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Abstract. Oceans cover over 70% of the Earth’s surface. Ship-based measurements are an important component in developing

an understanding of atmosphere of this vast region. A common problem that impacts the quality of atmospheric data collected

from marine research vessels is exhaust from both diesel combustion and waste incineration from the ship itself. Described

here is an algorithm, developed for the recently commissioned Australian blue-water Research Vessel (RV) Investigator, that

identifies exhaust periods in sampled air. The RV Investigator, with two dedicated atmospheric laboratories, represents an5

unprecedented opportunity for high quality measurements of the marine atmosphere. The algorithm avoids using ancillary data

such as wind speed and direction, and instead utilises components of the exhaust itself - aerosol number concentration, black

carbon concentration, and carbon monoxide and carbon dioxide mixing ratios. The exhaust signal is identified within each

of these parameters individually before they are combined and an additional window filter is applied. The algorithm relies

heavily on statistical methods, rather than setting thresholds that are too rigid to accommodate potential temporal changes. The10

algorithm is more effective than traditional wind-based filters in removing exhaust data without removing exhaust-free data

which commonly occurs with traditional filters. In application to the current dataset, the algorithm identifies 26% of the wind

filter’s ’clean’ data as exhaust, and recovers 5% of data falsely removed by the wind filter. With suitable testing, the algorithm

has the potential to be applied to other ship-based atmospheric measurements where suitable measurements exist.

Copyright statement.15

1 Introduction

When undertaking atmospheric composition and chemistry measurements, a common issue that impacts data quality is the

ability to effectively identify and potentially filter out sources of contamination. The most common local contamination source

is often emissions from power generation. Typically, power generation burns hydrocarbon fuels (such as diesel) and emits a

range of combustion products that are often the target species being measured in the background atmosphere.20

Identification of periods of contamination is performed via a variety of methods depending on the contamination source

and the target research question. A commonly used and reasonably reliable method for identification of local point source

contaminants is by simple wind direction and speed criteria (e.g., Molloy and Galbally, 2014; Steele et al., 2003; Chambers
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Figure 1. CCN plotted against wind direction (relative to the platform) from the RV Investigator voyage IN2016_V03. Red: all raw data.

Blue: after data is removed when wind speed is less than 5 m.s−1 or relative wind directions between 90o and 270o. Uncontaminated data

are usually less than 1000 cm−3 - see Figure A1. Data filtered with just wind measurements still show clear signs of contamination.

et al., 2017, and references therein). This method aims to capture the exhaust plume diffusion processes using the two wind

measurements as proxies. It is a robust method in environments where background composition is similar to the contamination

source, such as in urban areas. However, because of the oversimplified parameterisation, very conservative bounds are often

required which results in the removal of often significant amounts of contaminant-free data. In addition, this method assumes

relatively uniform flow characteristics and will fail when atmospheric recirculation results in measurements of contaminated air5

from directions outside the specified range. Figure 1 exemplifies this issue, where Cloud Condensation Nuclei (CCN) number

concentrations are found to be unreasonably high for the marine dataset used here, even after a wind speed and direction filter

is utilised.

Depending on the environment, a combination of wind criteria and in-situ composition measurements can be used to help

overcome the recirculation issue. For example, high concentrations of nitrogen oxides (NOx) produced from combustion pro-10

cesses will react rapidly with background ozone (O3), resulting in O3-depleted air which will only regenerate hours downwind

through NOx chemistry and photolysis processes (World Meteorological Organization (WMO), 1985). The use of O3 can

improve wind-based filters to help identify recirculation, depending on the time-scale of interest (e.g. Humphries et al., 2015).

However, the problem of false-positive identification remains as long as measurements of ancillary data are used for identifi-

cation. Ideally, identification of contaminated air would use only measurements of species emitted directly by the source itself15

in order to minimise false-positive contaminant identification and maximise the usable data from a dataset.

In the current study, an exhaust identification algorithm is developed for application to data collected on-board Australia’s

new marine Research Vessel (RV) Investigator utilising measurements of species emitted directly by combustion processes

occurring on the ship - namely diesel combustion and waste incineration. Both combustion processes (hereafter referred to
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as ’exhaust’) have similar emissions relative to the background atmosphere (Reşitoğlu et al., 2015; Johnke, 1999; Jones and

Harrison, 2016, and references therein). Emitted species include carbon dioxide (CO2), carbon monoxide (CO), NOx, hy-

drocarbons, as well as high concentrations of aerosols (Condensation Nuclei, CN) which include those whose composition is

primarily black carbon (BC) as well as those that can act as CCN. Measurements of CO, CO2, BC and CN are utilised for

the development of this exhaust identification algorithm as they have clear signals above the background atmosphere and are5

measured routinely on the vessel.

Figure 2 shows an example period of data from the vessel that illustrates the different signals resulting from exhaust influence

that must be characterised in the algorithm. Exhaust influence in CN, CO and CO2 data is obvious with striking enhancements

above variable background signals throughout the sample period. BC data are generally close to zero, with exhaust influence

obvious when a signal appears out of the noise. Strong perturbations over extended periods, such as those observed on May10

18, are indicative of direct exhaust influence. Smaller signals, such as those observed in CN data on May 19, or in BC data on

May 20, indicate a more dilute influence, with sampling likely occurring on the wavering edge of the exhaust plume.

Not all measured parameters respond to the exhaust to the same extent, or necessarily at all. A few examples of this are shown

when looking at the time-series of the parameters (Figure 2). Generally when this occurs, a signal is observed in CN data, but

is absent in the other species. This is likely a result of the magnitude of differences in exhaust signal in each parameter, as well15

as sensitivity of the measurement techniques of the different species. Figure A1 shows clearly the magnitude differences of the

various instruments with exhaust strikes. Exhaust strikes in CN are observed as perturbations of almost 4 orders of magnitude,

while those in BC, CO and CO2 are factors of 10, 0.2 and 0.01, respectively. Being a simple counting instrument, the CPC

is sensitive to particle concentrations down to 1 cm−3. For the CO and CO2 measurements, although precision is high, the

flow through cell technique utilised results in physical integration of the sample over a minute, thereby smoothing out any20

perturbations. For BC measurements, the detection limit of the instrument is 0.05 µg.m−3 over a 10 minute average. At 1 Hz

time resolution, we are still able to get useful signal (for the current purpose) at 0.01 µg.m−3 mass resolution, however the

instrument is clearly missing significant exhaust influence.

The RV Investigator is a blue-water research vessel capable of traversing from the ice-edge to the equator. The types of

atmospheres it encounters range from pristine background, to continental (e.g. while sampling near the coast), to urban envi-25

ronments (e.g. while in port). An important objective of this algorithm is the ability to distinguish the local ship exhaust from

the atmosphere of interest - a task which becomes particularly difficult in the more polluted environments such as those down-

wind of large urban centres. In this study, the dataset utilised for development contains influences from urban and background

marine regions (as shown in Figures A3 and A4) by which differentiation from ship exhaust can be achieved. The ship track of

the utilised voyage is shown in Figure A5.30

In this study, an algorithm is developed that produces an exhaust identification product that is published alongside other

publically available datasets from this platform. The algorithm aims to accurately identify exhaust from the ship itself, distinct

from other polluted atmospheres such as urban centres, and minimise false-positive identification in order to retain as much

valuable data from this mobile platform as possible. The exhaust product is developed utilising a dataset exemplifying the range

of atmospheres that are sampled and is validated by applying it to measurements of CCN that were measured simultaneously.35
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2 Instrumentation

The RV Investigator (schematic shown in Figure A6) is a state-of-the-art research platform commissioned in 2015 by the

Australian government. The vessel is designed for blue-water research and is capable of spending up to 300 days per year at

sea, with a single voyage up to 60 days and over 10000 nautical miles. Propulsion and power is provided by two diesel-electric

engines together with three 3000 kW, nine cylinder diesel engines. Exhaust from diesel combustion, together with waste5

incineration which is emitted from a separate but co-located flue, provides the largest source of contamination to atmospheric

measurements aboard the platform.

The vessel has been purpose built with two dedicated atmospheric laboratories along with a custom-designed air sampling

inlet located above the ship’s bow, approximately 18.4 m above sea level. The aerosol laboratory is situated directly underneath

the air sampling inlet fore of the anchor well, such that the distance between sampling and instrumentation, and thus sample10

losses, are minimised (total distance to the aerosol laboratory’s sampling manifold is ∼8 m). The aerosol laboratory houses

instrumentation for the measurement of aerosols and the reactive gas ozone. The air chemistry laboratory is situated further aft

in the vessel at the fore of the superstructure (total distance from main sample inlet to the air chemistry laboratory’s sampling

manifold is ∼38 m), and houses instrumentation for the measurement of less reactive atmospheric species such as greenhouse

gases and volatile organic compounds.15

The RV Investigator houses a range of permanent instrumentation. These instruments are run continuously throughout every

voyage of the RV Investigator (except for when instruments are removed for maintenance or faults) and after data have been

calibrated, and quality assurance and control procedures have been performed, data are made publicly available. Of particular

relevance to this study is the measurement of CO, CO2, BC, CN, and meteorological measurements. Each of these parameters

will be described in detail in future publications documenting the ongoing measurements of the vessel, however a brief overview20

of these measurements are given here. For this analysis, CCN data are utilised as an independent parameter by which the exhaust

identifier is tested. The dataset considered in this manuscript utilised CN and CCN data captured by instrumentation deployed

specifically for this voyage, and thus will be described separately. It is worth noting that both CN and CCN instrumentation

have more recently become part of the permanent ongoing instrument suite and will be described in a future publication and

made publicly available alongside other aerosol data from the platform.25

An important outcome of the current work is to make publicly available an exhaust identification data product that will be

published alongside other atmospheric datasets from the vessel in order to assist data users in their analyses. For the present

manuscript, the exhaust identification product has been developed using data from the RV Investigator voyage IN2016_V03

(see Marine National Facility (2016) for voyage track), and data utilised and produced in this manuscript is available from

Humphries et al. (2018).30

2.1 Carbon monoxide, CO

Mixing ratios of carbon monoxide (CO) were measured continuously at 1 Hz using a mid-infrared (IR) quantum cascade

laser spectrometer (Aerodyne Research Inc, Billerica, MA, USA). A high vacuum dry scroll pump (Model SH-110, Varian,
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Lexington, MA, USA) draws air through the 0.5 L optical cell maintained at a constant pressure of 45 Torr, and flushed at a

rate of approximately 0.5 L.min−1. Mid-IR laser light enters the astigmatic multi-pass cell, traversing it 238 times, giving an

effective path length of 76 m. Upon exit from the optical cell, the light impinges on a thermoelectrically cooled IR detector,

allowing a mixing ratio to be determined via Beer’s Law. The nominal precision of the CO measurement is 60 ppt in one

second (owing to the long path length and strong transition of the CO molecule in the mid-IR). Water vapour is also measured5

allowing for the CO mixing ratio to be corrected to a dry air mixing ratio, without the need to pre-dry the sample.

2.2 Carbon dioxide, CO2

Atmospheric mixing ratios of carbon dioxide (CO2) are measured continuously at 1 Hz on board the RV Investigator using a

Picarro cavity ringdown spectrometer (Model G2301, unit CFADS2315, Picarro Inc., Santa Clara, CA, USA), that concurrently

measures methane (CH4) and water vapour. Air is drawn through the 35 sccm optical cell held at constant temperature and10

pressure (45oC and 140 Torr), at a rate of approximately 0.15 L.min−1. The ends of the cell comprise highly reflective mirrors

that recirculate the light supplied by a near-infrared (NIR) laser through the cavity, resulting in an effective path length of

around 20 km. Light leaks out of the mirrors, impinging on a photodetector with a characteristic ringdown time. Carbon

dioxide molecules within the cell also absorb a fraction of the light, modulating the ringdown time in proportion to their

concentration. By scanning the laser off the absorption peak and remeasuring the ringdown time, the technique becomes15

insensitive to fluctuations in laser power. The precision of the CO2 measurement is better than 0.05 ppm on a minutely

average. Data used in this paper are raw CO2 dry air mixing ratios (by an empirical correction using the native water vapour

measurement). CO2 data are also available as minutely and hourly mean dry air mixing ratios that have been calibrated and

drift corrected through the daily measurement of a reference tank.

2.3 Black carbon, BC20

Black carbon measurements are made using a Multiangle Absorption Photometer (MAAP Model 5012, Thermo Fisher Scien-

tific, Air Quality Instruments, Franklin, MA, USA). The MAAP collects aerosol on a glass fibre tape that gets irradiated with

670 nm light. Photo-detectors measure the light transmission and reflection in the forward and back hemispheres, respectively,

and after inversion, reports black carbon concentrations in real time. The inversion algorithm takes into account multiple scat-

tering processes inside the aerosol sample and between the sample and the filter matrix and utilises a carbon mass absorption25

coefficient of 6.6 m2.g−1. The detection limit of the instrument over 10 and 20 min is 0.05 and 0.02 µg.m−3, respectively.

Since we are using the MAAP data at 1 Hz, these detection limits are much higher, however useful signal for the purpose of

exhaust detection is still present, as shown by their response to exhaust that is simultaneous with other parameters. The choice

of an appropriate threshold must be performed carefully with this detection limit in mind, and is discussed further in section

3.1.30
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2.4 Aerosol number concentration, CN

Number concentrations of condensation nuclei larger than 3 nm (CN) were measured continuously at 1 Hz using a condensation

particle counter (CPC Model 3776, TSI, Shoreview, MN, USA). The CPC works by drawing the aerosol sample continuously

through a chamber of supersaturated 1-butanol which condenses onto particles larger than 3 nm, growing them to sizes (above

1 µm) which can be counted individually by a simple optical particle counter. Sample flow rate is regulated by a critical orifice5

at 1.5 L.min−1. This flow rate was checked every few days at the instrument inlet using an external flow meter (Sensidyne

Gilibrator, St. Petersburg, FL, USA) and flow rates were found not to deviate beyond 1%. Although flow calibrations weren’t

necessary for this algorithm, the software used for filtering the data simultaneously performs flow calibrations, so calibrated

data is used here. Data are also filtered for periods of instrument zeros and the disconnection of the instrument from the

sampling line. Note that for voyages after September 2016, a permanent CPC (Model 3772, TSI, Shoerview, MN, USA),10

measuring CN larger than 10 (nm), was installed on the platform (described in detail in future publications) and is used as the

CN data stream.

2.5 Cloud Condensation Nuclei, CCN

Number concentrations of cloud condensation nuclei (CCN) were measured continuously at 1 Hz using a continuous-flow

streamwise thermal-gradient CCN counter (CCNC, Model CCN-100, Droplet Measurement Technologies, Longmont, CO,15

USA). The instrument was situated at approximately the same distance from the inlet as the CPC, connected to the manifold

using a combination of stainless steel and flexible conductive tubing. The instrument was configured to run continuously at

0.5% supersaturation, which after pressure calibrations, was found to equate to 0.5504% supersaturation. The flow rate of

the instrument was set to the standard 0.5 L.min−1. Flows were checked weekly using an external flow meter (Sensidyne

Gilibrator, St. Petersburg, FL, USA) and concentrations were corrected in post-processing procedures based on actual flow20

rates (maximum of 2% flow deviation). Data were quality controlled by removal of periods during which maintenance was

performed and calibrated for pressure and flow rates.

2.6 Meteorological data

Meteorological data were measured continuously whilst the ship was underway. Meteorological measurements include air

temperature, relative humidity, barometric pressure, solar radiation, precipitation, sea surface temperature, wind speed and25

direction. Of particular interest to the exhaust filtering algorithm are measurements of wind speed and direction. Dual wind

monitors (Marine Wind Monitor, Model 05106, R.M. Young Company, Traverse City, Michigan, USA) are affixed to the vessels

foremast at a height of 24 m from the water line, each offset from the ship’s centreline by∼2.5 m, one to starboard and the other

to port. The measurable wind speed range of the wind monitors is 0-100 m.s−1 (±1%), with an azimuth range of 0-355o (±3o;

relative to ship centre line; the 5o dead-zone of which is directed aft). An ultrasonic 2-axis anemometer (WindObserver II, Gill30

Instruments, Lymington, Hampshire, UK) is also affixed to the foremast 21 m from the water line and ∼2.5 m to port from

the ship’s centreline. The ultrasonic anemometer measures wind speed in the range 0-65 m.s−1 (0.01 m.s−1 resolution and
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±2% at 12 m.s−1) and azimuth range of 0-359o (1o resolution and ±2% at 12 m.s−1). Wind sensors are calibrated annually

by Ecotech Australia to the reference standard ISO 17713-1:2007.

3 Exhaust Identification

The primary task of the algorithm is that of distinguishing between two distinctly different signals in our data. Because of the

magnitude of the difference, a first pass of the exhaust identification is simply an application of outlier detection algorithms.5

However, on closer inspection, the variability of the exhaust signal due to variations in source strength, dilution and plume

location sampling, as well as the shear length of time that the exhaust can influence measurements (from seconds to days)

makes many of the more well-known detection algorithms unsuitable to this problem. This is discussed more in Appendix

Section A where a number of algorithms, including Fast Fourier Transform, z-score and modified z-score, double exponential

smoothing and histogram methods, were tested and found to be unsuitable. Hence this complicates the goal of the algorithm to10

differentiate between these two distinct but varying signals (i.e. exhaust and ambient in a range of environments).

Exhaust identification is performed primarily utilising the intersection between four parameters commonly emitted in fossil

fuel combustion processes, namely CO, CO2, BC and CN. Figure 2 shows the variability of these species during periods of

exhaust influence and within background air (defined here as not influenced by exhaust from the measurement platform, the

RV Investigator). Distinct signals are observed in all four variables, however it is important to note that not all signals respond15

simultaneously. This concept is discussed in detail later in the manuscript.

Because of the differences in their exhaust responses, identification is performed on each of the parameters separately at

1 Hz, after which they are combined and an additional window filter is applied to remove neighbouring values that are not

captured completely by the parameters themselves. Each instrument connected to the Investigator’s sampling system will also

exhibit temporal variations in their responses to exhaust strikes due to differences in residence and detector response times.20

Because of this, it is impossible to create a single exhaust identification product that can be applied to every instrument that

collects data on this platform. To effectively achieve a perfectly exhaust free dataset for each instrument without removing

substantial data that is free from exhaust, identification should ideally be performed on each dataset individually. Nevertheless,

the creation of this exhaust identifier product is useful in that it creates a first-pass filter that identifies the vast majority of the

exhaust influence. With this in mind, a relatively conservative approach is adopted in order to strike a balance between not25

identifying periods of exhaust influence, and the false-positive identification of background data as exhaust. Since the product

is not used to filter published datasets, but instead is published alongside other data, it is left to the end-user to determine

whether more stringent criteria should be applied to specific data sets than the relatively conservative approach adopted here.

3.1 BC threshold filter

In the background atmosphere, BC is generated from combustion sources such as fossil fuel burning and biomass burning30

(Seinfeld, J.H., Pandis, 2016). Moreover, the lifetime of BC is on the order of days (Cape et al., 2012) and combined with

transport dilution, seeing elevated values beyond the instrument sensitivity is rare. This is illustrated in Figure A4 where the
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baseline trend observed in CN during a period of urban influence (May 26) is absent in the BC data. Consequently, a set

threshold value can be utilised for BC, whereby any data above this threshold are identified as exhaust.

The threshold for exhaust was determined by selecting numerous periods where background air was being measured without

exhaust influence, and selecting the maximum value during these periods. For the dataset being utilised for this manuscript,

a value of 0.07 µg.m−3 was chosen which is suitable for remote locations. Figure 2 shows one such period when the ship5

was located south east of New Zealand in the deep Southern Ocean. For most voyages undertaken by this vessel this BC

limit is suitable, however when the scientific questions are concerned with airmasses downwind of major pollution sources,

such as urban centres or significant biomass burning events, this limit should be increased. This is illustrated in Figure A4

where the first week of June shows increased baseline values of CN and also BC due to the vessel coming into and out of

the port in Wellington, New Zealand. If these periods were of particular interest, and the data loss from the standard limit was10

unacceptable, a new increased limit would need to be determined by choosing an period representative of the scientific outcome.

Alternate statistical methods, such as choosing a limit based on the 95th percentile or similar scheme, are not generally suitable

for the choice of the limit since these generally rely on ‘outlier‘ type data, rather than what is observed here.

3.2 Variance filter for CO, CO2 and CN

In contrast to BC, CO, CO2 and CN all have persistent, non-zero background signals in the atmosphere and consequently,15

a simple threshold filter cannot be utilised. For these datasets, the variability is characterised on each dataset and outliers in

the positive direction are identified as exhaust. As discussed by Leys et al. (2013), the robust statistical parameters of median

and median absolute deviation (MAD) are useful in the detection of outliers since they are relatively insensitive to outliers

compared to the mean and standard deviation (SD) that are commonly utilised.

For a univariate dataset x1,x2, ...,xn, the MAD is defined as the median of the absolute deviations from the data’s median:20

MAD =median(|xi−median(x)|) (1)

It is well established that for normally distributed data (such as is being explored here for data without exhaust), the median

and mean are equivalent. The same can be said for the MAD and the SD provided a standard factor is applied (Rousseeuw and

Croux, 1993, and references therein) such that:

SD = 1.4826×MAD (2)25

To identify the exhaust, the data point in question must be assessed to determine if it is within an acceptable range that

represents the background atmosphere. Defining this acceptable range deserves thoughtful consideration. Given the variability

of CO, CO2 and CN in the background atmosphere, a predefined range would not be fit-for-purpose. This circumstance lends

itself naturally to the use of a rolling window. For this algorithm, numerous statistical parameters (median, MAD and SD) are

calculated on a detrended, centred rolling five minute window. Although variable, the five minute width of this rolling window30

is chosen here so that there is enough data for statistical robustness, yet short enough to capture real changes in atmospheric

state.
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It is important to note that when the fraction of outliers dominates (50%) a sample (or window), median based statistics also

become sensitive to outliers. This will happen when, for example, the rolling window is sampling during an exhaust period that

persists longer than half the window period. To get a statistical dataset that represents the background atmosphere to which raw

data can be compared, alternative values must be sought during these periods when all calculated statistics are affected.

The first step in this process is to identify periods where median based statistics are affected in the rolling window. Comparing5

the rolling SD (SDi) and MAD (MADi) could be effective for identifying these periods, since one is sensitive to outliers while

the other is not, respectively. However, since the exhaust could represent up to 100% of the sample window, the rolling MAD

(MADi) and SD (SDi) could be similar, ruling out comparing these two parameters as a method for identification. To overcome

this, a single MAD value (MADB) that is representative of the background atmosphere is sought to which we can compare

SDi.10

Analysis of both CN, CO and CO2 data show that MADi are generally tightly grouped, but have a small fraction of large

outliers, as shown in Figures A7, A8 and A9. Choosing the median of this MADi dataset, MADB, yields the value representa-

tive of the background atmosphere to which SDi can be compared and exhaust affected median statistics can be replaced. Time

periods with SDi larger than three times MADB are then flagged and values during these periods are replaced with values

obtained by linear interpolation with neighbouring values, yielding new datasets, MB
i and MADB

i that represent the rolling15

median and MAD without influence from exhaust. Having obtained statistical datasets reasonably free from exhaust influence,

exhaust can be identified in the raw data such that:

x >MB
i +3MADB

i (3)

where x is the raw CO, CO2 or CN data.

The algorithm only identifies positive deviations as exhaust, ignoring negative outliers. This is done because the exhaust can20

only add signal to the background for these three parameters at this range and at this high frequency. Inclusion of the lower

limit could erroneously identify exhaust time periods which are simply instrument zeros or calibrations that may not have been

removed from the datasets prior to their use in the algorithm.

The use of uncalibrated and uncorrected CO, CO2 and CN data is acceptable within the algorithm so long as periods of

instrument calibrations in the positive direction are removed from the datasets prior to use (only positive since the exhaust25

influence on these parameters are all in this direction). This is because the algorithm is sensitive to high-frequency changes like

exhaust strikes or instrument zeros, rather than lower frequency variations, such as instrument drifts, and takes no account for

the absolute value of the signal.

3.3 Window filter

Once identified by either CO, CO2, BC or CN, a combined exhaust identifier is created such that exhaust is present if detected30

by any of the four parameters. To this dataset, a window filter is applied. This rolling filter sums the number of exhaust points

in the window. If this sum is larger than 10% of number of points in the window, then all data points within that window

are labelled as exhaust. The 10% threshold is important because variations in one of the three parameters (arising from the
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use of raw data streams) could mistakenly identify a time period as exhaust without verification from either sustained exhaust

identification, or other parameters. Additionally, this 10% threshold, together with the choice of the window width (here set

to 20 minutes), creates a buffer that accounts for differences in residence times of atmospheric samples in the sample lines

and in the instruments themselves (the greenhouse gas measurements are approximately 40 m downstream of the aerosol

measurements, resulting in time differences on the order of seconds, compared to the window width which is several orders of5

magnitude larger).

4 Results and Discussion

Figure 2 shows a subset of data to illustrate the exhaust filter when applied to the CCN dataset. CCN is used here as an

independent dataset to test the exhaust filter algorithm and ensure its applicability beyond the parameters used in the algorithm

itself. In addition, exhaust strikes are easily visible in the CCN dataset, making it useful for this purpose.10

Although not 100% effective, the algorithm removes the vast majority of exhaust influence and its effectiveness is clearly

apparent (Figure 2). It is clear from Figure 3, where each parameter of the filter is applied separately, that none of the parameters

are capable of entirely capturing the exhaust influence individually. The CN filter is the most effective, presumably because the

exhaust signal is orders of magnitude higher than background values and the response time is rapid. Nevertheless, a significant

fraction of exhaust periods make it through the CN filter. When all parameters are used together, the exhaust filter improves15

dramatically, although a small fraction of exhaust values remains. The application of the window removes most of the remaining

exhaust affected data, resulting in a dataset that can be confidently used in subsequent analyses of the background atmosphere.

Figure A10 shows different combinations of the individual filters to demonstrate the effectiveness of each filter. Combining

both Figures 3 and A10 indicates that CN is the most effective parameter, followed by BC, CO, then CO2. By itself, CN

removes the vast majority of the exhaust influence, but alone is incomplete. While this suggests that a simple filter utilising20

CN and only one of the other three parameters could be used to produce a similarly effective filter, in practice, having all three

measurements (i.e. BC, CO and CO2) provides important redundancy. Currently, if problems occur with the CN measurements,

the effectiveness of the exhaust filter is significantly reduced, as shown by Figure A10H. Given the importance of the CN data

to being able to effectively identify exhaust, instrumental redundancy for CN measurements is an important feature of the

platform that is currently being implemented.25

Interestingly, there are some periods which still show short periods of exhaust in the filtered CCN data, as shown in Figure

A11. Here, the exhaust is easily identified by the CN filter algorithm, however the exhaust signal is delayed in the CCN data

by about 10 s, presumably due to the longer residence time of the CCN instrument. It is possible to alter the algorithm in such

a way that the 20 min window applies to any period identified as exhaust (rather than having the threshold described in Section

3.3), however this has the immediate ramification of large losses of data that would otherwise be classified as background,30

which would be unacceptable for this purpose. Instead, this exhaust identifier has been designed to be used as an initial step,

and that if more stringent bounds are required by the end-user, a more strict window filter can be applied at that time. In
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Figure 2. A four day subset of the data from the 2016 voyage used to illustrate the algorithm, with filtered data (black) shown atop the raw

data (red). Panel A shows the unfiltered CCN data along with data after the full filter is applied. Panels B to E show the filter parameters as

both raw as well as with their individual filters applied. The green line in Panel D represents the BC limit of 0.07 µg.m−3 utilised. All data

are raw instrument output without calibrations to aid in rapid dissemination of the exhaust identification product. Timestamps are UTC. Note

that y-axes are limited in range to reveal baseline values (full data shown in Figures A3 and A4). Exhaust signal for CO, CO2, BC and CN

extends up to 800 ppb, 490 ppm, 10 µg.m−3 and 106 cm−3, respectively.

addition, individual datasets should be analysed for any remaining exhaust to account for differences in residence time and

sampling regimes.

Application of the algorithm to other atmospheric datasets is an important verification step beyond that of CCN which is a

very similar measurement to that of CN measurements. In Figure A12, aerosol size distributions, measured using a Scanning

Mobility Particle Sizer (GRIMM SMPS Model 5.420 with M-DMA installed, GRIMM Aerosol Technik, Ainring, Germany)5

are shown as raw data, as well as with both the wind-based filter and the exhaust algorithm applied. Both filter methods are

effective at removing much of the exhaust influence, however the exhaust algorithm shows distinct advantages for more accurate

exhaust identification, recovering more exhaust-free data, and removing exhaust-laden data compared with the wind-filter.
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Figure 3. CCN data (linear scale) with the different steps of the algorithm applied separately: panel A shows unfiltered data; panels B to

E show single parameter filters; panel F show the combination of the four parameters; and panel G shows the full filter which includes all

parameters and the application of a window removal. Note the change in scale of the y-axis in the final panel.

Comparison of the algorithm to the traditional wind-based filter shows significant advantages. When applied to this dataset,

the algorithm is able to recover 5% (1 hour) of data that the wind filter identified as exhaust, and removes 26% (37 hours) of

12



Figure 4. As in Figure 1, but with the addition of CCN data filtered using the algorithm describes in this paper. The algorithm is significantly

more effective than the traditional wind-based filter.

data that the wind filter identified as clean. This is shown most clearly in Figure 4 (also apparent in Figures A13 and A14).

Data recovery is obvious in this figure from data present between relative wind directions of 90o and 270o, while the high

concentrations observed outside these ranges, which is exhaust signal, is removed by the algorithm. From the time series case

study of Figure A13, it can be seen that many of the exhaust signals missed by the wind filter are those on the edges of a large

exhaust period, or simply just small exhaust strikes that might occur when the ship is turning.5

5 Conclusions

A ship exhaust identification algorithm is described that utilises only components of the combustion exhaust, rather than

commonly utilised ancillary data such as wind speed and direction. CO, CO2, BC and CN data are used as exhaust indicators

and together with surrounding window removal, a robust exhaust identification method results. Statistical methods feature

heavily in the algorithm in order to avoid as much as possible, cut-off thresholds that can be subjective. The algorithm is10

applied directly to data from the RV Investigator for which it was specifically developed and the resulting data product will be

made available along-side other publicly available data from the research platform. The algorithm performs well and identifies

the vast majority of exhaust in the dataset while minimising data loss that can occur with other overzealous or indiscriminate

methods.

Data availability. Input data and the exhaust product calculated for the sample data utilised in this manuscript are available at Humphries15

et al. (2018). Please contact the author for access to code.
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Appendix A: Outlier Detection Algorithms

Due to the magnitude of differences between the exhaust air and ambient air, exhaust can in the first instance be treated as

outliers to the ambient data. The caveat to this is that not-infrequently, the exhaust is itself the dominant influence in the data,

making the ambient data itself the outlier. This makes the application of traditional outlier detection algorithms difficult, and is

ultimately the reason why a specialised algorithm was developed for operational deployment. During the development stages5

though, a number of methods were trialled.

Outlier detection methods are classified into six broad groups (Aggarwal, 2013) which include: extreme value analysis,

probabilistic and statistical models, linear models, proximity-based models, information theoretic models and high-dimensional

outlier detection. Not all of these groups apply to the time series data being considered here.

Fast Fourier Transform (FFT) is a method commonly used to filter outliers from the frequency domain. This is commonly10

utilised in data that has some level of periodicity or seasonality. Unfortunately, at the short time scales and spatial locations

being considered for this application, ambient data do not contain enough periodicity to be able to utilise this method effectively.

Nevertheless, an algorithm was trialled which utilised standard FFT functions in Python’s NumPy library. Figure A2B shows

the effectiveness of the FFT algorithm which was found to be useful for removing some spikes in data caused by exhaust, but

struggled during periods of extended exhaust influence.15

Generally speaking, environmental data are normally distributed. The distributions of the data can be used to identify an

exhaust population, and all the major exhaust influence can be confidently removed using a simple threshold filter. The threshold

here becomes very clear when measuring in pristine background conditions, but can become difficult to establish in urban

or continental air-masses where ambient and exhaust air compositions converge. FigureA2C shows the data resulting from

applying this informed threshold followed by a window filter that identifies data periods within 20 min of an exhaust period20

as exhaust. Reasonable exhaust removal is achieved compared to other outlier detection methods, however significant exhaust

influence remains.

The z-score method is a way of describing data relative to its statistical parameters. In the standard implementation, the z-

score of a particular data point is calculated relative to its mean and standard deviation. This obviously has issues if outliers are

a dominant feature in a data set since the outliers significantly affect the mean and standard deviation. To improve robustness,25

the modified z-score compares data to medians and median absolute deviations. In both cases, once the z-score is calculated for

each data point, a simple threshold is utilised - that is, if the z score is outside ±3 (±3.5 for modified z-score), the data point is

treated as an outlier. In application to this dataset, as shown in Figure A2D, this method functions simply as a threshold filter,

removing any data above a certain point, depending on the actual chosen z-score threshold. Applying this method to a rolling

window, rather than the full dataset, should improve its performance, however because the rolling z-score calculation tends to30

simply follow the median of the dataset, its performance actually is not improved.

Double exponential smoothing is a method that creates a model of the data based on exponentially weighted moving averages

and linear regression, after which the difference between model and measurements is calculated and compared to a predefined

threshold. The method was first described by Holt (2004) in 1957 but with recent advances which included seasonality, became
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popular in 2000 (Brutlag, 2000) because of its application in time series data for network monitoring. The application of this

method here is ineffective in the first instance since it relies on an outlier sensitive method. However, when the model is

calculated iteratively on a rolling window, each measurement is determined to be an outlier or not in real-time and replaced,

thus increasing substantially the performance of the algorithm (Figure A2E). Despite its impressive performance, a significant

influence from exhaust persists in the filtered dataset.5

15



Figure A1. Time series showing that periods of CCN elevated above 1000 cm−3 are associated with elevated concentrations of the other

parameters, or wind directions in the exhaust sector. A) CCN B) CN (left) and BC (right) C) CO (left) and CO2 (right) and D) relative wind

direction with the coloured region signifying those directions exhaust is expected.
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Figure A2. A subset of CN during the voyage with a range of outlier detection methods applied. A) Raw CN data. B) Fast-Fourier Transform

(FFT). C) Normal distribution filter. D) Z-scores: in red the standard method is applied on the whole population (S.P.); in black, the modified

z-score is applied on the whole population (M.P.); in blue, the modified z-score is applied on a rolling window. E) Double exponential

smoothing. F) The median based method developed in this manuscript.
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Figure A3. Time series (log scale) of CO, CO2, BC and CN for 45 days of voyage IN2016_V03 which traversed from the ice-edge to the

equator along the 170oW meridian with a short resupply port period in Wellington, New Zealand on the 26th May, 2016. The green line in

Panel C represents the BC limit of 0.07 µg.m−3 utilised.
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Figure A4. As in Figure A3 but with a linear y-scale to reveal the baseline changes.
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Figure A5. Voyage track of the data utilised in this voyage. Starting in Hobart, Australia, the voyage’s primary goal was to perform ocean

sampling along the 170oW longitudinal line, with a brief personnel change-over in Wellington, New Zealand. This dataset was chosen as

it contained clean marine background, as well as periods where it had increasing urban influence (as it travelled towards and arrived in

Wellington), enabling fine tuning of the algorithm to only remove platform exhaust.
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Figure A6. A schematic of the ship, with the two exhaust pipes marked - the main engine and the incinerator, along with the location of the

main sampling inlets and met instruments on the foremast. Measurements of aerosol parameters (CN, BC and CCN) are made in the aerosol

lab, while greenhouse gas measurements (CO and CO2 are made in the air chemistry lab. The compass on the bird-eye view is oriented to

show the wind direction as measured relative to the ship.

21



Figure A7. Distribution of the MADs calculated from rolling through CN number concentrations. Left: Box and whisker plot with quartiles

drawn. Whiskers represent the quartiles ± 1.5 times the interquartile range. Right: Histogram. Note the split axis which changes from linear

to logarithmic scaling.
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Figure A8. As in Figure A7 but for CO mixing ratios.
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Figure A9. As in Figure A7 but for CO2 mixing ratios.
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Figure A10. CCN data (log scale) with the different combinations of the algorithm applied separately: A-F show all 2 parameter combina-

tions, G-J show 3 parameter combinations, K shows the filter using all 4 parameters, L shows unfiltered data for comparison. Note that the

window filter is not applied to any of these plots.
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Figure A11. Time series of one minute of aerosol data. Unfiltered data in red, with black markers showing exhaust filtered data. The exhaust

is clearly identified in the CN data but due to differences in instrument residence time, the exhaust signal shows up 10 seconds later in the

CCN data, in this case, after the exhaust signal has ceased in the CN.
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Figure A12. Aerosol size distributions measured using a GRIMM SMPS with M-DMA installed. Top shows all raw data recorded, while the

wind-based filter, and the exhaust algorithm are applied to the two subsequent graphs respectively, removing periods identified as sampling

exhaust.
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Figure A13. As in Figure 2 but with the filtered dataset (blue) being the wind-based method. Unfiltered data are shown in red.

28



Figure A14. As in Figure 2 but plotted against relative wind direction. Unfiltered data are shown in red, while data with the respective

exhaust filter are shown in black.
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