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Abstract. The study assesses the possible benefit of assimilating Aerosol Optical Depth (AOD) from the future spaceborne 15 

sensor FCI (Flexible Combined Imager) for air quality monitoring in Europe. An Observing System Simulation Experiment 

(OSSE) was designed and applied over a 4-month period that includes a severe pollution episode. The study focuses on the 

FCI channel centred at 444 nm, which is the shortest wavelength of FCI. A Nature Run (NR) and four different Control Runs 

of the MOCAGE chemistry-transport model were designed and evaluated to guarantee the robustness of the OSSE results. 

The AOD synthetic observations from the NR were disturbed by errors that are typical of the FCI. The variance of the FCI 20 

AOD at 444 nm was deduced from a global sensitivity analysis that took into account the aerosol type, surface reflectance 

and different atmospheric optical properties. The experiments show a general benefit on all statistical indicators of the 

assimilation of the FCI AOD at 444 nm for aerosol concentrations at surface over Europe, and also a positive impact during 

the severe pollution event. The simulations with data assimilation reproduced spatial and temporal patterns of PM10 

concentrations at surface better than without assimilation all along the simulations and especially during the pollution event. 25 

The advantage of assimilating AOD from a geostationary platform over a Low Earth Orbit satellite has also been quantified. 

This work demonstrates the capability of data from the future FCI sensor to bring an added value to the MOCAGE aerosol 

simulations, and in general, to other chemistry transport models. 
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1 Introduction 

Aerosols are liquid and solid compounds suspended in the atmosphere, whose sizes range from a few nanometers to several 

tens of micrometers, and whose lifetime in the troposphere varies from a few hours to a few weeks (Seinfeld and Pandis, 

1998). Stable sulfate aerosols at high altitude can last for years (Chazette et al., 1995). The sources of aerosols may be 

natural (dusts, sea salt, ashes from volcanic eruptions, for instance) or anthropogenic (from road traffic, residential heating, 5 

industries, for instance), and they can be transported up to thousands of kilometers. Aerosols are known to have significant 

impacts on climate (IPCC, 2007) and on air quality and further on human health as WHO (2014) estimated over 3 million 

deaths in 2012 to be due to aerosols. 

Aerosols absorb and diffuse solar radiation, which leads to local heating of the aerosol layer and cooling of the climate 

system through the backscatter of solar radiation to space for most of the aerosols, except for black carbon (Stocker et al., 10 

2013). The absorption of solar radiation modifies the vertical temperature profile, affecting the stability of the atmosphere 

and cloud formation (Seinfeld and Pandis, 1998). Aerosols, as condensation nuclei, play a significant role in the formation 

and life cycle of clouds (Seinfeld and Pandis, 1998). Deposition of aerosols on Earth’s surface may also affect surface 

properties and albedo. All these effects show that aerosols play a key role on the energy budget of the climate system. 

Aerosols, also called particulate matter in the context of air quality, are responsible for serious health problems all over the 15 

world, as they are known to favor respiratory and cardiovascular diseases as well as cancers (Brook et al., 2004). The World 

Health Organization (WHO) has set regulatory limits for aerosol concentrations, respectively 20 µg.m-3 and 10 µg.m-3 annual 

mean for PM10 and PM2.5 (particulate matter with a diameter less than 10 and 2.5 µm, respectively) concentrations. The 

European Union regulation introduces also PM10 daily mean limits of 50 µg.m-3. The presence of a dense layer of aerosols 

can also affect air traffic by the reduction of visibility (Bäumer et al., 2008) and by risks of disruptions of engines of air 20 

planes (Guffanti et al., 2010). Therefore, it is essential to accurately determine the evolution of the concentration and size of 

the different types of aerosols in space and time, in order to assess their effect on climate and on air quality and to mitigate 

their impacts. A pertinent approach to achieve a continuous and accurate monitoring of aerosols is to combine measurements 

and models, a good example being the Copernicus Atmosphere Monitoring Service (CAMS) 

(http://www.atmosphere.copernicus.eu/; Peuch and Engelen, 2012; Eskes et al., 2015; Marécal et al, 2015). 25 

Ground-based stations, which measure aerosol and gas concentrations in-situ, have been used for several decades to monitor 

air quality, such as the stations in the Air Quality e-Reporting program (AQeR, https://www.eea.europa.eu/data-and-

maps/data/aqereporting-2) from the European Environment Agency (EEA). Other observations can also be used to measure 

aerosols. The AERONET (AErosol RObotic NETwork) program (https://aeronet.gsfc.nasa.gov/) performs the retrieval of the 

Aerosol Optical Depth (AOD) at several ground stations (Holben et al., 1998). Similarly, AOD observations can be retrieved 30 

from images taken in different channels by imagers aboard Low Earth Orbit (LEO) or GEOstationary (GEO) satellites. 

Generally, AOD from satellite provides a better spatial coverage than ground-based stations at the expense of additional 

sources of uncertainty, such as the surface reflectance. An example of AOD product from LEO satellites is the Daily Level 2 
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AOD, from the Moderate Resolution Imaging Spectroradiometer (MODIS) (Levy et al., 2013) sensor on board Terra and 

Aqua (MOD 04 & MYD 04 products). This AOD product is provided at a 10 km resolution every 5 min, down to 1 km. 

Sensors on geostationary orbit satellites can continuously scan one third of Earth's surface much more frequently than low 

Earth orbit satellites. The SEVIRI (Spinning Enhanced Visible and Infra-Red Imager) sensor, aboard MSG (Meteosat 

Second Generation), is an example of a GEO sensor providing information on aerosols. Different AOD are retrieved over 5 

lands from SEVIRI data in the VIS0.6 and VIS0.8 channels, respectively centered at 0.635 µm (0.56 µm – 0.71 µm) and 

0.81 µm (0.74 µm – 0.88µm). AOD products are retrieved following different methods. Carrer et al. (2010) presented a 

method to estimate a daily quality-controlled AOD based on a directional and temporal analysis of SEVIRI observations of 

channel VIS0.6. Another method consists in matching simulated Top Of the Atmosphere (TOA) reflectances (from a set of 5 

models) with TOA SEVIRI reflectances (Bernard et al., 2011) to obtain an AOD for VIS0.6. Another method (Mei et al., 10 

2012) estimates the AOD and the aerosol type by analysing the reflectances at 0.6 and 0.8 µm in three orderly scan times. 

These methods derive AOD for specific channels, from the combined analysis of several channels and very often using 

several images if not all of a day to have information.  

Numerical models, even if they are subject to errors, are necessary to describe the variability of the aerosol types and of their 

concentrations with space and time, as a complement to observations. Aerosol forecasts on regional and global scales are 15 

made by three-dimensional models, such as the chemistry-transport model (CTM) MOCAGE (Sič et al., 2015; Guth et al., 

2016). MOCAGE is currently used daily to provide air quality forecasts to the French platform Prev’Air (Rouil et al., 2009) 

and also to the European CAMS ensemble (Marécal et al., 2015). Data assimilation of AOD can be used in order to improve 

the representation of aerosols within the model simulations (Benedetti et al, 2009, Sič et al, 2016). Studies on geostationary 

sensors have also proved a positive effect of the assimilation of AOD, see e.g. Yumimoto, et al. (2016), who assessed this 20 

positive effect using the AOD at 550 nm from AHI (Advanced Himawari Imager) sensor aboard Himawari-8.  

The future geostationary Flexible Combined Imager (FCI, URD Eumetsat, 2010), that will be aboard the Meteosat Third 

Generation satellite (MTG), will perform a full disk in 10 min, and in 2.5 min for the European Regional-Rapid-Scan which 

covers one-quarter of the full disk, with a spatial resolution of 1 km at nadir and around 2 km in Europe. Like AHI, FCI is 

designed to have multiple wavelengths and the assimilation of its data into models should be beneficial to aerosol 25 

monitoring. The aim of the paper is to assess the possible benefit of assimilating measurements from the future MTG/FCI 

sensor for monitoring aerosols on regional scale over Europe. Since MOCAGE cannot assimilate, AOD at multiple 

wavelengths simultaneously (Sič et al, 2016), the study focusses on the assimilation of AOD from a single channel. Among 

the 16 channels of FCI, the VIS04 band (centered at 444 nm) has been chosen because it covers the shortest wavelengths, 

which is expected to be the most relevant to detect small particles (Petty, 2006). Besides, VIS04 is a new channel compared 30 

to MSG/SEVIRI, which shortest band is around 650nm (Carrer et al, 2010), and so assessing the benefit of VIS04 over 

Europe is original. 

As FCI is not yet operational, an OSSE (Observing System Simulation Experiments) approach (Timmermans et al., 2015) is 

used in this study. In an OSSE, synthetic observations are created from a numerical simulation that is as close as possible to 
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the real atmosphere (the Nature Run), and then are assimilated in a different model configuration. The differences between 

model outputs with and without assimilation provide an assessment of the added value of the assimilated data. OSSE have 

been widely developed and used for assessing and designing future sensors for air quality monitoring: for carbon monoxide 

(Edwards et al, 2009) and ozone (Claeyman et al, 2011; Zoogman et al, 2014) from LEO or GEO satellites (Lahoz et al, 

2012), and for aerosol analysis from GEO satellites over Europe (Timmermans et al, 2009a, 2009b). Some of these studies 5 

have successfully assessed the potential benefit of future satellites and they have helped to design the instruments (Claeyman 

et al, 2011), however cautions and limitations on the OSSE for air quality have been addressed (Timmermans et al, 2009a, 

2009b, 2015), such as the “identical twin problem” and the control of the boundary conditions of the model, and the 

accuracy and the representativeness of the synthetic observations.  

By designing an OSSE that takes into account these precautions, the present study proposes a quantitative assessment of the 10 

potential benefit of assimilating AOD at 444 nm from FCI for aerosol monitoring in Europe. The OSSE and its experimental 

setup are described in Sect. 2. Then, the case study and an evaluation of the ability of the reference simulation to represent a 

true state of the atmosphere are presented. The calculation of synthetic observations is explained in Sect. 3. An evaluation of 

the control simulations is made in Sect. 4. In Sect. 5, the results of the assimilation of FCI synthetic observations are 

presented and discussed. Finally, Sect. 6 concludes this study. 15 

2 Methodology 

2.1 Experimental setup 

Figure 1 shows the general principle of the OSSE (Timmermans et al, 2015). A reference simulation, called “Nature Run” 

(NR) is assumed to represent the “true” state of the atmosphere. AOD synthetic observations are generated by combining 

AOD retrieved from the NR and the error characteristics of FCI. These error characteristics are described in Sect. 3. The 20 

second kind of simulations in the OSSE is the “Control Run” (CR) simulation. The differences between NR’s output and 

CR’s output should represent the errors of current models without use of observations. Finally, the assimilation run (AR) is 

done by assimilation in the CR of the synthetic observations. To assess the added value of the instrument, a comparison is 

made between the output of the AR and the NR and between the CR and the NR. If the AR is closer to the NR than the CR, 

it means that the observations provide useful information to the assimilation system. The differences between AR and CR 25 

quantify the added value of the instrument. 

The NR should be as close as possible to the actual atmosphere because it serves as the reference to produce the synthetic 

observations. The temporal and spatial variations of the NR should approximate those of actual observations. An evaluation 

of the NR, presented in Sect. 2.2, includes a comparison of the model with aerosol concentrations and AOD data from 

ground-based stations. 30 

In addition, the differences between the NR and the CR must be significant and approximate those between the CR and the 

actual observations. Ideally, the NR and CR should be run with different models, as the use of the same model could lead to 
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over-optimistic results (Masutani et al., 2010); this issue is called the “identical twin” problem. It is strongly recommended 

to evaluate the spatio-temporal variability of the NR and its differences with the CR to avoid this “identical twin” problem 

(Timmermans et al., 2015). As MOCAGE is used for both NR and CR in the present study, a method similar to that used in 

Claeyman et al. (2011) is proposed. Instead of one CR, various CR simulations (Fig. 1) are performed in different 

configurations, and they are assessed independently and compared to the NR to ensure the robustness of the OSSE results. 5 

An evaluation of those differences is presented in Sect. 4. 

2.2 MOCAGE 

The CTM model used in this study is MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle, Guth et al, 2016), 

that has been developed for operational and research purposes. MOCAGE is a three-dimensional model that covers the 

global scale, down to regional scale using two-way nested grids. MOCAGE vertical resolution is not uniform: the model has 10 

47 vertical sigma-hybrid altitude-pressure levels from the surface up to 5 hPa. Levels are denser near the surface, with a 

resolution of about 40 m in the lower troposphere and 800 m in the lower stratosphere. 

MOCAGE simulates gases (Josse et al., 2004; Dufour et al., 2004), primary aerosols (Martet et al., 2009; Sič et al., 2015) 

and secondary inorganic aerosols (Guth et al, 2016). Aerosols species in the model are primary species: desert dust, sea salt, 

black carbon and organic carbon, and secondary inorganic species: sulfate, nitrate and ammonium, formed from gaseous 15 

precursors in the model. For each  type of aerosols (primary and secondary), the same 6 bin sizes are used between 2 nm and 

50 µm: 2 nm -10 nm - 100 nm - 1 µm - 2.5 µm - 10 µm - 50 µm. All emitted species are injected every 15 mins in the five 

lower levels (up to 0.5 km), following an hyperbolic decay with altitude: the fraction of pollutants emitted in the lowest level 

is 52 %, and then respectively 26 %, 13 %, 6 % and 3 % in the four levels above. Such a vertical repartition ensures 

continuous concentration fields in the first levels, which guarantee a proper behavior of the of the semi-Lagrangian advection 20 

scheme. Carbonaceous particles are emitted using emission inventories. Sea salt emissions are simulated using a semi-

empirical source function (Gong, 2003; Jaeglé et al., 2011) with the wind speed and the water temperature as input. Desert 

dust are emitted, using wind speed, soil moisture and surface characteristics based on Marticorena and Bergametti (1995) 

which give the total emission mass, that is then distributed in each bin according to Alfaro et al. (1998). Secondary inorganic 

aerosols are included in MOCAGE using the module ISORROPIA II (Fountoukis and Nenes, 2007), which solves the 25 

thermodynamic equilibrium between gaseous, liquid and solid compounds. Chemical species are transformed by the 

RACMOBUS scheme, which is a combination of the RACM scheme (Regional Atmospheric Chemistry Mechanism; 

Stockwell et al., 1997) and the REPROBUS scheme (Reactive Processes Ruling the Ozone Budget in the Stratosphere; 

Lefèvre et al., 1994). Dry and wet depositions of gaseous and particulate compounds are parameterized as in Guth et al. 

(2016). 30 

MOCAGE uses meteorological forecasts (wind, pressure, temperature, specific humidity, precipitation) as input, such as 

Météo-France operational meteorological forecast from ARPEGE (Action de Recherche Petite Echelle Grande Echelle), or 

ECMWF (European Centre for Medium-Range Weather Forecasts) meteorological forecast from IFS (Integrated Forecast 
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System). A semi-lagrangian advection scheme (Williamson and Rasch, 1989), a parameterization for convection (Bechtold 

et al., 2001) and a diffusion scheme (Louis, 1979) are used to transport gaseous and particulate species. 

2.3 Assimilation system PALM 

The assimilation system of MOCAGE (Massart et al., 2009), is based on the 3-Dimensional First Guess at Appropriate Time 

(3D-FGAT) algorithm. This method consists of minimizing the cost function J: 5 

��δ�� = ���δ�� + ���δ�� = 	



�δ�����δ� + 	



∑ ��� −��δ�����

���� −��δ���
��� ,  (1) 

where Jb and Jo are respectively the part of the cost function related to the model background and to the observations; δx = 

x - xb is the difference between the model background xb and the state of the system x; di = yi - Hi x
b(ti) is the difference 

between the observation yi and the background xb in the observations space at time ti; Hi is the observation operator; H its 

linearized version; B is the background covariance matrix; and Ri is the observation covariance matrix at time ti. 10 

The general principal for the assimilation of AOD (Benedetti et al, 2009) is the same as in Sič et al. (2016). The control 

variable x used in the minimization is the 3D total aerosol concentration. After minimization of the cost function, an analysis 

increment δxa, is obtained, which is a 3D-total aerosol concentration. This increment δxa is then converted into all MOCAGE 

aerosol bins according to their local fractions of the total aerosol mass in the model background. The result is added to the 

background aerosol field at the beginning of the cycle. Then the model is run over the 1-hour cycle length to obtain the 15 

analysis. The state at the end of this cycle is used as a departure point for the background model run of the next cycle. 

The observation operator H for AOD uses as input the concentrations of all bins (6) of the seven types of aerosols and the 

associated optical properties. For this computation also, the control variable x is converted into all MOCAGE aerosol bins 

according to their local fractions of the total aerosol mass in the model background. The AOD is computed for each model 

layer to obtain, by summing, the AOD of the total column. The optical properties of the different aerosol types are issued 20 

from a look-up table, that is computed from the Mie code scheme of Wiscombe (1980, 1979, revised 1996) for spherical and 

homogeneous particles. The refractive indices come from Kirchstetter et al. (2004) for organic carbon and from the Global 

Aerosol Data Set (GADS, Köpke et al., 1997) for other aerosol species. The hygroscopicity of sea salts and secondary 

inorganic aerosols are taken into account based on Gerber (1985). 

While the observation operator is designed to assimilate AOD of any wavelength from the UV to the IR, the assimilation 25 

system MOCAGE-PALM cannot assimilate data of several wavelengths simultaneously (Sič et al, 2016). This limitation is 

due to the choice of the control vector, which is the 3D total aerosol concentration: assimilating different wavelengths 

simultaneously would require to rethink and to extend the control vector, for instance splitting it by aerosol size bins or 

types. This explains why the study focuses on the assimilation of AOD of a single wavelength. 
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2.4 Case study 

The period extends from the 1st of January to the 30th of April 2014, and includes several days of PM pollution over Europe. 

From the 7th to 15th of March, a secondary particles episode (EEA report 2014) occurs, while from 29th March to 5th April a 

dust plume originating from the Sahara Desert propagates Northwards to Europe (Vieno et al., 2016).  

The MOCAGE simulation covers the whole period from January to April 2014, on a global domain at 2° resolution and a 5 

nested regional domain, that covers Europe, from 28 °N to 72 °N and from 26 °W to 46 °E, at 0.2 ° resolution (see Fig. 2). A 

4-month spin-up is made before the simulation. The NR is forced by ARPEGE meteorological analysis. Emissions of 

chemical species in the global domain come from MACCity (van der Werf et al., 2006; Lamarque et al., 2010; Granier et al., 

2011) for anthropogenic gas species and biogenic species are from GEIA for the global and regional domain. ACCMIP 

project emissions are used for anthropogenic organic and black carbon emissions at the global scale. The TNO-MACC-III 10 

inventory for year 2011 provides anthropogenic emissions in the regional domain. TNO-MACC-III emissions are the latest 

update of the TNO-MACC inventory based on the methodology developed in the MACC-II project described in Kuenen et 

al. (2014). These anthropogenic emissions are completed, on our regional domain, at the boundary of the MACC-III 

inventory domain by emissions from MACCity. Daily biomass burning sources of organic and black carbon and gases from 

the Global Fire Assimilation System (GFAS) (Kaiser et al., 2012) are injected in the model. The NR includes secondary 15 

organic aerosols (SOA) in order to enhance its realism and to well fit the observations made at ground-based stations over 

Europe. Standard ratios from observations (Castro et al., 1999) are used to simulate the portion of secondary carbon species, 

40 % in winter, from the primary carbon species in the emission input.  

The NR is compared to real observations from AERONET AOD observations and AQeR surface concentrations, using 

common statistical indicators: mean bias (B), modified normalized mean bias (MNMB), root mean square error (RMSE), 20 

fractional gross error (FGE), Pearson correlation coefficient (Rp) and Spearman correlation coefficient (Rs). While the 

Pearson correlation measures the linear relation between the two datasets, the Spearman correlation is a mean to assess their 

monotonic relationship. 

The AQeR stations are mainly located over Western Europe (Fig. 2). After selection of the surface stations that are 

representative of background air pollution (following Joly and Peuch, 2012), 597 and 535 stations are respectively used for 25 

the PM10, PM2.5 comparison. Figure 2 represents the mean surface concentration of the NR and selected AQeR 

measurements over the domain, from January to April 2014. The left panel shows the PM10 concentrations of the NR in the 

background and the AQeR concentrations as circle, while the right panel shows the PM2.5 concentrations. The concentration 

of the NR PM10 and PM2.5 are generally underestimated compared to observations. Nevertheless, on both figures, the spatial 

variability and particularly the location of maxima are reasonably well represented. Over the European continent, the NR and 30 

AQeR data show clear maxima in the center of Europe for both PM10 and PM2.5 concentrations, even if the NR 

underestimates these maxima.  
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Table 1 shows the statistical indicators of this comparison for hourly surface concentrations in PM10 and PM2.5. A negative 

mean bias is observed, around -6.23 µg.m-3 (~ -35.1 %) for PM10 and -3.20 µg.m-3 (~ -24.7 %) for PM2.5. The RMSE is equal 

to 16.2 µg.m-3 for PM10 and 11.9 µg.m-3 for PM2.5 while the FGE equals to 0.56 and 0.543. The factor of two is equal to 64.7 

% and 67.5 % for PM10 and PM2.5. Pearson and Spearman correlations are respectively 0.452 and 0.535 for PM10 and PM2.5 

and 0.537 and 0.602 for PM10 and PM2.5. The NR underestimation is greater for PM10 than for PM2.5 in relative differences. 5 

This suggests a lack of aerosol concentrations in the PM10-2.5 (concentration of aerosols between 2.5 µm and 10 µm). Not 

taking into account wind-blown crustal aerosols may cause a potential underestimation of PM in models (Im et al., 2015). 

Taking them into account needs a detailed ground type inventory to compute those emissions unavailable in MOCAGE. For 

PM2.5, the underestimation of aerosol concentrations can be due to a lack of carbonaceous species (Prank et al., 2016). Other 

possible reasons for PM negative bias at surface are the underestimation of emissions in cold winter period and the 10 

uncertainty in the modelling of stable winter conditions with shallow surface layers. 

A time-series graph of the median NR surface concentrations and the median surface concentrations of the AQeR stations 

are presented in Fig. 3. Compared to ground-based AQeR data (in black), the NR (in purple) generally underestimates the 

PM10 and the PM2.5 concentrations, especially during the 7th-15th March pollution episode. However, the variations and 

maxima of the NR concentrations of PM are generally well represented. Furthermore, around 65 % of model concentrations 15 

are relatively close to observations as shown by the factor of 2 in Table 1. The variability of NR concentrations is thus 

consistent with AQeR station concentrations.  

Table 2 gives an evaluation of the NR against the daily mean of the AOD at 500 nm obtained from 84 AERONET stations in 

the regional domain from January to April 2014. The statistical indicators show good consistency between the NR and 

AERONET observations. However, like the results showed at global scale (Sič et al, 2015), MOCAGE tends to overestimate 20 

AOD: although small, the AOD bias is positive. While PM concentrations at surface are underestimated in the NR, different 

reasons may explain an overestimation of AOD. The vertical distribution of aerosol concentrations in the model is largely 

controlled by vertical transport, removal processes and by the prior assumptions done on the aerosol emission profiles. 

However, these processes may have large variability and they are prone to large uncertainties (Sič et al, 2015). Another 

possible explanation is the uncertainty of the size distribution of aerosols that can affect significantly the optical properties. 25 

More generally, the assumptions that underly the computation of optical properties are largely uncertain and they can affect 

the computation of AOD by a factor of 50% (Curci et al, 2015): the mixing state assumption, the uncertainty on refractive 

indices and on hygrocopicity growth. These uncertainties on aerosol vertical profiles, size distribution, and optical properties 

may explain the decorrelation between AOD and PM concentrations at surface, and so why the MOCAGE NR has a positive 

bias in AOD while underestimating PM at surface. However, both the PM and AOD correlation errors of the NR remain in a 30 

realistic range. 

As a result, the NR simulation exhibits surface concentrations and AOD in the same range compared to those from ground-

based stations and shows similar spatial and temporal variations, which makes the NR acceptable for the OSSE. 
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3 Generation of synthetic AOD observations  

The study focuses on the added value of assimilating AOD at the central wavelength (444 nm) of the FCI/VIS04 spectral 

band. Since the assimilation of AOD from several wavelengths simultaneously is not possible (Sect. 2.3), the choice of the 

single channel VIS04 is mainly driven by the fact that it is the shortest wavelengths of FCI, that is a priori the most favorable 

to the detection of fine particles.  5 

Thus, synthetic AOD observations at 444nm are created over the MOCAGE simulated regional domain, from the NR 

simulation 3D fields: all aerosol concentrations per type and per size bins, and meteorological variables. At every gridpoint 

of the NR regional domain where the solar zenithal angle is below 80° (daytime) and where clouds are absent, an AOD value 

at 444 nm is computed using the MOCAGE observation operator described above (Sect. 2.3). In order to take into account 

the error characteristics of the FCI VIS04 AOD, a random noise is then added to this NR AOD value. 10 

To estimate the variance of this random noise, the general principle is to assess and quantify the respective sensitivity of the 

FCI VIS04 top-of-the-atmosphere reflectance to AOD and to the other variables. For doing this, the FCI simulator developed 

by Aoun et al (2016), based on the Radiative Transfer Model (RTM) libRadtran (Mayer and Killings, 2005), has been used. 

This simulator computes the reflectance in the different spectral bands of FCI, as a function of different input atmospheric 

parameters (AOD �, total column water vapor, ozone content), ground albedo �� and solar zenithal angle ��, for different 15 

OPAC (Optical Properties of Aerosols and Clouds, Hess et al., 1998) aerosol types: dust, maritime clean, maritime polluted, 

continental clean, continental average, continental polluted, and urban.. The FCI simulator takes into account the spectral 

response sensitivity and the measurement noise representative of the FCI VIS04 spectral band (415-475 nm). 

By applying a Global Sensitivity Analysis to this FCI simulator ran on a large dataset (see the Appendix for the details of the 

method), a look-up table of the RMSE of AOD is derived. It depends on the OPAC type, on the relative error of surface 20 

albedo, on the solar zenithal angle and of the ground albedo value. The classification of each MOCAGE profile into the 

OPAC types relies on three parameters (Tab. 3): the surface concentration, the main surface species and the proportion in 

relation to the total aerosols concentrations. A species is described as a main species if its concentrations, [species], is above 

each other concentrations, for example DD is a main species if [DD]>[SS] & [DD]>[IWS]. An example of NR profiles (7th 

March 2014 at 12 UTC) decomposed in OPAC type is presented in Fig. 4. A small part of the profiles are dismissed where 25 

MOCAGE profiles do not match one of the OPAC types, such as profiles over ocean where IWS (Insoluble, Water Soluble 

and Soot; Tab. 3) is greater than DD (Desert Dust) and SS (Sea Salt). A larger part of profiles are dismissed because of 

night-time profiles and cloudy conditions. Figure 5 represents the average number of NR AOD that are retained per day for 

assimilation. After these filters apply, between 10 % and 20 % of profiles are kept every hour. The density of these profiles 

is higher in the south of the domain, which is directly correlated to the quantity of direct sunlight available. Over the 30 

continent, between 1 and 4 profiles can be assimilated per day at each grid-box location. 
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On every NR profiles that is kept, an AOD error is introduced, by addition of random value from an unbiased Gaussian with 

a standard deviation derived from the AOD RMSE look-up table, calculated as explained above. The surface albedo fields 

are taken from MODIS using the Radiative Transfer Model RTTOV (Vidot et al., 2014). A relative error of 10% is assumed 

for ground albedo, which corresponds to a realistic value (Vidot et al, 2014). An example of the synthetic observations is 

presented in Fig. 6. It represents the NR AOD, the synthetic observations and the noise applied to NR AOD for the 7th March 5 

2014 at 12 UTC.  

4 Controls runs (CRs) and their comparison to NR 

Sect. 2 showed an evaluation of the NR compared to real observations. Another requirement of the OSSE is the evaluation of 

differences between the NR and the CR.  Various CR simulations have been performed to evaluate the behaviour of the 

OSSE on different CR configurations and prove its robustness. The NR and CRs use different setups of MOCAGE. The CRs 10 

use IFS meteorological forcings, while the NR uses ARPEGE meteorological forcings. The use of different meteorological 

inputs is expected to yield differences in the transport of pollutant species, and changes in dynamic emissions of sea salt and 

desert dust. To introduce more differences between the CRs and NR, changes in the emissions are also introduced. 

Table 4 indicates the changes made on the different model parameters to create 4 distinct CR simulations. The first control 

run, CR1, uses the same inputs as the NR except for the meteorological forcings. Other control runs (CR2, CR3, CR4) do not 15 

have the SOA formation process of the NR (Sect. 2) and CR1 simulations. Finally, CR3 and CR4 change from other 

simulations by different vertical repartitions of emissions in the five lowest levels. In CR3, the pollutants are emitted with a 

slower decay with height than the NR (with repartition from 30 % at surface and respectively 24 %; 19 %; 15 %; 12 % for 

the four levels above), and in the CR4 emissions are only injected in the lowest level. These changes aim to generate 

simulations that are more significantly different from the NR than the first two control runs. 20 

The four CRs are compared to the NR for PM10 and PM2.5 surface concentration considering virtual observations located at 

the same locations as the AQeR stations. A time-series of daily means of surface concentrations at simulated stations is 

presented in Fig. 7, for NR and CRs simulations from the 1st January to the 30th April 2014. The PM10 concentrations of the 

NR (in purple) are mostly greater than the PM10 concentrations in the CRs. During the period of late March and early April 

(around the 90th day of simulation) the NR concentrations of PM10 are close to those of the CR2, CR3 and CR4, and less than 25 

those of the CR1 by about few µgm-3. In terms of PM2.5, the CRs concentrations are also underestimating the NR 

concentration. As for PM10, around the 90th day of simulation, the concentrations of CR1 are above the concentrations of the 

NR. 

These tendencies can also be observed in Fig. 8, which represents a scatter plot of CRs concentrations as a function of NR 

concentrations for the daily means of surface concentration in PM10 and PM2.5 at the virtual stations. The CR1 concentrations 30 

are fairly close to those of the NR concentrations with a coefficient of regression about 0.801 and 0.835 for PM10 and PM2.5. 

Other CRs underestimate the NR concentrations. This tendency is stronger for PM10 than for PM2.5. The regression 
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coefficient of the CR2, CR3, CR4 are respectively 0.596, 0.583 and 0.607 for PM10 and 0.570, 0.505 0.647 for PM2.5. For 

both PM10 and PM2.5 concentrations, the underestimation is more important for high values of the NR concentrations than for 

low values. 

The statistical indicators in Tab. 5 and 6 are consistent with Fig. 7 and 8. The CR1 is close to the NR with a bias of -1.3 

(-8.2 %) µg.m-3 for PM10 and -0.8 (-6.2 %) µg.m-3 for PM2.5. CR4 bias is around -2.9 (-20.5 %) µg.m-3 for PM10 and -1.8 (-5 

15.1 %) µg.m-3 for PM2.5. The two other CRs highly underestimate PM10 and PM2.5 concentrations with a bias of -4.5 µg.m-3 

(-35.2 %) and -3.9 µg.m-3 (-37.4 %) respectively for CR2 and -4.8 µg.m-3 (-38.1 %) and -4.4 µg.m-3 (-42.6 %) for the CR3. 

These biases are in agreement with the literature. Prank et al. (2016) measure a bias around -5.8 for PM10 and -4.4 µg.m-3 for 

PM2.5 for the median of four CTMs against ground-based stations in winter. In Marécal et al. (2015), statistical indicators for 

an ensemble of seven models are presented for winter. A bias between -3 and -7 µg.m-3 is observed for the median ensemble. 10 

The PM concentrations of our CRs compared to the NR are characteristic of models compared to observations.  

Prank et al. (2016) also show other indicators for the median of models, such as the temporal correlation and the factor of 2. 

Their correlations are around 0.7 for PM2.5 and 0.6 for PM10 and are close to those for our CRs simulations that vary from 

0.644 to 0.732 for PM2.5 and from 0.572 to 0.671 for PM10. Their factor of 2 equals 65 % for PM10 and 67 % for PM2.5. The 

factor of 2 of the CRs ranges between 70 % and 90 % for both PM10 and PM2.5 concentrations. The RMSE of CRs 15 

simulations ranges from 8 µg.m-3 to 10 µg.m-3
 for PM10 concentrations, which is slightly under the RMSE of the ensemble 

from the study of Marécal et al. (2015) which ranges between 10 and 15 µg.m-3. The FGE of the study of Marécal et al. is 

equal to 0.55, while the FGE of CRs varies from 0.33 to 0.51. Our CRs simulations slightly underestimate the model relative 

error. Thus, compared to literature, the CRs (especially the CR3) are different enough from the NR to be representative of 

state-of-the-art simulations.,  20 

Between the CRs and the NR there are important spatial differences in surface concentrations of PM, as demonstrated in Fig. 

9, which shows the relative differences, Pearson correlation and the FGE for PM10. Over the Atlantic Ocean, the CRs 

concentrations are relatively close to the NR, except for the CR4 which overestimates the concentration of PM10. All CRs 

present high concentrations of PM10 all over North Africa. This corresponds to high emissions of desert dust over this area, 

which cause an important overestimation of PM10 compared to the NR. This overestimation can also be observed around all 25 

the Mediterranean Basin. The CRs tend to overestimate the PM10 concentrations over Spain, Italy, the Alps, Greece, Turkey, 

the north of the UK, the Iceland and the Norway. The overestimation over the Alps, Iceland and Norway are located at 

places of negligible concentrations. Over the rest of the European continent, CRs underestimate the concentration of PM10, 

slightly for CR1, but very pronounced for CR2, CR3 and CR4. The area where the consistency between the CRs and the NR 

is better is the Atlantic Ocean with a correlation ranging from 0.6 to 0.9 and a low FGE around 0.3. Over the Mediterranean 30 

Basin the correlation varies significantly between 0 and 1. Low correlations correspond to high FGE around 1. Over the 

continent, the correlation varies from 0.4 to 0.9 following a west-east axis. The correlations are slightly greater for CR1 than 

for the other CRs. The FGE over the continent changes significantly between the CR1 and the other CRs, respectively 

around 0.35 and 0.55. Similar conclusions can be obtained for the PM2.5 comparison (see complementary materials). A 
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similar comparison has been done for the AOD between the CRs simulations and the NR simulation (see complementary 

materials). 

In summary, the control runs present spatial variability along with temporal variability. The closest CR to the NR is the CR1. 

In terms of surface concentrations in PM, the CR3 is the most distant, while in terms of AOD the CR4 is the most distant. 

Those differences and the use of different CRs, coupled with the realism of the NR, demonstrate the robustness of the OSSE 5 

to evaluate the added value provided by AOD derived from the FCI. 

5 Assimilation of FCI synthetic observations 

The purpose of this paper is to assess the potential contribution of FCI VIS04 channel to the assimilation of aerosols on a 

continental scale. In our OSSE, MOCAGE represents the atmosphere with a horizontal resolution of 0.2 ° (around 20 km at 

the equator). Synthetic observations are therefore computed at the model resolution although FCI scans around 1 km 10 

resolution at the equator and 2 km over Europe. To fit with the timestep of our assimilation cycle, synthetic observations are 

also created every hour, although the future FCI imager could retrieve radiance observations every 10 minutes over the 

globe, and 2.5 minutes over Europe with the European Regional-Rapid-Scan. This means that for each profile of our 

simulation, only one synthetic observation is available each hour, instead of 24x10x10 at best (FCI scans 24 times an hour, 

with a spatial resolution 10 times higher than the model over the Europe). The use of one observation for each profile in an 15 

assimilation window is due to the assimilation system design that does not allow multiple observations for a same profile. In 

practice, future FCI observations could be averaged over each MOCAGE profile to reduce the impact of the instrument 

errors on assimilated observations.  

The 3D-FGAT assimilation scheme integrates the synthetic observations described in Sect. 3. Before assimilation, a thinning 

process is applied to the synthetic observations to keep spatially only 1 pixel out of 4. Such thinning is useful to reduce the 20 

computation time, by accelerating the convergence of the cost function (not shown). The spatial correlation length of the B 

background covariance matrix is set to 0.4° in order to have a spatial impact of the assimilation on the simulation while not 

having multiple coverage of assimilated observations over one profile. The result of this thinning procedure changes only 

slightly the assimilated fields but saves significantly computing time. Assimilation simulations (ARs) are run for all CRs 

simulations using the same generated set of synthetic observations over the period of 4 months, from the 1st of January to the 25 

30th of April. The standard deviation of errors used for B and R matrix are estimated respectively at 24 % and 12 %, as in Sič 

et al. (2016).  

To assess the impact of the assimilation of FCI synthetic AOD observations, the CR forecasts and the AR analyses are 

compared to the assimilated synthetic observations.  Figure 10 shows the histograms of the differences between the synthetic 

observations and the forecast field (in blue) and between synthetic observations and analyzed fields (in purple) for the four 30 

ARs simulations. The histograms follow a Gaussian shape, and the distribution of the analyzed values are closer to the 

synthetic observations than the forecast values. The spread of the histograms is smaller for the analyzed fields than for the 
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forecast fields. The assimilation of synthetic AODs hence improved the representation of AOD fields in the assimilation 

simulations. Besides, the spatial comparisons between the simulations and the NR show improvements in the AOD fields of 

simulations by assimilation of the synthetic observations (see supplementary material Fig. S5, S6, S7 and S8). As the 

increment is applied to all aerosol bins and that PM10 corresponds to 5 of the 6 bins while PM2.5 to only 4, we expect better 

corrections for PM10 concentrations than for PM2.5 concentrations. 5 

To validate the results of the OSSEs, the simulations are compared to the reference simulation (NR) over the period. Figure 

11 exhibits the spatial differences in surface concentrations of PM10 between the ARs and the NR. It shows the mean relative 

bias, the correlation and the FGE for every simulations. Using Fig. 9 as a reference, the relative bias, the FGE and the 

correlation have been improved over most parts of the domain after assimilation for all simulations. Over the European 

continent, all simulations show a strong improvement of the statistical indicators. For instance in CR3, along a line that goes 10 

from Spain to Poland, the FGE decreases by about 0.1 after assimilation, In the Eastern part of Europe (from the Turkey to 

Finland), the decrease of FGE is even higher. Over North Africa and the Mediterranean Sea the improvement is 

intermediate. Nevertheless, the mean bias over the ocean tends to increase for the simulations, especially for AR4. This can 

also be observed for the PM2.5 concentration comparison (see supplementary material S1, S2, S3 and S4).  

The assimilation of the synthetic observations has a positive impact at each layer of the model. The mean vertical 15 

concentrations of PM10 and PM2.5 of the different simulations are respectively represented in Fig. 12 and 13, from the surface 

(level 47) up to 6 km (level 30). The positive impact along the vertical of the assimilation of AOD in the CTM MOCAGE is 

due to the use of the vertical representation of the model to distribute the increment. Sič et al (2016) showed that the 

assumption of using the vertical representation of the model gives good assimilation results with the regular MOCAGE setup 

that distributes emissions over the 5 lowest vertical levels. However, the performance of the assimilation may depend on the 20 

realism of the representation of aerosols along the vertical in the CTM. The CRs simulations, in red, overestimate the PM10 

concentrations of the NR, in purple, due to the overestimation of desert dust concentrations in the CRs simulations. This 

overestimation is not present in the PM2.5 concentrations because this is the fraction of aerosols where there are few desert 

dusts. For the first three simulations, the vertical PM10 concentrations are well corrected by the assimilation, while for 

simulation 4, the correction is less relevant for the levels near the surface. The assimilation tends to decrease the PM2.5 25 

concentrations above the level 42 and to increase the concentrations under that level. Simulation 4 presents a decay of the 

surface concentrations of PM2.5. The correction of concentrations is more pertinent for the PM10 concentrations than for the 

PM2.5 concentrations, which was expected.  

The vertical distribution of aerosol concentrations between the CR4 simulations and the NR explains why the bias over the 

ocean tends to increase. At the lowest level, the concentration of PM10 is more important, since the CR4 emits only at the 30 

surface level, while the AOD is less important, since the aerosol loss by dry deposition increases. The positive increment is 

therefore added preferentially to the surface level, which increases the bias at surface. 
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To evaluate the capability of the FCI 444 nm channel observations to improve aerosol forecast in an air quality scenario, the 

ARs simulations have been compared to the NR using the synthetic AQeR stations as in Sect. 4. Tables 7 and 8 show the 

statistics of the comparison between the ARs and the NR for PM10 and PM2.5 concentrations. With regard of the comparison 

of the CRs against the NR in Tab. 5 and 6, the ARs are more consistent with the NR. The bias is reduced for both PM10 and 

PM2.5 concentrations. The RMSE and the FGE decrease while the Factor of 2 and the correlations increase for all ARs 5 

compared to their respective CRs.  

The daily medians of PM10 and PM2.5 concentrations at all stations are represented over time in Fig. 14 and 15 for the four 

simulations. The assimilation reduces the gap between the simulations and the NR over the entire period. Around the 

secondary inorganic aerosol episode, 65th day of simulation, the improvements of PM10 and PM2.5 surface concentrations are 

significant for simulations 2, 3 and 4.  10 

From an air quality monitoring perspective, the assimilation of the FCI synthetic AOD at 444 nm in MOCAGE improves 

strongly the surface PM10 concentrations in the 4 simulations over the European continent for the period January-April 2014. 

To quantify the improvement of simulations through the assimilation of FCI synthetic observations during a severe pollution 

episode for (7th-15th March) over Europe, maps of relative concentrations of PM10 and FGE are respectively represented for 

the CRs comparison and for the ARs comparison in Fig. 16 and 17. The simulations CR2, CR3 and CR4 underestimate PM10 15 

concentrations for 70 % over all Europe compared to the NR. The FGE presents high values going from 0.55 to 0.85. The 

assimilation of synthetic AOD improves meaningfully the surface concentrations of aerosols over the continent in the 

simulations, but the simulations still underestimate the PM10 concentrations by 30-20 %. Important changes in the FGE are 

noticeable, with values dropping from 0.55-0.85 down to 0.2-0.4 for all simulations. Over the other areas, the assimilation 

reduces significantly the relative bias and the FGE. Thus, the assimilation of synthetic observations improves significantly 20 

the representation of the surface PM10 concentrations of simulations during the pollution episode.   

 

In summary, the use of synthetic observations at 444 nm of the future sensor FCI through assimilation improves significantly 

the aerosol fields of the simulations over the European domain from January to April 2014. These improvements are located 

all over the domain with best results over the European continent and the Mediterranean area. The improvement of the 25 

vertical profile of aerosol concentrations is also noticeable, and it may be explained because different parts of the column can 

be transported by winds in different directions (Sič et al, 2016), although the AOD synthetic observations do not provide 

information along the vertical. The first two simulations give better results over the ocean than simulations 3 and 4, due to a 

closer representation of the vertical profile of the aerosol concentrations. This may show an overly optimistic aspect of the 

OSSE of the first two simulations. The simulations lead to sufficiently reliable results since the shapes of their vertical 30 

profile of aerosol concentrations are different from those of the NR. These differences are caused by the way emissions are 

injected in the atmosphere (higher for simulation 3 and lower for simulation 4). The simulations 3 and 4 present robust 

results over continent, despite the differences in the vertical representation of aerosol concentrations.  
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6 Discussion 

Although the results have shown a general benefit of FCI/VIS04 future measurements for assimilation in the CTM 

MOCAGE, some limitations must be addressed. The AOD does not introduce information on the vertical distribution of PM, 

nor on the size distribution and type of aerosols. So, the performance of the assimilation will largely depend on the realism 

of the representation of aerosols in the CTM before assimilation. If, for instance, the model has a positive bias in AOD and a 5 

negative bias in surface PM10 compared to observations, then the assimilation could lead to detrimental results. So the AOD 

and PM biases should be assessed and corrected as far as possible, before assimilation, in order to avoid detrimental 

assimilation.  

To identify the added value of assimilating FCI/VIS04 AOD, it is needed to compare the results with the assimilation of 

present-day observations, such as imagers on LEO satellites and in-situ surface PM observations. The assimilation of PM 10 

surface observations is indeed an efficient way to improve PM concentration fields at surface (Tombette et al, 2009), but the 

correction of the fields remains confined to the lowermost levels. While improving the PM surface fields, it has been shown 

that the assimilation of AOD also gives a better representation of aerosols along the vertical (Fig. 12 and 13) and of the AOD 

fields, which are important added value that the assimilation of PM surface observations only cannot achieve. Besides, the 

satellite coverage is much broader than the coverage of in-situ network and, for instance, aerosol fields over the seas can be 15 

corrected before they reach the coast. 

In order to assess the added-value of a high repetitivity measurements of FCI compared to a LEO satellite, a complementary 

experiment, called AR3LEO, has been done. This experiment is based on the CR3 configuration of MOCAGE, but the 

synthetic observations kept are only the ones at 12UTC, instead of the hourly observations. By taking into account only one 

measurement per pixel per day, AR3LEO should thus simulate the assimilation of a LEO satellite. The results of AR3LEO 20 

are in Tab. 9 and Fig. 18. The density of observations assimilated is about 10 times lower than the density of FCI assimilated 

data. Most of the scores (except the PM2.5 correlation) of AR3LEO are between the CR3 and the AR3 scores, which shows 

and quantifies the benefit of FCI compared to a LEO satellite. This is confirmed also on the time series of PM10 surface 

concentrations show (Fig. 18): the AR3LEO simulation is closer to the CR3 simulation than to the AR3 simulation. During 

the pollution episodes from 7 to 14 March 2014 (Fig. 18, time series between day 60 and day 67, and maps), the amplitude 25 

of PM concentrations is underestimated more in AR3LEO than in AR3. The maps of bias and FGE show better scores in 

AR3 than in AR3LEO at the locations where pollution occurs. 

The results have shown the potential benefit of assimilating AOD data from the future FCI/VIS04 in a chemistry-transport 

model for monitoring the PM concentrations at regional scale over Europe. The horizontal and temporal resolution of FCI (2 

km horizontal grid every 10 minutes or even 2.5 minutes in Regional Rapid Scan) will however be much finer than the 30 

regional scales that have been considered in this study:  (0.2° horizontal grid every hour). The large differences between the 

resolution of future FCI data and the data used in this OSSE have two important implications that deserve to be presented. 

Firstly, in order to get closer to the future data, one could consider generating synthetic observations at the full FCI 



 

16 
 

resolution and assimilate them in a regional-scale assimilation system. The use of multiple observations using a “super-

observation” approach, by spatial and temporal averaging, should reduce the instrumental errors and thus one may expect 

that the assimilation of real FCI data can lead to even better results than the OSSE presented here. Secondly, it is worth 

considering whether high-resolution FCI measurements could be assimilated in a high-resolution model for kilometre-scale 

monitoring of air quality. However, such work is presently limited by the present state of the art of numerical chemistry 5 

models and of their input emission data. The conclusions of some recent numerical experiments with kilometre-scale air 

quality models (Colette et al, 2014) are that such models are very expensive and that the emission inventories do not have a 

sufficient resolution. Still, the performance of such high resolution models are better than coarser resolution ones. As 

computing capacities keep increasing and kilometre-scale air quality models become affordable, it will be interesting to 

evaluate the benefit of assimilating high resolution FCI data in a kilometre-scale air quality model, even if the emission data 10 

is built with coarse assumptions. One might expect that the assimilation of FCI data could correct enough the model state to 

balance the deficiencies of the emission inventories. For such study, high temporal repetitivity may be also of high interest. 

7 Conclusion 

An OSSE method has been developed to quantify the added value of assimilating future MTG/FCI VIS04 AOD (444 nm) for 

regional-scale aerosol monitoring in Europe.. The characteristic errors of the FCI have been computed from a sensitivity 15 

analysis and introduced in the computation of synthetic observations from the NR. An evaluation of the realistic state of the 

atmosphere of the NR has been done, as well as a comparison of CR simulations with the NR, in order to avoid the identical 

twin problem mentioned in Timmermans et al. (2009a). Furthermore, different control run simulations have been set up as in 

Claeyman et al. (2011) to avoid this issue. The results of the OSSE should hence be representative of the results that the 

assimilation of real retrieved AODs from the FCI sensor will bring.  20 

 

Although the use of a single synthetic observation per profile and the choice of an albedo error of 10% are pessimistic 

choices, the assimilation of synthetic AOD at 444 nm showed a positive impact, particularly for the European continental air 

pollution. The simulations with data assimilation reproduced spatial and temporal patterns of PM10 concentrations at surface 

better than without assimilation all along the simulations and especially during the high pollution event of March. The 25 

improvement of analysed fields is also expected for other strong pollution event such as a volcanic ash plume. This 

capability of synthetic observations to improve the analysis of aerosols is present for the 4 set of simulations which show the 

capability of future data from the FCI sensor to bring an added value within the CTM MOCAGE aerosol forecasts, and in 

general, in atmospheric composition models. Moreover, the advantage of a GEO platform over a LEO satellite has been 

shown and assessed. 30 

The results over ocean show an increase of PM concentration bias after assimilation in some places, particularly for AR4. An 

explanation is that AOD does not introduce information vertically and that the correction of aerosols in the vertical relies on 



 

17 
 

the model vertical distribution. For a satisfactory assimilation of AOD, the AOD and PM biases of the model should be 

assessed and corrected as far as possible. Another perspective is to use multiple wavelengths, using the Ångström exponent, 

could avoid this problem by better distributing the increment of AOD between the different bins and hence the different 

species. Sič et al. (2016) also recommended the use of other types of observations, such as lidars, in the assimilation process 

to introduce information over the vertical.  5 

 

The results presented here in this OSSE are encouraging for the use of future FCI AOD data within CTMs for the 

wavelength VIS04 centered at 444 nm. The use of other channels could bring complementary information, such as the  

NIR2.2 that is expected to be less sensitive to fine aerosols but more sensitive to large aerosols such as desert dusts and sea 

salt aerosols. Future work may also consider exploiting the high-resolution of FCI, following two possible lines: either for 10 

regional-scale assimilation by using a “super-observation” procedure, or for kilometre-scale air quality mapping and for 

assessing the quality of emission inventories. However, such extension is mostly depending on improvements in the 

numerical chemistry models, in the input emission data and in the optimization of assimilation algorithms. 
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Appendix: Deriving AOD error variance from the Global Sensivitiy Analysis of FCI/VIS04 reflectance 

The general method is summarized in Figure A1. A sensitivity analysis has been performed for each OPAC aerosol types, 

using Monte-Carlo FCI simulations of about 200.000 draws in the prior distribution of the input parameters. The input 20 

distribution of AOD and of total ozone and water vapor columns are obtained from a MOCAGE simulation ran over the 

whole 2013 year. The distribution of ground albedo is deduced from the OPAC database. The profiles of the MOCAGE 

simulation are classified into OPAC (Hess et al., 1998) types by making correspondence between species as Ceamanos et al. 

(2014) and then by applying classification criteria similar to the OPAC types. 

For every OPAC type, a global sensitivity analysis (GSA) has been performed between the input (AOD �, total column water 25 

vapour, ozone content), ground albedo ��  and solar zenithal angle �� ) distributions and the output (VIS04 reflectance) 

distributions of the FCI simulator. Under the assumption of independent inputs, the Sobol (1990, 1993) indices enable a 

ranking of inputs or couple of inputs with respect their variance-based importance in the total output variance. For VIS04, 

the variability of the solar zenithal angle, the ground albedo and the AOD are the three largest Sobol indices in that order 

and, together, they are at the origin of more than 98 % of the total variance of the output reflectance. Following Sobol 30 

(1996), the GSA can also be used to determine a truncated version of the Hoeffding (1948, ANOVA) functional 

decomposition, with key inputs, that approximates the analyzed reflectance. For all OPAC groups, the dependence of 
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reflectance for VIS04 on the total ozone column and water vapor is negligible and is not taken into account in the reflectance 

approximation. As a consequence, the reflectance R can be approximated by the following equation:  

� =  !���� +  
"��# +  	��� + $,  (2) 

where  	 ,  
 , and  !  are functions of the solar zenithal angle, the ground albedo and the AOD, respectively. The 

approximation error $, exhibits a root mean square (RMS) less than 0.7 W m-2 sr-1 µm-1 (1.5 % of the mean radiance values 5 

of 47.3 W m-2 sr-1 µm-1).  

As a consequence of this sensitivity analysis, it is then possible to isolate the AOD �  with respect the measured 

reflectance	�, the other key inputs ��, �� and the approximation error	$: 

� = &"�, ��, ��, $#.  (3) 

By sampling input distributions on this equation (Monte-Carlo method), the root mean square error (RMSE) of the AOD 10 

retrieval can be derived as a function of the reflectance �, the solar zenithal angle �� the ground albedo ��, and of their 

uncertainty. � is associated with a measurement noise. No uncertainty is prescribed for the solar zenithal angle. For a given 

fixed value of relative error of ground albedo, a look-up-table is built, that provides the root mean square error (RMSE) of 

the AOD retrieval as a function of the solar zenithal angle and of the ground albedo. Such a look-up-table of the RMSE of 

VIS04 AOD has been computed for every OPAC types and for different possible values of surface albedo errors. 15 
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Tables : 

 Bias (µg/m3) RMSE (µg/m3) FGE FactOf2 RP RS 

 NR’s PM10 - 6.23  
(~ - 35.1 %) 

16.2 0.56 64.7 % 0.452 0.537 

NR’s PM2.5 - 3.20  
(~ - 24.7 %) 

11.9 0.543 67.5 % 0.535 0.602 

Table 1: Bias, RMSE, FGE, Factor of 2, Pearson correlation (Rp) and Spearman correlation (Rs) of the NR simulation taking as 
reference the AQeR observations for hourly PM10 and PM2.5 concentrations from January to April 2014. 5 

 

 Bias MNMB RMSE FGE RP 

 NR 0.043 0.39 0.09 0.531 0.56 

Table 2: Bias, MNMB, RMSE, FGE and Pearson correlation (Rp) between the NR simulation and AERONET station for daily 500 
nm AOD from January to April 2014. 
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Aerosol types Surface 

Concentration in 

µg/m3 

Main species Surface proportion 

over the total PM10 

DO. & DC. - DD   

MC. - SS SS > 85 % 

MPO. - SS SS < 85 % 

MPC. - SS SS < 85 % 

CC. 0 – 17 IWS  

CA. 17 – 34 IWS  

CP. 34 – 75 IWS  

U. > 75 IWS  

Table 3: Conditions for classifying the MOCAGE NR into the OPAC types. The first condition is the surface concentrations, the 
second is the main specie at the surface between Desert Dust (DD), Sea Salts (SS) and IWS (Insoluble, Water soluble, and Soot) 
and the third is a condition of the species over all the aerosols concentration. A species is described as a main species if its 
concentrations is above each other concentrations, for example DD is a main species if [DD]>[SS] & [DD]>[IWS]. 5 

 

 Forecasts SOA Repartition of emissions from level 1 (surface 
layer) up to the 5th level 

NR ARPEGE Yes 52%; 26%; 13%; 6%; 3% 

CR1 IFS Yes 52%; 26%; 13%; 6%; 3% 

CR2 IFS No 52%; 26%; 13%; 6%; 3% 

CR3 IFS No 30%; 24%; 19%; 15%; 12% 

CR4 IFS No 100%; 0%; 0%; 0%; 0% 

Table 4: Table of differences between the NR simulation and the CRs simulations. 
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Hourly PM10 
CRs 

« stations » vs 
NR « stations » 

Bias (µg/m3) RMSE (µg/m3) FGE FactOf2 RP RS 

CR1 -1.3 (-8.2 %) 7.9 0.332 89.1 % 0.671 0.748 

CR2 -4.5 (-35.2 %) 9.3 0.47 75.6 % 0.609 0.709 

 CR3  -4.8 (-38.1 %) 9.8 0.511 69.3 % 0.572 0.671 

CR4 -2.9 ( -20.5%) 8.7 0.412 81.9 % 0.623 0.712 

Table 5: Bias, RMSE, FGE, Factor of 2, Pearson correlation (Rp) and Spearman correlation (Rs) of the CRs simulation 
taking as reference the NR simulations for hourly PM 10 concentrations from January to April 2014. The comparison is made 
at the same station location as for AQeR stations. 

Hourly PM2.5 
CRs 

« stations » vs 
NR « stations » 

Bias (µg/m3) RMSE (µg/m3) FGE FactOf2 RP RS 

CR1 -0.8(-6.24%) 5.9 0.307 91.1 % 0.732 0.776 

CR2 -3.9 (-37.4%) 7.1 0.452 78.4 % 0.69 0.731 

CR3 -4.4 (-42.6%) 7.6 0.505 70.6 % 0.644 0.695 

CR4 -1.8 (-15.1%) 6.6 0.374 85.5 % 0.665 0.73 

Table 6: Bias, RMSE, FGE, Factor of 2, Pearson correlation (Rp) and Spearman correlation (Rs) of the CRs simulation 
taking as reference the NR simulations for hourly PM 2.5 concentrations from January to April 2014. The comparison is made 
at the same station location as for AQeR stations. 
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Hourly PM10 

CRs 

« stations » vs 
NR « stations » 

Bias (µg/m3) RMSE (µg/m3) FGE FactOf2 RP RS 

AR1 -1.17 (-7.21 %) 7.16 0.296 92.2 % 0.739 0.791 

AR2 -2.91 (-21.3 %) 8.1 0.373 85.3 % 0.694 0.751 

AR3 -3.53 (-26.2 %) 8.67 0.417 80.4 % 0.67 0.726 

AR4 -0.756 (-

5.31 %) 

8.03 0.339 88.2 % 0.691 0.759 

Table 7: Bias, RMSE, FGE, Factor of 2, Pearson correlation and Spearman correlation of the ARs simulation taking as reference 
the NR simulations for hourly PM10 concentrations from January to April 2014. The comparison is made at the same station 
location as for AQeR stations. 

Hourly PM2.5 

ARs 

« stations » vs 
NR « stations » 

Bias (µg/m3) RMSE (µg/m3) FGE FactOf2 RP RS 

AR1 -0.395 (-

3.15%) 

5.61 0.284 92.7 % 0.755 0.806 

AR2 -2.28 (-20.5 %) 6.31 0.364 86.6 % 0.703 0.766 

AR3 -2.94 (-27.1 %) 6.86 0.416 80.9 % 0.669 0.732 

AR4 0.109 (0.9 %) 6.56 0.328 89.4 % 0.699 0.765 

Table 8: Bias, RMSE, FGE, Factor of 2, Pearson correlation and Spearman correlation of the ARs simulation taking as reference 
the NR simulations for hourly PM2.5 concentrations from January to April 2014. The comparison is made at the same station 
location as for AQeR stations. 
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Hourly 
AR3LEO 
« stations » vs 
NR « stations » 

Bias (µg/m3) RMSE 
(µg/m3) 

FGE FactOf2 RP RS 

PM10 -4.47 (-35.1 %) 9.11 0 .462 75.6 % 0.656 0.717 

PM2.5 -3.89 (-37 %) 7.14 0.457 76.5 % 0.681 0.731 

  

Table 9: Bias, RMSE, FGE, Factor of 2, Pearson correlation and Spearman correlation of the AR3LEO simulation taking as 
reference the NR simulations for hourly PM10 and PM2.5 concentrations from January to April 2014. The comparison is made at 
the same station location as for AQeR stations. 
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Figures : 

 

 

Figure 1: Schematic representation of the OSSE principle. 5 
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Figure 2: Mean PM10 (left panel) and PM2.5 (right panel) surface concentration (µg.m-3) of the NR (shadings) and AQeR stations 
(color circles), from January to April 2014. 

 
 5 
  

Figure 3: Median of the daily mean surface concentration in µg.m-3 of the NR (in purple) and the AQeR station (in black). 
The NR concentrations are calculated at the same locations as the AQeR stations, from 01/01/2014 (Day 1) until 30/04/2014 
(last Day). The left panel is for PM10 surface concentrations while the right one is for PM2.5. 
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Figure 4: Classification of the NR profiles for the 7th of March 2014 at 12 UTC. Deep Blue is for dismissed profiles, Blue is for 
Maritime Clean, Light Blue for Maritime Polluted, Gr een is for Continental Clean, Yellow is for Continental Average, Orange is 5 
for Continental Polluted, Deep Orange is for Urban, and Red is for Desert Dust. 
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Figure 5: Average (from January to April) number of selected profiles per day, 
available for assimilation. 

Figure 6: Example of generation of synthetic observations on the 7th of March 2014 at 12 UTC. From the NR’s AOD 

as 444 nm (left panel), noise values representative of FCI (middle panel) are applied on every clear-sky pixel to 

generate the synthetic observations (right panel). The grey color represents the dismissed profiles. 
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Figure 7: Median of the daily mean surface concentration of the NR (in purple) and the different CR (CR1 in green, CR2 in 
yellow, CR3 in red and CR4 in blue) determined for the same location as for the AQeR stations. The left graph is the PM10

mass concentrations (µg.m-3), while the right one represents the PM2.5 mass concentrations. 

Figure 8: Scatter plot of the CRs daily surface concentrations (µg.m-3) as function of NR daily surface concentrations for 
PM10 (left) and PM2.5 (right), for virtual stations and from January to April 2014. rgCRX are the linear regressions of each 
dataset. 
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Figure 9: For each CR (CR1, CR2, CR3 and CR4), the figures represent a PM10 comparison between the NR and 
the CRs from January to April 2014: the relative bias (in %), the Pearson correlation and the fractional gross 
error.  
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Figure 10: Histograms of differences between synthetic observations and forecast fields (blue) and 
between synthetic observations and analyzed field (purple) for the four assimilation runs. 
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Figure 11: Same legend as Figure 9, for assimilation runs (AR) instead of control runs (CR). 
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Figure 12: Mean vertical profile, from January to April, over the domain of the
concentrations (µg.m-3) of PM10 for the 4 set of simulations (1 in top left, 2 in top 
right, 3 in down left and 4 in down right). The NR is in purple, the CR is in red 
and the AR is in green. 
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Figure 13: Mean vertical profile, from January to April, over the domain of the
concentrations (µg.m-3) of PM2.5 for the 4 set of simulations (1 in top left, 2 in top 
right, 3 in down left and 4 in down right). The NR is in purple, the CR is in red 
and the AR is in green. 
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Figure 14: Median values over the AQeR station locations  of the daily mean PM10 surface concentration (µg.m-3) for the 
NR (in purple) and the different CR (red) & AR (green) simulations (CR-AR-1 top left, CR-AR-2 top right, CR-AR-3 down 
left, CR-AR-4 down right). 

Figure 15: Same legend as Figure 14 for PM2.5 concentrations. 
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Figure16: PM10 comparison between the NR and 
the CRs from the 7th March to the 15th March 
2014: relative bias and fractional gross error. 
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Figure 17: Same legend as Figure 16 for assimilation 
runs (AR) instead of control runs (CR). 



 

42 
 

 
Figure 18 : Results of the assimilation run AR3LEO: density of assimilated synthetic observations (upper-left panel, to be 
compared with Figure 6), time series of concentration of PM10 at surface for NR, CR3, AR3, AR3LEO (upper-right panel) between 
1st January and 30th April 2014, PM10 relative bias and FGE of AR3LEO from 7 to 14 March 2014 (to be compared with Figure 
17). 5 
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Figure A1: Summary of the methodology to derive the RMSE of AOD from the FCI reflectance simulator. Step 1 is the 
computation of FCI radiance. Input parameters are the histograms of AOD, ozone total column, total water vapor content, ground 
albedo and solar zenithal angle. The libRadtran simulator simulates the distribution of radiance and reflectance in the VIS04 
channel and takes into account the signal-to-noise ratio of FCI. Step 2 is the approximation of the reflectance in functions of key 5 
parameters using a Global Analysis Sensitivity method and Sobol indices. Step 3 is the retrieval of the AOD RMSE using random 
noise of measurement and the uncertainty of key parameters. 

 


