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Abstract. Multiple limb sounder measurements of the same atmospheric region taken from different directions can be com-

bined in a 3D tomographic retrieval. Mathematically, this is a computationally expensive inverse modelling problem. It typically

requires an introduction of some general knowledge of the atmosphere (regularisation) due to its underdetermined nature.

This paper introduces a consistent, physically motivated (no ad-hoc parameters) variant of the Tikhonov regularisation

scheme based on spatial derivatives of first order and Laplacian. As shown by a case study with synthetic data, this scheme,5

combined with irregular grid retrieval methods employing Delaunay triangulation, improves both upon the quality and the

computational cost of 3D tomography. It also eliminates grid dependence and the need to tune parameters for each use case.

The few physical parameters required can be derived from in situ measurements and model data. Tests show that 82% re-

duction in the number of grid points and 50% reduction in total computation time, compared to previous methods, could be

achieved without compromising results. An efficient Monte Carlo technique was also adopted for accuracy estimation of the10

new retrievals.

1 Introduction

Dynamics and mixing processes in the upper troposphere and lower stratosphere (UTLS) are of great interest. They control

the exchange between these layers (Gettelman et al., 2011) and have a strong influence on the composition and thereby on

radiative forcing (Forster and Shine, 1997; Riese et al., 2012). High spatial resolution observations are required to understand15

the low length-scale processes typical of this region.

Infrared limb-sounding is an important tool for measuring the temperature and volume mixing ratios of trace gases in UTLS

with high resolution, especially in the vertical direction, which is critical for resolving typical structures there (e.g. Birner,

2006; Hegglin et al., 2009). Modern limb sounders are capable of high frequency operation resulting in many measurements

taken close to one another, which are best exploited if the data from these measurements can be combined. Producing a 2D20

curtain of an atmosphere along the flight path of the instrument by combining the observations close to each other is already

an established technique (e.g. Steck et al., 2005; Worden et al., 2004). With suitable measurement geometries, this technique

can be extended to obtain 3D data.
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A tomographic data retrieval uses multiple measurements of the same air mass, taken from different directions, to obtain high

resolution 3D temperature and trace gas concentration data. There is, as it often happens with remote sensing retrievals, a large

number of atmospheric states that would agree with the given observations within their expected precision. A regularisation

algorithm is employed to pick the solution that is in best agreement with our prior knowledge of the atmospheric state and

general understanding of the physics involved. The mathematical framework of the tomographic retrieval is outlined in section5

2.1.

The classic Tikhonov regularisation scheme (Tikhonov and Arsenin, 1977) is an established technique used for infrared limb

sounding instruments such as the Michelson Interferometer for Passive Atmospheric Sounding (Steck et al., 2005; Carlotti et al.,

2001)), GLORIA (Ungermann et al., 2010; Ungermann et al., 2011). It quantifies the spatial continuity of an atmospheric state

by evaluating first order spatial derivatives of the retrieved quantities. This technique serves the purpose of ruling out very10

pathological, oscillatory retrieval results, but requires fine tuning of several unphysical ad-hoc parameters and subsequent

validation. In this paper, we introduce an improved, more physically and statistically motivated approach to regularisation,

that requires less tuning. It relies on the calculation of both the first spatial derivative and Laplacian of atmospheric quantities,

which provide more complete information about smoothness and feasibility of a particular atmospheric state. The regularisation

parameters we use are physical, in the sense that they can be estimated from in situ measurements or model data, and less grid15

dependant: their values, once established, can be more readily used for new retrievals.

Data retrievals from limb sounders are typically performed on a rectilinear grid. In this paper, we define rectilinear grid by

taking a set of longitudes, a set of latitudes and a set of altitudes and placing a grid point at each of the possible combinations

of these coordinates. Such grids can be a limiting factor for efficiency of numerical calculations. Due to the exponential nature

of atmosphere density distribution with altitude, most of the radiance along any line of sight of a limb imager comes from the20

vicinity of the lowest altitude point on a given line of sight (called tangent point). The resolution of the retrieved data depends on

the density of tangent points in the area. For airborne observations this density is highly inhomogeneous. The densely measured

regions are limited in size, located below flight altitude only and rarely rectangular. The large, poorly resolved areas with little

or no tangent points still need to be included in the grid as long as lines of sight of any measurements pass through them.

A rectilinear grid retrieval tends to either underresolve the well-measured area, or waste memory and computation time for25

regions with few measurements. To avoid this problem, a tomographic retrieval on irregular grid with Delaunay triangulation

was developed (section 2). It allows for significant computational cost improvements without compromising retrieval quality.

Most retrieval error estimation techniques would be unreasonably computationally expensive in the case of a 3D tomographic

retrieval. Monte Carlo methods allow a relatively quick error estimation. In order to apply Monte Carlo for a 3D tomographic

retrieval on an irregular grid and using our newly developed regularisation, dedicated algorithms have to be developed. These30

are presented in section 3.

The new methods described in sections 2 and 3 were tested with synthetic measurement data to compare their results and

computational costs. The tests, and their results, are described in detail in section 4.
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2 Regularisation improvements and irregular grids

2.1 The retrieval

The main focus of this paper is the algorithm for retrieving atmospheric quantities, such as temperature or trace gas mixing

ratios, from limb sounder measurements in 3D. In this section, we outline the general inverse modelling approach to this

problem and identify some aspects we aim to improve upon.5

Let an atmospheric state vector x ∈ Rn represent the values of some atmospheric quantities on a finite grid and let y ∈ Rm

be a set of m remote measurements taken within the region in question. The physics of the measurement process itself has to

be understood for the instrument to be practical, so one can usually build a theoretical model of the measurement (the forward

model) F : Rn→ Rm. The inverse problem of determining x given y is then typically both underdetermined and ill-posed:

many atmospheric states would result in the same measurement, but due to instrument and model errors no states would yield10

the exact measurement result y. One can solve this problem by finding an atmospheric state x that minimises the following

quadratic cost function

J(x) = (F (x)−y)
T
S−1ε (F (x)−y) + (x−xa)

T
S−1a (x−xa) (1)

The first term of (1) quantifies the difference between the actual measurement and a simulated one (given the atmospheric

state is x). The matrix S−1ε ∈ Rm×Rm represents the expected instrument errors. The second term introduces regularisation,15

i.e. it is larger for x that are unlikely given our general, measurement unrelated, knowledge about the atmosphere. In practice

this is achieved using an a priori state xa, usually derived from climatologies. It is meant for introducing the best of our prior

knowledge into the retrieval process without imposing any features of the kind to be measured. The precision matrix S−1a (the

inverse of a covariance matrix for atmospheric states Sa) contains the prior knowledge about the probability distribution of

atmospheric states. For a more detailed discussion of this approach refer to Rodgers (2000).20

Finding the precision matrix S−1a that would correctly represent the physical and statistical properties of the atmosphere is

challenging. The Tikhonov regularisation approach (Tikhonov and Arsenin, 1977)

S−1a = α2
0L0L

T
0 +α2

vLzL
T
z +α2

hLxL
T
x +α2

hLyL
T
y (2)

is widely used for this purpose. Here the matrix L0 is diagonal and contains reciprocals of standard deviations of atmospheric

quantities, and Lx, Ly , Lz represent spatial derivatives in the respective directions on regular rectangular grid, estimated by25

forward differences. The positive constants α0, αh, αv are chosen ad-hoc. This is a convenient way to construct S−1a , and it

serves the purpose of ruling out very pathological, oscillatory retrievals. The constants α0, αh, αv are, however, unphysical, grid

dependent, and hence have to be estimated (typically by trial-and-error) for each use case. They are not related to the properties

of the atmosphere in any simple fashion. Also, the usage of first order derivatives only is justified mostly by simplicity and the

need to keep the computations cheap.30

We chose a slightly different, more physically and statistically motivated approach to regularisation, which is introduced in

the following section.
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2.2 Covariance

This section describes the theoretical background for the regularisation algorithm used for our retrieval, i.e. the motivation for

S−1a in equation (1).

If the atmospheric state x has the mean xapr and covariance matrix Sa then its entropy is maximised if x has multivariate

normal distribution (proved e.g. by ?). Hence by treating x as a random vector with this distribution we impose the smallest5

restriction possible while still introducing a priori information from Sa into our retrieval. Also, the probability density of x is

then

fx (x̂)∼ exp
(
−(x̂−xapr)

T
S−1a (x̂−xapr)

)
(3)

This immediately justifies the second term of equation (1), provided that S−1a represents, to some extent, the actual statistics

of the atmosphere. This is often referred to as the Bayesian approach to regularisation (Rodgers, 2000). The precision matrix10

from equation (2), is, however, a mathematical device not meant to represent the physical world, as discussed in the previous

section. Furthermore, we would like to derive a coordinate independent expression for the regularisation term of cost function

(also unlike equation (2)), as this would be useful for work with irregular grids and allow us to use the same regularisation

on completely different grid geometries. To achieve these goals, we use continuous covariance operators and their associated

norms and only discretise them as a last step, hence preserving the grid independence and their statistical interpretation. The15

resulting discrete regularisation is a variant of Tikhonov in its final numerical form, but can be interpreted as a realisation of

general continuous covariance relations. The following paragraph introduces some of the required formalism (Lim and Teo,

2009; Tarantola, 2013). Let us denote the departure of the atmospheric quantity f (r) from the a priori by φ(r) = f (r)−
fapr (r) for some r ∈ R3. In some finite volume V ⊂ R3, we define the covariance operator C by

Cφ(r) =

∫
r′∈V

φ(r′)Ck (r, r′)dV (4)20

where Ck : R3×R3→ R is the covariance kernel (also known as covariance function). Then we can treat the scalar fields φ(r)

as elements of Hilbert space with the product

〈φ, ϕ〉=

∫
V

φ(x)C−1ϕ(x)dV (5)

which induces the norm ‖φ‖2 = 〈φ, φ〉. Once the explicit expression for the norm is found it can be discretised, representing

the scalar field φ(r) by the atmospheric state vector x−xapr. Then we can write25

‖φ‖2 = (x−xapr)
T
S−1a (x−xapr) (6)

It now remains to find an appropriate covariance kernel Ck. Let us first consider an atmosphere that is isotropic and has the

same physical and statistical properties everywhere. Then one would expectCk (r,r′) = g (‖r− r′‖) with some monotonously

decreasing function g : [0,∞)→ [0,∞). The most common kernel used in literature for fluid dynamics, meteorology and
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similar applications is the parametric Matérn covariance kernel (introduced, e.g. by Lim and Teo (2009))

Cν (r,r′) = σ2 21−ν

Γ(ν)

(√
2ν
d

L

)ν
Kν

(√
2ν
d

L

)
(7)

where d= ‖r− r′‖, σ and L are the standard deviation and typical length scale of structures (correlation length), respectively,

of the atmospheric quantity in question. Kν is the modified Bessel function of the second kind, Γ(ν) is the Gamma function.

Exponential and Gaussian covariance kernels are special cases of the kernel (7), with ν = 0.5 and ν = 1 respectively. We5

choose the exponential covariance

Ck (r,r′) = σ2 exp

(
−‖r− r

′‖
L

)
(8)

as it closely resembles the Matérn with ν values that are typically used for fluid problems and allows for analytic derivation of

the subsequently required quantities. Also, having a significant number of parameters to estimate theoretically, we could not

make a good use of the flexibility provided by the free parameter of the Matérn covariance in any case.10

It can be shown (Tarantola, 2013) that the norm associated with the covariance (8) is

‖φ‖2 =
1

8πσ2

∫
r∈V

[
φ2

L3
+

2‖∇φ‖2

L
+L(∆φ)

2

]
dV (9)

Neglecting some boundary terms. In a more realistic picture of the atmosphere, the correlation length L depends on altitude and

strongly depends on direction: correlation between vertically separated air parcels is much weaker than between air parcels

separated by the same distance horizontally. We propose to deal with anisotropic or variable L by performing a coordinate15

transformation such that L would be isotropic and constant in resulting coordinates. In particular, let U,V ⊂ R3 and consider

a bijective map ξ : V → U such that both ξ and ξ−1 are twice differentiable on their respective domains and have non-zero

first and second derivatives everywhere. Then, using integration by substitution and basic vector calculus identities, equation

(9) can be written as

‖φ‖2 =

∫
u∈ξ−1(V )

|det(Dξ)|
8πσ2

(
(φ(ξ))

2

L3
+

2‖δ (φ(ξ))‖2

L
+ LTr2

[
(Dξ)

−T [
D2φ(ξ)− δ (φ(ξ)) ·D2ξ

]
(Dξ)

−1
])

dU (10)20

δ (φ(ξ)) = (Dξ)
−T ∇(φ(ξ)) (11)

Here (Dξ)ij = ∂ξi/∂uj is the Jacobian, and we define the matrix (D2f)ij = (∂2f)/(∂ui∂uj). ξ can be chosen so that all its

spatial derivatives could be computed analytically, and ∇(φ(ξ)), D2(φ(ξ)) are the derivatives of φ in the transformed space,

so numerical evaluation of (10) is similar in complexity to that of (9), the only notable difference being the need to compute the25

mixed derivatives ∂2φ/(∂ui∂uj), i 6= j if Dξ is not diagonal. A large and relevant class of suitable maps ξ can be defined, for

example, by assuming that the correlation lengths in vertical and horizontal direction are smooth functions of altitude Lv(z),

Lh(z) (we use Cartesian coordinates (x, y, z) where z axis is vertical). Then the map

ξ−1 (x, y, z) =
1

L

xLh(z), yLh(z),

z∫
0

Lv(z
′)dz′

 (12)
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defines a corresponding transformation. If, in addition, Lh is constant, mixed derivatives are not required and we can simply

evaluate ∇(φ(ξ)), ∆(φ(ξ)) in transformed space. Transformations of this type could be used, for example, to perform regu-

larisation in tropopause-based coordinates and use different correlation lengths for troposphere and stratosphere. For the study

described in this paper, we only introduce anisotropy (i.e. Lv and Lh are different, but do not depend on altitude) and equation

(10) becomes5

‖φ‖2 =
1

8πσ2

[∫
V

φ2dV

L2
hLv

+
2

Lh

∫
V

Lh
Lv

(
∂φ

∂x

)2

+
Lh
Lv

(
∂φ

∂y

)2

+
Lv
Lh

(
∂φ

∂z

)2

dV +Lv

∫
V

(
Lh
Lv

∂2φ

∂x2
+
Lh
Lv

∂2φ

∂y2
+
Lv
Lh

∂2φ

∂z2

)2

dV

]
(13)

This general expression can now be discretised for use in the retrieval. We can represent the scalar field φ(r) by the atmo-

spheric state vector x−xapr and then calculate a discrete approximation to the integral in (13). This can then be interpreted as

(x−xapr)
T
S−1a (x−xapr) as seen from the equation (6). For example, if a matrix Lz represents a finite difference scheme to

calculate the derivative in z direction, i.e. (Lzx)j ≈
∂φ
∂z |r=rj , and the diagonal matrix V represents the volumes of grid cells10

(Vii being the volume of grid cell containing grid point ri), then

∑
i

(VLzx)i ≈
∫
V

∂φ

∂z
dV xTLTz VLzx≈

∫
V

(
∂φ

∂z

)2

dV (14)

Other terms of the integral in (13) can be computed similarly. To implement the calculation of this cost function on an

irregular grid one needs to have a triangulation for that grid, an interpolation algorithm (both described in section 2.3), a

method for calculating the spatial derivatives ∇φ and ∆φ (section 2.4), and a way to compute volume integrals (section 2.5).15

The estimation of the physical parameters in equation (13) is discussed in section 4.3. The errors introduced while constructing

the precision matrix S−1a are estimated in Appendix A. Applicability of methods presented in this section to 1D and 2D

retrievals is briefly introduced in Appendix B.

2.3 Delaunay triangulation and interpolation

We aim to perform a retrieval on an arbitrary, finite grid. This section explains how vertically stretched Delaunay triangulation20

with linear interpolation is employed for that purpose.

To maintain generality and compatibility with arbitrary grids, we partition the retrieval volume into Euclidean simplexes

(tetrahedrons in our 3D case) with vertices at grid points. Many such partitions exist, but it is beneficial to ensure that the

number of very elongated tetrahedrons, that increase interpolation and volume integration errors, are kept to a minimum.

The standard technique to achieve this is to use a Delaunay triangulation (Delaunay (1934), Boissonnat and Yvinec (1998)),25

which maximizes the minimum solid angle of any tetrahedron employed. Recall, also, from section 2.2 that atmospheric

quantities in UTLS and the stratosphere above tend to have much more variation vertically than they do horizontally within

similar length scales. This difference can be quantified by comparing horizontal and vertical correlation lengths Lh and Lv .

Hence, stretching the space vertically by means of coordinate transformation (x, y, z) 7→ (x, y, ηz) with η ∼ Lh/Lv before
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constructing a Delaunay triangulation ensures that, on average, the amount of variation of the retrieved quantity in vertical and

horizontal directions is similar. This, in turn, allows us to make use of the aforementioned benefits of Delaunay partitioning.

In our implementation, we retrieve several quantities on the same grid, and Lh and Lv may differ for each of them. The

cost function of equation (13) is evaluated separately for each quantity, so regularisation can still be calculated correctly as

long as spatial structures of every quantity are adequately sampled by the grid. In practice, this means that as long as Lh/Lv5

are of the same order of magnitude for all quantities, they can all be retrieved on one grid. Fortunately this is usually the case

(see section 4.3). For test retrievals in this paper Lh/Lv = 200 for trace gas concentrations and Lh/Lv = 67 for temperature,

therefore we set η = 100. Retrieval results do not indicate systematic oversampling or undersampling in either horizontal or

vertical directions and are not sensitive to a change in η.

In order to keep the computational costs low, we use a simple linear interpolation scheme: in each Delaunay cell we express10

an atmospheric quantity f at any point x as

f (r) = f (r0) +k · (r− r0) , k = const. (15)

If ri, 0≤ i≤ 4 are the four vertices of the Delaunay cell, the (unique) constant gradient k can obtained from a system of 3

linear equations

f (ri) = f (r0) +k · (ri− r0) , 1≤ i≤ 3 (16)15

This method ensures that the interpolated quantity is continuous and consistent with the volume integration scheme described

in section 2.5. Implementation is simple and fast, as any point inside a given Delaunay cell can be interpolated with data about

that cell only. The gradient ∇f of the atmospheric quantity, is, however, generally discontinuous at cell boundaries making

the interpolation unsuitable for direct use in spatial derivative evaluation. The Computational Geometry Algorithms Library

(CGAL, https://www.cgal.org) was used to construct Delaunay triangulations for our grids.20

2.4 Derivatives

In order to evaluate the cost function based on 3D exponential covariance (13), we need to estimate ∇φ and ∆φ at every grid

point (as before, φ= f−fapr is the departure of atmospheric quantity f from the a priori). This section describes the algorithm

we use to achieve that on irregular Delaunay grids.

We begin by establishing some requirements that our derivative-estimation algorithm will have to meet. Firstly, recall that25

our inverse model assembles the precision matrix S−1a so that (x−xapr)
T
S−1a (x−xapr) would be a numerical representation

of (13) (or, more generally, (10)). Let us write S−1a = A+B, where A is a diagonal matrix representing the first integral of (13)

(or first term of (10)), and B represents the remaining terms. If B were an exact representation, it would be positive definite

by construction, but this may not hold with ∇φ and ∆φ obtained numerically for a finite grid. If indeed an atmospheric state

vector q exists so that qTBq = 0, then for every atmospheric state x30

(x± q−xapr)
T
B(x± q−xapr) = (x−xapr)

T
B(x−xapr)± 2(x−xapr)

T
Bq (17)
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hence one of the states x± q would be favoured (have a smaller cost function) over x by the inverse modelling algorithm.

Therefore, a scaled version of q would appear on any retrieval as noise. This particular type of noise would only be suppressed

by the cost function term from (x−xapr)
T
A(x−xapr). This guarantees only that x is not very far from a priori, but does

nothing to ensure that it is even continuous. This often results in retrievals with unphysical periodic structures (noise) and is

unacceptable.5

We deal with this problem by explicitly ensuring that B is positive definite. Consider the estimation of derivatives at a single

grid point a ∈ R3.∇φ(a) and ∆φ(a) are numerically estimated from the values of φ in some (say m) grid points near a. We

can write this as a map

Da (φ) :Rm→ R6, {φ(ri)−φ(a) : 1≤ i≤m} 7→
{
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z
,
∂2φ

∂x2
,
∂2φ

∂y2
,
∂2φ

∂z2

}
(18)

Now qTBq = 0, q 6= 0 implies that at every grid point a ∈ R3 we have ∇φ(a) = 0, ∆φ(a) = 0 for the φ(a) corresponding10

to state q. Hence such q will not exist if we require thatDa have trivial null space for all grid points a (i.e.Da (φ) = {0, . . . , 0}
only if φ(ri) = φ(a), 1≤ i≤m). The converse is not always true, so the trivial null space requirement is a stronger condition

than absolutely necessary. It is, however, advantageous because it restricts the derivative-estimation algorithm at each grid

point independently and hence can be implemented without computationally expensive operations on S−1a as a whole.

Since (18) will be used directly to construct S−1a , which does not depend on atmospheric state x and hence on φ(a), Da15

must be a linear map, so null space is a vector space of dimension max{0,m− 6}, hence we need m≤ 6. We also want to

avoid the derivative estimation to be underdetermined (m≥ 6), so we choose m= 6, i.e. we aim to construct a linear map (18)

that estimates derivatives at grid point a using atmospheric quantity values at 6 points around a. This prevents us from using

interpolation for derivative calculations, since each interpolated value depends on atmospheric quantity values at multiple (in

our case 4) grid points and consequently, even if the same grid point is reused for several interpolated values, the total number20

of grid points employed exceeds 6 in any interpolation-based scheme we could come up with.

A solution satisfying the above criterion and able to deal with grid points with neighbours at irregular positions is based on

polynomial fitting. For 6 grid points around a grid point a= (xa, ya, za) denoted as ri = (xa +xi, xa + yi, xa + zi) , 1≤ i≤
6 we write

φ(ri)−φ(a) = φxxi +φyyi +φzzi +
φxx
2
x2i +

φyy
2
y2i +

φzz
2
z2i , 1≤ i≤ 6 (19)25

We solve this as a linear system for the unknowns φx, φy, φz, φxx, φyy, φzz which can then be directly identified with the

derivatives we seek. Note that, as we required, the system can be solved by inverting a 6-by-6 matrix that only depends on ri

and not φ(ri), so we can use this method to precompute a matrix that would act on the atmospheric state vector to return the

value of the volume integral over the derivative (13).

The only remaining issue is selecting a suitable set of grid points ri so that the resulting matrix that needs to be inverted30

would not be singular or have a very high condition number. We found that this is much easier to achieve by imposing simple

geometric criteria for point selection rather than algebraic conditions.
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Let a be a point on Delaunay grid. The main idea of the algorithm we propose is to pick, for each spatial dimension d, a pair

of points r1, r2 suitable for estimating the derivative in that direction. Points of such a pair should be sufficiently separated in

d direction (i.e. projections of the vectors ri−a to d direction sufficiently different), be on the opposite sides of a (unless a is

at the boundary of the grid and this is not possible), and be reasonably close to a. We obtain the required 6 points by choosing

one pair of points for each of the 3 dimensions. This can be implemented as follows.5

Let a= (xa, ya, za), and let us write the coordinates of other points on this grid as ri = (xa +xi, ya + yi, za + zi) with

ri = ‖ri−a‖. Let 0< β < 1 and γ > 1 be constants, suitable numeric values will be discussed further on. Then:

1. For each Delaunay grid neighbour ri of a, compute αix = xi/ri, αiy = yi/ri, αiz = zi/ri.

2. If i, j such that |αix|> β, |αjx|> β, αixαjx < 0 exist, then pick ri, rj for derivative calculation. Else if k, l such that

|αkx|> |αlx|> β, αkx/αlx > γ exist, then pick rl, rk for derivative calculation.10

3. Repeat step 2 for y and z dimensions. Each point can be only picked for one of the dimensions.

4. If neither condition of step 2 is satisfied for at least 1 dimension, repeat steps 1-3 with not only direct Delaunay grid

neighbours of a, but also second neighbours (i.e. neighbours of neighbours). If this fails as well, do not calculate deriva-

tives at the point a and simply assume them to be zero.

We found that the polynomial interpolation method is robust and a rather low value of β = 0.3 was sufficient to produce suitable15

sets of neighbouring points (i.e. almost all 6-by-6 matrices resulting from such choice of points can be reliably inverted for

polynomial fitting). In practice this means that the algorithm can find a suitable pair of points for dimension d unless all the

Delaunay neighbours of the point a are located very close to the other two axes w.r.t. the point a.

2.5 Volume integration

Computing (13) requires a way to estimate volume integrals on Delaunay grid, which is described in this section.20

Let a Delaunay cell have vertices ri and face areas Si for 0≤ i≤ 3, and volume V . Then integrating an atmospheric quantity

f as interpolated in (15) over V we get

∫
V

f (r)dV =
V

4

3∑
i=0

f (ri) (20)

One can prove this by writing (15) with ri, 0≤ i≤ 3 instead of r0 and adding up the resulting 4 equations to obtain

f (r) =
1

4

3∑
i=0

f (ri) +k ·

(
r− 1

4

3∑
i=0

ri

)
(21)25
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Now choose Cartesian coordinates (x′, y′, z′) where r0 = (H, 0, 0) and ri, 1≤ i≤ 3 lie in the plane x′ = 0 and consider the

x′ component of the integral I =
∫
V

(
r− 1/4

∑3
i=0 ri

)
dV

Ix′ =

∫
V

(
x′− H

4

)
dV =

H∫
0

x′S0

(
H −x′

H

)2

dx′− HV

4
=
H2S0

12
− HV

4
= 0 (22)

As we can choose such coordinates for any vertex instead of r0, the integral I has zero component in 3 linearly independent

directions, so I = 0. Then integrating (21) over V yields (20) and completes the proof.5

We can now see that (20) gives an exact value to the volume integral of f provided that f behaves exactly as prescribed by

our interpolation scheme. Since the interpolation is linear we may expect the values of volume integrals to be correct to the first

order in cell dimensions. Since, generally, all data fed into the inverse modelling problem is interpolated beforehand, there is

little reason to expect that a more elaborate and accurate volume integration scheme would improve the accuracy of retrievals

on its own. A method based on Voronoi cells was also attempted and did not produce meaningfully different results.10

3 Monte Carlo diagnostics

Estimating the precision of remote sensing data products generated by means of inverse modelling is essential for the users

of the final data and also valuable for evaluation and optimisation of the inverse modelling techniques. Detailed quantitative

descriptions of data accuracy can be derived in theory (see validation in section 4.6 and Rodgers (2000)) but they are, in

case of large retrievals, too numerically expensive to calculate in practice. The accuracy calculation typically requires O
(
n3
)

15

operations for an atmospheric state vector of n elements (for 3D tomography nmight be of the order 106). One way of reducing

computational cost is is employing the Monte Carlo technique to generate a set of random (Gaussian) atmospheric state vectors

with the required covariance. One can then add these random vectors to the result of the retrieval and run the forward model

on the perturbed atmospheric states. The magnitude of perturbations that is required to produce a variation of forward model

output similar to the expected error of measurements would then be an estimate of the retrieval error (Ungermann et al., 2011).20

In order to implement this technique, one needs a way to generate a random vector x with the required covariance, repre-

sented by a known, symmetric, positive definite covariance matrix Sa. This can be done by generating a vectoru of independent

standard normal random variables and finding a square matrix L̃ such that L̃L̃T = Sa. Then we can set x= L̃u, and indeed

〈xxT 〉=
〈
L̃uuT L̃T

〉
= L̃〈uuT 〉L̃T = Sa, i.e. the vector x has the required covariance (the angle brackets in the expression

above denote the expected value).25

A widely used technique for obtaining the matrix L is the Cholesky decomposition. Given the covariance matrix Sa = {sij}
it explicitly provides a lower triangular matrix root L̃ = {lij} satisfying L̃L̃T = Sa as shown in (23).

lij =



√
sij −

∑i−1
k=1 l

2
ik, i= j

l−1jj

(
sij −

∑j−1
k=1 likljk

)
, i > j

0, i < j

(23)

10



In practice we do not usually assemble the covariance matrix Sa, but rather its inverse: the precision matrix S−1a , because the

latter is sparse. This is not an issue, since S−1a is then also symmetric positive definite, so one can compute its root L such that

LLT = S−1a in the same way as above, and then obtain x from the linear system S−1a x= Lu. We will refer to the components

of precision matrix by S−1a = {aij}.
Cholesky decomposition does not preserve the sparse structure of S−1a , i.e. the L obtained in this way will typically have5

many more non-zero entries than S−1a . It follows from (23), however, that if S−1a has lower half-bandwidth w (definition in

equation (24) below), then so has L

w = min{k ≥ 0 : i− j > k⇒ aij = 0} (24)

In practice, this means that if S−1a is a sparseN×N matrix with half-bandwidth w�N , L will have approximatelyN(w+1)

non zero entries. Cholesky decomposition is hence well suited for computing diagnostics of 1D retrieval: assuming that the10

value of the retrieved atmospheric parameter at one point only directly correlates with its w nearest neighbouring points in each

direction, one gets a precision matrix with half-bandwidth w and can compute L cheaply with O(Nw2) operations.

The situation is very different in the higher dimensions. We will use some results of graph theory to show that Cholesky

decomposition is not practical in those cases. The n-dimensional lattice graph Pnk consists of an n-dimensional rectangular

grid of size k in each direction, with edge between any two grid neighbours. Let us label the vertices of Pnk with integers: Pnk =15

{vi : 1≤ i≤ kn}, and let q be the maximum difference of indexes of neigbouring vertices (q = max{|i− j| : vi,vjadjacent}).
Then the bandwidth ϕ(Pnk ) of Pnk is defined as the minimum possible value of q among all possible ways to label the vertices.

Now say we have some physical quantity defined on each vertex of this grid. Then any reasonable precision matrix S−1a for

this grid would at least give non-zero correlations between grid neighbours, i.e.
(
S−1a

)
ij
6= 0 if vi and vj are neighbours. Then,

by comparing the definitions of ϕ(Pnk ) and lower-half bandwidth w of the precision matrix from the last paragraph, one can20

see that 2w+ 1≥ ϕ(Pnk ). FitzGerald (1974) showed that ϕ
(
P 2
k

)
= k and ϕ

(
P 3
k

)
= b3k2/4 + k/2c. Therefore, the narrowest

possible half-bandwidths of S−1a are w =O (k) in 2D and w =O
(
k2
)

in 3D. It follows that if the grid contains a total of N

points, the computational cost of Cholesky decomposition would beO(N2) in 2D andO
(
N7/3

)
in 3D, which is unsatisfactory

for large retrievals.

For these higher dimensions, we need to use sparse matrix iterative techniques to reduce computational cost and memory25

storage requirements, such as Krylov subspace methods. In general, it is rather difficult to find a simple iteration scheme that

would compute a square root of a matrix and converge reasonably fast. Here we will follow an algorithm proposed by Allen

et al. (2000). Consider a system of linear ordinary differential equations (ODEs) with initial conditiondv/dt=− 1
2

(
S−1a t− (1− t)I

)−1 (
I−S−1a

)
v (t)

v (0) = u
(25)

where v (t) is a column vector of size N , I is the identity matrix and S−1a is a N ×N symmetric positive definite (s. p.30

d.) matrix, prescaled so that ‖S−1a ‖∞ < 1 (i. e. S−1a − I is non-singular).
(
S−1a − I

)
and

(
S−1a t+ (1− t)I

)−1
commute for

11



0≤ t≤ 1, which makes it easy to verify that

v (t) =
(
S−1a t− (1− t)I

)1/2
u (26)

is the solution of (25). Hence we can obtain v (1) = S
−1/2
a u by solving (25) numerically, and then solve the linear system

S−1a x= v (1) for the vector x, so that x= SaS
−1/2
a u. The matrix S

−1/2
a above is symmetric by construction (sum of products

of symmetric matrices), hence5

〈xxT 〉= SaS
−1/2
a 〈uuT 〉S−1/2a Sa = Sa (27)

i.e. x is indeed the vector required for Monte Carlo simulations. Note also that one does not need to explicitly calculate matrix

inverses while solving the ODE, since

(
S−1a t− (1− t)I

) dv

dt
=−1

2

(
I−S−1a

)
v (t) (28)

is a linear system that can be solved for dv/dt.10

We chose a classical approach – a Runge-Kutta method, to solve the linear ODE system numerically. Using constant step size

proved to be inefficient, so adaptive step size control was introduced (in particular, a fifth order Runge-Kutta-Fehlberg method

by Fehlberg (1985)). Conjugate gradients method (Saad, 2003) was employed for all the linear equation systems involved. If we

make the same assumption about the structure of the inverse of the correlation matrix as before, i.e. that atmospheric quantities

are only correlated between nearest grid neighbours, the said matrix will have a constant number of non-zero entries in each15

row for any amount of rows (grid points) N . More explicitly, under this assumption the covariance matrix for 1D retrieval

would be tridiagonal, and for a 3D retrieval on a regular rectangular grid it would contain 6 non-zero entries in each row.

Therefore, each iteration of the conjugate gradients algorithm will cost O (N) operations. It is difficult, in general, to estimate

the dependence of required number of iterations onN , but in our case large matrices seem to converge similarly to smaller ones

and the whole computational cost of generating random vectors remains close to O(N), which is a huge improvement over20

the Cholesky decomposition. The algorithm does not, though, explicitly yield the root of the covariance matrix and only gives

one random vector per run. Hence, unlike the Cholesky decomposition, it must be executed again for each new random vector

required, so it is only feasible if the number of random vectors required is a lot smaller than N . Fortunately, this is very much

the case in practice, since the number of random vectors required is typically only of the order of 100 (Ungermann, 2013).

Although this root-finding algorithm does not provide a way to directly multiply the matrix root with itself, there is an25

inexpensive way to verify that the matrix root was computed correctly. Let S be a n×n s. p. d. matrix, let ei be the i’th unit

vector (1≤ i≤ n), and compute vi = S1/2ei using our algorithm. Then for any i, j we have vTi vj = eTi
(
S1/2

)T
S1/2ei =

eTi Sei = Sij , an element of S. Hence the quality of the matrix root can be evaluated by comparing vTi vj with Sij . The error

tolerances of conjugate gradients and Runge-Kutta were adjusted so that these values would differ by at most 10−4 when

factoring a matrix prescaled so that the largest eigenvalue is approximately 0.95.30
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4 Performance study

4.1 The GLORIA instrument and data processing

The Gimballed Limb Observer of Air Radiance in the Atmosphere (GLORIA) is an aircraft-based infrared limb imager. It

is a Michelson interferometer with a 2D detector array, spectral coverage from 770 to 1400 cm−1 and spectral sampling of

up to 0.0625 cm−1 (Riese et al. (2014); Friedl-Vallon et al. (2014)). It is carried aboard the Russian M55 Geophysica or5

German HALO research aircraft, and is generally intended to look to the side of the aircraft, but can pivot horizontally so that

the angle between aircraft heading and observation direction can be changed from 45
◦

to 135
◦
. The limb observation setup

naturally allows high vertical resolution (up to approximately 200 m) and, with a proper trade-off between spectral resolution

and measurement time, a high density of vertical profiles sampled along-track. The pivoting allows to look at the same air mass

from several points along the flight path and use tomography to improve resolution in the horizontal direction perpendicular to10

the flight path. Best results with tomographic retrievals are achieved, however, when the aircraft flies in a path close to circular

(hexagonal flight paths are used in practice, so that the aircraft could fly straight most of the time) of around 400 km in diameter,

and GLORIA observes the air masses in the middle from many directions (Ungermann et al., 2011). A horizontal resolution

down to 25 km in both directions can be achieved this way. As any limb observer, GLORIA can only provide tangent point

data about air masses at and below aircraft flight altitude, which is limited to, approximately 20 km for the M55 Geophysica15

and 15 km for HALO. For more detail on GLORIA, refer to e.g. Friedl-Vallon et al. (2014).

The implementations of the algorithms described in the sections 2 and 3 were integrated into the Jülich Rapid Spectral

Simulation Code Version 2 (JURASSIC2). The forward model of atmospheric radiance used in this code employs a forward

model for atmospheric radiation based on radiances obtained from the emissivity growth approximation method (Weinreb

and Neuendorffer (1973), Gordley and Russell (1981)) and the Curtis–Godson approximation (Curtis (1952), Godson (1953)).20

For more information about JURASSIC2, refer to Hoffmann et al. (2008); Ungermann et al. (2011); Ungermann (2013). The

performance of the new algorithms, both in terms of output quality and computational cost, is evaluated in the rest of this

section.

4.2 Retrieval setup and test data

A hexagonal flight pattern intended for tomography was realised on 25th of January 2016, as part of flight 10 of the POL-25

STRACC measurement campaign. The flight path of the HALO research aircraft contained a regular hexagon with diameter

(distance between the opposite vertices) of around 500 km over Iceland, which allowed for a high spacial resolution retrieval in

the central part of the aforementioned hexagon (Figure 1). The flight altitude throughout the hexagonal flight segment remained

close to 14 km. For detailed information about this flight refer to Krisch et al. (2017).

The test case used in this paper is based on the actual aircraft path, measurement locations, spectral lines used for retrieval30

and meteorological situation during this flight. Synthetic measurement data was used instead of real GLORIA observations: the

forward model of JURASSIC2 was employed to simulate the observed radiances in the atmospheric state given by the ECWMF

temperature and WACCM model data for trace gases, simulated instrument noise was subsequently added to those radiances.

13
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Figure 1. The first row (T) shows the ECMWF temperature data used to generate the synthetic measurements (true temperature). Second

row (R) shows the temperature residual: the difference between the true temperature and the smoothed temperature field used as an a priori.

In the first column, black lines represent contours of a priori temperature value. In columns 2 and 3: black line – flight path, thick grey line –

position of cut shown in the first column, thin grey line – topography (Icelandic coastline visible).

This setup allows us to use model data as a reference (the “true” atmospheric state) for evaluation of retrieval quality. The same

set of simulated measurements was used for all test retrievals described in this paper. These measurements were obtained by

running the forward model on a very dense grid (about twice as dense in each dimension as those of the densest test retrievals).

This was done to ensure that the discretisation errors in the simulated measurements would be minimal and would not favour

any retrieval (as it may could happen, if they were generated on the same grid). An evaluation of forward model errors on5

different grids is presented in Appendix C.

The retrieval derives temperature and volume mixing ratios of O3, HNO3, CCl4, ClONO2. Temperature and CCl4 con-

centration are derived in the altitude range from 3 km to 20 km; O3, HNO3, ClONO2 are retrieved from 3 km to 64 km.

The latter three trace gases have larger volume mixing ratios above flight level and hence significant contributions to measured

radiances from these high altitudes. Interpolated WACCM data was used as a priori for all trace gases. A priori data for tem-10
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Table 1. Retrieval parameters

Entity α0 αh σ

Temperature 10−3 10−1 0.645 K

O3 10−5 10−3 70.7 ppbv

HNO3 10−5 10−3 902 pptv

CCl4 10−5 10−3 2.13 pptv

ClONO2 10−5 10−3 76.7 pptv

Regularisation weights α0, αh, (as in (2)) are used for

retrieval A, the standard deviation σ (see (13)) used for

retrievals B-D

perature was obtained by applying polynomial smoothing to ECMWF data. The retrieval is hence not supplied with the full

temperature structure that was used to simulate the measurement. Therefore, the agreement between the retrieval result and the

“true” atmospheric state, upon which the simulated measurements are based, cannot be achieved by overregularisation.

4.3 Correlation length estimation

The standard deviation σ and correlation the lengths Lh and Lv in equation (13) can be obtained from statistical analysis of in5

situ measurement or model data. Rigorous derivation of these parameters for each retrieved trace gas and temperature would

require detailed analysis of in situ measurement databases and is, therefore, out of scope of this paper. However, the following

rough approximation proved sufficient to improve upon retrieval results compared to the old regularisation scheme.

3D tomographic retrievals are most useful for those trace gases that have high vertical gradients and complex spatial struc-

ture. The spatial correlation lengths of concentrations of such gases are mostly determined by stirring, mixing and other10

dynamical processes and are therefore similar. Furthermore, Haynes and Anglade (1997) and Charney (1971) estimate of the

dynamically determined aspect ratio α≈ 200−250 in lower stratosphere, and we expect less than that in the upper troposphere.

Hence we will assume Lh/Lv = 200 for all trace gases.

An analysis of spatial variability of some airborne in situ measurements was performed by Sparling et al. (2006). For ozone

concentration χ(s,z), where s is the horizontal location and z is the altitude, they define fractional difference parameters15

∆r,h =
2 |χ(s+ r ,z+h)−χ(s,z)|
[χ(s+ r ,z+h) +χ(s,z)]

(29)

∆r = lim
h→0

∆r,h (30)

and provide the dependence of the standard deviation σ (∆r) on the horizontal separation r. If the typical spatial vari-

ation in ozone concentration is significantly smaller than the mean ozone concentration 〈χ〉, one can approximate ∆r ≈20

|χ(s+ r)−χ(s)|/〈χ〉. Then, using the covariance relation (8) and various properties of the normal distribution, we get

15
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Figure 2. Panels (a) and (b): horizontal cuts of retrieval grids. Dots show grid points, blue lines indicate Delaunay cell boundaries. (a) shows

the full initial grid for retrievals A, B, C (all horizontal layers of this grid are identical), (b) shows the thinned out grid for retrieval D (cut

at 11 km).Panel (c): grid for retrieval D. Radial distance is defined as distance to the vertical line at the centre of the hexagonal flight path (

66◦N, 15◦W). Points within the inner core (1000 km × 1000 km × 20 km) are shown in blue, other points – in red, shaded rectangle shows

the position of horizontal cut in panel (b).
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σ2(∆r) = 2(σ/〈χ〉)2 (1− 2/π)(1− exp(−r/Lh)). By comparing this to experimental results of Sparling et al. (2006), we

estimate Lh = 200km. Using the aspect ratio argument above, we also set Lv = 1km.

The spatial structure of retrieved temperature differs from that of the trace gases. It is determined not only by mixing and

stirring, but also radiative processes and gravity waves. Radiative transfer tends to erase some of the fine vertical structure

determined by isentropic transport, hence one should use a greater vertical correlation length than in the case of trace gases.5

Gravity waves have a variety length scales, but due to the finite resolution of the instrument not all of them can be retrieved.

Following the gravity wave observational filter study for the GLORIA instrument in Krisch et al. (2018) we can estimate lowest

observable gravity wave horizontal wavelength to be λh ∼ 200km and lowest vertical wavelength λv ∼ 3km. λh coincides

with the dynamically determined correlation length Lh = 200km, so this value should be appropriate for temperature as well.

The λv limit is not only determined by instrument resolution, but is also related the fundamental properties of gravity waves.10

Preusse et al. (2008) gives the following expression for the gravity wave saturation amplitude

T̂max =
λvT̄N

2

2πg
(31)

where T̄ is the mean temperature andN is the Brunt–Väisälä frequency. In typical lower stratosphere conditions and λv = 3km

the equation (31) gives T̂max ≈ 4K. Since gravity waves are usually not saturated and considering typical measurement error

(see 4.6), waves of significantly shorter wavelengths would probably not be observed. We hence set Lv = 3km. Time series of15

measurements at a fixed point in atmosphere are then used to approximate the standard deviations σ for all retrieved quantities

(Table 1). Our choice of σ value for temperature, in particular, may seem rather low. This is related to the choice of a priori:

smoothed ECMWF data was used instead of climatologies that would have been more typical in this case. Such an a priori

can be expected to match the large scale structures of real temperature more closely, thus reducing the forward model errors

in poorly resolved areas and improving the results. It is particularly useful for resolving fine structures, such as gravity waves,20

which were the main scientific interest of the measurment flight used as a basis for test retrievals Krisch et al. (2017). A likely

closer match between a priori and retrieval thus requires a lower σ value, that, in this setup, represents expected strength of

gravity wave disturbances, rather than full thermal variability of the atmospheric region in question.

4.4 Test retrievals

The test data described in the previous section was processed with several different regularisation setups and retrieval grids.25

Here we present the results for four different runs.

Firstly, as a reference, the latest version of JURRASIC2 without the implementations of any new algorithms described in

this paper was used (retrieval A). It uses a rectangular grid that covers altitudes from 1 km to 64 km. The vertical spacing of

the grid is 1 km between the altitudes of 1 km and 5 km, 250 m between altitudes of 5 km and 20 km, 1 km between altitudes

of 20 km and 25 km and 4 km between 28 km and 64 km. As required for the rectilinear grid, the number and distribution of30

points is the same in each altitude (Figure 2a). For this reference run, a first order regularisation (1) with trilinear interpolation

(Bai and Wang, 2010) was used. The regularisation weights, as defined in (2), are given in Table 1. These are typically tuned
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Table 2. Grid densities in different regions for retrieval D in kilometers

Radius <300 300-400 400-550 550-1500 >1500

Altitude Horizontal grid separation

1-5 100 100 100 1000 1000

5-12.5 25 50 100 1000 1000

12.5-14.5 25 25 100 1000 1000

14.5-17 25 50 100 1000 1000

17-20 100 100 100 1000 1000

20-64 500 500 500 1000 1000

Altitude Vertical grid separation

1-5 1 1 1 1 2

5-12.5 0.125 0.25 1 1 2

12.5-14.5 0.125 0.125 1 1 2

14.5-18 0.125 0.25 1 1 2

18-24 2 2 2 2 2

24-64 4 4 4 4 4

ad-hoc (adjusted by trial-and-error until optimal retrieval results can be achieved), validated against model data and, when

using real observations, in situ measurements.

Then, to evaluate the performance of second order regularisation, retrieval B was performed. The grid and interpolation

methods were identical to retrieval A, but the regularisation was replaced with the second order scheme from equation (13) and

correlation lengths derived in section 4.3 from in situ observations. No subsequent tuning of these parameters was performed.5

We compare the quality of different retrievals by inspecting the differences between the retrieved temperature and tempera-

ture used to generate the synthetic measurements (“true” temperature). These differences are shown on horizontal and vertical

slices of the observed atmospheric volume in Figure 3. Figure 4 shows the variation of the retrieved and true temperatures on

horizontal lines in order to visualise the response of retrievals to different spatial structures in true temperature.

Comparison of Figure 3 rows A and B shows the effect of the new regularisation (13). The new algorithm (retrieval B)10

demonstrates better agreement with the true temperature. It shows markedly less retrieval noise in the central area, as well as

better results (less effect of a priori) just outside it, at the edges of the vertical cut shown in Figure 3. Considering also that,

unlike A, the regularisation strength of B was not manually tuned for this test case in particular, we can conclude that the new

regularisation performed better in this test case.

The third retrieval (C) was performed on the same set of grid points as B and with the same input parameters, but the grid was15

treated as irregular, i.e. a Delaunay triangulation was found, the algorithms described in section 2 were used for regularisation.

A horizontal cut of the Delaunay triangulation for this grid is shown in Figure 2a. By comparing B and C one can evaluate the
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Figure 3. Panels show difference between retrieved temperature and true temperature of the simulated atmosphere. Rows A-D show results

of respective retrievals. In the first column, black lines represent contours of a priori temperature value. In columns 2 and 3: black line –

flight path, thick grey line – position of cut shown in the first column, thin grey line – topography (Icelandic coastline visible).
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Figure 4. Retrieved temperature at different altitudes in the vertical cut shown in Figures 1 and 3. Line T represents the true temperature of

the simulated atmosphere, A-D: respective retrievals.

agreement between the old interpolation, derivative calculation and volume integration techniques for rectilinear grids and their

newly developed irregular-grid-capable alternatives. The temperature fields from retrievals B and C are very similar (Figure 3),

which confirms that the new Delaunay triangulation based code gives consistent results when run on rectilinear grid.

Finally, retrieval D was performed with the same input parameters and methods as C, but using only the subset (22 %)

of the original grid points to reduce computational cost. These points were chosen so that grid density would be highest in5

the volumes best resolved by GLORIA and sparser where little measurement data is available. In particular, a set of axially

symmetric regions around the center of original retrieval (i.e. symmetric w.r.t. vertical axis at 66◦N, 15◦W) was defined as

shown in Table 2. Points were removed from the original grid to achieve the specified vertical and horizontal resolutions

for each region, resulting in the grid shown in Figure 2. Results changed little compared to retrieval C. Most of the minor

differences between C and D occur near the edges of the hexagonal flight path (Figure 3). Even though the grid spacing for10

retrieval D is still the same as C in some these areas, larger grid cells nearby have some effect on their neighbours. Note

also that C and D retrievals tend to differ in the areas where the agreement between each of them and the true temperature is

relatively poor and diagnostics predict lower accuracy (Figure 5), so D can be considered to be as good as C in well-resolved

areas. Unphysical temperature structures far outside the measured area like the one partially seen at 64◦N, 20◦W are not unique

to this retrieval, they just occur a little closer to the flight path in this case due to the coarser grid outside the hexagon.15

4.5 Computational costs

JURASSIC2 finds an atmospheric state minimising (1) iteratively. In each iteration it first computes a Jacobian matrix of the

forward model, hence obtains a Jacobian of the cost function (1) and then minimises the cost function using the Levenberg-

Marquardt (Marquardt, 1963) algorithm and employing conjugate gradients (CG) (Saad (2003), Hanke (1995)) to solve the

linear systems involved. The forward model is then run to simulate the measurements for the new iteration of atmospheric20

state.
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Figure 5. Panels B and D show the Monte Carlo estimate of the total temperature error the retrievals B and D would have, if the measurements

were real. Panel Ds shows an error estimate for the synthetic retrieval D (this assumes that unretrieved quantities, e. g. pressure, are known

exactly). In columns 2 and 3: black line – flight path, thick grey line – position of cut shown in the first column, thin grey line – topography.

All calculations were performed on the Jülich Research on Exascale Cluster Architectures (JURECA) supercomputer oper-

ated by the Jülich Supercomputing Centre (Jülich Supercomputing Centre, 2016). Each retrieval was executed in parallel on 4

computation nodes, each with 24 CPU cores (twin Intel Xeon E5-2680 v3 CPU’s) and 128 GB of system main memory.

Table 3 shows the time required for different parts of calculation averaged over 3 identical runs (although < 1% variation

was observed). The “Other calculations” field mostly includes time required by input and output, but also preparatory steps,5

such as Delaunay triangulation in the case of retrievals C and D.
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The results in Table 3 reveal the impact of the new methods on computation times. The new, more complex regularisation

results in slower convergence in the conjugate gradient calculation, making retrieval B about 6% more expensive than A. The

Delaunay triangulation, however, decreases Jacobian calculation costs by roughly 25%, even the one used on the same grid as

the old approach. This has to do with the fact that interpolation based on Delaunay triangulation only requires 4 values of the

interpolated quantity at neighbouring points, and linear interpolation in three directions requires 8, thus resulting in more non-5

zero terms in the Jacobian. The time required for initialisation of Delaunay interpolation and derivatives, including construction

of the matrix S−1a , increases rather fast with grid size with current implementation, contributing to “other calculations” of

retrieval C. Further optimisation of this step is possible and will be implemented in the future. In total, the new retrieval (C) is

9% faster then the old approach (A) while using the same grid.

Table 3. Computational cost of retrievals (calculation times given in minutes)

Retrieval A B C D

Number of grid points 302526 302526 302526 54580

Jacobian calculation 134.4 133.2 101.2 61.3

Minimisation (CG) 4.2 14.9 12.8 6.0

Forward model 2.5 2.5 2.6 2.6

Other calculations 5.6 4.4 17 3.0

Total elapsed time 146.7 155.0 133.6 72.9

Retrieval D gives a further 45% reduction of computation time by removing 82% of points in the grid. A speedup of such10

order was expected. Only a minority of grid points contribute to a forward model (and hence Jacobian) calculations, and

JURASSIC2 code is heavily optimised for sparse matrix operations. Most of the grid points contributing to forward model are

in the areas well resolved by the instrument and thus cannot be removed from the grid without compromising data products.

Therefore, the actual savings in computation time mostly come from removing points above flight level and choosing a more

appropriate non-rectangular shape for the densest part of the grid when measurement geometry requires that. Some of the15

points above flight path must be included since infrared radiation from there is measured by the instrument, but very little

information about atmosphere far above flight level can be retrieved, so very low grid densities are sufficient (Table 2).

4.6 Diagnostics

We follow Ungermann et al. (2011) and use Monte Carlo approach to obtain diagnostics, but replace Cholesky decomposition

with the method developed in section 3. Results for retrievals B and D are presented in Figure 5 B, D. They show the total20

error estimate for temperature based on the sensitivity of temperature value to (simulated) instrument noise and all other

retrieved atmospheric quantities as well as expected error of non-retrieved quantities (e.g. pressure). These results tell us

what temperature errors we could expect if the retrievals in question were performed with real data. The panel Ds shows an

error estimate based on (simulated) instrument noise and uncertainties of retrieved parameters only. In the case of a synthetic
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retrieval, unretrieved parameters, upon which the simulated measurements are based, are known exactly. Therefore, panel Ds

is a direct Monte Carlo prediction of the temperature deviation we see in Figure 3D, and the magnitude of this deviation is

indeed similar.

These results confirm that temperature can only be reliably retrieved within the flight hexagon or very close to the actual

path. Also, the error estimates are higher in the central area of hexagon close to flight altitude, in agreement with test results5

(compare column 3 of Figures 3 and 5).

Monte Carlo retrieval results provided here were verified by estimating temperature error at one grid point using a more

direct approach. Rodgers (2000) proves that retrieved atmospheric state x can be written in terms of the a priori state xa, the

(unknown) true state xt and measurement error ε as

x= Axt + (I−A)xa +Gε (32)10

where

G = M−1 (DF(x))
T
S−1ε A = GDF(x) M = S−1a + [DF(x)]

T
S−1ε DF(x) (33)

Here D denotes the Jacobian operator and all other notation as in (1). The so-called gain matrix G fully describes the effect

of measurement uncertainties ε on the retrieved state x. Computing G would be prohibitively expensive due to the required

matrix inversion, but note that i’th element of x only depends on i’th line of the matrix G, so one can use Krylov subspace15

methods (e.g. conjugate gradients) to solve Mri = ei for the i’th row rTi of the inverse matrix M−1. The i’th row of G can

then be obtained as rTi (DF(x))
T
S−1ε .

This approach allows for error estimation for a small number of grid points in reasonable time. We chose one point in the

centre of the hexagon (66◦ N, 15◦ W, 11.75 km altitude) for retrieval B. The total temperature error was found to be 1.27 K

and agrees with Monte Carlo result (1.25 K) at this point within 2%, which is an excellent accuracy for an error estimate.20

5 Conclusions

A new regularisation algorithm for 3D tomographic limb sounder retrievals employing second spatial derivatives (based on

equation 13) was developed and implemented. The ad-hoc parameters (regularisation weights) of the previous first spatial

derivative based approach were replaced with physical quantities – retrieved quantity standard deviation and correlation lengths

in vertical and horizontal directions. Unlike the regularisation weights, these quantities do not require as manual tuning for each25

retrieval and can be estimated from in situ measurements, model data and theoretical considerations. Tests with synthetic data

showed slightly superior performance of the new algorithm, even compared to the old approach with tuned parameters. A rather

general technique (equation (10)) of adapting the tomographic retrieval for atmospheric regions of high anisotropy and spatial

variability was also proposed.

A Delaunay triangulation based approach for retrievals on irregular grids was developed. By better adapting the grid to the30

retrieval geometry and thinning it out in the regions where lack of measurement data limits the resolution, the computation
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time of a tomographic retrieval was reduced by a total of 50% without significant deterioration of the results. Irregular grids

can be further employed for efficient tomographic retrievals in non-standard measurement geometries. At the time of writing,

the methods developed in this paper were already in use to process GLORIA limb sounder data.

Monte Carlo Diagnostics were newly implemented for a 3D tomographic retrieval allowing for quick and reliable evaluation

of measurement quality, identification of reliably resolved volumes and selection of optimal 3D tomography setups. Error5

estimates for retrieved atmospheric quantities can now be calculated at each grid point, while the previous approaches to

diagnostics only allowed to do that for a few selected points within similar time frame.

Appendix A: Regularisation tests

The equations (13) and (6) were used to construct precision matrices S−1a directly, since constructing a covariance matrix Sa

explicitly and inverting it would be prohibitively computationally expensive. While the equation (13) was derived analytically,10

its discrete implementation cannot be exact, which raises the question whether our precision matrices still have required prop-

erties, namely, whether they are still inverses of Sa that obeys equation (8). Clearly, this can only be verified directly for a small

test case, where covariance matrices are small enough to be inverted. Also, employing matrix norms to compare matrices is not

very useful in this case, as the directly computed S−1a is based on finite difference derivative estimates which do not work very

well at grid boundaries. This is not a problem for the retrieval, which, by design, approaches a priori near grid boundaries, but15

it has strong effects on matrix norms. Instead, we compared the covariance matrices by using them to compute the norms of

several test vectors, that represent typical structures expected for that covariance.

Precision matrix S−1a was constructed for one entity on a regular 20x20x20 grid (grid constant 1 in each direction) using the

same techniques as for retrieval B (σ = 1 and Lv = Lh = L= 2). Then a covariance matrix was explicitly constructed for the

same grid using equation (8) and inverted to obtain the precision matrix Ŝ
−1
a . A set of vectors xφ – discrete representations of20

a “Gaussian wave packet” disturbance

φ(r) = exp

(
−‖r‖

2

d2

)
cos(k · r) (A1)

was computed. The parameter dwas chosen so that the amplitude of the wave would decay to at most 0.01 at the grid boundary,

thus suppressing edge effects. Two different wavelengths, namely λ= 15, 20, in grid units, and were chosen and 50 k values

pointing at every possible direction were generated for each wavelength (i.e. ‖k‖= 2π/λ). Then, for each of the resulting 10025

disturbances the norms ‖xφ‖p and ‖xφ‖t, where ‖xφ‖2p = xTφS
−1
a xφ and ‖xφ‖2t = xTφ Ŝ

−1
a xφ, were calculated, as well as

their relative difference δ = 2 |‖xφ‖p−‖xφ‖t|/(‖xφ‖p + ‖xφ‖t). For the case λ= 15 we found that the mean δ value was

0.050, with standard deviation 0.0042, and for the case λ= 20 mean was 0.036, with standard deviation 0.0007. We believe

that precision of this order is sufficient for regularisation purposes.
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Table A1. Forward model tests

Measurement set original + noise A C D

∆(y,yorig) 0.0193 0.0035 0.0036 0.0047

Difference in forward model results, compared to original synthetic measurement set

without noise. A-D refer to forward model results of respective retrievals

Appendix B: Applicability to 1D and 2D retrievals

The exponential covariance relation, given in equation (8), can be trivially extended to any dimension. It is used as a statistical

model to many processes. The norm associated with this exponential covariance, given in equation (9), is, however, a 3D-

specific result. Known 2D equivalents involve fractional powers of derivatives and therefore are not as easy to implement

numerically. A norm associated with 1D exponential covariance can be shown (?) to have the simple form5

‖φ‖2 =
1

2σ2L

 x2∫
x1

φ2dx+L2

x2∫
x1

(
∂φ

∂x

)2

dx

 (B1)

neglecting some boundary terms. Here the scalar field φ(x) represents the difference between the quantity to be retrieved and

a priori, and L is the correlation length. All the main theoretical results and numerical methods of this paper can therefore

be reproduced for 1D inverse modelling problems. The usefulness of our methods for practical 1D applications ultimately

depends on the size of the problem in question. 1D limb sounding retrievals, for example, are usually too small for the methods10

developed here to be useful. It would typically be possible, and indeed simpler, to explicitly construct and invert the covariance

matrix of a 1D problem, rather than discretise the associated norm (B1). In the case of a very large 1D problem with strong

covariance, however, one may find the methods presented in this paper more lucrative.

Appendix C: Forward model tests

As pointed out in section 4.2, the same measurement set, synthetically generated on dense grid, was used for retrievals A-15

D. This provides an easy way to verify if the forward model is performing consistently on different grids: run it on each

grid, based on the ”true” atmospheric state and compare the results with the synthetic measurements from the dense grid.

In our test case, the radiances are calculated for n= 31 spectral windows. If vector y represents a set of radiances, and

yi represents the radiances at i-th spectral window, we evaluate the difference between those vectors with the parameter

∆(y,y′) = (1/n)
∑n
i 2‖yi−y′

i‖2/(‖yi‖2 + ‖y′
i‖2) where ‖ · ‖2 is the euclidean norm. The results of this comparison are20

presented in Table A1. Forward model for retrievals A and C used the same grid, but A used trilinear interpolation, and C used

Delaunay interpolation. We can see that the change in interpolation does not introduce significant errors (compared to those

introduced by the grid change). Thinned out grid and Delaunay interpolation was used for grid D. Note that the simulated

measurements that were actually used also have simulated instrument noise added to them. The results clearly show that the

25



effects of different discretisation are well below iNote that the simulated measurements that were actually used also have

simulated instrument noise added to them instrument noise level and are therefore acceptable. Also, the error is lower than our

generally assumed forward model error of 1-3% (Hoffmann, 2006).
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