/2a Sa = Sa

::::::::::::::::::::::::::::::::
(27)

::
i.e.

:::
x

::
is

::::::
indeed

:::
the

::::::
vector

:::::::
required

:::
for

::::::
Monte

:::::
Carlo

:::::::::::
simulations.

:::::
Note

::::
also that one does not need to explicitly calculate

inverses of any of the matrices involved, since dx/dt can be found by employing iterative methods to solve
::::::
matrix

:::::::
inverses20

::::
while

:::::::
solving

:::
the

:::::
ODE,

::::
since

:(
S−1a t− (1− t)I

) dv

dt
=−1

2

(
I−S−1a

)
v (t)

:::::::::::::::::::::::::::::::::::

(28)

:
is
:
a linear system

(At− (1− t)I) dx

dt
=−1

2
(I−A)x(t)

Furthermore, such a numerical solution can then be formally written as25

x(1) =
∑
i

∏
j

[
ξij (Atij − (1− tij)I)−1 (I−A)

]
c
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for some real constants ξij , tij , which implies that A1/2 is sum of the products of commuting symmetric matrices, therefore

A1/2 is symmetric. This means
(
A1/2

)T
A1/2 = A1/2A1/2 = A. Hence, as shown before, if c is a vector of independent

random variables, each with standard normal distribution, x(1) has covariance matrix A.
:::
that

:::
can

:::
be

:::::
solved

:::
for

::::::
dv/dt.

:

We chose a classical approach – a Runge-Kutta method, to solve the linear ODE system numerically. Using constant step size

proved to be inefficient, so adaptive step size control was introduced (in particular, a fifth order Runge-Kutta-Fehlberg method5

by Fehlberg (1985)). Conjugate gradients method (Saad, 2003) was employed for all the linear equation systems involved. If we

make the same assumption about the structure of the inverse of the correlation matrix as before, i.e. that atmospheric quantities

are only correlated between nearest grid neighbours, the said matrix will have a constant number of non-zero entries in each

row for any amount of rows (grid points) N . More explicitly, under this assumption the covariance matrix for 1D retrieval

would be tridiagonal, and for a 3D retrieval on a regular rectangular grid it would contain 6 non-zero entries in each row.10

Therefore, each iteration of the conjugate gradients algorithm will cost O (N) operations. It is difficult, in general, to estimate

the dependence of required number of iterations onN , but in our case large matrices seem to converge similarly to smaller ones

and the whole computational cost of generating random vectors remains close to O(N), which is a huge improvement over

the Cholesky decomposition. The algorithm does not, though, explicitly yield the root of the covariance matrix and only gives

one random vector per run. Hence, unlike the Cholesky decomposition, it must be executed again for each new random vector15

required, so it is only feasible if the number of random vectors required is a lot smaller than N . Fortunately, this is very much

the case in practice, since the number of random vectors required is typically only of the order of 100 (Ungermann, 2013).

Although this root-finding algorithm does not provide a way to directly multiply the matrix root with itself, there is

an inexpensive way to verify that the matrix root was computed correctly. Let A
:
S

:
be a n×n s. p. d. matrix, let ei be

the i’th unit vector (1≤ i≤ n), and compute vi = A1/2ei ::::::::::
vi = S1/2ei:using our algorithm. Then for any i, j we have20

vTi vj = eTi
(
A1/2

)T
A1/2ei = eTi Aei = Aij:::::::::::::::::::::::::::::::::::

vTi vj = eTi
(
S1/2

)T
S1/2ei = eTi Sei = Sij , an element of A

:
S. Hence the qual-

ity of the matrix root can be evaluated by comparing vTi vj with Aij ::
Sij . The error tolerances of conjugate gradients and

Runge-Kutta were adjusted so that these values would differ by at most 10−4 when factoring a matrix prescaled so that the

largest eigenvalue is approximately 0.95.

4 Performance study25

4.1 The GLORIA instrument
:::
and

::::
data

::::::::::
processing

The Gimballed Limb Observer of Air Radiance in the Atmosphere (GLORIA) is an aircraft-based infrared limb imager. It

is a Michelson interferometer with a 2D detector array, spectral coverage from 770 to 1400 cm−1 and spectral sampling of

up to 0.0625 cm−1 (Riese et al. (2014); Friedl-Vallon et al. (2014)). It is carried aboard the Russian M55 Geophysica or

German HALO research aircraft, and is generally intended to look to the side of the aircraft, but can pivot horizontally so that30

the angle between aircraft heading and observation direction can be changed from 45
◦

to 135
◦
. The limb observation setup

naturally allows high vertical resolution (up to approximately 200 m) and, with a proper trade-off between spectral resolution

and measurement time, a high density of vertical profiles sampled along-track. The pivoting allows to look at the same air mass
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from several points along the flight path and use tomography to improve resolution in the horizontal direction perpendicular to

the flight path. Best results with tomographic retrievals are achieved, however, when the aircraft flies in a path close to circular

(hexagonal flight paths are used in practice, so that the aircraft could fly straight most of the time) of around 400 km in diameter,

and GLORIA observes the air masses in the middle from many directions (Ungermann et al., 2011). A horizontal resolution

down to 25 km in both directions can be achieved this way. As any limb observer, GLORIA can only provide tangent point5

data about air masses at and below aircraft flight altitude, which is limited to, approximately 20 km for the M55 Geophysica

and 15 km for HALO. For more detail on GLORIA, refer to e.g. Friedl-Vallon et al. (2014).

The implementations of the algorithms described in the sections 2 and 3 were integrated into the Jülich Rapid Spectral

Simulation Code Version 2 (JURASSIC2). The forward model of atmospheric radiance used in this code employs a forward

model for atmospheric radiation based on radiances obtained from the emissivity growth approximation method (Weinreb10

and Neuendorffer (1973), Gordley and Russell (1981)) and the Curtis–Godson approximation (Curtis (1952), Godson (1953)).

For more information about JURASSIC2, refer to Hoffmann et al. (2008); Ungermann et al. (2011); Ungermann (2013). The

performance of the new algorithms, both in terms of output quality and computational cost, is evaluated in the rest of this

section.

4.2 Retrieval setup and test data15

A hexagonal flight pattern intended for tomography was realised on 25th of January 2016, as part of flight 10 of the POL-

STRACC measurement campaign. The flight path of the HALO research aircraft contained a regular hexagon with diameter

(distance between the opposite vertices) of around 500 km over Iceland, which allowed for a high spacial resolution retrieval in

the central part of the aforementioned hexagon (Figure 1). The flight altitude throughout the hexagonal flight segment remained

close to 14 km. For detailed information about this flight refer to Krisch et al. (2017).20

The test case used in this paper is based on the actual aircraft path, measurement locations, spectral lines used for retrieval

and meteorological situation during this flight. Synthetic measurement data was used instead of real GLORIA observations: the

forward model of JURASSIC2 was employed to simulate the observed radiances in the atmospheric state given by the ECWMF

temperature and WACCM model data for trace gases, simulated instrument noise was subsequently added to those radiances.

This setup allows us to use model data as a reference (the “true” atmospheric state) for evaluation of retrieval quality.
:::
The

:::::
same25

::
set

::
of
:::::::::

simulated
::::::::::::
measurements

::::
was

::::
used

:::
for

::
all

::::
test

::::::::
retrievals

::::::::
described

::
in

:::
this

::::::
paper.

:::::
These

::::::::::::
measurements

:::::
were

:::::::
obtained

:::
by

::::::
running

:::
the

:::::::
forward

:::::
model

:::
on

:
a
::::
very

:::::
dense

::::
grid

:::::
(about

:::::
twice

::
as

:::::
dense

::
in
:::::
each

::::::::
dimension

::
as

:::::
those

::
of

:::
the

:::::::
densest

:::
test

:::::::::
retrievals).

::::
This

:::
was

:::::
done

::
to

:::::
ensure

::::
that

:::
the

:::::::::::
discretisation

:::::
errors

:::
in

:::
the

::::::::
simulated

::::::::::::
measurements

:::::
would

:::
be

:::::::
minimal

:::
and

::::::
would

:::
not

::::::
favour

:::
any

:::::::
retrieval

:::
(as

::
it

::::
may

:::::
could

:::::::
happen,

::
if

::::
they

:::::
were

::::::::
generated

:::
on

:::
the

:::::
same

:::::
grid).

:::
An

:::::::::
evaluation

::
of

:::::::
forward

::::::
model

:::::
errors

:::
on

:::::::
different

::::
grids

::
is
::::::::
presented

::
in
:::::::::
Appendix

::
C.

:
30

The retrieval derives temperature and volume mixing ratios of O3, HNO3, CCl4, ClONO2. Temperature and CCl4 con-

centration are derived in the altitude range from 3 km to 20 km; O3, HNO3, ClONO2 are retrieved from 3 km to 64 km.

The latter three trace gases have larger volume mixing ratios above flight level and hence significant contributions to measured

radiances from these high altitudes. Interpolated WACCM data was used as a priori for all trace gases. A priori data for tem-
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Figure 1.
::

The
::::

first
:::
row

:::
(T)

:::::
shows

:::
the

:::::::
ECMWF

:::::::::
temperature

::::
data

:::
used

::
to
:::::::

generate
:::
the

:::::::
synthetic

:::::::::::
measurements

::::
(true

::::::::::
temperature).

::::::
Second

:::
row

:::
(R)

:::::
shows

::
the

:::::::::
temperature

:::::::
residual:

:::
the

:::::::
difference

:::::::
between

::
the

::::
true

:::::::::
temperature

:::
and

::
the

::::::::
smoothed

:::::::::
temperature

::::
field

:::
used

::
as
:::
an

:
a
:::::
priori.

:
In
:::

the
:::
first

:::::::
column,

::::
black

::::
lines

:::::::
represent

:::::::
contours

:
of
::
a
::::
priori

:::::::::
temperature

:::::
value.

::
In

::::::
columns

::
2

:::
and

::
3:

::::
black

:::
line

:
–
:::::
flight

::::
path,

::::
thick

:::
grey

:::
line

::
–

::::::
position

::
of

::
cut

::::::
shown

:
in
:::
the

:::
first

:::::::
column,

:::
thin

:::
grey

::::
line

:
–
:::::::::
topography

:::::::
(Icelandic

:::::::
coastline

::::::
visible).

perature was obtained by applying polynomial smoothing to ECMWF data. The retrieval is hence not supplied with the full

temperature structure that was used to simulate the measurement. Therefore, the agreement between the retrieval result and the

“true” atmospheric state, upon which the simulated measurements are based, cannot be achieved by overregularisation.

4.3 Correlation length estimation

The standard deviation σ and correlation the lengths Lh and Lv in equation (13) can be obtained from statistical analysis of in5

situ measurement or model data. Rigorous derivation of these parameters for each retrieved trace gas and temperature would

require detailed analysis of in situ measurement databases and is, therefore, out of scope of this paper. However, the following

rough approximation proved sufficient to improve upon retrieval results compared to the old regularisation scheme.
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Figure 2. Horizontal
:::::
Panels

::
(a)

:::
and

:::
(b):

::::::::
horizontal cuts of retrieval grids. Dots show grid points, blue lines indicate Delaunay cell boundaries.

Panel (a) shows the full initial grid for retrievals A, B, C (all horizontal layers of this grid are identical), panel (b) shows the thinned out

grid for retrieval D (cut at 11 km).
::::
Panel

:::
(c):

:::
grid

:::
for

::::::
retrieval

::
D.

:::::
Radial

:::::::
distance

:
is
::::::
defined

::
as

::::::
distance

::
to
:::
the

::::::
vertical

:::
line

::
at

::
the

:::::
centre

::
of

:::
the

:::::::
hexagonal

:::::
flight

:::
path

:
(
:::::
66◦N,

::::::
15◦W).

:::::
Points

:::::
within

:::
the

::::
inner

:::
core

:::::
(1000 km

::
×

::::
1000 km

::
×

::
20

:
km

:
)
::
are

:::::
shown

::
in
::::
blue,

::::
other

:::::
points

::
–

::
in

:::
red,

:::::
shaded

:::::::
rectangle

:::::
shows

:::
the

::::::
position

::
of

::::::::
horizontal

::
cut

::
in

::::
panel

:::
(b).

Grid for retrieval D. Radial distance is defined as distance to the vertical line at the centre of the hexagonal flight path ( 66◦N, 15◦W).

Points within the inner core (1000 × 1000 × 20 ) are shown in blue, other points – in red, shaded rectangle shows the position of horizontal

cut in Figure ??b.
16



Table 1. Retrieval parameters

Entity α0 αh σ

Temperature 10−3 10−1 0.645 K

O3 10−5 10−3 70.7 ppbv

HNO3 10−5 10−3 902 pptv

CCl4 10−5 10−3 2.13 pptv

ClONO2 10−5 10−3 76.7 pptv

Regularisation weights α0, αh, (as in (2)) are used for

retrieval A, the standard deviation σ (see (13)) used for

retrievals B-D

3D tomographic retrievals are most useful for those trace gases that have high vertical gradients and complex spatial struc-

ture. The spatial correlation lengths of concentrations of such gases are mostly determined by stirring, mixing and other

dynamical processes and are therefore similar. Furthermore, Haynes and Anglade (1997) and Charney (1971) estimate of the

dynamically determined aspect ratio α≈ 200−250 in lower stratosphere, and we expect less than that in the upper troposphere.

Hence we will assume Lh/Lv = 200 for all trace gases.5

An analysis of spatial variability of some airborne in situ measurements was performed by Sparling et al. (2006). For ozone

concentration χ(s,z), where s is the horizontal location and z is the altitude, they define fractional difference parameters

∆r,h =
2 |χ(s+ r ,z+h)−χ(s,z)|
[χ(s+ r ,z+h) +χ(s,z)]

(29)

∆r = lim
h→0

∆r,h (30)10

and provide the dependence of the standard deviation σ (∆r) on the horizontal separation r. If the typical spatial vari-

ation in ozone concentration is significantly smaller than the mean ozone concentration 〈χ〉, one can approximate ∆r ≈
|χ(s+ r)−χ(s)|/〈χ〉. Then, using the covariance relation (8) and various properties of the normal distribution, we get

σ2(∆r) = 2(σ/〈χ〉)2 (1− 2/π)(1− exp(−r/Lh)). By comparing this to experimental results of Sparling et al. (2006), we

estimate Lh = 200km. Using the aspect ratio argument above, we also set Lv = 1km.15

The spatial structure of retrieved temperature differs from that of the trace gases. It is determined not only my
::
by

:
mixing

and stirring, but also radiative processes and gravity waves. Radiative transfer tends to erase some of the fine vertical structure

determined by isentropic transport, hence one should use a higher
:::::
greater

:
vertical correlation length than in the case of trace

gases. Gravity waves have a variety length scales, but due to the finite resolution of the instrument not all of them can be

retrieved. Following the gravity wave observational filter study for the GLORIA instrument in Krisch et al. (2018) we can20

estimate lowest observable gravity wave horizontal wavelength to be λh ∼ 200km and lowest vertical wavelength λv ∼ 3km.

λh coincides with the dynamically determined correlation length Lh = 200km, so this value should be appropriate for tem-

perature as well. The λv limit is not only determined by instrument resolution, but is also related the fundamental properties of
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Table 2. Grid densities in different regions for retrieval D in kilometers

Radius <300 300-400 400-550 550-1500 >1500

Altitude Horizontal grid separation

1-5 100 100 100 1000 1000

5-12.5 25 50 100 1000 1000

12.5-14.5 25 25 100 1000 1000

14.5-17 25 50 100 1000 1000

17-20 100 100 100 1000 1000

20-64 500 500 500 1000 1000

Altitude Vertical grid separation

1-5 1 1 1 1 2

5-12.5 0.125 0.25 1 1 2

12.5-14.5 0.125 0.125 1 1 2

14.5-18 0.125 0.25 1 1 2

18-24 2 2 2 2 2

24-64 4 4 4 4 4

gravity waves. Preusse et al. (2008) gives the following expression for the gravity wave saturation amplitude

T̂max =
λvT̄N

2

2πg
(31)

where T̄ is the mean temperature andN is the Brunt–Väisälä frequency. In typical lower stratosphere conditions and λv = 3km

the equation (31) gives T̂max ≈ 4K. Since gravity waves are usually not saturated and considering typical measurement error

(see Figure 5
:::
4.6), waves of significantly lower

::::::
shorter

:
wavelengths would probably not be observed. We hence set Lv = 3km.5

Time series of measurements at a fixed point in atmosphere are then used to approximate the standard deviations σ for all

retrieved quantities (Table 1).

:::
Our

::::::
choice

::
of

::
σ

::::
value

:::
for

:::::::::::
temperature,

::
in

::::::::
particular,

::::
may

:::::
seem

:::::
rather

::::
low.

::::
This

::
is

::::::
related

::
to

:::
the

:::::
choice

:::
of

:
a
:::::
priori:

:::::::::
smoothed

:::::::
ECMWF

::::
data

::::
was

::::
used

::::::
instead

::
of

:::::::::::
climatologies

:::
that

::::::
would

::::
have

::::
been

:::::
more

:::::
typical

::
in

::::
this

::::
case.

::::
Such

:::
an

:
a
:::::
priori

:::
can

::
be

::::::::
expected

::
to

:::::
match

:::
the

::::
large

:::::
scale

::::::::
structures

::
of

::::
real

::::::::::
temperature

::::
more

:::::::
closely,

::::
thus

:::::::
reducing

:::
the

:::::::
forward

::::::
model

:::::
errors

::
in

:::::
poorly

::::::::
resolved10

::::
areas

::::
and

:::::::::
improving

:::
the

::::::
results.

::
It

::
is

::::::::::
particularly

:::::
useful

:::
for

::::::::
resolving

::::
fine

:::::::::
structures,

::::
such

::
as

:::::::
gravity

::::::
waves,

:::::
which

:::::
were

:::
the

::::
main

::::::::
scientific

::::::
interest

:::
of

:::
the

::::::::::
measurment

:::::
flight

::::
used

:::
as

:
a
:::::
basis

:::
for

:::
test

::::::::
retrievals

::::::::::::::::
Krisch et al. (2017)

:
.
::
A

:::::
likely

:::::
closer

::::::
match

:::::::
between

:
a
:::::
priori

::::
and

:::::::
retrieval

::::
thus

:::::::
requires

:
a
::::::

lower
:
σ
::::::

value,
::::
that,

::
in

::::
this

:::::
setup,

:::::::::
represents

:::::::
expected

:::::::
strength

:::
of

::::::
gravity

:::::
wave

::::::::::
disturbances,

::::::
rather

::::
than

:::
full

::::::
thermal

:::::::::
variability

::
of

:::
the

:::::::::::
atmospheric

:::::
region

::
in

::::::::
question.

True temperature, K15

Residual temperature, K The first row (T) shows the ECMWF temperature data used to generate the synthetic measurements

(true temperature). Second row (R) shows the temperature residual: the difference between the true temperature and the
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smoothened temperature field used as an a priori. In the first column, black lines represent contours of a priori temperature

value. In columns 2 and 3: black line – flight path, thick grey line – position of cut shown in the first column, thin grey line –

topography (Icelandic coastline visible).

4.4 Test runs
::::::::
retrievals

The test data described in the previous section was processed with several different regularisation setups and retrieval grids.5

Here we present the results for four different runs.

Firstly, as a reference, the latest version of JURRASIC2 without the implementations of any new algorithms described in this

paper was used (retrieval A). It uses a rectangular grid that covers altitudes from 1 km to 64 km. The vertical spacing of the grid

is 1 km between the altitudes of 1 km and 5 km, 250 m between altitudes of 5 km and 20 km, 1 km between altitudes of 20

km and 25 km and 4 km between 28 km and 64 km. As required for the rectilinear grid, the number and distribution of points10

is the same in each altitude (Figure ??
:
2a). For this reference run, a first order regularisation (1) with trilinear interpolation (Bai

and Wang, 2010) was used. The regularisation weights, as defined in (2), are given in Table 1. These are typically tuned ad-hoc

:::::::
(adjusted

:::
by

::::::::::::
trial-and-error

::::
until

:::::::
optimal

:::::::
retrieval

::::::
results

:::
can

::
be

:::::::::
achieved), validated against model data and, when using real

observations, in situ measurements.

Then, to evaluate the performance of second order regularisation, retrieval B was performed. The grid and interpolation15

methods were identical to retrieval A, but the regularisation was replaced with the second order scheme from equation (13)

.
:::
and

::::::::::
correlation

::::::
lengths

:::::::
derived

::
in

:::::::
section

:::
4.3

:::::
from

::
in

::::
situ

:::::::::::
observations.

:::
No

::::::::::
subsequent

::::::
tuning

::
of

:::::
these

::::::::::
parameters

::::
was

:::::::::
performed.

We compare the quality of different retrievals by inspecting the differences between the retrieved temperature and tempera-

ture used to generate the synthetic measurements (“true” temperature). These differences are shown on horizontal and vertical20

slices of the observed atmospheric volume in Figure 3. Figure 4 shows the variation of the retrieved and true temperatures on

horizontal lines in order to visualise the response of retrievals to different spatial structures in true temperature.

Comparison of Figure 3 rows A and B shows the effect of the new regularisation (13). The new algorithm (retrieval B)

demonstrates better agreement with the true temperature. It shows markedly less retrieval noise in the central area, as well as

better results (less effect of a priori) just outside it, at the edges of the vertical cut shown in Figure 3. Considering also that,25

unlike A, the regularisation strength of B was not manually tuned for this test case in particular, we can conclude that the new

regularisation performed better in this test case.

The third retrieval (C) was performed on the same set of grid points as B and with the same input parameters, but the grid was

treated as irregular, i.e. a Delaunay triangulation was found, the algorithms described in section 2 were used for regularisation.

A horizontal cut of the Delaunay triangulation for this grid is shown in Figure ??
:
2a. By comparing B and C one can evaluate the30

agreement between the old interpolation, derivative calculation and volume integration techniques for rectilinear grids and their

newly developed irregular-grid-capable alternatives. The temperature fields from retrievals B and C are very similar (Figure 3),

which confirms that the new Delaunay triangulation based code gives consistent results when run on rectilinear grid.
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Figure 3. Panels show difference between retrieved temperature and true temperature of the simulated atmosphere. Rows A-D show results

of respective retrievals. In the first column, black lines represent contours of a priori temperature value. In columns 2 and 3: black line –

flight path, thick grey line – position of cut shown in the first column, thin grey line – topography (Icelandic coastline visible).
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Figure 4. Retrieved temperature at different altitudes in the vertical cut shown in Figures 1 and 3. Line T represents the true temperature of

the simulated atmosphere, A-D: respective retrievals.

Finally, retrieval D was performed with the same input parameters and methods as C, but using only the subset (22 %)

of the original grid points to reduce computational cost. These points were chosen so that grid density would be highest in

the volumes best resolved by GLORIA and sparser where little measurement data is available. In particular, a set of axially

symmetric regions around the center of original retrieval (i.e. symmetric w.r.t. vertical axis at 66◦N, 15◦W) was defined as

shown in Table 2. Points were removed from the original grid to achieve the specified vertical and horizontal resolutions for5

each region, resulting in the grid shown in Figure ??
:
2. Results changed little compared to retrieval C. Most of the minor

differences between C and D occur near the edges of the hexagonal flight path (Figure 3). Even though the grid spacing for

retrieval D is still the same as C in some these areas, larger grid cells nearby have some effect on their neighbours. Note

also that C and D retrievals tend to differ in the areas where the agreement between each of them and the true temperature is

relatively poor and diagnostics predict lower accuracy (Figure 5), so D can be considered to be as good as C in well-resolved10

areas. Unphysical temperature structures far outside the measured area like the one partially seen at 64◦N, 20◦W are not unique

to this retrieval, they just occur a little closer to the flight path in this case due to the coarser grid outside the hexagon.

4.5 Computational costs

JURASSIC2 finds an atmospheric state minimising (1) iteratively. In each iteration it first computes a Jacobian matrix of the

forward model, hence obtains a Jacobian of the cost function (1) and then minimises the cost function using the Levenberg-15

Marquardt (Marquardt, 1963) algorithm and employing conjugate gradients (CG) (Saad (2003), Hanke (1995)) to solve the

linear systems involved. The forward model is then run to simulate the measurements for the new iteration of atmospheric

state.

All calculations were performed on the Jülich Research on Exascale Cluster Architectures (JURECA) supercomputer oper-

ated by the Jülich Supercomputing Centre (Jülich Supercomputing Centre, 2016). Each retrieval was executed in parallel on 420

computation nodes, each with 24 CPU cores (twin Intel Xeon E5-2680 v3 CPU’s) and 128 GB of system main memory.
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Figure 5. Panels
:
B
::::

and
::
D show the Monte Carlo estimate of the total temperature error for

::
the

:
retrievals B and D

:::::
would

::::
have,

::
if

:::
the

::::::::::
measurements

::::
were

::::
real.

::::
Panel

:::
Ds

:::::
shows

::
an

::::
error

:::::::
estimate

:::
for

:::
the

:::::::
synthetic

:::::::
retrieval

::
D

::::
(this

::::::
assumes

::::
that

:::::::::
unretrieved

::::::::
quantities,

::
e.

::
g.

::::::
pressure,

:::
are

::::::
known

::::::
exactly).

:
In columns 2 and 3: black line – flight path, thick grey line – position of cut shown in the first column, thin

grey line – topography.

Table 3 shows the time required for different parts of calculation averaged over 3 identical runs (although < 1% variation

was observed). The “Other calculations” field mostly includes time required by input and output, but also preparatory steps,

such as Delaunay triangulation in the case of retrievals C and D.

The results in Table 3 reveal the impact of the new methods on computation times. The new, more complex regularisation

results in significantly slower convergence in the conjugate gradient calculation, making retrieval B about 6% more expensive5
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than A. The Delaunay triangulation, however, decreases Jacobian calculation costs by roughly 25%, even the one used on the

same grid as the old approach. This has to do with the fact that interpolation based on Delaunay triangulation only requires 4

values of the interpolated quantity at neighbouring points, and linear interpolation in three directions requires 8, thus resulting

in more non-zero terms in the Jacobian. The time required for initialisation of Delaunay interpolation and derivatives, includ-

ing construction of the matrix S−1a , increases rather fast with grid size with current implementation, contributing to “other5

calculations” of retrieval C. Further optimisation of this step is possible and will be implemented in the future. In total, the new

retrieval (C) is 9% faster then the old approach (A) while using the same grid.

Table 3. Computational cost of retrievals (calculation times given in minutes)

Retrieval A B C D

Number of grid points 302526 302526 302526 54580

Jacobian calculation 134.4 133.2 101.2 61.3

Minimisation (CG) 4.2 14.9 12.8 6.0

Forward model 2.5 2.5 2.6 2.6

Other calculations 5.6 4.4 17 3.0

Total elapsed time 146.7 155.0 133.6 72.9

Retrieval D gives a further 45% reduction of computation time by removing 82% of points in the grid. A speedup of such

order was expected. Only a minority of grid points contribute to a forward model (and hence Jacobian) calculations, and

JURASSIC2 code is heavily optimised for sparse matrix operations. Most of the grid points contributing to forward model are10

in the areas well resolved by the instrument and thus cannot be removed from the grid without compromising data products.

Therefore, the actual savings in computation time mostly come from removing points above flight level and choosing a more

appropriate non-rectangular shape for the densest part of the grid when measurement geometry requires that. Some of the

points above flight path must be included since infrared radiation from there is measured by the instrument, but very little

information about atmosphere far above flight level can be retrieved, so very low grid densities are sufficient (Table 2).15

4.6 Diagnostics

We follow Ungermann et al. (2011) and use Monte Carlo approach to obtain diagnostics, but replace Cholesky decomposition

with the method developed in section 3. Results for retrievals B and D are presented in Figure 5
::
B,

::
D. They show the total

error estimate for temperature based on the sensitivity of temperature value to
:::::::::
(simulated)

:::::::::
instrument

:::::
noise

::::
and

:
all other

retrieved atmospheric quantities as well as expected error of non-retrieved quantities (e.g. pressure).
:::::
These

::::::
results

:::
tell

:::
us20

::::
what

::::::::::
temperature

:::::
errors

:::
we

:::::
could

::::::
expect

::
if

:::
the

::::::::
retrievals

::
in

::::::::
question

::::
were

:::::::::
performed

::::
with

::::
real

::::
data.

::::
The

:::::
panel

:::
Ds

:::::
shows

:::
an

::::
error

:::::::
estimate

:::::
based

:::
on

:::::::::
(simulated)

::::::::::
instrument

::::
noise

::::
and

:::::::::::
uncertainties

::
of

:::::::
retrieved

::::::::::
parameters

::::
only.

::
In

:::
the

::::
case

:::
of

:
a
::::::::
synthetic

:::::::
retrieval,

::::::::::
unretrieved

:::::::::
parameters,

:::::
upon

:::::
which

::::
the

::::::::
simulated

::::::::::::
measurements

:::
are

:::::
based,

:::
are

::::::
known

:::::::
exactly.

:::::::::
Therefore,

:::::
panel

:::
Ds
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:
is
::
a
:::::
direct

::::::
Monte

:::::
Carlo

:::::::::
prediction

::
of

:::
the

::::::::::
temperature

::::::::
deviation

:::
we

::::
see

::
in

::::::
Figure

:::
3D,

::::
and

:::
the

:::::::::
magnitude

::
of

::::
this

::::::::
deviation

::
is

:::::
indeed

:::::::
similar.

:::::
These

::::::
results

::::::
confirm

::::
that

::::::::::
temperature

::::
can

::::
only

::
be

:::::::
reliably

::::::::
retrieved

::::::
within

:::
the

::::
flight

::::::::
hexagon

::
or

::::
very

:::::
close

::
to

:::
the

::::::
actual

::::
path.

:::::
Also,

:::
the

::::
error

::::::::
estimates

:::
are

::::::
higher

::
in

:::
the

::::::
central

::::
area

::
of

::::::::
hexagon

::::
close

:::
to

::::
flight

:::::::
altitude,

:::
in

::::::::
agreement

:::::
with

:::
test

::::::
results

::::::::
(compare

::::::
column

::
3

::
of

::::::
Figures

::
3

:::
and

:::
5).5

Monte Carlo retrieval results provided here were verified by estimating temperature error at one grid point using a more

direct approach. Rodgers (2000) proves that retrieved atmospheric state x can be written in terms of the a priori state xa, the

(unknown) true state xt and measurement error ε as

x= Axt + (I−A)xa +Gε (32)

where10

G = M−1 (DF(x))
T
S−1ε A = GDF(x) M = S−1a + [DF(x)]

T
S−1ε DF(x) (33)

Here D denotes Jacobian
::
the

::::::::
Jacobian

:::::::
operator

:
and all other notation as in (1). The so-called gain matrix G fully describes

the effect of measurement uncertainties ε on the retrieved state x. Computing G would be prohibitively expensive due to the

required matrix inversion, but note that i’th element of x only depends on i’th line of the matrix G, so one can use Krylov

subspace methods (e.g. conjugate gradients) to solve Mri = ei for the i’th row rTi of the inverse matrix M−1. The i’th row of15

G can then be obtained as rTi (DF(x))
T
S−1ε .

This approach allows for error estimation for a small number of grid points in reasonable time. We chose one point in the

centre of the hexagon (66◦ N, 15◦ W, 11.75 km altitude) for retrieval B. The total temperature error was found to be 1.27 K

and agrees with Monte Carlo result (1.25 K) at those points
:::
this

::::
point

:
within 2%, which is an excellent accuracy for an error

estimate.20

The results of Monte Carlo runs for retrievals B and D are presented in Figure 5. They clearly confirm that temperature

can only be reliably retrieved within the flight hexagon or very close to the actual path. Also, the error estimates are higher

in the central area of hexagon close to flight altitude, in agreement with test results (compare column 3 of Figures 3 and 5).

Note that the actual deviations of retrieved temperatures (Figure 3 A-D) from the temperature values used to generate the

synthetic measurements (depicted in Figure 1 T) tend to be significantly lower than the Monte Carlo estimate. This happens25

because Monte Carlo provides a rather cautious approximation for work with real data, which includes the uncertainties of

unretrieved quantities taken from the models (e.g. pressure), but those quantities are treated as exact when generating the

simulated atmosphere, and only measurement noise is introduced. The major spatial features of the Monte Carlo estimate,

however, do agree well with the errors of the simulated retrieval results.

5 Conclusions30

A new regularisation algorithm for 3D tomographic limb sounder retrievals employing second spatial derivatives (based on

equation 13) was developed and implemented. The unphysical ad-hoc parameters (regularisation weights) of the previous first
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spatial derivative based approach were replaced with physical quantities – retrieved quantity standard deviation and correlation

lengths in vertical and horizontal directions. Unlike the regularisation weights, these quantities do not require as manual tuning

for each retrieval and can be estimated from in situ measurements, model data and theoretical considerations. Tests with

synthetic data showed slightly superior performance of the new algorithm, even compared to the old approach with tuned

parameters. A rather general technique (equation (10)) of adapting the tomographic retrieval for atmospheric regions of high5

anisotropy and spatial variability was also proposed.

A Delaunay triangulation based approach for retrievals on irregular grids was developed. By better adapting the grid to the

retrieval geometry and thinning it out in the regions where lack of measurement data limits the resolution, the computation

time of a tomographic retrieval was reduced by a total of 50% without significant deterioration of the results. Irregular grids

can be further employed for efficient tomographic retrievals in non-standard measurement geometries.
::
At

:::
the

::::
time

::
of

:::::::
writing,10

::
the

::::::::
methods

::::::::
developed

::
in
::::
this

:::::
paper

::::
were

:::::::
already

::
in

:::
use

::
to

::::::
process

::::::::
GLORIA

:::::
limb

::::::
sounder

:::::
data.

Monte Carlo Diagnostics were newly implemented for a 3D tomographic retrieval allowing for quick and reliable evaluation

of measurement quality, identification of reliably resolved volumes and selection of optimal 3D tomography setups. Error

estimates for retrieved atmospheric quantities can now be calculated at each grid point, while the previous approaches to

diagnostics only allowed to do that for a few selected points within similar time frame.
:

15

Appendix A:
::::::::::::
Regularisation

:::::
tests

:::
The

::::::::
equations

::::
(13)

::::
and

:::
(6)

::::
were

::::
used

::
to

::::::::
construct

::::::::
precision

:::::::
matrices

::::
S−1a :::::::

directly,
:::::

since
:::::::::::
constructing

:
a
:::::::::
covariance

::::::
matrix

:::
Sa

::::::::
explicitly

:::
and

::::::::
inverting

:
it
::::::
would

::
be

:::::::::::
prohibitively

:::::::::::::
computationally

:::::::::
expensive.

:::::
While

:::
the

::::::::
equation

::::
(13)

:::
was

:::::::
derived

::::::::::
analytically,

::
its

:::::::
discrete

:::::::::::::
implementation

::::::
cannot

:::
be

::::::
exact,

:::::
which

::::::
raises

:::
the

:::::::
question

::::::::
whether

:::
our

::::::::
precision

::::::::
matrices

::::
still

::::
have

::::::::
required

::::::::
properties,

:::::::
namely,

::::::::
whether

::::
they

:::
are

::::
still

:::::::
inverses

::
of

:::
Sa::::

that
:::::
obeys

::::::::
equation

:::
(8).

:::::::
Clearly,

::::
this

:::
can

:::::
only

::
be

:::::::
verified

:::::::
directly20

::
for

::
a
:::::
small

:::
test

:::::
case,

:::::
where

:::::::::
covariance

::::::::
matrices

:::
are

:::::
small

::::::
enough

::
to
:::

be
::::::::
inverted.

::::
Also,

::::::::::
employing

:::::
matrix

::::::
norms

::
to

::::::::
compare

:::::::
matrices

::
is

:::
not

::::
very

:::::
useful

::
in

:::
this

:::::
case,

::
as

:::
the

::::::
directly

:::::::::
computed

:::
S−1a ::

is
:::::
based

:::
on

::::
finite

:::::::::
difference

::::::::
derivative

::::::::
estimates

:::::
which

:::
do

:::
not

::::
work

::::
very

::::
well

::
at
::::
grid

::::::::::
boundaries.

::::
This

::
is

:::
not

:
a
::::::::

problem
:::
for

:::
the

:::::::
retrieval,

::::::
which,

:::
by

::::::
design,

::::::::::
approaches

:
a
:::::
priori

::::
near

::::
grid

:::::::::
boundaries,

:::
but

::
it

:::
has

:::::
strong

::::::
effects

:::
on

:::::
matrix

::::::
norms.

:::::::
Instead,

:::
we

::::::::
compared

:::
the

:::::::::
covariance

::::::::
matrices

::
by

:::::
using

::::
them

::
to
::::::::
compute

::
the

::::::
norms

::
of

::::::
several

:::
test

:::::::
vectors,

::::
that

::::::::
represent

:::::
typical

:::::::::
structures

:::::::
expected

:::
for

::::
that

:::::::::
covariance.

:
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:::::::
Precision

::::::
matrix

::::
S−1a ::::

was
:::::::::
constructed

:::
for

:::
one

:::::
entity

:::
on

:
a
::::::
regular

:::::::::
20x20x20

::::
grid

::::
(grid

:::::::
constant

::
1

::
in

::::
each

::::::::
direction)

:::::
using

:::
the

::::
same

:::::::::
techniques

::
as

:::
for

:::::::
retrieval

::
B
::::::
(σ = 1

:::
and

:::::::::::::::::
Lv = Lh = L= 2).

::::
Then

::
a

:::::::::
covariance

:::::
matrix

::::
was

::::::::
explicitly

::::::::::
constructed

:::
for

:::
the

::::
same

::::
grid

:::::
using

:::::::
equation

:::
(8)

:::
and

:::::::
inverted

::
to

::::::
obtain

:::
the

::::::::
precision

:::::
matrix

:::::
Ŝ
−1
a .

::
A

::
set

:::
of

::::::
vectors

:::
xφ :

–
:::::::
discrete

:::::::::::::
representations

::
of

:
a
:::::::::
“Gaussian

::::
wave

:::::::
packet”

::::::::::
disturbance

φ(r) = exp

(
−‖r‖

2

d2

)
cos(k · r)

::::::::::::::::::::::::::

(A1)30

:::
was

:::::::::
computed.

:::
The

:::::::::
parameter

:
d
::::
was

::::::
chosen

::
so

:::
that

:::
the

:::::::::
amplitude

::
of

:::
the

::::
wave

::::::
would

:::::
decay

::
to

::
at

::::
most

::::
0.01

::
at

:::
the

:::
grid

:::::::::
boundary,

:::
thus

::::::::::
suppressing

:::::
edge

::::::
effects.

::::
Two

:::::::
different

:::::::::::
wavelengths,

:::::::
namely

:::::::::
λ= 15, 20,

:::
in

:::
grid

:::::
units,

::::
and

::::
were

::::::
chosen

::::
and

::
50

::
k
::::::
values
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Table A1.
::::::
Forward

:::::
model

:::
tests

::::::::::
Measurement

::
set

: ::::::
original

:
+
:::::
noise

:
A
: :

C
: ::

D

:::::::::
∆(y,yorig)

:::::
0.0193

: :::::
0.0035

: :::::
0.0036

: :::::
0.0047

:

Difference in forward model results, compared to original synthetic measurement set without

noise. A-D refer to forward model results of respective retrievals

:::::::
pointing

::
at

::::
every

:::::::
possible

::::::::
direction

::::
were

:::::::::
generated

:::
for

::::
each

:::::::::
wavelength

::::
(i.e.

::::::::::::
‖k‖= 2π/λ).

:::::
Then,

:::
for

::::
each

::
of

:::
the

:::::::
resulting

::::
100

::::::::::
disturbances

:::
the

::::::
norms

::::::
‖xφ‖p:::

and
:::::::
‖xφ‖t, :::::

where
:::::::::::::::::
‖xφ‖2p = xTφS

−1
a xφ::::

and
:::::::::::::::::
‖xφ‖2t = xTφ Ŝ

−1
a xφ,

:::::
were

:::::::::
calculated,

::
as

::::
well

:::
as

::::
their

::::::
relative

:::::::::
difference

:::::::::::::::::::::::::::::::::::
δ = 2 |‖xφ‖p−‖xφ‖t|/(‖xφ‖p + ‖xφ‖t).

:::
For

:::
the

:::::
case

::::::
λ= 15

:::
we

:::::
found

::::
that

:::
the

:::::
mean

:
δ
:::::
value

::::
was

:::::
0.050,

::::
with

::::::::
standard

::::::::
deviation

::::::
0.0042,

::::
and

:::
for

:::
the

::::
case

::::::
λ= 20

:::::
mean

:::
was

::::::
0.036,

::::
with

::::::::
standard

::::::::
deviation

::::::
0.0007.

:::
We

:::::::
believe

:::
that

::::::::
precision

::
of

:::
this

:::::
order

::
is

::::::::
sufficient

:::
for

:::::::::::
regularisation

::::::::
purposes.

:
5

Appendix B:
:::::::::::
Applicability

::
to

:::
1D

::::
and

:::
2D

::::::::
retrievals

:::
The

::::::::::
exponential

:::::::::
covariance

:::::::
relation,

:::::
given

::
in

:::::::
equation

::::
(8),

:::
can

::
be

:::::::
trivially

::::::::
extended

::
to

:::
any

:::::::::
dimension.

::
It
::
is

::::
used

::
as

::
a

::::::::
statistical

:::::
model

::
to

:::::
many

::::::::
processes.

::::
The

::::
norm

:::::::::
associated

::::
with

:::
this

::::::::::
exponential

:::::::::
covariance,

:::::
given

::
in

:::::::
equation

:::
(9),

:::
is,

:::::::
however,

::
a

:::::::::
3D-specific

:::::
result.

::::::
Known

:::
2D

::::::::::
equivalents

::::::
involve

::::::::
fractional

:::::::
powers

::
of

:::::::::
derivatives

:::
and

::::::::
therefore

:::
are

:::
not

::
as

::::
easy

::
to

:::::::::
implement

:::::::::::
numerically.

:
A
:::::
norm

:::::::::
associated

::::
with

:::
1D

::::::::::
exponential

:::::::::
covariance

:::
can

::
be

::::::
shown

:::
(?)

::
to

::::
have

:::
the

::::::
simple

::::
form

:
10

‖φ‖2 =
1

2σ2L

 x2∫
x1

φ2dx+L2

x2∫
x1

(
∂φ

∂x

)2

dx


:::::::::::::::::::::::::::::::::::::

(B1)

::::::::
neglecting

:::::
some

::::::::
boundary

::::::
terms.

::::
Here

:::
the

:::::
scalar

::::
field

:::::
φ(x)

::::::::
represents

:::
the

:::::::::
difference

:::::::
between

:::
the

:::::::
quantity

::
to

:::
be

:::::::
retrieved

::::
and

:
a
::::::
priori,

:::
and

::
L

::
is

:::
the

::::::::::
correlation

::::::
length.

:::
All

:::
the

:::::
main

:::::::::
theoretical

::::::
results

:::
and

:::::::::
numerical

:::::::
methods

:::
of

:::
this

:::::
paper

::::
can

::::::::
therefore

::
be

::::::::::
reproduced

:::
for

:::
1D

::::::
inverse

:::::::::
modelling

:::::::::
problems.

:::
The

:::::::::
usefulness

:::
of

:::
our

::::::::
methods

:::
for

:::::::
practical

::::
1D

::::::::::
applications

:::::::::
ultimately

:::::::
depends

::
on

:::
the

:::
size

:::
of

::
the

::::::::
problem

::
in

:::::::
question.

:::
1D

::::
limb

::::::::
sounding

::::::::
retrievals,

:::
for

::::::::
example,

:::
are

::::::
usually

:::
too

:::::
small

:::
for

::
the

::::::::
methods15

::::::::
developed

::::
here

::
to

::
be

::::::
useful.

::
It

:::::
would

::::::::
typically

::
be

::::::::
possible,

:::
and

::::::
indeed

:::::::
simpler,

::
to

::::::::
explicitly

:::::::
construct

::::
and

:::::
invert

:::
the

:::::::::
covariance

:::::
matrix

::
of
::

a
:::
1D

::::::::
problem,

:::::
rather

::::
than

::::::::
discretise

:::
the

:::::::::
associated

:::::
norm

:::::
(B1).

::
In

:::
the

::::
case

::
of

::
a
::::
very

:::::
large

:::
1D

:::::::
problem

::::
with

::::::
strong

:::::::::
covariance,

::::::::
however,

:::
one

::::
may

::::
find

:::
the

:::::::
methods

::::::::
presented

::
in

::::
this

::::
paper

:::::
more

::::::::
lucrative.

:

Appendix C:
:::::::
Forward

::::::
model

::::
tests

::
As

:::::::
pointed

:::
out

:::
in

::::::
section

::::
4.2,

:::
the

:::::
same

::::::::::::
measurement

:::
set,

::::::::::::
synthetically

::::::::
generated

:::
on

:::::
dense

:::::
grid,

::::
was

::::
used

::::
for

::::::::
retrievals20

::::
A-D.

::::
This

::::::::
provides

::
an

::::
easy

::::
way

:::
to

:::::
verify

::
if

:::
the

:::::::
forward

::::::
model

::
is

:::::::::
performing

::::::::::
consistently

:::
on

::::::::
different

:::::
grids:

:::
run

::
it

::
on

:::::
each

::::
grid,

:::::
based

:::
on

:::
the

:::::
”true”

:::::::::::
atmospheric

::::
state

::::
and

::::::::
compare

:::
the

::::::
results

::::
with

:::
the

::::::::
synthetic

::::::::::::
measurements

:::::
from

:::
the

:::::
dense

:::::
grid.
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::
In

:::
our

::::
test

::::
case,

::::
the

::::::::
radiances

:::
are

:::::::::
calculated

:::
for

:::::::
n= 31

:::::::
spectral

::::::::
windows.

::
If
::::::

vector
::
y
:::::::::
represents

::
a
:::
set

::
of

:::::::::
radiances,

::::
and

::
yi:::::::::

represents
:::
the

::::::::
radiances

:::
at

:::
i-th

:::::::
spectral

::::::::
window,

:::
we

:::::::
evaluate

::::
the

::::::::
difference

::::::::
between

:::::
those

::::::
vectors

:::::
with

:::
the

:::::::::
parameter

::::::::::::::::::::::::::::::::::::::::::::
∆(y,y′) = (1/n)

∑n
i 2‖yi−y′

i‖2/(‖yi‖2 + ‖y′
i‖2)

:::::
where

:::::
‖ · ‖2::

is
:::
the

::::::::
euclidean

::::::
norm.

:::
The

::::::
results

::
of

::::
this

::::::::::
comparison

:::
are

::::::::
presented

::
in

:::::
Table

:::
A1.

:::::::
Forward

::::::
model

:::
for

:::::::
retrievals

::
A
::::
and

:
C
:::::
used

:::
the

::::
same

::::
grid,

:::
but

::
A

::::
used

:::::::
trilinear

:::::::::::
interpolation,

::::
and

::
C

::::
used

::::::::
Delaunay

:::::::::::
interpolation.

:::
We

::::
can

:::
see

:::
that

:::
the

:::::::
change

::
in

:::::::::::
interpolation

::::
does

:::
not

::::::::
introduce

:::::::::
significant

::::::
errors

:::::::::
(compared

::
to

:::::
those5

:::::::::
introduced

::
by

:::
the

::::
grid

::::::::
change).

:::::::
Thinned

:::
out

::::
grid

::::
and

::::::::
Delaunay

:::::::::::
interpolation

::::
was

::::
used

:::
for

::::
grid

:::
D.

::::
Note

::::
that

:::
the

:::::::::
simulated

:::::::::::
measurements

::::
that

:::::
were

::::::
actually

:::::
used

::::
also

::::
have

::::::::
simulated

:::::::::
instrument

:::::
noise

::::::
added

::
to

:::::
them.

:::
The

::::::
results

::::::
clearly

:::::
show

::::
that

:::
the

:::::
effects

:::
of

:::::::
different

::::::::::::
discretisation

:::
are

::::
well

::::::
below

:::::
iNote

::::
that

:::
the

::::::::
simulated

::::::::::::
measurements

::::
that

:::::
were

:::::::
actually

::::
used

::::
also

:::::
have

::::::::
simulated

:::::::::
instrument

:::::
noise

:::::
added

::
to

::::
them

:::::::::
instrument

:::::
noise

::::
level

::::
and

:::
are

:::::::
therefore

::::::::::
acceptable.

:::::
Also,

::
the

:::::
error

::
is

:::::
lower

::::
than

:::
our

:::::::
generally

::::::::
assumed

:::::::
forward

:::::
model

:::::
error

::
of

:::::
1-3%

:::::::::::::::
(Hoffmann, 2006).10
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