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Abstract. The study assesses the possible benefit of aasimgilAerosol Optical Depth (AOD) from the futungaseborne
sensor FCI (Flexible Combined Imager) for air gyathonitoring in Europe. An Observing System Siniola Experiment
(OSSE) was designed and applied over a 4-montlogéhat includes a severe pollution episode. Thdysfocuses on the
FCI channel centred at 444 nm, which is the showaselength of FCI. A Nature Run (NR) and fourfeliént Control Runs
of the MOCAGE chemistry-transport model were destgand evaluated to guarantee the robustness @3ISE results.
The AOD synthetic observations from the NR weréuidised by errors that are typical of the FCI. Tleiance of the FCI
AOD at 444 nm was deduced from a global sensitigitalysis that took into account the aerosol tgpeface reflectance
and different atmospheric optical properties. Thpeeiments show a general benefit on all statikticdicators of the
assimilation of the FCI AOD at 444 nm for aerosohcentrations at surface over Europe, and alscsiiy@mimpact during
the severe pollution event. The simulations withadassimilation reproduced spatial and temporatepa of PMo

concentrations at surface better than without akgtion all along the simulations and especiallyidg the pollution event.
The advantage of assimilating AOD from a geostatigpmlatform over a Low Earth Orbit satellite hésoabeen quantified.
This work demonstrates the capability of data fittwn future FCI sensor to bring an added value ¢oMDCAGE aerosol

simulations, and in general, to other chemistrggpert models.
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1 Introduction

Aerosols are liquid and solid compounds suspendé¢lde atmosphere, whose sizes range from a fewnmeteeos to several
tens of micrometers, and whose lifetime in the dsghere varies from a few hours to a few weeksn{8lei and Pandis,
1998). Stable sulfate aerosols at high altitude laah for years (Chazette et al., 1995). The s@uafeaerosols may be
natural (dusts, sea salt, ashes from volcanic emgtfor instance) or anthropogenic (from roadfitraresidential heating,
industries, for instance), and they can be trarisdaup to thousands of kilometers. Aerosols aredknto have significant
impacts on climate (IPCC, 2007) and on air quaditg further on human health as WHO (2014) estimated 3 million
deaths in 2012 to be due to aerosols.

Aerosols absorb and diffuse solar radiation, whHednds to local heating of the aerosol layer andingof the climate
system through the backscatter of solar radiatiogptace for most of the aerosols, except for btackon (Stocker et al.,
2013). The absorption of solar radiation modifies vertical temperature profile, affecting the 8igbof the atmosphere
and cloud formation (Seinfeld and Pandis, 1998)o8els, as condensation nuclei, play a significatd in the formation
and life cycle of clouds (Seinfeld and Pandis, J9¥3position of aerosols on Earth’'s surface map alffect surface
properties and albedo. All these effects showdkadsols play a key role on the energy budgeteo€limate system.
Aerosols, also called particulate matter in thetewinof air quality, are responsible for seriousltte problems all over the
world, as they are known to favor respiratory aacdovascular diseases as well as cancers (Broak, &004). The World
Health Organization (WHO) has set regulatory linfitsaerosol concentrations, respectively 20 jigamd 10 pg.m annual
mean for PM, and PM s (particulate matter with a diameter less than &6 2.5 um, respectively) concentrations. The
European Union regulation introduces also;pihily mean limits of 50 ug.th The presence of a dense layer of aerosols
can also affect air traffic by the reduction ofibiity (Baumer et al., 2008) and by risks of digtions of engines of air
planes (Guffanti et al., 2010). Therefore, it isexttial to accurately determine the evolution ef tbncentration and size of
the different types of aerosols in space and timerder to assess their effect on climate andioguality and to mitigate
their impacts. A pertinent approach to achievertinaous and accurate monitoring of aerosols tmbine measurements
and models, a good example being the Copernicus ogghere Monitoring Service (CAMS)
(http://www.atmosphere.copernicus.g@éuch and Engelen, 2012; Eskes et al., 2015;ddbeé al, 2015).

Ground-based stations, which measure aerosol andagecentrations in-situ, have been used for skdeades to monitor
air quality, such as the stations in the Air Quyal@-Reporting program (AQeR, https://www.eea.eurepaata-and-
maps/data/agereporting-2) from the European Enrisrt Agency (EEA). Other observations can alsodssl o measure
aerosols. The AERONET (AErosol RObotic NETwork) gmaim (https://aeronet.gsfc.nasa.gov/) performsetréeval of the

Aerosol Optical Depth (AOD) at several ground stasi (Holben et al., 1998). Similarly, AOD obserwgat can be retrieved
from images taken in different channels by imagdieard Low Earth Orbit (LEO) or GEOstationary (GES}ellites.

Generally, AOD from satellite provides a bettertgdacoverage than ground-based stations at theresgpof additional

sources of uncertainty, such as the surface rafieet An example of AOD product from LEO satellitethe Daily Level 2
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AOD, from the Moderate Resolution Imaging Spectiaemeter (MODIS) (Levy et al., 2013) sensor on blo@erra and
Aqua (MOD 04 & MYD 04 products). This AOD product provided at a 10 km resolution every 5 min, ddwri km.
Sensors on geostationary orbit satellites can goatisly scan one third of Earth's surface much rfreguently than low
Earth orbit satellites. The SEVIRI (Spinning EnhaacVisible and Infra-Red Imager) sensor, aboard M#e&teosat
Second Generation), is an example of a GEO senswiding information on aerosols. Different AOD amedrieved over
lands from SEVIRI data in the VIS0.6 and VIS0.8 mels, respectively centered at 0.635 um (0.56 7+ pm) and
0.81 um (0.74 um — 0.88um). AOD products are netdefollowing different methods. Carrer et al. (2DDbresented a
method to estimate a daily quality-controlled AO&skd on a directional and temporal analysis of &Edbservations of
channel VIS0.6. Another method consists in matckingulated Top Of the Atmosphere (TOA) reflectan@esm a set of 5
models) with TOA SEVIRI reflectances (Bernard et 2D11) to obtain an AOD for VIS0.6. Another meth@/ei et al.,
2012) estimates the AOD and the aerosol type blysing the reflectances at 0.6 and 0.8 um in tlorelerly scan times.
These methods derive AOD for specific channelsmfithe combined analysis of several channels ang eften using
several images if not all of a day to have infoiiorat

Numerical models, even if they are subject to efrare necessary to describe the variability ofr®sol types and of their
concentrations with space and time, as a completoeabservations. Aerosol forecasts on regional glnbal scales are
made by three-dimensional models, such as the stgrtiansport model (CTM) MOCAGE (Skt al., 2015; Guth et al.,
2016). MOCAGE is currently used daily to provide guality forecasts to the French platform Prev'fouil et al., 2009)
and also to the European CAMS ensemble (Maréal,e2015). Data assimilation of AOD can be usedriter to improve
the representation of aerosols within the modelations (Benedetti et al, 2009t al, 2016). Studies on geostationary
sensors have also proved a positive effect of fsgralation of AOD, see e.g. Yumimoto, et al. (2DMho assessed this
positive effect using the AOD at 550 nm from AHIdanced Himawari Imager) sensor aboard Himawari-8.

The future geostationary Flexible Combined ImadgeCl( URD Eumetsat, 2010), that will be aboard thetédsat Third
Generation satellite (MTG), will perform a full #ign 10 min, and in 2.5 min for the European RegleRapid-Scan which
covers one-quarter of the full disk, with a spategolution of 1 km at nadir and around 2 km indp&r. Like AHI, FCI is
designed to have multiple wavelengths and the asgion of its data into models should be benefidia aerosol
monitoring. The aim of the paper is to assess twsiple benefit of assimilating measurements frbenfuture MTG/FCI
sensor for monitoring aerosols on regional scaler dgurope. Since MOCAGE cannot assimilate, AOD aitipie
wavelengths simultaneously {Stt al, 2016), the study focusses on the assimilaif AOD from a single channel. Among
the 16 channels of FCI, the VIS04 band (centeret4dtnm) has been chosen because it covers theeshaavelengths,
which is expected to be the most relevant to detenatll particles (Petty, 2006). Besides, VIS04 & channel compared
to MSG/SEVIRI, which shortest band is around 65Qi@arrer et al, 2010), and so assessing the bevfefiS04 over
Europe is original.

As FCIl is not yet operational, an OSSE (Observipgt&n Simulation Experiments) approach (Timmernetrad., 2015) is

used in this study. In an OSSE, synthetic obsermatare created from a numerical simulation thasislose as possible to
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the real atmosphere (the Nature Run), and theassimilated in a different model configuration. Tdiferences between
model outputs with and without assimilation provate assessment of the added value of the assicthiliatia. OSSE have
been widely developed and used for assessing aignileg future sensors for air quality monitorifigr carbon monoxide
(Edwards et al, 2009) and ozone (Claeyman et dl12Boogman et al, 2014) from LEO or GEO satellileshoz et al,
2012), and for aerosol analysis from GEO satellitesr Europe (Timmermans et al, 2009a, 2009b). Sointkese studies
have successfully assessed the potential bendfitwke satellites and they have helped to dedigrirtstruments (Claeyman
et al, 2011), however cautions and limitations lo& ©SSE for air quality have been addressed (Timmaues et al, 2009a,
2009b, 2015), such as the “identical twin probleanid the control of the boundary conditions of thedei, and the
accuracy and the representativeness of the synibletervations.

By designing an OSSE that takes into account thesgautions, the present study proposes a quardi@sessment of the
potential benefit of assimilating AOD at 444 nmrfré-Cl for aerosol monitoring in Europe. The OSSH #és experimental
setup are described in Sect. 2. Then, the casg ahdlan evaluation of the ability of the referesizaulation to represent a
true state of the atmosphere are presented. Thelat#bn of synthetic observations is explaine&éct. 3. An evaluation of
the control simulations is made in Sect. 4. In S&ctthe results of the assimilation of FCI synthetbservations are

presented and discussed. Finally, Sect. 6 conchiniestudy.

2 Methodology
2.1 Experimental setup

Figure 1 shows the general principle of the OSSiEermans et al, 2015). A reference simulationledatNature Run”

(NR) is assumed to represent the “true” state efatmosphere. AOD synthetic observations are getelzy combining

AOD retrieved from the NR and the error charactiessof FCI. These error characteristics are dbedriin Sect. 3. The
second kind of simulations in the OSSE is the “@dnRun” (CR) simulation. The differences betweeR’8&l output and

CR’s output should represent the errors of curneodels without use of observations. Finally, theiragation run (AR) is

done by assimilation in the CR of the syntheticesbations. To assess the added value of the instftyra comparison is
made between the output of the AR and the NR ahsldaes the CR and the NR. If the AR is closer tolfiethan the CR,
it means that the observations provide useful médion to the assimilation system. The differenisesveen AR and CR
guantify the added value of the instrument.

The NR should be as close as possible to the aatoasphere because it serves as the referengedage the synthetic
observations. The temporal and spatial variatidrit® NR should approximate those of actual obsEmsa. An evaluation
of the NR, presented in Sect. 2.2, includes a coisgra of the model with aerosol concentrations &@D data from

ground-based stations.

In addition, the differences between the NR and@Remust be significant and approximate those betvibe CR and the

actual observations. Ideally, the NR and CR shbeldun with different models, as the use of theesamdel could lead to
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over-optimistic results (Masutani et al., 2010)stissue is called the “identical twin” problem.idtstrongly recommended
to evaluate the spatio-temporal variability of tie and its differences with the CR to avoid thidetitical twin” problem
(Timmermans et al., 2015). As MOCAGE is used fothddR and CR in the present study, a method sintdldahat used in
Claeyman et al. (2011) is proposed. Instead of @R various CR simulations (Fig. 1) are performeddifferent
configurations, and they are assessed independemilycompared to the NR to ensure the robustnegdseddSSE results.

An evaluation of those differences is presente8idot. 4.

2.2 MOCAGE

The CTM model used in this study is MOCAGE (Moddk Chimie Atmosphérique a Grande Echelle, GutH,e2046),
that has been developed for operational and rdsqamposes. MOCAGE is a three-dimensional modd to&ers the
global scale, down to regional scale using two-wagted grids. MOCAGE vertical resolution is notfann: the model has
47 vertical sigma-hybrid altitude-pressure levetnf the surface up to 5 hPa. Levels are densertheasurface, with a
resolution of about 40 m in the lower tropospheré 800 m in the lower stratosphere.

MOCAGE simulates gases (Josse et al., 2004; Dwdbat., 2004), primary aerosols (Martet et al., 208k et al., 2015)
and secondary inorganic aerosols (Guth et al, 208&psols species in the model are primary spediesert dust, sea salt,
black carbon and organic carbon, and secondargamic species: sulfate, nitrate and ammonium, fdrinem gaseous
precursors in the model. For each type of aerdpoisiary and secondary), the same 6 bin sizesised between 2 nm and
50 um: 2 nm -10 nm - 100 nm - 1 pum - 2.5 um - 10468 um. All emitted species are injected everyribs in the five
lower levels (up to 0.5 km), following an hyperlwotlecay with altitude: the fraction of pollutantaited in the lowest level
is 52 %, and then respectively 26 %, 13 %, 6 % artb in the four levels above. Such a vertical réfian ensures
continuous concentration fields in the first leyelbiich guarantee a proper behavior of the of émid agrangian advection
scheme. Carbonaceous particles are emitted usingsiem inventories. Sea salt emissions are sinmdilaging a semi-
empirical source function (Gong, 2003; Jaeglé et28111) with the wind speed and the water tempegads input. Desert
dust are emitted, using wind speed, soil moisture: surface characteristics based on MarticorenaBanrdametti (1995)
which give the total emission mass, that is thetrithuted in each bin according to Alfaro et aB48). Secondary inorganic
aerosols are included in MOCAGE using the modul®R&OPIA Il (Fountoukis and Nenes, 2007), which eslthe
thermodynamic equilibrium between gaseous, liquidl &olid compounds. Chemical species are transfbrime the
RACMOBUS scheme, which is a combination of the RAGRheme (Regional Atmospheric Chemistry Mechanism;
Stockwell et al., 1997) and the REPROBUS schemadiRee Processes Ruling the Ozone Budget in thatdSphere;
Lefevre et al., 1994). Dry and wet depositions asepus and particulate compounds are parametexizéd Guth et al.
(2016).

MOCAGE uses meteorological forecasts (wind, presstemperature, specific humidity, precipitatios) iaput, such as
Météo-France operational meteorological forecashfARPEGE (Action de Recherche Petite Echelle Gedachelle), or

ECMWF (European Centre for Medium-Range Weathee&asts) meteorological forecast from IFS (Integrd&erecast
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System). A semi-lagrangian advection scheme (Wikian and Rasch, 1989), a parameterization for atiove(Bechtold

et al., 2001) and a diffusion scheme (Louis, 1%8)used to transport gaseous and particulateespeci

2.3 Assimilation system PALM

The assimilation system of MOCAGE (Massart et2009),is based on the 3-Dimensional First Guess at ApgjatgpTime
(3D-FGAT) algorithm. This method consists of minaing the cost functiod:

J(62) =Jp(62) +Jo(6%) =2(5 )"B S x + 1 XNo(d; — H; 6 )R (d; — Hy 6 %), (1)
whereJ, andJ, are respectively the part of the cost functiomtesl to the model background and to the obsengtion=

x - ¥ is the difference between the model backgroxthdnd the state of the systeqnd; = y; - H; X’(t) is the difference
between the observatignand the backgrouns’ in the observations space at titneH; is the observation operatdt; its
linearized versionB is the background covariance matrix; @ds the observation covariance matrix at time

The general principal for the assimilation of AOBefedetti et al, 2009) is the same as i &ial. (2016). The control
variablex used in the minimization is the 3D total aerosmieentration. After minimization of the cost fumatj an analysis
incrementx’, is obtained, which is a 3D-total aerosol conaitn. This incremenix® is then converted into all MOCAGE
aerosol bins according to their local fractiongh# total aerosol mass in the model background.rékelt is added to the
background aerosol field at the beginning of theleyThen the model is run over the 1-hour cyctegtk to obtain the
analysis. The state at the end of this cycle isl @sea departure point for the background modebfuhe next cycle.

The observation operatét for AOD uses as input the concentrations of aikhi6) of the seven types of aerosols and the
associated optical properties. For this computadign, the control variabbe is converted into all MOCAGE aerosol bins
according to their local fractions of the total @l mass in the model background. The AOD is cdetptor each model
layer to obtain, by summing, the AOD of the totalumnn. The optical properties of the different amlatypes are issued
from a look-up table, that is computed from the Migle scheme of Wiscombe (1980, 1979, revised 1f@®&pherical and
homogeneous particles. The refractive indices crora Kirchstetter et al. (2004) for organic carbamd from the Global
Aerosol Data Set (GADS, Kopke et al., 1997) foreotherosol species. The hygroscopicity of sea salts secondary
inorganic aerosols are taken into account basedesher (1985).

While the observation operator is designed to aksienAOD of any wavelength from the UV to the fRe assimilation
system MOCAGE-PALM cannot assimilate data of seveevelengths simultaneously ¢St al, 2016). This limitation is
due to the choice of the control vector, whichhie 8D total aerosol concentration: assimilatindedént wavelengths
simultaneously would require to rethink and to aegtehe control vector, for instance splitting it bgrosol size bins or

types. This explains why the study focuses on sis@alation of AOD of a single wavelength.



10

15

20

25

30

2.4 Case study

The period extends from thé' df January to the 30of April 2014, and includes several days of PMig@n over Europe.
From the 7 to 15" of March, a secondary particles episode (EEA rep@t4) occurs, while from 39March to ' April a
dust plume originating from the Sahara Desert pyapes Northwards to Europe (Vieno et al., 2016).

The MOCAGE simulation covers the whole period frdamuary to April 2014, on a global domain at 2bhetson and a
nested regional domain, that covers Europe, frorf\Ne® 72 °N and from 26 °W to 46 °E, at 0.2 ° detion (see Fig. 2). A
4-month spin-up is made before the simulation. N is forced by ARPEGE meteorological analysis. &3ians of
chemical species in the global domain come from MAZ (van der Werf et al., 2006; Lamarque et &801@, Granier et al.,
2011) for anthropogenic gas species and biogeréciep are from GEIA for the global and regional dom ACCMIP
project emissions are used for anthropogenic ocgand black carbon emissions at the global scdle. TNO-MACC-III
inventory for year 2011 provides anthropogenic siuits in the regional domain. TNO-MACC-III emisssoare the latest
update of the TNO-MACC inventory based on the methagy developed in the MACC-II project describedkiuenen et
al. (2014). These anthropogenic emissions are cgeghl on our regional domain, at the boundary ef MACC-III
inventory domain by emissions from MACCity. Dailioimass burning sources of organic and black cadmshgases from
the Global Fire Assimilation System (GFAS) (Kaisgral., 2012) are injected in the model. The NRudes secondary
organic aerosols (SOA) in order to enhance itsgeahnd to well fit the observations made at grebased stations over
Europe. Standard ratios from observations (Castad.,€1999) are used to simulate the portion ebedary carbon species,
40 % in winter, from the primary carbon speciethia emission input.

The NR is compared to real observations from AERONEOD observations and AQeR surface concentratioss)g
common statistical indicators: mean bias (B), medifnormalized mean bias (MNMB), root mean squarer§RMSE),
fractional gross error (FGE), Pearson correlatioefficient ;) and Spearman correlation coefficief)( While the
Pearson correlation measures the linear relatibndsn the two datasets, the Spearman correlatianviean to assess their
monotonic relationship.

The AQeR stations are mainly located over Westenrojge (Fig. 2). After selection of the surface ietsd that are
representative of background air pollution (follagiJoly and Peuch, 2012), 597 and 535 stationseapectively used for
the PMo, PM,s comparison. Figure 2 represents the mean surfaceeotration of the NR and selected AQeR
measurements over the domain, from January to 20dK. The left panel shows the RMoncentrations of the NR in the
background and the AQeR concentrations as cirdidewhe right panel shows the Bconcentrations. The concentration
of the NR PM, and PM s are generally underestimated compared to obsensatNevertheless, on both figures, the spatial
variability and particularly the location of maxirage reasonably well represented. Over the Europeatinent, the NR and
AQeR data show clear maxima in the center of Eurfipeboth PMy, and PM s concentrations, even if the NR

underestimates these maxima.
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Table 1 shows the statistical indicators of thismparison for hourly surface concentrations in,Phd PM s A negative
mean bias is observed, around -6.23 [it(m-35.1 %) for PNy and -3.20 pg.i (~ -24.7 %) for PMs. The RMSE is equal
to 16.2 pg.ii for PMy and 11.9 pg.ffor PM, s while the FGE equals to 0.56 and 0.543. The fastwo is equal to 64.7
% and 67.5 % for PM and PM . Pearson and Spearman correlations are respgcfivid2 and 0.535 for Pjyland PM 5
and 0.537 and 0.602 for Rpand PM . The NR underestimation is greater for gkhan for PMs in relative differences.
This suggests a lack of aerosol concentrationfiénPtM ., s(concentration of aerosols between 2.5 pm and 1P Not
taking into account wind-blown crustal aerosols mayse a potential underestimation of PM in mo@etset al., 2015).
Taking them into account needs a detailed groupd igventory to compute those emissions unavail@blOCAGE. For
PM, s, the underestimation of aerosol concentrationsbheadue to a lack of carbonaceous species (Praalk €016). Other
possible reasons for PM negative bias at surfaeetle® underestimation of emissions in cold winteriqel and the
uncertainty in the modelling of stable winter cdiatis with shallow surface layers.

A time-series graph of the median NR surface conagans and the median surface concentrationb@fAQeR stations
are presented in Fig. 3. Compared to ground-basgeRAdata (in black), the NR (in purple) generalfylerestimates the
PM;, and the PMs concentrations, especially during th&-75" March pollution episode. However, the variatiomsl a
maxima of the NR concentrations of PM are genena#yi represented. Furthermore, around 65 % of modecentrations
are relatively close to observations as shown leyfétttor of 2 in Table 1. The variability of NR a@mtrations is thus
consistent with AQeR station concentrations.

Table 2 gives an evaluation of the NR against iy adnean of the AOD at 500 nm obtained from 84 AMRET stations in
the regional domain from January to April 2014. Ttatistical indicators show good consistency betwthe NR and
AERONET observations. However, like the resultsvgtab at global scale (Set al, 2015), MOCAGE tends to overestimate
AOD: although small, the AOD bias is positive. VhIPM concentrations at surface are underestimatdeiNR, different
reasons may explain an overestimation of AOD. Téical distribution of aerosol concentrations tie tmodel is largely
controlled by vertical transport, removal procesaad by the prior assumptions done on the aeras@dséon profiles.
However, these processes may have large variahitity they are prone to large uncertaintieg €ial, 2015). Another
possible explanation is the uncertainty of the siatribution of aerosols that can affect signifittp the optical properties.
More generally, the assumptions that underly themdation of optical properties are largely underend they can affect
the computation of AOD by a factor of 50% (Curciaét2015): the mixing state assumption, the uadet on refractive
indices and on hygrocopicity growth. These uncatitas on aerosol vertical profiles, size distribatiand optical properties
may explain the decorrelation between AOD and Pkteatrations at surface, and so why the MOCAGE B&dpositive
bias in AOD while underestimating PM at surfacewdwer, both the PM and AOD correlation errors @& WR remain in a
realistic range.

As a result, the NR simulation exhibits surfaceamorirations and AOD in the same range comparelogetfrom ground-

based stations and shows similar spatial and temhpariations, which makes the NR acceptable fer@i$SE.
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3 Generation of synthetic AOD observations

The study focuses on the added value of assingla&i@D at the central wavelength (444 nm) of the /G304 spectral
band. Since the assimilation of AOD from several@kangths simultaneously is not possible (Secf), 2t& choice of the
single channel VIS04 is mainly driven by the fdwttit is the shortest wavelengths of FCI, that pgiori the most favorable
to the detection of fine particles.

Thus, synthetic AOD observations at 444nm are etkaver the MOCAGE simulated regional domain, frdma NR
simulation 3D fields: all aerosol concentrations {ype and per size bins, and meteorological vésabAt every gridpoint
of the NR regional domain where the solar zeniimglle is below 80° (daytime) and where clouds beeat, an AOD value
at 444 nm is computed using the MOCAGE observatiperator described above (Sect. 2.3). In ordeake into account
the error characteristics of the FCI VISO4 AODaadom noise is then added to this NR AOD value.

To estimate the variance of this random noisegteeral principle is to assess and quantify thees/e sensitivity of the
FCI VIS04 top-of-the-atmosphere reflectance to A@1d to the other variables. For doing this, the §i@lulator developed
by Aoun et al (2016), based on the Radiative Teanisfodel (RTM) libRadtran (Mayer and Killings, 200%as been used.
This simulator computes the reflectance in theedéfit spectral bands of FCI, as a function of ckffé input atmospheric
parameters (AOD, total column water vapor, ozone content), groahmedop, and solar zenithal ang, for different
OPAC (Optical Properties of Aerosols and CloudssdHet al., 1998) aerosol types: dust, maritimencle@ritime polluted,
continental clean, continental average, contineptdluted, and urban.. The FCI simulator takes itoount the spectral
response sensitivity and the measurement noiseseptative of the FCI VIS04 spectral band (415#4m}.

By applying a Global Sensitivity Analysis to thi€Fsimulator ran on a large dataset (see the Apgdadthe details of the
method), a look-up table of the RMSE of AOD is ded. It depends on the OPAC type, on the relativer ef surface
albedo, on the solar zenithal angle and of the mfcalbedo value. The classification of each MOCA@HEfile into the
OPAC types relies on three parameters (Tab. 3)stinface concentration, the main surface specidstan proportion in
relation to the total aerosols concentrations. &c&s is described as a main species if its coratenmts, [species], is above
each other concentrations, for example DD is a repéties if [DD]>[SS] & [DD]>[IWS]. An example of R profiles ('
March 2014 at 12 UTC) decomposed in OPAC type és@mted in Fig. 4. A small part of the profiles digmissed where
MOCAGE profiles do not match one of the OPAC tymas;h as profiles over ocean whéves (Insoluble, Water Soluble
and Soot; Tab. 3) is greater than DD (Desert Dast) SS (Sea Salt). A larger part of profiles ammiised because of
night-time profiles and cloudy conditions. Figuregpresents the average number of NR AOD thatetegned per day for
assimilation. After these filters apply, between%nd 20 % of profiles are kept every hour. Thesig of these profiles
is higher in the south of the domain, which is dile correlated to the quantity of direct sunligitailable. Over the

continent, between 1 and 4 profiles can be asdiedilper day at each grid-box location.
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On every NR profiles that is kept, an AOD erromisoduced, by addition of random value from aniaebd Gaussian with
a standard deviation derived from the AOD RMSE logktable, calculated as explained above. The suirddbedo fields
are taken from MODIS using the Radiative Transferdel RTTOV (Vidot et al., 2014). A relative errdfr 10% is assumed
for ground albedo, which corresponds to a realigtiie (Vidot et al, 2014). An example of the satif observations is
presented in Fig. 6. It represents the NR AOD strthetic observations and the noise applied toN@® for the 7" March
2014 at 12 UTC.

4 Controls runs (CRs) and their comparison to NR

Sect. 2 showed an evaluation of the NR comparedaiobservations. Another requirement of the O8SEke evaluation of
differences between the NR and the CR. Variouss@Rulations have been performed to evaluate thebetr of the
OSSE on different CR configurations and provedtsustness. The NR and CRs use different setupsOf€ MGE. The CRs
use IFS meteorological forcings, while the NR uBBPEGE meteorological forcings. The use of différemeteorological
inputs is expected to yield differences in the gport of pollutant species, and changes in dynamiissions of sea salt and
desert dust. To introduce more differences betvileelCRs and NR, changes in the emissions areraleauced.

Table 4 indicates the changes made on the diffenexatel parameters to create 4 distinct CR simuiatid he first control
run, CR1, uses the same inputs as the NR excefitdaneteorological forcings. Other control runRECCR3, CR4) do not
have the SOA formation process of the NR (Sectar®) CR1 simulations. Finally, CR3 and CR4 changenfiother
simulations by different vertical repartitions aghissions in the five lowest levels. In CR3, thelgiaints are emitted with a
slower decay with height than the NR (with repamitfrom 30 % at surface and respectively 24 %9495 %; 12 % for
the four levels above), and in the CR4 emissioms anly injected in the lowest level. These changi@s to generate
simulations that are more significantly differerdrfi the NR than the first two control runs.

The four CRs are compared to the NR forp&hd PM s surface concentration considering virtual obséowstlocated at
the same locations as the AQeR stations. A timesef daily means of surface concentrations aukitad stations is
presented in Fig. 7, for NR and CRs simulationsnftbe £' January to the 30April 2014. The PM, concentrations of the
NR (in purple) are mostly greater than the jpbbncentrations in the CRs. During the period tf ldarch and early April
(around the 90 day of simulation) the NR concentrations of Blsire close to those of the CR2, CR3 and CR4, auithan
those of the CR1 by about few ugmin terms of PMs the CRs concentrations are also underestimatieg NR
concentration. As for P), around the deay of simulation, the concentrations of CR1 dreve the concentrations of the
NR.

These tendencies can also be observed in Fig. 8hwpresents a scatter plot of CRs concentratsna function of NR
concentrations for the daily means of surface cotmagon in PMg and PM s at the virtual stations. The CR1 concentrations
are fairly close to those of the NR concentratioith a coefficient of regression about 0.801 ar&B6.for PMg and PM s,

Other CRs underestimate the NR concentrations. Tdnslency is stronger for PMthan for PMs The regression
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coefficient of the CR2, CR3, CR4 are respective§96, 0.583 and 0.607 for RpMand 0.570, 0.505 0.647 for BM For
both PM, and PM s concentrations, the underestimation is more ingmror high values of the NR concentrations than f
low values.

The statistical indicators in Tab. 5 and 6 are it@st with Fig. 7 and 8. The CR1 is close to tHe With a bias of -1.3
(-8.2 %) pg.n for PMyo and -0.8 (-6.2 %) pg.fhfor PM,s. CR4 bias is around -2.9 (-20.5 %) pg.for PMy and -1.8 (-
15.1 %) pg.rﬁ for PM, 5. The two other CRs highly underestimate ;p&hd PM s concentrations with a bias of -4.5 u@.m
(-35.2 %) and -3.9 ug.m(-37.4 %) respectively for CR2 and -4.8 pd.(38.1 %) and -4.4 ug.m(-42.6 %) for the CR3.
These biases are in agreement with the literaRnank et al. (2016) measure a bias around -5.B¥tg and -4.4 pg.i for
PM; s for the median of four CTMs against ground-badatians in winter. In Marécal et al. (2015), stital indicators for
an ensemble of seven models are presented forrwitgas between -3 and -7 pgis observed for the median ensemble.
The PM concentrations of our CRs compared to theaMRcharacteristic of models compared to obsemsti

Prank et al. (2016) also show other indicatorgtiermedian of models, such as the temporal coivaland the factor of 2.
Their correlations are around 0.7 for PMand 0.6 for PNy and are close to those for our CRs simulations ey from
0.644 to 0.732 for PMs and from 0.572 to 0.671 for P Their factor of 2 equals 65 % for Rjvand 67 % for PMs. The
factor of 2 of the CRs ranges between 70 % and 90both PM, and PMs concentrations. The RMSE of CRs
simulations ranges from 8 pgito 10 pg.nt for PMyo concentrations, which is slightly under the RMSEhe ensemble
from the study of Marécal et al. (2015) which rangetween 10 and 15 pg’niThe FGE of the study of Marécal et al. is
equal to 0.55, while the FGE of CRs varies fronBa@30.51. Our CRs simulations slightly underestartae model relative
error. Thus, compared to literature, the CRs (dafigche CR3) are different enough from the NRbtw representative of
state-of-the-art simulations.,

Between the CRs and the NR there are importaniaspifferences in surface concentrations of PMdesionstrated in Fig.
9, which shows the relative differences, Pearsametadion and the FGE for P Over the Atlantic Ocean, the CRs
concentrations are relatively close to the NR, pkéer the CR4 which overestimates the concentnatibPM,,. All CRs
present high concentrations of Ml over North Africa. This corresponds to highissions of desert dust over this area,
which cause an important overestimation of,Pbmpared to the NR. This overestimation can atsoliserved around all
the Mediterranean Basin. The CRs tend to overetgithe PM, concentrations over Spain, Italy, the Alps, Gredagkey,
the north of the UK, the Iceland and the Norwaye Tverestimation over the Alps, Iceland and Noraeg located at
places of negligible concentrations. Over the oéshe European continent, CRs underestimate theesdration of Plyb,
slightly for CR1, but very pronounced for CR2, C&81 CR4. The area where the consistency betwee@RBeand the NR
is better is the Atlantic Ocean with a correlatianging from 0.6 to 0.9 and a low FGE around 0.82rQhe Mediterranean
Basin the correlation varies significantly betwe®mand 1. Low correlations correspond to high FG&uad 1. Over the
continent, the correlation varies from 0.4 to GBofwing a west-east axis. The correlations arghslly greater for CR1 than
for the other CRs. The FGE over the continent changjgnificantly between the CR1 and the other GBspectively

around 0.35 and 0.55. Similar conclusions can Keiéd for the PMs comparison (see complementary materials). A
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similar comparison has been done for the AOD betwtbe CRs simulations and the NR simulation (seaptementary
materials).

In summary, the control runs present spatial vditalalong with temporal variability. The closeBR to the NR is the CR1.
In terms of surface concentrations in PM, the CR&he most distant, while in terms of AOD the CR4he most distant.
Those differences and the use of different CRspleslwith the realism of the NR, demonstrate tHauisbhess of the OSSE
to evaluate the added value provided by AOD derfvech the FCI.

5 Assimilation of FCI synthetic observations

The purpose of this paper is to assess the poteotidribution of FCI VISO4 channel to the assirtida of aerosols on a
continental scale. In our OSSE, MOCAGE represdrgsatmosphere with a horizontal resolution of 0(@rbund 20 km at
the equator). Synthetic observations are therefmmputed at the model resolution although FCI scmosind 1 km
resolution at the equator and 2 km over Europ€fithaith the timestep of our assimilation cycle nélyetic observations are
also created every hour, although the future FCGigen could retrieve radiance observations everyniiutes over the
globe, and 2.5 minutes over Europe with the EurnpRagional-Rapid-Scan. This means that for eacfilg@rof our
simulation, only one synthetic observation is aal# each hour, instead of 24x10x10 at best (F&hs@4 times an hour,
with a spatial resolution 10 times higher than tinedel over the Europe). The use of one observédtiorach profile in an
assimilation window is due to the assimilation systdesign that does not allow multiple observatfons same profile. In
practice, future FCI observations could be averagest each MOCAGE profile to reduce the impact led tnstrument
errors on assimilated observations.

The 3D-FGAT assimilation scheme integrates thelmtit observations described in Sect. 3. Beforegrglssion, a thinning
process is applied to the synthetic observatiorie#ap spatially only 1 pixel out of 4. Such thirmiis useful to reduce the
computation time, by accelerating the convergeridde cost function (not shown). The spatial catieh length of the B
background covariance matrix is set to 0.4° in ptdéhave a spatial impact of the assimilation e gsimulation while not
having multiple coverage of assimilated observatiomer one profile. The result of this thinning gedure changes only
slightly the assimilated fields but saves signifitya computing time. Assimilation simulations (ARaje run for all CRs
simulations using the same generated set of syathleservations over the period of 4 months, from ' of January to the
30" of April. The standard deviation of errors usedBoand R matrix are estimated respectively at 2drib 12 %, as in Si
et al. (2016).

To assess the impact of the assimilation of FClhmtic AOD observations, the CR forecasts and tReahalyses are
compared to the assimilated synthetic observatidiigure 10 shows the histograms of the differefeaieen the synthetic
observations and the forecast field (in blue) aativeen synthetic observations and analyzed fiefdpurple) for the four
ARs simulations. The histograms follow a Gaussihapge, and the distribution of the analyzed valuescéoser to the

synthetic observations than the forecast values. spitead of the histograms is smaller for the aealyfields than for the
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forecast fields. The assimilation of synthetic AOBence improved the representation of AOD fieldshi@ assimilation
simulations. Besides, the spatial comparisons ketviee simulations and the NR show improvementeénrAOD fields of
simulations by assimilation of the synthetic obations (see supplementary material Fig. S5, S6a8¥ S8). As the
increment is applied to all aerosol bins and thdtfcorresponds to 5 of the 6 bins while PMo only 4, we expect better
corrections for PN} concentrations than for PMconcentrations.

To validate the results of the OSSEs, the simuiatimre compared to the reference simulation (NR) the period. Figure
11 exhibits the spatial differences in surface eomi@tions of P} between the ARs and the NR. It shows the meativela
bias, the correlation and the FGE for every sinoet Using Fig. 9 as a reference, the relatives,bihe FGE and the
correlation have been improved over most partshefdomain after assimilation for all simulationsve® the European
continent, all simulations show a strong improvetrarthe statistical indicators. For instance in3ZRlong a line that goes
from Spain to Poland, the FGE decreases by abauwfter assimilation, In the Eastern part of Eur@ipem the Turkey to
Finland), the decrease of FGE is even higher. (Nerth Africa and the Mediterranean Sea the improeimis
intermediate. Nevertheless, the mean bias oveodban tends to increase for the simulations, eajpeddr AR4. This can
also be observed for the Biconcentration comparison (see supplementary rah®ti S2, S3 and S4).

The assimilation of the synthetic observations hapositive impact at each layer of the model. Theam vertical
concentrations of PM and PM s of the different simulations are respectively egnted in Fig. 12 and 13, from the surface
(level 47) up to 6 km (level 30). The positive impalong the vertical of the assimilation of AODthe CTM MOCAGE is
due to the use of the vertical representation ef iiodel to distribute the increment¢ &t al (2016) showed that the
assumption of using the vertical representatiothefmodel gives good assimilation results withrdgular MOCAGE setup
that distributes emissions over the 5 lowest valrtievels. However, the performance of the asstinitamay depend on the
realism of the representation of aerosols alongvérécal in the CTM. The CRs simulations, in rederestimate the P}y
concentrations of the NR, in purple, due to theresgmation of desert dust concentrations in thes GRulations. This
overestimation is not present in the PMoncentrations because this is the fraction obsws where there are few desert
dusts. For the first three simulations, the veltie®;, concentrations are well corrected by the assimitatwhile for
simulation 4, the correction is less relevant toe tevels near the surface. The assimilation teod$ecrease the P
concentrations above the level 42 and to increasedncentrations under that level. Simulation ésents a decay of the
surface concentrations of BM The correction of concentrations is more pertifenthe PM, concentrations than for the
PM; s concentrations, which was expected.

The vertical distribution of aerosol concentratidredween the CR4 simulations and the NR explaing tive bias over the
ocean tends to increase. At the lowest level, treentration of Plyy is more important, since the CR4 emits only at the
surface level, while the AOD is less importantcsithe aerosol loss by dry deposition increases.pbsitive increment is

therefore added preferentially to the surface lewbich increases the bias at surface.
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To evaluate the capability of the FCI 444 nm choservations to improve aerosol forecast in amaality scenario, the
ARs simulations have been compared to the NR usiagsynthetic AQeR stations as in Sect. 4. Tablasad’8 show the
statistics of the comparison between the ARs aad\tR for PM, and PM s concentrations. With regard of the comparison
of the CRs against the NR in Tab. 5 and 6, the AlRsmore consistent with the NR. The bias is reddoceboth PM, and
PM, 5 concentrations. The RMSE and the FGE decreasee it Factor of 2 and the correlations increaseafloARs
compared to their respective CRs.

The daily medians of P\ and PM s concentrations at all stations are representedtowe in Fig. 14 and 15 for the four
simulations. The assimilation reduces the gap betwhe simulations and the NR over the entire perfround the
secondary inorganic aerosol episodé*,‘ @ay of simulation, the improvements of RMnd PM s surface concentrations are
significant for simulations 2, 3 and 4.

From an air quality monitoring perspective, theimgation of the FCI synthetic AOD at 444 nm in M@AGE improves
strongly the surface P)Mconcentrations in the 4 simulations over the Eeaspcontinent for the period January-April 2014.
To quantify the improvement of simulations througa assimilation of FCI synthetic observations g severe pollution
episode for (#-15" March) over Europe, maps of relative concentratiohPM, and FGE are respectively represented for
the CRs comparison and for the ARs comparisondn 6 and 17. The simulations CR2, CR3 and CR4 rastinate PNy
concentrations for 70 % over all Europe comparethéoNR. The FGE presents high values going fros® @0 0.85. The
assimilation of synthetic AOD improves meaningfutlye surface concentrations of aerosols over thirent in the
simulations, but the simulations still underestientite PM, concentrations by 30-20 %. Important changes énRGE are
noticeable, with values dropping from 0.55-0.85 ddw 0.2-0.4 for all simulations. Over the otheeas, the assimilation
reduces significantly the relative bias and the FEIrusS, the assimilation of synthetic observationgroves significantly

the representation of the surface fgbncentrations of simulations during the pollutepisode.

In summary, the use of synthetic observations ati of the future sensor FCI through assimilatioproves significantly
the aerosol fields of the simulations over the pasn domain from January to April 2014. These imeneents are located
all over the domain with best results over the Baem continent and the Mediterranean area. Theoweprent of the
vertical profile of aerosol concentrations is ateiceable, and it may be explained because diffgrarts of the column can
be transported by winds in different directions¢(8i al, 2016), although the AOD synthetic obseoratido not provide
information along the vertical. The first two siratibns give better results over the ocean thanlations 3 and 4, due to a
closer representation of the vertical profile of tierosol concentrations. This may show an overtymistic aspect of the
OSSE of the first two simulations. The simulatidead to sufficiently reliable results since the s of their vertical
profile of aerosol concentrations are differeninfrthose of the NR. These differences are causeatiecoway emissions are
injected in the atmosphere (higher for simulatioar®l lower for simulation 4). The simulations 3 ahgresent robust

results over continent, despite the differencdabénvertical representation of aerosol concentnatio
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6 Discussion

Although the results have shown a general bendfif@I/VIS04 future measurements for assimilationtie CTM
MOCAGE, some limitations must be addressed. The AlOBs not introduce information on the verticatrifisition of PM,
nor on the size distribution and type of aerosBts. the performance of the assimilation will layggéépend on the realism
of the representation of aerosols in the CTM be&msimilation. If, for instance, the model has sifie bias in AOD and a
negative bias in surface PM10 compared to obsemngtihen the assimilation could lead to detrinmaetsults. So the AOD
and PM biases should be assessed and correcteat as possible, before assimilation, in order toicdwdetrimental
assimilation.

To identify the added value of assimilating FCI/G#SAOD, it is needed to compare the results with disimilation of
present-day observations, such as imagers on LElites and in-situ surface PM observations. Thsirailation of PM
surface observations is indeed an efficient waiymigrove PM concentration fields at surface (Tonwettal, 2009), but the
correction of the fields remains confined to thedomost levels. While improving the PM surfacedilit has been shown
that the assimilation of AOD also gives a bett@resentation of aerosols along the vertical (Fiyatd 13) and of the AOD
fields, which are important added value that th&naation of PM surface observations only canndtiave. Besides, the
satellite coverage is much broader than the coeeodgn-situ network and, for instance, aerosdbieover the seas can be
corrected before they reach the coast.

In order to assess the added-value of a high tafgtimeasurements of FCl compared to a LEO sédeth complementary
experiment, called AR3LEO, has been done. This ixaat is based on the CR3 configuration of MOCAQIt the
synthetic observations kept are only the ones BTT2, instead of the hourly observations. By takiimgp account only one
measurement per pixel per day, AR3LEO should tlhmsilate the assimilation of a LEO satellite. Theules of AR3LEO
are in Tab. 9 and Fig. 18. The density of obsepmatiassimilated is about 10 times lower than thmsitheof FCI assimilated
data. Most of the scores (except the PM2.5 coioelpbf AR3LEO are between the CR3 and the AR3esgoiwhich shows
and quantifies the benefit of FCI compared to a L&&iellite. This is confirmed also on the time eerdf PM, surface
concentrations show (Fig. 18): the AR3LEO simulati® closer to the CR3 simulation than to the ARButation. During
the pollution episodes from 7 to 14 March 2014 (Hig, time series between day 60 and day 67, ams)nthe amplitude
of PM concentrations is underestimated more in ARGLthan in AR3. The maps of bias and FGE show betteres in
AR3 than in AR3LEO at the locations where pollut@turs.

The results have shown the potential benefit ofivdikging AOD data from the future FCI/VIS04 in &amistry-transport
model for monitoring the PM concentrations at regiocscale over Europe. The horizontal and tempesadlution of FCI (2
km horizontal grid every 10 minutes or even 2.5 utés in Regional Rapid Scan) will however be mudkerfthan the
regional scales that have been considered intildys (0.2° horizontal grid every hour). The ladjfferences between the
resolution of future FCI data and the data usetthi;n OSSE have two important implications that deséo be presented.

Firstly, in order to get closer to the future datée could consider generating synthetic obsemsatiat the full FCI
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resolution and assimilate them in a regional-sealgimilation system. The use of multiple observetiasing a “super-
observation” approach, by spatial and temporalayiag, should reduce the instrumental errors and tine may expect
that the assimilation of real FCI data can leag\wen better results than the OSSE presented hecen@ly, it is worth
considering whether high-resolution FCI measurementld be assimilated in a high-resolution modelkilometre-scale
monitoring of air quality. However, such work isepently limited by the present state of the arhwierical chemistry
models and of their input emission data. The caichs of some recent numerical experiments withnkétre-scale air
quality models (Colette et al, 2014) are that suduels are very expensive and that the emissicantovies do not have a
sufficient resolution. Still, the performance ofchuhigh resolution models are better than coarssolution ones. As
computing capacities keep increasing and kilomstade air quality models become affordable, it Wl interesting to
evaluate the benefit of assimilating high resolutiCl data in a kilometre-scale air quality modelen if the emission data
is built with coarse assumptions. One might expleat the assimilation of FCI data could correctuggtothe model state to

balance the deficiencies of the emission invensofi®r such study, high temporal repetitivity mayabso of high interest.

7 Conclusion

An OSSE method has been developed to quantifydtiecavalue of assimilating future MTG/FCI VIS04 AQ@44 nm) for
regional-scale aerosol monitoring in Europe.. Tharacteristic errors of the FCI have been compirimth a sensitivity
analysis and introduced in the computation of sgtithobservations from the NR. An evaluation of thalistic state of the
atmosphere of the NR has been done, as well amparson of CR simulations with the NR, in ordeatmid the identical
twin problem mentioned in Timmermans et al. (2008a)ythermore, different control run simulationyédeen set up as in
Claeyman et al. (2011) to avoid this issue. Thelteof the OSSE should hence be representatitheofesults that the

assimilation of real retrieved AODs from the FChser will bring.

Although the use of a single synthetic observapen profile and the choice of an albedo error o¥%l8re pessimistic
choices, the assimilation of synthetic AOD at 444 showed a positive impact, particularly for thedhean continental air
pollution. The simulations with data assimilati@produced spatial and temporal patterns ofJRlMncentrations at surface
better than without assimilation all along the dettions and especially during the high pollutioreetvof March. The
improvement of analysed fields is also expected ditrer strong pollution event such as a volcanic peime. This
capability of synthetic observations to improve dmalysis of aerosols is present for the 4 setnafilations which show the
capability of future data from the FCI sensor tm@ran added value within the CTM MOCAGE aerosokbasts, and in
general, in atmospheric composition models. Moreotlee advantage of a GEO platform over a LEO Btdlas been
shown and assessed.

The results over ocean show an increase of PM otration bias after assimilation in some placesti@aarly for AR4. An

explanation is that AOD does not introduce inforioratvertically and that the correction of aerodalshe vertical relies on

16



10

15

20

25

30

the model vertical distribution. For a satisfactagsimilation of AOD, the AOD and PM biases of thedel should be
assessed and corrected as far as possible. Arptsgective is to use multiple wavelengths, usiregiingstréom exponent,
could avoid this problem by better distributing tinerement of AOD between the different bins anddeethe different
speciesSi¢ et al. (2016) also recommended the use of otlpastyf observations, such as lidars, in the assiiil process

to introduce information over the vertical.

The results presented here in this OSSE are ergiagrdor the use of future FCI AOD data within CTMar the
wavelength VIS04 centered at 444 nm. The use ofrothannels could bring complementary informatismch as the
NIR2.2 that is expected to be less sensitive te &iarosols but more sensitive to large aerosols asicesert dusts and sea
salt aerosols. Future work may also consider etiptpthe high-resolution of FCI, following two padiske lines: either for
regional-scale assimilation by using a “super-oleson” procedure, or for kilometre-scale air gtyalmapping and for
assessing the quality of emission inventories. H@mesuch extension is mostly depending on impramm in the

numerical chemistry models, in the input emissiatadand in the optimization of assimilation aldgumit.
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Appendix: Deriving AOD error variance from the Global Sensivitiy Analysis of FCI/VIS04 reflectance

The general method is summarized in Figure Al. dsitizity analysis has been performed for each OR#®ESsol types,
using Monte-Carlo FCI simulations of about 200.@0@ws in the prior distribution of the input parders. The input
distribution of AOD and of total ozone and watepwacolumns are obtained from a MOCAGE simulatian over the
whole 2013 year. The distribution of ground albésl@educed from the OPAC database. The profilethh@MOCAGE
simulation are classified into OPAC (Hess et #@98) types by making correspondence between spasi€gamanos et al.
(2014) and then by applying classification critegiiailar to the OPAC types.

For every OPAC type, a global sensitivity analf§$A) has been performed between the input (AQtal column water
vapour, ozone content), ground albggoand solar zenithal angty) distributions and the output (VIS04 reflectance)
distributions of the FCI simulator. Under the asption of independent inputs, the Sobol (1990, 1988jces enable a
ranking of inputs or couple of inputs with resptwetir variance-based importance in the total ouyautance. For VIS04,
the variability of the solar zenithal angle, th@wnd albedo and the AOD are the three largest Sadales in that order
and, together, they are at the origin of more tB8®6 of the total variance of the output reflect@anEollowing Sobol
(1996), the GSA can also be used to determine macdtad version of the Hoeffding (1948, ANOVA) fuioctal

decomposition, with key inputs, that approximathe ainalyzed reflectance. For all OPAC groups, tepeddence of
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reflectance for VIS04 on the total ozone column aadker vapor is negligible and is not taken intoamt in the reflectance
approximation. As a consequence, the reflectéhcan be approximated by the following equation:
R=f3(95)+f2(pg)+f1(f)+€, (2)
wheref,, f,, andf; are functions of the solar zenithal angle, theugth albedo and the AOD, respectively. The
approximation erroe, exhibits a root mean square (RMS) less than 0./ ¥r! pm® (1.5 % of the mean radiance values
of 47.3 W n¥ sr* um).

As a consequence of this sensitivity analysis,sitthen possible to isolate the AQODwith respect the measured
reflectancer, the other key input8s, p, and the approximation errer

T=F(R,05py€). (3)

By sampling input distributions on this equationgile-Carlo method), the root mean square error (RMS8 the AOD
retrieval can be derived as a function of the otélacer, the solar zenithal angt the ground albedp,, and of their
uncertainty R is associated with a measurement noise. No uiiria prescribed for the solar zenithal angler &@iven
fixed value of relative error of ground albedopak-up-table is built, that provides the root megnare error (RMSE) of
the AOD retrieval as a function of the solar zealithngle and of the ground albedo. Such a lookabgetof the RMSE of
VIS04 AOD has been computed for every OPAC typesfandifferent possible values of surface albedors.
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Tables :

Bias (ug/m3) | RMSE (ug/m3) FGE FactOf2 R Rs
NR’s PMy -6.23 16.2 0.56 64.7 % 0.452 0.537
(~-35.1%)
NR’s PM, 5 -3.20 11.9 0.543 67.5 % 0.535 0.602
(~-24.7 %)

Table 1: Bias, RMSE, FGE, Factor of 2, Pearson corration (Rp) and Spearman correlation (Rs) of the NRsimulation taking as
reference the AQeR observations for hourly PMy and PM, 5 concentrations from January to April 2014.

Bias

MNMB

RMSE

FGE

R

NR

0.043

0.39

0.09

0.531

0.56

Table 2: Bias, MNMB, RMSE, FGE and Pearson correlatia (Rp) between the NR simulation and AERONET stationdr daily 500

nm AOD from January to April 2014.
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Aerosol types Surface Main species Surface proportion
Concentration  in over the total PIv}
ug/nt

DO. & DC. - DD

MC. - SS SS>85%

MPO. - SS SS<85%

MPC. - SS SS<85%

CC. 0-17 IWS

CA. 17-34 IWS

CP. 34-75 IWS

u. >75 IWS

Table 3: Conditions for classifying the MOCAGE NR inb the OPAC types. The first condition is the surfaceoncentrations, the
second is the main specie at the surface betweensed Dust (DD), Sea Salts (SS) and IWS (Insolubl®/ater soluble, and Soot)
and the third is a condition of the species over hthe aerosols concentration. A species is describas a main species if its
concentrations is above each other concentrationfgr example DD is a main species if [DD]>[SS] & [DP-[IWS].

Forecasts SOA Repartition of emissions from ldvédurface
layer) up to the 5th level
NR ARPEGE Yes 52%; 26%; 13%; 6%; 3%
CR1 IFS Yes 52%; 26%; 13%; 6%; 3%
CR2 IFS No 52%; 26%; 13%; 6%; 3%
CR3 IFS No 30%; 24%; 19%; 15%; 12%
CR4 IFS No 100%; 0%; 0%; 0%; 0%

Table 4: Table of differences between the NR simulath and the CRs simulations.
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Hourly PM10 | Bias (ug/m3) | RMSE (ug/m3) FGE FactOf2 R Rs

CRs
« stations » vs
NR « stations

CR1 -1.3 (-8.2 %) 7.9 0.332 89.1% 0.671 0.748
CR2 -4.5 (-35.2 %) 9.3 0.47 75.6 % 0.609 0.709
CR3 -4.8 (-38.1 %) 9.8 0.511 69.3 % 0.572 0.671
CR4 -2.9 (-20.5% 8.7 0.412 81.9% 0.623 0.712

Table 5: Bias, RMSE, FGE, Factor of 2, Pearson corretion (Rp) and Spearman correlation (Rs) of the CRsimulation
taking as reference the NR simulations for hourly R, concentrations from January to April 2014. The comprison is made
at the same station location as for AQeR stations.

Hourly PM2.5| Bias (ug/m3) | RMSE (ug/m3) FGE FactOf2 R Rs
CRs

« stations » vs

NR « stations
CR1 -0.8(-6.24%) 5.9 0.307 91.1% 0.732 0.776
CR2 -3.9 (-37.4%) 7.1 0.452 78.4% 0.69 0.731
CR3 -4.4 (-42.6%) 7.6 0.505 70.6 % 0.644 0.695
CR4 -1.8 (-15.1%) 6.6 0.374 85.5 % 0.665 0.73

Table 6: Bias, RMSE, FGE, Factor of 2, Pearson corretmn (Rp) and Spearman correlation (Rs) of the CRsimulation
taking as reference the NR simulations for hourly PRI, s concentrations from January to April 2014. The comparison is made
at the same station location as for AQeR stations.
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Hourly PM10 | Bias (ng/m3) |RMSE (pg/m3) FGE FactOf2 Rp Rs
CRs

« stations » vs

NR « stations »
AR1 -1.17 (-7.21 %) 7.16 0.296 92.2% 0.739 0.791
AR2 -2.91 (-21.3 %) 8.1 0.373 85.3 % 0.694 0.751
AR3 -3.53 (-26.2 %) 8.67 0.417 80.4 % 0.67 0.726
AR4 -0.756 (- 8.03 0.339 88.2 % 0.691 0.759

5.31 %)

Table 7: Bias, RMSE, FGE, Factor of 2, Pearson correten and Spearman correlation of the ARs simulationtaking as reference
the NR simulations for hourly PM,y concentrations from January to April 2014. The comprison is made at the same station

location as for AQeR stations.

Hourly PM2.5 | Bias (pg/m3) |RMSE (ng/m3) FGE FactOf2 Rp Rs
ARs

« stations » vs

NR « stations »
AR1 -0.395 (- 5.61 0.284 92.7 % 0.755 0.806

3.15%)

AR2 -2.28 (-20.5 %) 6.31 0.364 86.6 % 0.703 0.766
AR3 -2.94 (-27.1 %) 6.86 0.416 80.9 % 0.669 0.732
AR4 0.109 (0.9 %) 6.56 0.328 89.4 % 0.699 0.765

Table 8: Bias, RMSE, FGE, Factor of 2, Pearson corretmn and Spearman correlation of the ARs simulatiortaking as reference
the NR simulations for hourly PM, 5 concentrations from January to April 2014. The comprison is made at the same station

location as for AQeR stations.
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Hourly Bias (ug/m3) | RMSE FGE FactOf2 Re Rs

« stations » vs

NR « stations »

PM10 -4.47 (-35.1 %) 9.11 0 .462 75.6 % 0.656 0.717

PM2.5 -3.89 (-37 %) 7.14 0.457 76.5% 0.681 0.731

Table 9: Bias, RMSE, FGE, Factor of 2, Pearson correfion and Spearman correlation of the AR3LEO simulation taking as
reference the NR simulations for hourly PM10 and PM s concentrations from January to April 2014. The comprison is made at
the same station location as for AQeR stations.
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5 Figure 1: Schematic representation of the OSSE priniple.
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Figure 2: Mean PMy, (left panel) and PM; 5 (right panel) surface concentration (pg.r¥) of the NR (shadings) and AQeR stations

(color circles), from January to April 2014.
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(last Day). The left panel is for PM, surface concentrations while the right one is foPM,s.
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Figure 4: Classification of the NR profiles for the7" of March 2014 at 12 UTC. Deep Blue is for dismissegrofiles, Blue is for
5 Maritime Clean, Light Blue for Maritime Polluted, Gr een is for Continental Clean, Yellow is for Continatal Average, Orange is
for Continental Polluted, Deep Orange is for Urbanand Red is for Desert Dust.
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Number of pixels per day

Figure 5: Average (from January to April) number of selected profiles per day
available for assimilation.
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Figure 6: Example of generation of synthetic obseations on the 7' of March 2014 at 12 UTC. From the NR’s AOIL

as 444 nm (left panel), noise values representativd FCI (middle panel) are applied on every cleasky pixel to

generate the synthetic observations (right panel)he grey color represents the dismissed profiles.
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Figure 7: Median of the daily meansurface concentration of the NR (in purple) and thalifferent CR (CR1 in green, CR2 ir
yellow, CR3 in red and CR4 in blue) determined fothe same location as for the AQeR stations. The lefraph is the PM
mass concentrations (ug.i), while the right one represents the PMs mass concentrations.
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Figure 8: Scatter plot of the CRs daily surface carentrations (ug.m®) as function of NR daily surface concentrations fo
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dataset.
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Figure 11: Same legend as Figure 9, for assimilaticuns (AR) instead of control runs (CR).
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Figure 12: Mean vertical profile, from January to April, over the domain of the
concentrations (ug.nt) of PMy, for the 4 set of simulations (1 in top left, 2 indp
right, 3 in down left and 4 in down right). The NR B in purple, the CR is in rec
and the AR is in green.
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Figure 13: Mean vertical profile, from January to April, over the domain of the
concentrations (ug.nt) of PM, s for the 4 set of simulations (1 in top left, 2 indp
right, 3 in down left and 4 in down right). The NR B in purple, the CR is in rec
and the AR is in green.
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Figure 14: Median values over the AQeR station lo¢ins of the daily mean PM, surface concentration (ug.ri) for the
NR (in purple) and the different CR (red) & AR (green) simulations (CR-AR-1 top left, CR-AR-2 top righ, CR-AR-3 down

left, CR-AR-4 down right).
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Figure 15: Same legend as Figure 14 for P) concentrations.
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Figurel6: PMy, comparison between the NR an
the CRs from the 7" March to the 15" March
2014: relative bias and fractional gross error.
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Figure 17: Same legend as Figure 16 for assimilati
runs (AR) instead of control runs (CR).
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Figure 18 : Results of the assimilation run ARSLEO dznsny of assimilated synthetic observations (uppdeft panel, to be
compared with Figure 6), time series of concentrabin of PM at surface for NR, CR3, AR3, AR3LEO (upper-right parel) between

1% January and 30" April 2014, PM 4 relative bias and FGE of AR3LEO from 7 to 14 March 204 (to be compared with Figure
5 17).
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Figure Al: Summary of the methodology to derive theRMSE of AOD from the FCI reflectance simulator. Sep 1 is the
computation of FCI radiance. Input parameters are he histograms of AOD, ozone total column, total war vapor content, ground
albedo and solar zenithal angle. The libRadtran simlator simulates the distribution of radiance and rdlectance in the VIS04
channel and takes into account the signal-to-noisatio of FCI. Step 2 is the approximation of the rélectance in functions of key
parameters using a Global Analysis Sensitivity meitd and Sobol indices. Step 3 is the retrieval of (hAOD RMSE using random
noise of measurement and the uncertainty of key pameters.
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