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We would like to thank the reviewer for their constructive comments. We have tried to address these comments in the attached 

response document and in the manuscript. Reviewer comments are reproduced in black, our responses are in blue. 

Reviewer 1 

This paper examines various approaches for calibrating low-cost air quality (AQ) sensors, with the goal of making 

recommendations for effective calibration strategies, especially over relatively long timescales (months to years). This is an 5 

important and timely topic in atmospheric chemistry, and is certainly will be of interest to the readership of AMT. The key 

result, that a “generalized calibration model” - in which a number of sensors are calibrated via collocation at EPA-grade AQ 

monitoring sites, and the average calibration be used for all sensors – provides adequate accuracy for many applications, is 

certainly a useful and important one. However, a weakness of this paper is that the analysis approaches taken are not always 

clearly described (or well-justified) in the manuscript, so it is not always obvious how general the conclusions are. In particular, 10 

the calibration approach over longer terms is not well-described, and appears to involve an test/training approach that is 

different than what would be used under most conditions. Thus the general validity of the recommendations (that new models 

should be developed every year) is unclear. These issues, described below, should be addressed before this paper is published 

in AMT. (format is “pageNumber_lineNumber”) 

The way one would calibrate sensors under standard deployment conditions is to collocate at an EPA station for some period 15 

of time (or to calibrate in the lab), then deploy the sensor to some other location of interest to make new measurements (possibly 

returning the sensor to the collocation spot later on for re-calibration). But this doesn’t appear to be the approach taken here, 

where the long-term data (Figure 6 and 7, and accompanying text, p. 14-15) seems to have training/test data taken throughout 

a given year. (Though this isn’t well-described in the manuscript – what were the training and test times? How were these 

chosen?) If the test data is indeed taken throughout the year, this isn’t really a realistic calibration approach, so it is unclear to 20 

me how the authors can make recommendations about how or how often calibrations should be done (1_20, 14_29). 

For the results discussed, training of calibration models takes place at specific times and locations, depending on the case being 

discussed. In the results relating to Figures 2 and 3, specific subsets of the data collected by the RAMPs when they are deployed 

at the CMU site in 2017, amounting to a maximum total of 28 days of training data per RAMP, are used to develop the models; 

the performance of the models is evaluated on whatever other data is available from this site which was not used in the training. 25 

This has been clarified in the text (5_26-6_7): 

“From the collocation data, eight equally sized, equally spaced time intervals are selected to serve as training data for 

the calibration models. The amount of training data is selected to be either 80% of the collocation data or four weeks 

of data (corresponding to 2688 15-minute-averaged data points), whichever is smaller. The minimum amount of 

training data is 21 days; if less than this is available, no iRAMP model is trained for this RAMP, and thus no iRAMP 30 

model performance can be assessed for it (although bRAMP and gRAMP models trained on other RAMPs are still 

applied to this RAMP for testing). Training data for gRAMP models are obtained in the same way, although in that 

case it is the data for the virtual “typical RAMP” which are divided, rather than data for individual RAMPs. Any 

remaining data from the collocation period are left aside as a separate testing set, on which the performance of the 
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trained models is evaluated. Note that due to differences in which RAMPs and/or regulatory-grade instruments were 

operating at a given time, training and testing periods are not necessarily the same for all RAMPs and gases; for 

example, a certain time may be part of the training period for the CO model for one RAMP, and be part of the testing 

period for the O3 model of another RAMP. However, the training and testing periods for a given RAMP and gas are 

always distinct. The division of data collected at the CMU site in 2017 into training and testing periods is illustrated 5 

in the supplemental information (Figures S6-S10). The division of data collected at the CMU site in 2016 is carried 

out in a similar manner. The choice of averaging period, of minimum and maximum training times, and the method 

for dividing between training and testing periods are motivated by previous work with the RAMP monitors 

(Zimmerman et al., 2018). ” 

In addition, a series of figures has been added to the supplemental information, detailing for each RAMP and each gas sensor 10 

which data collected at the CMU site are used for training and which are used for testing. 

For Figures 4, 5, and 7, performance at the deployment sites (Lawrenceville and Parkway East) are assessed using models 

already developed at the CMU site (the performance of which at that site are represented as hollow markers in Figure 4, black 

markers in Figure 5, and black lines in Figure 7); therefore, all data collected at these deployment sites are in effect treated as 

“testing data”. In other words, no site-specific training is done for these deployed sensors. We believe this is similar to the 15 

typical use case described by the reviewer, namely that a sensor is first collocated at a reference station (in this case, not an 

EPA station, but rather a similar station set up at the CMU campus) to allow for model calibration, and then deployed to 

another site to collect data. The fact that these other sites were EPA stations allowed us to have access to “ground truth” data 

for assessing the performance of our calibrations, but these data were not used to develop new calibrations for the deployed 

sensors, as this would not represent a realistic use case in general. This has been further clarified in the text (6_7-9): 20 

“All data collected at sites other than the CMU site (i.e. the Lawrenceville or Parkway East sites) are reserved for 

testing; no training of calibration models is done using data collected at these other sites, and so they represent a true 

test of the performance of the models at an “unseen” location.” 

For Figure 6, models trained in 2016 or 2017 are trained using only a portion of the data collected in that year, and their 

performance is evaluated on another distinct subset of data collected in that year. For 2017, these training and testing subsets 25 

are exactly the same as those used for the results of Figures 2 and 3. For 2016, the sets are different, but are determined using 

the same method as was used for the 2017 data. This has been further clarified in the text (6_3-5): 

“The division of data collected at the CMU site in 2017 into training and testing periods is illustrated in the 

supplemental information (Figures S6-S10). The division of data collected at the CMU site in 2016 is carried out in 

a similar manner. ” 30 

And (14_8-11): 

“Training and testing data for 2017 represent the same training and testing periods as used for previous results. For 

2016, training and testing data are divided using the same procedure as was applied for 2017 data, as discussed in 

Sect. 2.3. For example, the results for “2016 Data, 2017 Models” represent the performance of models calibrated 
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using the training data subset of the 2017 CMU site data when applied to the testing data subset of the 2016 CMU 

site data. ” 

Similarly, from Table 4, it appears the training and test sets cover nearly identical ranges in pollutant concentrations – to within 

1 ppb for the four gases (CO, NO, NO, O3). How is this possible?  

Because Table 4 refers to training and testing data sets used for the iRAMP models, each RAMP has its own training and 5 

testing data sets. However, because not all RAMPs were present and operating at the CMU site at the same times, the time 

period encompassing the training set for one RAMP may be part of the testing set for a different RAMP, and vice versa. Thus, 

it is quite common for high and low concentrations to show up in the training sets of some RAMPs and the testing sets of 

others, and thus be reported in this table as being part of both the training and testing set ranges. We have attempted to clarify 

this by instead reporting ranges of high, average, and low concentrations for the training and testing sets in this table. 10 

Furthermore, in the supplemental information, we have included several figures describing the distribution of measurements 

in the training and testing sets for each RAMP. Finally, we have divided this table into two tables, one presenting the 

concentration ranges and the other depicting the performance information. 

One implication of these identical ranges is that the performance of the hybrid approach (discussed in sections 2.3.5) cannot 

really be distinguished from the non-hybrid approaches. This is mentioned near the very end of the paper (17_17), but really 15 

should be discussed sooner, and the hybrid and RF-only models probably should not be discussed as separate approaches. If 

they are, the number of “crossings” (switches from RF to LR, fraction time evaluated by RF vs time evaluated by LR) should 

be discussed. 

As the reviewer suggests, due to the large degree of overlap between these models, we have removed the separate discussion 

of results from both model types, and instead focus on the hybrid approach only. 20 

4_24-29: The gRAMP approach involves selecting a subset of the sensors for calibration and seeing how the others do with 

this calibration. However very little information was given on which sensors were used/withheld. Presumably these were 

sampled randomly (via a k-fold cross-validation, etc), to make sure the selection of sensors in the training set did not bias 

results? 

Selection of the training and testing sets for the gRAMP model was done randomly; RAMPs were included in the training set 25 

with a probability of 80%. Following this, a few manual adjustments were to the selected sets were made, such that RAMPs 

which were to be deployed to the Lawrenceville and Parkway East sites were not included in the training data set. However, 

this selection was made only once, and not resampled. This has been clarified in the manuscript (5_11-15): 

“RAMPs were divided into training and testing sets for the gRAMP models randomly, with the caveat that the two 

RAMPs deployed to the Lawrenceville and Parkway East sites were required to be part of the testing set. Data from 30 

about three quarters of the RAMP monitors (53 out of 68) were used for developing the general calibration models 

(although not all of these monitors were active at the same time). Data from the remaining 15 RAMP monitors were 

used for testing, ensuring that the testing data are completely distinct from the training data.” 
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7_22 (also 2-26): The authors describe the work by Hagan et al. as a clustering approach, but this is incorrect – the authors 

may be confusing k-nearest-neighbors (kNN, used by Hagan) with k-means-clustering (used in this work). kNN is not a 

clustering method; clustering in k-means-clustering is computationally much less intensive than storing and comparing to 

every input-output pair (as is done in kNN), but it can also lead to a dramatic degradation of the quality of the training dataset. 

Thus, the present k-means-clustering results cannot be compared to the approach of Hagan et al.  5 

As described by the reviewer, the clustering approach presented in this paper is a variation of the k-nearest-neighbors approach 

in which clustering is used to reduce the number of stored input-output pairs; this improved the computational efficiency of 

the approach at the expense of possibly lower performance. This distinction has been made clear in the text (8_14-18): 

“In a traditional k-nearest-neighbors approach, such as that used in previous work (Hagan et al., 2018), every input-

output pair from the training data is stored for comparison to new inputs. Although this provides the best possible 10 

estimation performance via this approach, storing these data and performing these comparisons are computation- and 

memory-intensive. Therefore, in this work, the input data are first clustered, i.e., grouped by proximity of the input 

data.” 

Overall: the authors may want to reconsider their terminology, given they are trying to make general recommendations for 

sensor use, including use of non-RAMP AQ sensors (this is the focus of section 4.1). I would recommend using terms to 15 

describe the models that are more general and non-sensor-specific than iRAMP, gRAMP, etc. 

In the revised manuscript, we make use of the “iRAMP”, “bRAMP”, and “gRAMP” acronyms to describe the models when 

they are specifically applied to the data collected from the RAMP sensors. Otherwise, when discussing these approaches 

generally and drawing conclusions, we make use of the less specific terminology, e.g., “generalized” or “individualized” 

models. This has been explained in the text (5_19-21): 20 

“Finally, note that, for brevity, we will refer to iRAMP, bRAMP, or gRAMP model variants when discussing specific 

results; however, when drawing general conclusions about low-cost electrochemical gas sensor calibration methods, 

we will use less RAMP-specific terms (such as “generalized models”).” 

Minor comments 

- 2_20-22: The wording here should probably be softened somewhat; it is challenging (but not impossible) to access all relevant 25 

atmospheric concentrations in the lab.  

This has been corrected (2_21-23): 

“Due to the variety of interactions and atmospheric conditions which can affect sensor performance, covering the 

range of conditions to which the sensor will be exposed using laboratory calibrations is difficult.” 

- 3_21: Small typo: the company name is Alphasense, not AlphaSense. 30 

Thank you for pointing this out; it has been corrected. 

- 4_24: the gRAMP approach has some similarities to the averaging approach taken by Smith et al. (Faraday Discuss. 2017, 

200, 621-637); while there are differences in these two techniques, this previous work should certainly be acknowledged here. 
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Thank you for bringing this to our attention. The motivating ideas are indeed similar, but in our case we use the median of a 

sensor ensemble to generate data for calibration, and then apply this calibration to the outputs of individual sensors to evaluate 

performance. This discussion has been added to the manuscript (5_7-10): 

“The motivation for the use of gRAMP models is similar to that of Smith el at. (2017); however, while in that work 

it is recommended that the median from a set of duplicate low-cost sensors be used to improve performance, in this 5 

work we use that method to develop the gRAMP calibration model, but then apply this calibration to the outputs of 

individual sensors rather than to the median of a group of sensors.” 

- 5_6-10: how were these cutoffs (15 minutes, 21 days) chosen? It’s stated the 15 minute averaging was chosen to reduce noise, 

but results from other time intervals (1 min, 5 min, 1 hour, etc) are not presented. Are the data so noisy that such averaging 

is necessary? (Or is this just minute-by-minute variability?) 10 

The choice of 15 minutes as an averaging period, the upper and lower limits on the amount of training data, and the method 

by which these data are divided are motivated by previous work with the RAMP sensors (Zimmerman et al., AMT, 2018, 11, 

291-313). Recently we have examined the performance of the calibration models when applied to raw RAMP data using 

different averaging periods (ranging from 1 minute to 1 day). These results are included in the supplemental information, and 

indicate that performance is relatively stable for averaging periods below 1 hour (14_31-15_5): 15 

“Additionally, calibration model performance was assessed as a function of averaging time. Note that the calibration 

models discussed in this paper are developed using RAMP data averaged over 15-minute intervals, as discussed in 

Section 2.3. However, these models may be applied to raw RAMP signals averaged over longer or shorter time 

periods. Furthermore, the calibrated data can also be averaged over different periods. To investigate the effects of 

averaging time on calibration model performance, we assess the performance of RAMPs calibrated with gRAMP 20 

models for CO, O3, and CO2 at the CMU site in 2017, with averaging performed either before or after the calibration. 

Results are provided in the supplemental materials (Figures S4 and S5). Overall, we find little variation in calibration 

model performance with respect to averaging periods between 1 minute and 1 hour.” 

- Figures 2-3: What do the error bars refer to here - the spread among individual sensors? If possible, it might be more useful 

to show the data from each individual sensor here. 25 

Error bars indicate the interquartile range in performance across RAMPs. We originally had a version of this figure which 

presented each performance of each RAMP with a single point; this proved to be very difficult to interpret, which is why we 

chose to present the results in this way.  

- 7_30-8_1: since this issue is important to all nonparametric models, as the authors state, this point should be made earlier, 

not just in the section on k-means-clustering. 30 

This discussion has been moved to the beginning of the section on calibration models (4_25-30): 

“A common difficulty of non-parametric methods is generalizing beyond the training data set. For example, if no 

high concentrations are observed during the collocation period, then the resulting trained nonparametric model will 

be unable to estimate such high concentrations if it is exposed to these during deployment. This is of potential concern 
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for air quality applications, as the detection of high concentrations is an important consideration. Parametric models 

avoid this difficulty, but at the cost of lower flexibility in the types of input-output relationships they can capture.” 

- 8_30-32: this sentence implies that the hybrid approach was developed by Zimmerman et al. and used by Hagan et al. My 

understanding from those two papers (and from the timing of the original AMTD submissions) is that Hagan implemented it, 

and it was mentioned as a potential approach by Zimmerman. 5 

Correct. This has been re-worded to clarify that (9_24-26): 

“The use of this approach for RAMP data was suggested by Zimmerman et al. (2018). Furthermore, it is similar to 

the approach of Hagan et al. (2018), who hybridize nearest neighbor and linear regression models.” 

- 9_13 (section 2.4): this is a very useful section, but it should be highlighted that these metrics are used on the test/validation 

data only. 10 

This has been explicitly stated at the beginning of the section (10_7-9): 

“It should be noted that the metrics presented here are applied only for testing data, i.e., data which were not used to 

build the calibration models. Model performance on the training data is expected to be higher, and thus less 

representative of the true capability of the model.” 

- p10-14: Here there is a lot of text describing the individual figures. All this detailed information was rather hard to follow, 15 

and hard to glean what the major results were; a “bigger-picture” discussion of what the figures tell us might be helpful. 

Much of these detailed results have been omitted, and instead more emphasis has been placed on the conclusions drawn from 

these results. 

- Figure 5: how many sensors are we talking about here? Were all of them moved? 

For the results of Figures 4, 5, and 7, only one sensor is present at each of the deployment sites (i.e. one sensor at Lawrenceville 20 

and one sensor at Parkway East). This has been clarified in the text (13_2-3): 

“Figure 4 depicts the performance of calibration models for two RAMP monitors deployed at two EPA monitoring 

stations operated by the ACHD (one monitor is deployed to each station).” 

- 14_10-12: I don’t follow this sentence. If the models are trained and tested on data from both years, how can a change in 

model performance indicate a change in the models? Do the authors mean a change in the sensors themselves (as discussed in 25 

the next paragraph)? 

Models are trained on a subset of data collected in one year, and then tested either on a distinct subset of the data from that 

year or on a testing data subset from the other year. This has been clarified in the text (14_8-11): 

“Training and testing data for 2017 represent the same training and testing periods as used for previous results. For 

2016, training and testing data are divided using the same procedure as was applied for 2017 data, as discussed in 30 

Sect. 2.3. For example, the results for “2016 Data, 2017 Models” represent the performance of models calibrated 

using the training data subset of the 2017 CMU site data when applied to the testing data subset of the 2016 CMU 

site data.” 
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Changes in performance on data collected in the same year are due only to the differences in the models; changes in 

performance on data collected in different years using the same model are only due to differences in the sensor responses. 

- 14_24: If the sensor is degrading, its output signal will probably be lower for a given amount of pollutant. Is this observed? 

If not, what evidence is there for degradation, other than a change to the calibration? 

This has been observed in some data recently collected from these sensors (14_20-24): 5 

“Thus, a model calibrated on the response characteristics of the sensors in one year will not necessarily perform as 

well using data collected by the same sensors in a different year. This degradation has also been directly observed, as 

the raw responses of “old” sensors deployed with the RAMPs since 2016 were compared to those of “new” sensors 

recently purchased in 2018; in some cases, responses of “old” sensors were about half the amplitude of those of “new” 

sensors exposed to the same conditions.” 10 

- Additionally, in 14_28: I think the problem is not that the electrode material (typically some metal) is “used up” but rather 

that the electrolyte concentration changes over time, by either evaporation or leaking. 

Thank you for pointing this out; it has been corrected (14_24-25): 

“This is consistent with the operation of the electrochemical sensors, where the electrolyte concentration changes 

over time as part of the normal functioning of the sensor.” 15 

- Table 4: this table is very useful, but a bit hard to follow in its current form. Some suggestions/questions: - since it’s not 

relevant to the text, maybe remove CO2, avoiding the ppb/ppm problem - the concentrations (as measured by FEM/FRM 

monitors) are in the “LR” row, which might suggest they are relate to the linear regression. Maybe move them to the header 

of each pollutant, to separate the calibration technique used from the data - the column title “Models” isn’t clear - a CO 

concentration of 7ppb is unusually (maybe impossibly) low – remote regions generally have levels of _100 ppb. It might 20 

be worth checking that dataset. - T and RH ranges should be included. 

Thank you for these suggestions. This table has been divided in two, with the first table displaying concentration information 

(as well as ranges for T and RH) and the second showing the performance of iRAMP models. Information for CO2 has been 

moved to the supplemental information. Finally, it appears the report of 7 ppb was a typo, it was meant to be 57 ppb.  

16_11-14: This statement is based only on comparisons of sensors run under different conditions at different times and places. 25 

Comparisons like this can only really be made when different sensors are studying the same airmass. 

This is based on reported differences between calibration model performances in the literature. The signal conditioning 

employed in the RAMP monitoring package likely contributes to higher signal-to-noise ratios compared to other similar 

systems, based on discussions with the device manufacturer. However, determination of whether this is the case is beyond the 

scope of the current paper. The statement has been qualified (16_11-15): 30 

“The fact that for most gases a variety of calibration approaches show similar (and for typical uses cases, acceptable) 

performance may reflect better underlying performance from the RAMP monitor, as similar studies for other low-

cost sensor packages showed a wider variability in performance between calibration approaches (see e.g. the summary 

provided by Zimmerman et al., 2018). This suggests that the primary difference between these monitors, i.e. the 
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internal circuitry which is unique to the RAMP, is the cause for this consistency; however, determination of this is 

beyond the scope of this paper.” 

- Citations: twice (Hagan et al., Sadighi et al.) the AMTD citation is used rather than the AMT one. 

These have been corrected. 

- SI: making the data publicly available is a really excellent feature of this paper, and a good template for other sensor papers. 5 

However the file is almost 14GB! It might make more sense to provide just the raw data, and the scripts used; most users will 

want the data only. Those that want to examine the model output can run the scripts themselves. 

We apologize for the size of the file, however, we felt it was important to include the models themselves, since the randomized 

nature of the training approach for some models (such as the random forest models) will lead to slightly different results if 

these models are re-built, as well as a major investment in computational time necessary to re-build all varieties of models 10 

considered. However, we have also provided a second version of the data, including only the raw data and scripts but without 

the calibrated models, which is of a smaller size (about 300MB). Both data sources are referenced in the “Data Availability” 

section.   

 

Reviewer 2 15 

General comments: In this study, authors compared different models used to adjust data from low-cost sensors and compared 

model application in different sites within the Pittsburgh, Pennsylvania region of the USA. These comparisons demonstrate 

that at the sites different model-based calibration techniques show differing abilities to accurately produce concentration data 

for the various sensors employed. However, there existing two main problems: 1 for calibration period and deployment, it is 

unclear which based on the text, the calibration data also used for testing or vice versa, more details about the deployment 20 

should be illustrated.  

All presented results correspond to “testing” data, which is separate from the “training” data used to calibrate the models. This 

has been clarified in the text (Page 10, Lines 7-9): 

“It should be noted that the metrics presented here are applied only for testing data, i.e., data which were not used to 

build the calibration models. Model performance on the training data is expected to be higher, and thus less 25 

representative of the true capability of the model.” 

Also, several figures have been added to the supplemental materials illustrating which periods of time are set aside as training 

and testing data for different sensors. Various other changes have been made throughout the manuscript to clarify what data 

are being considered, and what models are being applied.  

2 Evaluation validity: As listed in Table 4, the average pollutant concentration is relatively small for NO and NO2 both in 30 

training and testing period, which about 1.7 and 6.4 ppb level, how did the investigators ensure sensor evaluation validity in 

such low-level situation, while EC sensor has a lower detection limit at about this level? And for NO, the MAE of all models 

are even large than average concentration. 
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Sensor performance was evaluated using only ambient concentrations of pollutants, as their performance in this regime is the 

most relevant to their performance during actual deployments. This is reflected in the presented results; for example, CvMAE 

for NO sensors is on the order of 1, indicating absolute errors are of the same magnitude as the readings themselves. We 

believe this to be an honest way to assess the RAMP sensor and calibration model performance in line with the intended use 

case of the monitor.  5 

In the specific cases of NO and NO2, we also present the performance of the calibration models at the “Parkway East” site in 

Figure 4, which was chosen specifically because it typically experiences higher concentrations of these pollutants than our 

training (CMU) site. In both cases, the performance of the generalized calibration models at these sites (filled markers) was 

similar to their performance at the training site (hollow markers); thus, we believe the presented performance results to be 

robust across most typical ambient concentrations which we would encounter in the city of Pittsburgh or any other city with 10 

similar climate and air quality characteristics. 

In general, we have focused on assessing the relative calibration model performance in terms of CvMAE (e.g. as presented in 

Figure 2), since we believe this to be readily understandable and to allow easy performance comparisons between sensors 

measuring different pollutants. However, we have also included information on absolute performance in terms of MAE (e.g. 

as presented in Table 5) for interested readers, to allow them to estimate what the expected performance of a similar low-cost 15 

sensor package might be in the specific environment they are interested in.  

Specific Comments:  

1. Page 1, Line 24: Authors use “These results will help guide future efforts in the calibration and use of low-cost sensor 

systems worldwide”. Perhaps the approaches merit many further trials in the widely differing pollutant and meteorological 

conditions It is unclear. It is unclear how the study demonstrates protocols that apply worldwide? 20 

We believe that the primary conclusion of the paper (i.e. that generalized models for low-cost gas sensor calibration provide 

comparable performance to individualized models) is widely applicable to any low-cost sensor package with a similar design 

to the RAMP monitor (including similar electrochemical sensors and appropriate signal conditioning), regardless of where it 

is used so long as the generalized calibration model is developed for a network of sensors in the region where the network is 

deployed. We also believe that the methods used to calibrate models for low-cost gas sensor data presented in the paper are 25 

widely applicable to any similar monitoring system that produces clean, reproducible raw data of quality comparable to the 

RAMP output. Although specific performance metrics will likely differ for different locations, meteorological conditions, and 

low-cost sensor packages, and thus require future testing to assess he performance of specific monitoring packages in specific 

environments, we do believe that our qualitative results provide important guidance to future low-cost sensor calibration 

efforts, and that this guidance is generally applicable worldwide. 30 

2. Page 2, line 16: “These sensors tend to have lower signal-to-noise ratios than regulatory-grade instruments” is a fairly 

unusual and non-specific way to say they are not as precise or sensitive as conventional air monitors. 

This has been corrected (Page 2, Lines 17-18): 

“These sensors are less precise and sensitive than regulatory-grade instruments” 
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3. Page 2, Line 20: Authors mentioned that a nonlinear interaction in the reference (Jiao et al., 2016), however, this paper 

didn’t mention this kind of nonlinear interaction, but cited Gao’s paper (Gao et al., 2015) which also didn’t mention this, rather 

it is a nonlinear response for PM sensor. 

This citation was incorrect. This has been corrected. 

4. Page 2, Line 25: Same problem for reference (Cross et al., 2017) as comment 3. 5 

That paper makes use of high-dimensional model representations involving non-linear component functions (cubic functions 

are specifically mentioned). We believe this reference is correct. 

5. Page 3, line 29: It appears that on-campus field calibrations were conducted during a brief period in summer and early fall. 

Where winter time calibrations performed as well? If not, how might this impact the application of various results of modelling 

over winter time conditions? 10 

Field calibrations for some sensors (and for the gRAMP models) included data collected during October, during which 

conditions were similar to what might be expected during winter (e.g. near-freezing temperatures). Furthermore, time-resolved 

performance for several sensors across multiple seasons is shown in Figure 7; there is no apparent difference in performance 

across seasons.  

6. At the end Section 2. which describes monitoring methods there is a general reference to the Zimmerman 2018 paper to 15 

provide the reader information on protocols. Key factors should be pulled into the current text or figures. Specifically, on Line 

30 what were the specific models of regulatory monitors used and how were they located/protected from environmental 

factors? What methods were employed to measure speciated VOCs mentioned? What is meant by the term “or BTEX”? This 

does not appear to be covered in the 2018 Zimmerman paper and it does not seem that VOCs are part of this study. Perhaps 

this needs to be removed from the current text. Further, SO2 is included in the list of pollutants that appear to have been 20 

included in this study. However, no data for SO2 appears. Further, several of the models include factors for SO2. Was SO2 

measured or employ in this study? 

Raw signals from SO2 and VOC sensors within the RAMP monitors are used as potential inputs into the calibration models 

developed to account for possible cross-sensitivities. However, no calibration models were developed for SO2 or for any VOC 

species as a part of the work presented in this paper. References to the monitoring of SO2 and VOCs have therefore been 25 

removed from this section. For the other gases, the instrument models have been given, and a general description of the location 

of the instruments has been provided (Page 4, Lines 3-7): 

“Less than 10 meters from the RAMP monitors, a suite of high-quality regulatory-grade instruments, measuring 

ambient concentrations of CO (with a Teledyne T300U instrument), CO2 (LICOR 820), O3 (Teledyne T400 

Photometric Ozone Analyser), and NO and NO2 (2B Technologies Model 405nm) are stationed to provide true 30 

concentration values for these various gases to which the RAMP monitors are exposed. These regulatory-grade 

instruments are contained within a mobile laboratory van, into which samples are drawn through an inlet 2.5 meters 

above ground level.” 
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7. Page 4, Line 5: The collocation in ACHD points seems to span the whole year of 2017 in each week at Lawrenceville as 

shows in Figure 7, while in Table 4 the maximum days of testing period duration only ranged from 75 to 110 days for CO, 

O3 and NO2. The authors should give more explanation about the deployment? It is unclear and could not be found in the 

cited reference (Zimmerman et al., 2018). Also, as mentioned in Page 5, Line 9, 80% of collocation is about 28 days less than 

1 month, what are other days while RAMP collocation such long time and what is the criteria for period selection? 5 

Table 4 presents information related to the CMU site only. This has been indicated in the caption. Additional details about 

how data are divided into training and testing periods are provided in the text of Section 2.3, and figures illustrating these 

periods have been included in the supplemental information as well. 

8. Page 4, Line 10: Authors mentioned ACHD Parkway East has high levels of NO and NO2 for maximum at 100ppb and 

40ppb, this period also included in testing period, but in Table 4, for whole testing period these two maximum concentrations 10 

are 66 and 32. 

Table 4 presents information related to the CMU site only. This has been indicated in the caption. 

9. Page 4, Line 22: The best model was selected based on performance of individual models, what is the criteria for this? 

Pearson r is used to select the best-performing individual model. This has been clarified in the text (Page 4, Line 33 to Page 5, 

Line 2): 15 

“Second, from these individualized models, a best individual calibration model (bRAMP) was chosen, which 

performed best out of all the individualized models on a testing data set with respect to correlation (Pearson r, see 

Section 2.4).” 

10. Page 9, Line 4: The random forest and hybrid model used all sensor data for training CO, and combined linear model which 

only used CO, why not introduce other sensors in this procedure? 20 

For the linear models, based on prior work by Zimmerman et al., we used only the signal for the target gas of interest (or, in 

the case of O3, signals from both NO2 and O3 sensors) along with T and RH since only responses to these factors could be 

reliably modeled as linear. For the quadratic models, we sought to investigate the impacts of including inputs from the other 

gas sensors in a non-linear model; for this reason, we investigate both “limited” quadratic models, which use the same limited 

set of inputs as the linear models, and “complete” quadratic models, which use the inputs of all sensors on the RAMP (as do 25 

all of the models discussed later, including the hybrid models). 

11. Page 10, Line 8: As mentioned in the text “measurements where the corresponding true value is below an assigned lower 

limit are removed from the measurement set to be evaluated”, while for NO2(10ppb) and O3 (10ppb) which listed in Table 1, 

the training period or testing period concentration range still start from 0 or 1ppb, does any filter about lower limit come into 

force in the training or evaluation? The authors should discuss the impact of removal of data below specified minimums as 30 

this would appear to skew the actual data and do so in a differential basis depending on ambient conditions. 

The removal of values below a lower limit is applied only for the evaluation of the Precision and Bias metrics being discussed 

in this section, and thus only affects the results presented in Figure 5. This has been clarified in the text (Page 11, Lines 7-9): 
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“Note that this removal of low values is applied only when computing the precision and bias error metrics, and not 

when evaluating the other metrics described above.” 

Due to the construction of these metrics, the inclusion of values below these lower bounds would tend to make the Precision 

and Bias metrics worse. In other words, in ambient conditions where concentrations of pollutants are higher, the Precision and 

Bias metrics would be better for the same absolute errors. We have chosen to remove the low values as indicated when 5 

evaluating these metrics to allow for consistency with other studies which evaluate these metrics in the same way according 

to EPA recommendations.  

12. Page 16, line 11: “The fact that for most gases a variety of calibration approaches show similar and (for typical uses cases, 

acceptable) performance may reflect better underlying performance from the RAMP monitor, as similar studies for other low-

cost sensor packages showed a wider variability in performance between calibration approaches (see e.g. the summary 10 

provided by Zimmerman et al., 2018).” This statement appears to indicate that the RAMP monitors somehow performed better 

than other similar sensor based monitors. However, there is no rationale for this statement based on the actual monitor package, 

component details provided or information reported by others. It appears to simply be a diffusion based sensor deployment of 

Alfasense electrochemical cells and an NDIR CO2 sensor. What other factors might influence system performance? 

The signal conditioning employed in the RAMP monitoring package likely contribute to higher signal-to-noise ratios compared 15 

to other similar systems, based on discussions with the device manufacturer. However, determination of whether this is the 

case is beyond the scope of the current paper. The statement has been qualified (Page 16, Lines 11-15): 

“The fact that for most gases a variety of calibration approaches show similar (and for typical uses cases, acceptable) 

performance may reflect better underlying performance from the RAMP monitor, as similar studies for other low-

cost sensor packages showed a wider variability in performance between calibration approaches (see e.g. the summary 20 

provided by Zimmerman et al., 2018). This suggests that the primary difference between these monitors, i.e. the 

internal circuitry which is unique to the RAMP, is the cause for this consistency; however, determination of this is 

beyond the scope of this paper.” 

13. Page 25, Figure 4: The performance of CMU site for each sensor is marked in hollow marker, while there are two hollow 

markers in CO and NO2, which is unclear. 25 

The hollow markers are colored to correspond to the RAMPs deployed to each site. For example, the green filled marker 

represents the performance of a RAMP at the Lawrenceville site, and the hollow green marker indicates the performance of 

that same RAMP when it was at the CMU site. This was done so that the variability of performance between sites could be 

compared with the variability in performance between RAMPs at a common site. This has been clarified in the text (Page 13, 

Lines 3-5): 30 

“Filled markers indicate the performance of the models at these sites, while hollow markers indicate the 2017 testing 

period performance of the corresponding RAMP when it was at the CMU site for comparison.” 

14. Page 30, Table 4: In the evaluation of testing period, R2 was used, however, in previous figure and text, such as Figure 2-

4, Pearson linear correlation coefficient r was used, what is the standard for selection between these two parameters? 
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In reviewing the literature, there was no clear preference for the r or r2 metric to represent correlation. When preparing the 

paper, we had a slight preference for the r metric, as it distinguishes between positive and negative correlations, which we 

envisioned might occur for some of the worse-performing calibration models and sensors. Therefore, in figures, the r metric 

is used. In presenting the results in tabular form, the r2 metric is used, in recognition that some readers may be more familiar 

with and prefer results presented in that way. For the purposes of these results, where r2 is given for the best-fit line between 5 

the calibrated and “true” data, the information provided by r and r2 are the same. 

15. Page 30, Table 4: The title of the paper is about a general calibration model (gRAMP) and recommended in the conclusion, 

while it was not compared with iRAMP models in Table 4. This paper focuses on field calibration methods and model 

application to produce adjusted pollutant concentration data from sensor-based monitors. However, discussions and 

recommendations are only made regarding field calibration approaches. It would also appear that the data agreement between 10 

sensors and regulatory monitoring might be improved by other means. For example, conventional air monitoring methods as 

applied to regulatory monitoring efforts always include periodic zero and span challenges. Improved circuitry or air 

conditioning might also improve monitor performance. How might the inclusion of such methods improve the quality of data 

produced by sensor-based systems? 

Comparisons between iRAMP and gRAMP models are provided in Figures 3 through 6. Data corresponding to the results of 15 

Table 4 (now Table 5) for the bRAMP and gRAMP models evaluated at the CMU site have been provided as part of the 

supplementary materials. The main conclusion of the paper is also based on the relative performance of the gRAMP models 

when tested at a “new” deployment site (i.e. a site distinct from where the models are trained), as depicted in Figures 4 and 5. 

The possibility of conducting periodic zero- and span-checks on these sensors was considered but was eventually dismissed 

due to the logistical challenges of performing these checks over a large network of low-cost sensors deployed over a relatively 20 

large spatial domain. Improved circuitry within the RAMP monitor to improve signal-to-noise ratios might be a possibility but 

was not investigated as a part of this paper (discussions with the manufacturer indicated that these monitors already have very 

good signal conditioning electronics compared to other comparable products). Providing climate control for the RAMP monitor 

would greatly increase the cost and power consumption of the monitor, and so was not considered. Ongoing work is instead 

being focused on different automated methods of in-field calibration checks, for example by comparing with nearby regulatory 25 

monitoring sites, by comparing with data collected from mobile sampling campaigns, and by using clusters of nearby monitors 

in an attempt to identify and correct for outliers. 
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Abstract. Assessing the intra-city spatial distribution and temporal variability of air quality can be facilitated by a dense 10 

network of monitoring stations. However, the cost of implementing such a network can be prohibitive if traditional high-

quality, expensive monitoring systems are used. To this end, the Real-time Affordable Multi-Pollutant (RAMP) monitor has 

been developed, which can measure up to five gases including the criteria pollutant gases carbon monoxide (CO), nitrogen 

dioxide (NO2), and ozone (O3), along with temperature and relative humidity. This study compares various algorithms to 

calibrate the RAMP measurements including linear and quadratic regression, clustering, neural networks, Gaussian processes, 15 

and hybrid random forests and/ linear regression models. Using data collected by more than sixtyalmost seventy RAMP 

monitors over periods ranging up to eighteen months, we recommend the use of limited quadratic regression calibration models 

for CO, neural network models for NO, and hybrid models for NO2 and O3 for any low-cost monitor using electrochemical 

sensors similar to those of the RAMP.  it was found that quadratic regression models or a hybrid of random forest and linear 

models tend to be the most effective calibration models overall. In specific cases, other types of models can have comparable 20 

or even superior performance. Furthermore, generalized calibration models may be used instead of individual models with 

only a small reduction in overall performance. Generalized models also transfer better when the RAMP is deployed to other 

locations. For long-term deployments, it is recommended that new models be developed each year, due to the noticeable change 

in performance when models for one year were used for processing data collected in the subsequent year. This makes annually-

developed generalized calibration models even more useful since only a subset of deployed monitors are needed to build these 25 

models. These results will help guide future efforts in the calibration and use of low-cost sensor systems worldwide. 

1 Introduction 

Current regulatory methods for assessing urban air quality rely on a small network of monitoring stations providing highly 

precise measurements (at a commensurately high setup and operating cost) of specific air pollutants (e.g. Snyder et al., 2013).  

The United States Environmental Protection Agency (EPA) determines compliance with national air quality standards at the 30 
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county level using data collected by local monitoring stations. Many rural counties have at most a single monitoring site; urban 

counties may be more densely instrumented, though not at the neighborhood scale. For instance, the Allegheny County Health 

Department (ACHD) maintains a network of ten monitoring stations which collect continuous and/or 24-hour data for the two-

thousand-square-kilometer Allegheny County (with a population of 1.2 million) in Pennsylvania, USA, with only one of these 

stations providing continuous data for all EPA criteria pollutants listed in the National Ambient Air Quality Standards 5 

(NAAQS) (Hacker, 2017). However, air pollutant concentrations can vary greatly even within urban areas due to the large 

number and variety of sources (Marshall et al., 2008; Karner et al., 2010; Tan et al., 2014). This variability could lead to 

inaccurate estimates of air quality based on these sparse monitoring data (Jerrett et al., 2005). 

One approach to increasing the spatial resolution of air quality data is the use of dense networks of low-cost sensor packages. 

Low-cost monitors are instruments which combine one or more comparatively inexpensive sensors (typically electrochemical 10 

or metal oxide sensors) with independent power sources and wireless communication systems. This allows larger numbers of 

monitors to be employed at a similar cost to a more traditional monitoring network as described above. The general goals of 

low-cost sensing include supplementing existing regulatory networks, monitoring air quality in areas that have lacked this in 

the past (for example in developing countries), and increasing community involvement in air quality monitoring through the 

provision of sensors and the resulting data to community volunteers to support more informed public decision-making and 15 

engagement in air quality issues (Snyder et al., 2013; Loh et al., 2017; Turner et al., 2017). Several pilot programs of low-cost 

sensor network deployment have been attempted, in Cambridge, UK (Mead et al., 2013), Imperial Valley, California (Sadighi 

et al., 2018; English et al., 2017)(Sadighi et al., 2017; English et al., 2017), and Pittsburgh, Pennsylvania (Zimmerman et al., 

2018). 

There are several trade-offs resulting from the use of low-cost sensors. These sensors tend to have lower signal-to-noise ratios 20 

thanare less precise and sensitive than regulatory-grade instruments at typical ambient concentrations due to cross-sensitivities 

to other pollutants and dependence of the sensor response to ambient temperature and humidity (Popoola et al., 2016). These 

interactions are often nonlinear, meaning that linear regression models developed under controlled laboratory conditions are 

often insufficient to accurately translate the raw sensor responses into concentration measures (Castell et al., 2017)(Jiao et al., 

2016). Due to the variety of interactions and atmospheric conditions which can affect sensor performance, laboratory 25 

calibrations are insufficient to covering the range of conditions to which the sensor will be exposed using laboratory 

calibrations is difficult. Field calibrations of the sensors are thus necessary, with the sensors being collocated with highly 

accurate regulatory-grade instruments. Various calibration methods that have been explored include the determination of 

sensor calibrations from physical and chemical principles (Masson et al., 2015), higher-dimensional models to capture 

nonlinear interactions (Cross et al., 2017), and nonparametric approaches including artificial neural networks (Spinelle et al., 30 

2015) and k-nearest nearest-neighbors  clustering (Hagan et al., 2018)(Hagan et al., 2017). Recent work by our group compared 

lab-based linear calibration models with multiple linear regression and non-parametric random forest algorithms based on 

ambient collocations (Zimmerman et al. 2018). The machine learning algorithm using random forests on ambient collocation 
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data enabled low-cost electrochemical sensor measurements to meet EPA data quality guidelines for hot spot detection and 

personal exposure for NO2 and supplemental monitoring for CO and ozone (Zimmerman et al., 2018). 

There remain several unanswered questions with respect to the calibration of data collected by low-cost sensors which we seek 

to answer in this work by examining data collected by more than sixtyalmost seventy Real-time Affordable Multi-

Pollutant (RAMP) monitors over periods ranging up to eighteen months in the city of Pittsburgh, PA, USA. First, although 5 

various models have been applied to perform calibrations in different contexts, a thorough comparison on a common set of 

data of several different forms of calibration models applied to multi-pollutant measurements has yet to be performed. We 

seek to provide such a comparison and thereby draw robust conclusions about which calibration approaches work best overall 

and in specific contexts. Second, in previous work with the RAMP monitors and in work with other sensors, unique models 

have been developed for each sensor. This requires that extensive collocation data be collected for each low-cost sensor, which 10 

may not be feasible if large sensor networks are to be deployed. Therefore, it is important to investigate how well a single 

generalized calibration model can perform when applied across different individual sensors. Third, it is important to quantify 

the generalizability of models calibrated using data collected at a specific location to other locations across the same city where 

the sensors might be deployed, which may not share the same ratios of pollutants. This question is examined with several 

RAMPs that are co-located with regulatory monitors in the city of Pittsburgh, PA, USA. Finally, we seek to address the stability 15 

of calibration models over time by tracking changes in performance over the course of a year, and from one year to the next. 

Overall, we find support for using a generalized model for a network of RAMPs, developed based on local collocation of a 

subset of RAMPs. This reduces the need to collocate each node of a network, which otherwise can significantly increase 

network operating costs. These results will help guide future deployment efforts for RAMP or similar lower-cost air quality 

monitors. 20 

2 Methods 

2.1 The RAMP Monitor 

The RAMP monitor (Fig. 1) was jointly developed by the Center for Atmospheric Particle Studies at Carnegie Mellon 

University (CMU) and a private company, SenSevere (Pittsburgh, PA). The RAMP package combines a power supply, control 

circuitry, cellular network communications capability, a memory card for data storage, and up to five gas sensors in a 25 

weatherproof enclosure. All RAMPs incorporate a nondispersive infrared (NDIR) CO2 sensor produced by SST Sensing (UK), 

which also measures temperature and relative humidity. All RAMPs have one sensor that measures CO and one sensor that 

measures NO2. Of the remaining sensors, one is either an SO2 or NO sensor, and the other measures either a combination of 

oxidants (referred to hereafter as an Ozone or O3 sensor, since this is its primary function in the RAMP) or Volatile Organic 

Compounds (VOCs). The VOC sensor is an AlphaSense Alphasense (UK) PID and all other unspecified sensors are 30 

AlphaSense Alphasense B4 electrochemical units. Specially designed signal processing circuitry ensures relatively low noise 
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from the electrochemical sensors. Further details of the RAMP are provided elsewhere (Zimmerman et al., 2018). Data 

collected from a total of 68 RAMP monitors are considered in this work. 

2.2 Calibration Data Collection 

Following Zimmerman et al. (2018), RAMP monitors are deployed outdoors on a parking lot located on the CMU campus for 

a calibration based on collocated monitoring with regulatory-grade instruments. The parking lot (40°26'31"N by 79°56'33"W) 5 

is a narrow strip between a low-rise academic building to the south and several tennis courts to the north. RAMP monitors are 

deployed for one month or more to allow for exposure to a wide range of environmental conditions; in 2017, these deployments 

took place in the summer and fall. Less than 10 meters from the RAMP monitors, a suite of high-quality regulatory-grade 

instruments, measuring ambient concentrations of CO (with a Teledyne T300U instrument), CO2 (LICOR 820), O3 (Teledyne 

T400 Photometric Ozone Analyser), and NO, and NO2 , SO2, and VOCs (specifically benzene, toluene, ethylbenzene, and 10 

xylenes, or BTEX),(2B Technologies Model 405nm) are stationed to provide true concentration values for these various gases 

to which the RAMP monitors are exposed. These regulatory-grade instruments are contained within a mobile laboratory van, 

into which samples are drawn through ian inlet 2.5 meters above ground level.  Using sensor signal data collected by the 

RAMPs during this collocation period together with data collected by these regulatory-grade instruments, calibration models 

are created for each RAMP monitor prior to its deployment, as described in Sect. 2.3. Further details on the regulatory-grade 15 

instrumentation and the collocation process are provided in previous work (Zimmerman et al., 2018). 

In addition to collocation at the CMU campus, additional special collocation deployments of RAMP monitors were performed, 

in order to allow independent comparisons between the RAMP monitor data and regulatory monitors at different locations. 

One RAMP monitor was collocated with ACHD regulatory monitors at their Lawrenceville site (40°27'56"N by 79°57'39"W), 

an urban background site where all NAAQS criteria pollutant concentrations are measured. The ACHD Parkway East site, 20 

located alongside the I-376 highway (40°26'15"N by 79°51'49"W), was chosen as an additional collocation site for observing 

higher levels of NO and NO2: up to ~100 ppb for NO and ~40 ppb for NO2. For reference, the NAAQS limit for one-year hour 

average maximum NO2 is 53 100 ppb (https://www.epa.gov/criteria-air-pollutants/naaqs-table). 

2.3 Gas Sensor Calibration Models 

Various computational models were applied to the sensor readings of the RAMPs (i.e. the net signal, or raw response minus 25 

reference signal, from each electrochemical gas sensor, together with the outputs of the CO2, temperature, and humidity sensor) 

to estimate gas concentrations, based entirely on ambient collocations of the RAMPs with regulatory-grade monitors. These 

models, outlined in the following subsections, include parametric models such as linear and quadratic regression models, a 

semi-parametric Gaussian process regression model, and non-parametric nearest-neighbor clustering algorithm, an artificial 

neural network algorithm, random forest models, and hybrid random forest/linear regression and linear models. A common 30 

difficulty of non-parametric methods is generalizing beyond the training data set. For example, This is of potential concern for 

air quality applications, as the detection of high concentrations is an important consideration. If nif no high concentrations are 
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observed during the collocation period, then the resulting trained nonparametric model will be unable to estimate such high 

concentrations if it is exposed to these during deployment. This is of potential concern for air quality applications, as the 

detection of high concentrations is an important consideration. Parametric models avoid this difficulty, but at the cost of lower 

flexibility in the types of input-output relationships they can capture.This difficulty in generalizing beyond the training data 

set is in fact a common difficulty for many nonparametric models, of which the clustering model is an example. 5 

Models using each of these algorithms were calibrated in three separate categories. First, individualized RAMP calibration 

models (iRAMP) were created for each RAMP, using only the data collected by gas sensors in that RAMP and the regulatory 

monitors. Individualized models are applied only to data from the RAMP on which they were trained. Second, from these 

individualized models, a best individual calibration model (bRAMP) was chosen, which performed best out of all the 

individualized models on a testing data set with respect to correlation (Pearson r, see Section 2.4). This model was then used 10 

to correct data from all other RAMPs which shared the same mix of gas sensors (to ensure that the inputs to the model would 

be consistent). Third, general calibration models (gRAMP) were developed by taking the median of the data from a subset 

of the RAMP monitors deployed at the same place and time and treating this as a virtual “typical RAMP”, for which models 

were calibrated for each gas sensor (the median is used rather than the mean to reduce the effects of any erroneous 

measurements by a few gas sensors in some RAMP monitors on the “typical” signal). The motivation for the use of gRAMP 15 

models is similar to that of Smith el at. (2017); however, while in that work it is recommended that the median from a set of 

duplicate low-cost sensors be used to improve performance, in this work we use that method to develop the gRAMP calibration 

model, but then apply this calibration to the outputs of individual sensors rather than to the median of a group of sensors. 

RAMPs were divided into training and testing sets for the gRAMP models randomly (with each RAMP having an 80% 

probability of being chosen for the training set), with the caveat that the two RAMPs to be deployed to the Lawrenceville and 20 

Parkway East sites were required to be part of the testing set. Data from about three quarters of the RAMP monitors (53 out of 

68) were used for developing the general calibration models (although not all of these monitors were active at the same time). 

Data from the remaining 15 RAMP monitors were used for testing, ensuring that the testing data are completely distinct from 

the training data. RAMPs were divided into training and testing sets for the gRAMP models randomly (with each RAMP 

having an 80% probability of being chosen for the training set), with the caveat that the two RAMPs to be deployed to the 25 

Lawrenceville and Parkway East sites were required to be part of the testing set. In the case ofFor the general gRAMP models, 

the set of possible model inputs was restricted to ensure that, for each gas, all necessary model inputs would be provided by 

every RAMP (e.g. for NO models, only CO, NO, NO2, T, and RH could be used as inputs since all RAMP monitors measuring 

NO would also measure these, but not necessarily any of the other gases). Thus, each of the calibration model algorithms were 

applied in three categories, yielding iRAMP, bRAMP, and gRAMP variants of each model. Finally, note that, for brevity, we 30 

will refer to iRAMP, bRAMP, or gRAMP model variants when discussing specific results; however, when drawing general 

conclusions about low-cost electrochemical gas sensor calibration methods, we will use less RAMP-specific terms (such as 

“generalized models”). 
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In all cases, models were calibrated using training data, which consists of the RAMP monitor data collected during the 

collocation period (which are measurements of the input variables, i.e. the signals from the various gas sensors) together with 

the readings of the regulatory-grade instruments with which the RAMP monitor was collocated (which are the targets for the 

output variables). These collocation data are down-averaged from their original sampling rates to 15-minute averages, to ensure 

stability of the trained models and minimize the effects of noise on the training process. From the collocation data, eight equally 5 

sized, equally spaced time intervals are selected to serve as training data for the calibration models. The cumulative amount of 

training data is selected to be either 80% of the collocation data or four weeks of data (corresponding to 2688 15-minute-

averaged data points), whichever is smaller. The minimum amount of training data is 21 days; if less than this is available, no 

iRAMP model is trained for this RAMP, and thus no iRAMP model performance can be assessed for it (although bRAMP and 

gRAMP models trained on other RAMPs are still applied to this RAMP for testing). Training data for gRAMP models are 10 

obtained in the same way, although in that case it is the data for the virtual “typical RAMP” which are divided, rather than 

data for individual RAMPs. Any remaining data from the collocation period are left aside as a separate testing set, on which 

the performance of the trained models  is evaluated. Note that due to differences in which RAMPs and/or regulatory-grade 

instruments were operating at a given time, training and testing periods are not necessarily the same for all RAMPs and gases; 

for example, a certain time may be part of the training period for the CO model for one RAMP, and be part of the testing period 15 

for the O3 model of another RAMP. However, the training and testing periods for a given RAMP and gas are always distinct. 

The division of data collected at the CMU site in 2017 into training and testing periods is illustrated in the supplemental 

information (Figures S6-S10). The division of data collected at the CMU site in 2016 is carried out in a similar manner. The 

choice of averaging period, of minimum and maximum training times, and the method for dividing between training and testing 

periods are motivated by previous work with the RAMP monitors (Zimmerman et al., 2018). All data collected at sites other 20 

than the CMU site (i.e. the Lawrenceville or Parkway East sites) are reserved for testing; no training of calibration models is 

done using data collected at these other sites, and so they represent a true test of the performance of the models at an “unseen” 

location. 

2.3.1 Linear and Quadratic Regression Models 

Linear regression models represent perhaps the simplest and most common method for gas sensor calibration, and have been 25 

used extensively in prior work (Spinelle et al., 2013, 2015; Zimmerman et al., 2018). A linear regression model (sometimes 

called a multi-linear regression model in the case that there are multiple inputs) describes the output as an affine function of 

the inputs. Here, linear functions are used where the sets of inputs are restricted to the signal of the sensor for the gas in 

question along with temperature and relative humidity. For example, the calibrated measurement of CO from the RAMP, 𝑐CO, 

is an affine function of the signal of the CO sensor, 𝑠CO, and the temperature 𝑇 and relative humidity 𝑅𝐻 measured by the 30 

RAMP: 

𝑐CO = 𝛼CO𝑠CO + 𝛼T𝑇 + 𝛼RH𝑅𝐻 + 𝛽𝐶𝑂,         (1) 
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Coefficients 𝛼CO , 𝛼T , and 𝛼RH  and offset term 𝛽𝐶𝑂  are calibrated from training data to minimize the root-mean-square 

difference of 𝑐CO and the measured CO concentration from the regulatory-grade instrument. The one exception to this general 

formulation is for evaluation of 𝑐O3
, where both 𝑠O3

 and 𝑠NO2
 are used as inputs (along with 𝑇 and 𝑅𝐻); this is done to account 

for the fact that the sensor for O3 also responds to NO2 concentrations (Afshar-Mohajer et al., 2018). 

In addition to linear regressions, quadratic regressions were also applied. These are the same as linear regressions but can 5 

involve second-order interactions of the input variables. For example, for CO, a quadratic regression function would be of the 

following form: 

𝑐CO = 𝛼CO𝑠CO + 𝛼CO2𝑠CO
2 + 𝛼T𝑇 + 𝛼T2𝑇2 + 𝛼RH𝑅𝐻 + 𝛼RH2𝑅𝐻2 + 𝛼CO,T𝑠CO𝑇 + 𝛼CO,RH𝑠CO𝑅𝐻 + 𝛼T,RH𝑇 𝑅𝐻 + 𝛽𝐶𝑂, (2) 

Note that, as above, a reduced set of inputs is used here. Quadratic regression models using such reduced sets (the same sets 

used for linear regression) are hereafter referred to as “limited” quadratic regression models; in contrast, models making full 10 

use of all available gas, temperature, and humidity sensor inputs from a given RAMP are referred to as “complete” quadratic 

regression models.  

The main advantages of linear and quadratic regression models are their ease of implementation and calibration, as well as 

their ability to be readily interpreted, e.g., the relative magnitudes of the regression coefficients correspond to the relat ive 

importance of the different inputs in producing the output. The main disadvantage of these models is their inability to compute 15 

complicated relationships between input and output which are beyond that of a second-order polynomial. The training and 

application of linear and quadratic regression models are implemented using custom-written routines for the MATLAB 

programming language (version R2016b). 

2.3.2 Gaussian Process Models 

Gaussian processes are a form of regression which generalizes the multivariate Gaussian distribution to infinite dimensionality 20 

(Rasmussen and Williams, 2006). For the purposes of calibration, we make use of a simplified variant of a Gaussian process 

model. From the training data, both the signals of the RAMP monitors and the readings of the regulatory-grade instruments 

are transformed such that their distributions during the training period can be approximately modelled as standard normal 

distributions. This transformation is accomplished by means of a piecewise linear transformation, where the domain is 

segmented and for each segment different linear mappings are applied. After this transformation, an empirical mean vector 𝛍 25 

and covariance matrix 𝚺 is computed for the regulatory-grade and RAMP measurements. The transformed measurements can 

then be described using a multivariate Gaussian distribution. For example, for a RAMP measuring CO, SO2, NO2, O3, and 

CO2, this distribution would be: 

{𝑐CO
′ , 𝑐SO2

′ , 𝑐NO2

′ , 𝑐O3

′ , 𝑐CO2

′ , 𝑠CO
′ , 𝑠SO2

′ , 𝑠NO2

′ , 𝑠O3

′ , 𝑠CO2

′ , 𝑇′, 𝑅𝐻′}
T

 ~ 𝒩(𝛍, 𝚺),      (3) 

where, for example, 𝑐CO
′  represents the concentration measurement for CO following the transformation. The mean vector and 30 

covariance matrix are divided as follows: 
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𝛍 = [
𝛍conc

𝛍RAMP
] 𝚺 = [

𝚺conc,conc 𝚺conc,RAMP

𝚺conc,RAMP
T 𝚺RAMP,RAMP

],         (4) 

where 𝛍conc represents the mean of the (transformed) concentration measurements of the regulatory-grade instrument, 𝛍RAMP 

represents the mean of the (transformed) signal measurements from the RAMP, 𝚺conc,conc represents the covariance of the 

(transformed) concentrations, 𝚺RAMP,RAMP  represents and covariance of the (transformed) RAMP signals, and 𝚺conc,RAMP 

represents the covariance between the (transformed) concentrations and RAMP signals (𝚺conc,RAMP
T  is the transpose of 5 

𝚺conc,RAMP). Once these vectors and matrices have been defined, the model is calibrated. 

Given a new set of signal measurements from a RAMP, denoted as 𝐲RAMP = {𝑠CO, 𝑠SO2
, 𝑠NO2

, 𝑠O3
, 𝑠CO2

, 𝑇, 𝑅𝐻}
T
, these are 

transformed using the piecewise linear transformation defined above to give the set of transformed signal measures 𝐲RAMP
′ . 

These are then used to estimate the concentrations measured by the RAMP with the standard conditional updating formula of 

the multivariate Gaussian as follows: 10 

{𝑐CO
′ , 𝑐SO2

′ , 𝑐NO2

′ , 𝑐O3

′ , 𝑐CO2

′ }
T

= 𝛍conc + 𝚺conc,RAMP𝚺RAMP,RAMP
−1 (𝐲RAMP

′ − 𝛍RAMP),    (5) 

The inverse of the original piecewise linear transformation is then applied to these transformed concentration estimates to yield 

the appropriate concentration estimates in their original units. 

The main advantage of a Gaussian process calibration model of this form is its robustness to incomplete or inaccurate 

information; for example, if a signal from one gas sensor were missing or corrupted by a large voltage spike, in the former 15 

case the missing input could be “filled in” by the correlated measurements of other sensors, while in the latter case estimates 

would be “reigned in” by the more reasonable measures of the other sensors. A major disadvantage of this calibration model 

is its continued use of what is basically a linear regression formula; the only difference being in the non-linear transformation 

from the original measurement space to the standard normal variable space used by the model. Furthermore, during the 

calibration process, the ratios of concentration for the pollutants of the collocation site may be “learned” by the model, making 20 

it less likely to predict differing ratios during field deployment. The training and application of Gaussian process calibration 

models are accomplished using custom-written routines in the MATLAB programming language. 

2.3.3 Clustering Model 

The clustering model presented hereClustering models, also referred to as nearest neighbor models, seeks to estimate the 

outputs corresponding to new inputs by searching for input-output pairs in the training data for which the distance (by a 25 

predefined distance metric in a potentially high-dimensional space) between the new input and the training inputs is minimized, 

and using the average of several outputs corresponding to these nearby inputs (the “nearest neighbors”). In a traditional k-

nearest-neighbors approach, such as that used in previous work (Hagan et al., 2018), every input-output pair from the training 

data is stored for comparison to new inputs. Although this provides the best possible estimation performance via this approach, 

storing these data and performing these comparisons are computation- and memory-intensive. Therefore, in this work, To 30 

prevent the need to store every input-output pair from the training data for comparison to new inputs, the input data are first 
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clustered, i.e., grouped by proximity of the input data. These clusters are then represented by their centroid, with the 

corresponding output being the mean of the outputs from the clustered inputs. In this work, training data are grouped into one 

thousand clusters using the ‘kmeans’ function in MATLAB. Euclidian distance in the multidimensional space of the sensor 

signals from each RAMP is used. For estimation, the outputs of the five nearest neighbors to a new input are averaged. A 

similar calibration method has been used in previous work (Hagan et al., 2017).    5 

A major advantage of this approach is its simplicity and flexibility, allowing it to capture complicated nonlinear input-output 

relationships by referring to past records of these relationships, rather than attempting to determine the actual pattern which 

these relationships follow. Such a method can perform very well when the relationships are stable, and when any new input 

with which the model is presented is similar to at least one of the inputs from the training period. However, as with all 

nonparametric models, generalizing beyond the training period is difficult, and the model will tend to perform poorly if the 10 

“nearest neighbors” of a new input are in fact quite far away, in terms of the distance metric used, from this input. This is of 

potential concern for air quality applications, as the detection of high concentrations is an important consideration. If no high 

concentrations are observed during the collocation period, then the resulting trained model will be unable to estimate such high 

concentrations if it is exposed to these during deployment. This difficulty in generalizing beyond the training data set is in fact 

a common difficulty for many nonparametric models, of which the clustering model is an example. 15 

2.3.4 Artificial Neural Network Model 

The artificial neural network model, or simply neural network, is a machine learning paradigm which seeks to replicate, in a 

simplified manner, the functioning of an animal brain in order to perform tasks in pattern recognition and classification 

(Aleksander and Morton, 1995). A basic neural network consists of several successive layers of “neurons”. These neurons 

each receive a weighted combination of inputs from a higher layer (or the signal inputs, if they are in the top layer) and apply 20 

a simple but nonlinear function to them, producing a single output which is then fed on into the next layer. By including a 

variety of possible functions performed by the neurons and appropriately tuning the weights applied to inputs fed from one 

layer to the next, highly complicated nonlinear transformations can be performed in successive small steps.  

Neural networks have been applied to a large number of problems, including the calibration of low-cost gas sensors (Spinelle 

et al., 2015). Neural networks represent an extremely versatile framework, and are able to capture nearly any nonlinear input-25 

output relationship (Hornik, 1991). Unfortunately, to do so may require vast amounts of training data, which it is not always 

practical to obtain. Calibration of these models is also a time-consuming process, requiring many iterations to tune the 

weightings applied to values passed from one layer to the next. In this work, neural networks were trained and applied using 

the ‘Netlab’ toolbox for MATLAB (Nabney, 2002). The network has a single hidden layer with twenty nodes. To limit the 

computation time needed for model training, the number of allowable iterations of the training algorithm was capped at ten 30 

thousand; this cap was typically reached during the training. 
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2.3.5 Random Forest and Hybrid Random Forest and Linear Regression Models 

A random forest model is a machine learning method which makes use of a large number of decision “trees”. These trees are 

hierarchical sets of rules which group input variables based on thresholding (e.g. “the third input variable is above or below a 

given value”). The thresholds used for these rules as well as the inputs they are applied to and the order in which they are 

applied are calibrated during training. The final groupings of input variables from the training data, located at the end or 5 

“leaves” of the branching decision tree, are then associated with the mean values of the output variables for this group (similar 

to a clustering model). For estimating an output given a new set of inputs, each decision tree within the random forest applies 

its sequence of rules to assign the new data to a specific “leaf”, and outputs the value associated with that leaf. The output of 

the random forest is the average of the outputs of each of its trees. 

A primary shortcoming of the random forest model (which it shares with other nonparametric methods) is its inability to 10 

generalize beyond the range of the training data set, i.e., outputs of a random forest model for new data can only be within the 

range of the values included as part of the training data. For this reason, the standard random forest model was also expanded 

into a hybrid random forest and/ linear regression model. The use of this approach for RAMP data was  as suggested by 

Zimmerman et al. (2018) and. Furthermore, it is similar to the approach of Hagan et al. (2018)(2017), who combine hybridize 

nearest neighbor and linear regression models in a similar fashion. In this modified model, a random forest is applied to new 15 

data to estimate the concentrations of various measured pollutants. For example, the concentration of CO measured by a RAMP 

including sensors for CO, SO2, NO2, O3, and CO2 is estimated using a random forest as: 

𝑐CO = RF𝐶𝑂(𝑠𝐶𝑂, 𝑠𝑆𝑂2
, 𝑠𝑁𝑂2

, 𝑠𝑂3
, 𝑠𝐶𝑂2

, 𝑇, 𝑅𝐻),         (6) 

If this estimated concentration exceeds a given value (in this case, 90% of the maximum concentration value observed during 

the training, corresponding to about 1ppm in the case of CO), a linear model of the form of Eq. (1) is instead used to estimate 20 

the concentration. This linear model is calibrated using a 15% subset of the training data with the highest concentrations of the 

target gas and is therefore better able to extrapolate beyond the upper concentration value observed during the training period. 

This hybrid model therefore is designed to combine the strengths of the random forest model, i.e. its ability to capture 

complicated nonlinear relationships between various inputs and the target output, with the ability of a simple linear model to 

extrapolate beyond the set of data on which the model is trained. Random forests are implemented using the ‘TreeBagger’ 25 

function in MATLAB, and custom routines are used to implement hybrid models. 

2.4 Assessment Metrics 

In the following section, the performance of the calibration models in translating sensor signals to concentration estimates is 

assessed in several ways. It should be noted that the metrics presented here are applied only for testing data, i.e., data which 

were not used to build the calibration models. Model performance on the training data is expected to be higher, and thus less 30 

representative of the true capability of the model. The estimation bias is assessed as the mean normalized bias (MNB), the 

Field Code Changed
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average difference between the estimated and actual values, divided by the mean of the actual values. That is, for 𝑛 

measurements: 

MNB =
∑ (𝑐estimated,𝑖−𝑐true,𝑖)𝑛

𝑖=1

∑ (𝑐true,𝑖)𝑛
𝑖=1

,           (7) 

where 𝑐estimated,𝑖 is the measured concentration as estimated by the RAMP monitor and 𝑐true,𝑖 is the corresponding true value 

measured by a regulatory-grade instrument. The variance of the estimation is assessed via the coefficient of variation of the 5 

mean absolute error (CvMAE), the average of the absolute differences between the estimated and actual values divided by the 

mean of the actual values. The estimates used in evaluating the CvMAE are corrected for any bias as determined above: 

CvMAE =
∑ |𝑐estimated,𝑖−nbias−𝑐true,𝑖|𝑛

𝑖=1

∑ (𝑐true,𝑖)𝑛
𝑖=1

,          (8) 

where: 

nbias =
1

𝑛
∑ (𝑐estimated,𝑖 − 𝑐true,𝑖)

𝑛
𝑖=1 ,          (9) 10 

Correlation between estimated and actual concentrations is assessed using the Pearson linear correlation coefficient (r):  

r =
∑ (𝑐estimated,𝑖−

1

𝑛
∑ 𝑐estimated,𝑗

𝑛
𝑗=1 )𝑛

𝑖=1 (𝑐true,𝑖−
1

𝑛
∑ 𝑐true,𝑗

𝑛
𝑗=1 )

√∑ (𝑐estimated,𝑖−
1

𝑛
∑ 𝑐estimated,𝑗

𝑛
𝑗=1 )

2
𝑛
𝑖=1

√∑ (𝑐true,𝑖−
1

𝑛
∑ 𝑐true,𝑗

𝑛
𝑗=1 )

2
𝑛
𝑖=1

,       (10) 

Intuitively, these basic metrics are used to quantify the difference in averages between estimated and true concentrations 

(MNB), the average of differences between these (CvMAE), and the similarity in their behavior (r). 

In addition to the above metrics, EPA methods for evaluating precision and bias errors are used as outlined in Camalier et al. 15 

(2007). To summarize, the precision error is evaluated as: 

Precision = √
𝑛 ∑ 𝛿𝑖

2𝑛
𝑖=1 −(∑ 𝛿𝑖

𝑛
𝑖=1 )

2

𝑛χ0.1,𝑛−1
2 ,           (11) 

where χ0.1,𝑛−1
2  denotes the 10th percentile of the chi-squared distribution with 𝑛 − 1 degrees of freedom and the percent 

difference in the 𝑖th measurement is evaluated as: 

𝛿𝑖 =
𝑐estimated,𝑖−𝑐true,𝑖

𝑐true,𝑖
⋅ 100,           (12) 20 

The bias error is computed as: 

Bias =
1

𝑛
∑ |𝛿𝑖|

𝑛
𝑖=1 +

𝑡0.95,𝑛−1

𝑛
√𝑛 ∑ 𝛿𝑖

2𝑛
𝑖=1 −(∑ |𝛿𝑖|𝑛

𝑖=1 )
2

𝑛−1
,        (13) 

where 𝑡0.95,𝑛−1 is the 95th percentile of the t distribution with 𝑛 − 1 degrees of freedom. Prior to the computation of these 

precision and bias metrics, measurements where the corresponding true value is below an assigned lower limit are removed 

from the measurement set to be evaluated, so as not to allow near-zero denominator values in Eq. (12). Lower limits used in 25 

this work are based on the guidelines presented by Williams et al. (2014) and are listed in Table 1. Note that this removal of 

low values is applied only when computing the precision and bias error metrics, and not when evaluating the other metrics 

described above. 
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Using the EPA precision and bias calculations allows for these values to be compared against performance guidelines for 

various sensing applications, as presented Williams et al. (2014) and listed in Table 2. For the RAMP monitors, a primary goal 

is to achieve data quality sufficient for hotspot identification and characterization (Tier II) or personal exposure monitoring 

(Tier IV), which requires that both precision and error bias metrics be below 30%. A supplemental goal is to achieve 

performance sufficient for supplemental monitoring (Tier III), requiring precision and bias metrics below 20%. 5 

3 Results 

In this section, we examine the performance of the RAMP gas sensors and the various calibration models applied to their data. 

We will focus our attention on the CO, NO, NO2, and O3 sensors. Calibration of measurements by the SO2 and VOC sensors 

in an urban environment, unlike the near-source SO2 calibration work of Hagan et al. (2017), is ongoing and will be presented 

in forthcoming manuscripts. Results for calibration of measurements by the CO2 sensors are presented in supplemental figures. 10 

3.1 Performance across Individualized Models on CMU Site Collocation Data 

Figure 2Figure 2Figure 2 presents a comparison of the performance of various calibration models applied to testing data 

collected at the CMU site during 2017. As described in Sect. 2.3, collocation data are divided into training and testing sets, 

with the former (always being between three and four weeks in total duration) used for model development and the latter used 

to test the developed model using the assessment metrics described in Sect. 2.4, as presented in Fig. 2. All models in the figure 15 

are of the “iRAMP” category, being developed using only data collected by a single RAMP and the collocated regulatory-

grade instruments. In the figure, squares indicate the median performance across all RAMPs for each performance metric, and 

the error bars span from the 25th to 75th percentiles of each metric across the RAMPs. For CO, 48 iRAMP models are 

compared; for NO, 19 models; for NO2, 62 models; for O3, 44 models. Note that only 20 RAMP monitors included an NO 

sensor. An iRAMP model was not developed for RAMP monitors that had fewer than 21 days of collocation data with the 20 

relevant regulatory-grade instrument. The figures are arranged such that the lower-left corner denotes “better” performance 

(CvMAE close to 0 and r close to 1).  

Typically, several of the model types provide similar performance for a given gas. For CO and O3, the simple parametric 

quadratic regression models perform as well as or better than the non-parametric modelling approaches, and even linear 

regression models give reasonable results. For NO2 and NO, while the non-parametric hybrid or neural network models 25 

perform best, complete quadratic regression models give comparable performance. Quadratic regression and hybrid models 

give the most consistently good performance, being among the top four methods across all gases. Bias tends to be low to 

moderate (depending on the gas) regardless of correction method (MNB less than 1% for CO, less than 2% for O3, less than 

10% for NO, and less than 20% for NO2 across all methods). Table 2 lists the EPA performance guidelines for various 

applications, and Table 3 lists the modelling methods which meet these EPA performance guidelines (Table 2) based on 30 

performance at the CMU site in 2017. All methods meet at least Tier I (educational monitoring, <50% error) criteria for all 
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gases considered. Most methods fall within the Tier II (hotspot detection) or Tier IV (personal exposure) performance levels 

(<30% error) for all gases. For CO, quadratic regression methods meet Tier III (supplemental monitoring) criteria (<20% 

error). In Table 4, the durations of the training and testing periods and the measured concentration ranges during these periods 

are provided. Finally, in Table 5 Table 5, additional metrics are presented about these performance results, including un-

normalized MAE and bias in the measured concentration units, to allow for direct comparison with the concentrations ranges. 5 

More detailed information is also provided in the supplemental information. 

Performance of the calibration models varies with the type of gas sensor being calibrated, as well as with the calibration model 

used. For CO, performance is consistent across most models, with the quadratic and linear regression models, clustering, and 

random forest models having r typically above 0.8 and CvMAE typically below 0.25. Bias for these CO models is also low, 

typically being within ±10 ppb (MNB less than 1%). Neural networks and Gaussian process models show worse performance 10 

for CO, with the spread in the performance metrics also being large between RAMPs. In the case of NO2, however, neural 

networks perform similarly to random forest, hybrid, clustering, and complete quadratic regression, all of which perform better 

than limited quadratic models, linear models, and Gaussian process models. Bias for these NO2 models is in the range of ±2 

ppb (MNB less than 20%). For O3, similar to what was observed for CO, most models have similar performance, with only 

clustering and Gaussian process models having typical r below 0.8 and CvMAE above 0.25. Bias for these O3 models is low, 15 

in the range of ±1 ppb (MNB less than 2%). Finally, for NO, most models have r ranging from 0.6 to 0.9 and CvMAE ranging 

from 0.5 to 2. Bias for NO is in the range of ±2 ppb (MNB less than 10%). 

To summarize, for CO and O3, the simple parametric complete quadratic regression models perform better than other more 

complicated modelling approaches, and even linear regression models give reasonable results. For NO2 and NO, while more 

complicated random forest or neural network models perform best, complete quadratic regression models can give comparable 20 

performance. Quadratic regression, random forest, and hybrid random forest and linear regression models gives the most 

consistent performance, being among the top four methods across all gases. Table 3 lists the modelling methods which meet 

the EPA performance guidelines (Table 2) based on performance at the CMU site in 2017. All methods meet at least Tier I 

(educational monitoring) criteria for all gases considered. Most methods fall within the Tier II (hotspot detection) or Tier IV 

(personal exposure) performance levels for all gases. For CO, random forest and quadratic regression methods meet Tier III 25 

(supplemental monitoring) criteria. Finally, in Table 4, additional information is presented about these performance results, 

including measured concentration ranges during training and testing periods, durations of these periods, and additional 

performance metrics including un-normalized MAE and bias in the measured concentration units, to allow for direct 

comparison with the concentrations ranges.  

3.43.2 Comparison of Individualized, Best, and General Models on CMU Site Collocation Data 30 

Next, we examine how the performance of the best individual models (bRAMP) and of the general models (gRAMP) applied 

to all RAMPs compare to the performance of the individualized RAMP (iRAMP) models presented in the last sectionSect. 

3.1. Evaluation is carried out on the testing data collected at the CMU site in 2017. For simplicity, we restrict ourselves to 
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three models for each gas, chosen from among the better-performing iRAMP models and including at least one parametric and 

one non-parametric approach. Figure 3Figure 3Figure 3 presents these comparisons. 

For CO, limited quadratic regression, complete quadratic regression, and random forest models are compared. While 

individualized models all perform relatively well, the limited quadratic model is the most amenable to generalization, with the 

gRAMP version performing nearly as well as the iRAMP version. This is to be expected, as the limited quadratic regression 5 

model has a simple parametric form and is thus the least susceptible of the models shown to overfitting during training. For 

O3, complete and limited quadratic regression and hybrid random forest/linear regression models are compared. Here, bRAMP 

and gRAMP models have fairly similar performance (median r between 0.8 and 0.9, median CvMAE between 0.2 and 0.25), 

which is only slightly worse than the iRAMP models (where median r is just above 0.9 and median CvMAE is just below 0.2). 

The spread in model performance when moving from iRAMP to gRAMP models is smallest for the O3 hybrid models. For 10 

NO, linear regression, neural network, and hybrid random forest/linear regression models are compared. While iRAMP and 

bRAMP hybrid and neural network models show similar performance for NO (median r between 0.7 and 0.8, median CvMAE 

below 1.5), generalization of the linear models is poorer. NO gRAMP models have higher CvMAE than their iRAMP versions, 

although the neural network model is the least affected. For NO2, linear, random forest, and neural network models are 

compared. The random forest and neural network models maintain a fairly close grouping (median r and CvMAE differing by 15 

less than 0.05), while the complete quadratic models perform less well in their bRAMP and gRAMP versions. 

Across all gases and models, iRAMP models tend to perform best, as might be expected since these models are both trained 

and applied to data collected by a single RAMP monitor, and therefore will account for any peculiarities of individual sensors. 

Between the bRAMP models, in which a model is trained using data from a single RAMP and applied across multiple RAMPs, 

and gRAMP models, which are trained on data from a virtual “typical” RAMP (composed of the median signal from several 20 

RAMPs) and then applied across other RAMPs, it is difficult to say which approach would be better based on these results, as 

results they vary by gas as well as by modelling approach. For parametric models (i.e., linear and quadratic regression) the 

bRAMP and gRAMP versions typically have similar performance, although there is less variability in performance for the 

gRAMP versions. For non-parametric models (i.e., neural network , random forest, and hybrid models), performance of 

bRAMP versions is typically better than the gRAMP versions, although in the case of NO2 and O3 the performance is 25 

comparable. Overall, we find that a bRAMP or gRAMP version of several of the models can give similar performance to its 

iRAMP version, even though these models are not calibrated to each individual RAMP. 

 

3.63.3 Performance of Selected Models at Regulatory Monitoring Sites 

Figure 4Figure 4Figure 4 depicts the performance of calibration models for two RAMP monitors deployed at two EPA 30 

monitoring stations operated by the ACHD (one monitor is deployed to each station). Fully coloredFilled pointsmarkers 

indicate the performance of the models at these sites, while hollow points markers indicate the 2017 testing period performance 

of the corresponding RAMP when it was at the CMU site for comparison. For each gas type, different calibration models are 
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used, chosen from among the models depicted in Fig. 3. Models trained at the CMU site (as presented in previous sections) 

are used to calibrate correct data collected by the RAMP monitor at the station. Note that all data collected at either deployment 

site are treated as testing data, and that no data from these other sites are used to calibrate the models. Also note that not all 

gases monitored by RAMPs are monitored by the stations, hence why only one station may appear in each plot. 

Overall, there tends to be a change in model performance at either of the deployment sites as compared to the CMU site. This 5 

is to be expected to some degree, as the concentration range and mixture of gases (especially at the Parkway East site, which  

is located next to a major highway) can be different at a new site (where the model was not trained), and thus cross-sensitivities 

of the sensors may be affected. These differences appear to be greatest for CO, with performance being better at the Parkway 

East site, where overall CO concentrations are higher (both the average and standard deviation of the CO concentration at the 

Parkway East site are more than double those of the CMU or Lawrenceville sites). Additionally, gRAMP models tend to 10 

perform as well as or better than iRAMP models when monitors are deployed to new sites (only the CO results at Parkway 

East are much better for the iRAMP than the gRAMP models). Furthermore,, and the performance of the gRAMP models at 

the training site is typically more representative of the expected performance at other sites than that of the iRAMP models. . 

This is likely because, while the iRAMP models are trained for individual RAMPs at the training site, the gRAMP models are 

trained across multiple RAMPs at that site, and therefore are more robust to a range of different responses for the same 15 

atmospheric conditions. Thus, when a RAMP is moved from one site to another, and its responses change slightly due to a 

change in the surrounding conditions, the gRAMP model will be more robust against these changes. Based on these results, 

since the change in performance as a monitor is deployed to a field site is often greater than the gap between iRAMP and 

gRAMP performance at the calibration site (as assessed in Sect. 3.2), there is no reason to prefer an iRAMP model to a gRAMP 

model for correction of field data.  20 

 

For CO at the Lawrenceville site, performance of the gRAMP model is better in terms of correlation (0.8 vs. 0.7) and nearly 

the same in terms of CvMAE (0.35 vs. 0.3) than the iRAMP model, but both models perform worse than at the CMU site 

(where r was higher by between 0.05 and 0.2 and CvMAE was lower by about half). For O3, both iRAMP and gRAMP models 

have very similar performance at the Lawrenceville site compared to the CMU site, with r being nearly the same (above 0.9) 25 

and CvMAE being slightly (less than 0.05) worse. Concentrations of O3 are comparable at both sites (annual mean ~25 ppb, 

standard deviation ~15 ppb). For NO2, both iRAMP and gRAMP models perform worse than at CMU (CvMAE is about 0.1 

higher for both models, and r is 0.05 lower for the iRAMP model), but the gap in performance is smaller for the gRAMP model 

since its correlation is nearly the same. The overall performance of the iRAMP and gRAMP models for this gas at 

Lawrenceville are comparable (r about 0.8, CvMAE about 0.6). 30 

For Parkway East, both iRAMP and gRAMP CO models have better performance than at the CMU site with respect to 

correlation (with r above 0.95), but for the gRAMP model performance with respect to CvMAE is worse (CvMAE is greater 

than 0.4, as opposed to being less than 0.2 for the iRAMP model). It should be noted that both the average concentration and 

variability in concentration (as measured by the standard deviation) of CO are more than double at the Parkway East site 
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compared to either the CMU or Lawrenceville sites. For NO, the iRAMP model performs slightly worse in terms of correlation 

(r of 0.69 vs. 0.71) at the Parkway East site than at the CMU site, while the gRAMP model performs better (r of 0.78). In fact, 

the performance of the gRAMP model at Parkway East is better than that of the iRAMP model at CMU. Levels of NO are 

about 50% higher at Parkway East than at CMU (6 vs. 4 ppb annual mean in 2017), but variability is about 25% less. Finally, 

for NO2, as for the Lawrenceville site, performance of both iRAMP and gRAMP models at Parkway East is comparable (r 5 

about 0.7, CvMAE about 0.45). However, it should be noted that, while performance for the iRAMP model is worse than at 

the CMU site, performance of the gRAMP model is better. 

To evaluate the performance of these sensors in a different way, EPA-style precision and bias metrics are provided in Fig. 5. 

Only CO, O3, and NO2 are considered, as these are the gases for which performance guidelines have been suggested by the US 

EPA (Table 2). These guidelines are indicated by the dotted boxes in the figure; points falling within the box meet the criteria 10 

for the corresponding tier. Also, the range in observed performance at the CMU site, as depicted in Fig. 3, is reproduced here 

for comparison using black markers with error bars. For CO, by these criteria, the gRAMP model outperforms the iRAMP 

model, with the gRAMP model meeting Tier II or IV criteria (<30% error) for all locations, while for the iRAMP model, Tier 

III criteria are met at the CMU site but only Tier I criteria are met at the other sites. Thus, under these metrics, for CO the 

gRAMP model is more representative of performance at other sites, while for the iRAMP model performance is more varied 15 

between sites. For O3, performance of both models at Lawrenceville is better than assessed at the CMU site, as seen before 

under the r and CvMAE metrics. Bothand both models fall near the boundary between Tiers II/IV and Tier III performance 

criteria (about 20% error). For NO2, performance at ACHD the deployment sites in terms of the bias is always worse than 

predicted by the CMU performance, although in terms of precision, the gRAMP model at the CMU site better represents the 

AHCD site performance than the iRAMP model (the same trend is as was seen under the r and CvMAE metrics for NO2using 20 

the other metrics).   

 

Overall, there tends to be a change in model performance at either of the deployment sites as compared to the CMU site. This 

is to be expected to some degree, as the concentration range and mixture of gases (especially at the Parkway East site, which 

is located next to a major highway) can be different at a new site (where the model was not trained), and thus cross-sensitivities 25 

of the sensors may be affected. These differences appear to be greatest for CO, with performance being better at the Parkway 

East site, where overall CO concentrations are higher. Additionally, gRAMP models tend to perform as well as or better than 

iRAMP models when monitors are deployed to new sites, and the performance of the gRAMP models at the training site is 

typically more representative of the expected performance at other sites than that of the iRAMP models. This is likely because, 

while the iRAMP models are trained for individual RAMPs at the training site, the gRAMP models are trained across multiple 30 

RAMPs at that site, and therefore are more robust to a range of different responses for the same atmospheric conditions. Thus, 

when a RAMP is moved from one site to another, and its responses change slightly due to a change in the surrounding 

conditions, the gRAMP model will be more robust against these changes. 
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3.93.4 Performance of Calibration Models over Time 

We now examine the change in performance of calibration models over time. Figure 6 shows the performance of models 

developed based on data collected at the CMU site in both 2016 and 2017 and tested on data collected in these twoeither of 

these years.  

Training and testing data for 2017 represent the same training and testing periods as used for previous results. For 2016, 5 

training and testing data are divided using the same procedure as was applied for 2017 data, as discussed in Sect. 2.3. For 

example, the results for “2016 Data, 2017 Models” represent the performance of models calibrated using the training data 

subset of the 2017 CMU site data when applied to calibrate the testing data subset of the 2016 CMU site data. Thus, aAny 

change in performance between these two models on data from the same year will indicate the degree to which the models 

have changed from one year to the next; likewise, a change in performance for the same model applied to data from different 10 

years will indicate the degree to which sensor responses have changed over time. . Note that NO is omitted here because data 

to build calibration models for this gas were not collected in 2016. Also note that results presented in previous sectionsthe rest 

of this paper have only used data collected in 2017 for model training and evaluation. 

 

For CO, there is a larger change in performance between 2016 and 2017 models when tested on 2016 data as opposed to when 15 

they are tested on 2017 data, with performance of 2017 models on 2016 data being worse (mostly in terms of CvMAE). 

Performance of models trained in 2016 on data collected in the same year is also better than that of 2017 models on the data 

from 2017. However, except for the 2017 gRAMP models applied to 2016 data (which could indicate a change in sensor 

response from as-new to in-use condition), in the three other cases CvMAE is typically under 0.25 and Pearson r over 0.9. For 

O3, 2016 models applied to 2016 data again outperform 2017 models applied to 2017 data, but in this case the performance 20 

ranges of the models overlap from one year to the next, indicating minimal degradation in performance. For NO2, there is a 

decrease in performance from 2016 to 2017, with r decreasing by about 0.05 to 0.1 and CvMAE increasing by about 0.1 to 

0.2. 

TheA drop in performance when models from one year are applied to data collected in the next year is relatively consistently 

observed for all models and gases, for all gases and all modelling approaches depictedwith O3 having the smallest variability 25 

from one year to the next. . This suggests that degradation is occurring in the sensors, reducing the intensity of their responses 

to the same ambient conditions and/or changing the relationships between their responses. Thus, , such that a model calibrated 

on the response characteristics of the sensors in one year will not necessarily perform as well using data collected by the same 

sensors in a different year. This degradation has also been directly observed, as the raw responses of “old” sensors deployed 

with the RAMPs since 2016 were compared to those of “new” sensors recently purchased in 2018; in some cases, responses 30 

of “old” sensors were about half the amplitude of those of “new” sensors exposed to the same conditions. . This is consistent 

with the operation of the electrochemical sensors, where electrode material is used upthe electrolyte concentration changes 

over time as part of the normal functioning of the sensor.  To compensate for this, new models should be calibrated for sensors 
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on at least an annual basis, to keep track with changes in signal response. Furthermore, calibration models should preferably 

be applied to data from sensors with a similar age to avoid effects due to different signal responses of sensors which have 

degraded to varying degrees. Finally, in comparing model performance from one year to the next, there is no significant 

increase in error associated with using gRAMP models (trained for sensors of a similar age) rather than iRAMP or bRAMP 

models. 5 

Additionally, calibration model performance was assessed as a function of averaging time. Note that the calibration models 

discussed in this paper are developed using RAMP data averaged over 15-minute intervals, as discussed in Section 2.32.3. 

However, these models may be applied to raw RAMP signals averaged over longer or shorter time periods. Furthermore, the 

calibrated data can also be averaged over different periods. To investigate the effects of averaging time on calibration model 

performance, we assess the performance of RAMPs calibrated with gRAMP models for CO, O3, and CO2 at the CMU site in 10 

2017, with averaging performed either before or after the calibration. Results are provided in the supplemental materials 

(Figures S4 and S5). Overall, we find little variation in calibration model performance with respect to averaging periods 

between 1 minute and 1 hour. 

3.103.5 Changes in Field Performance over Time 

Finally, we track the performance of RAMPs over time at specific deployment locations, as depicted in Fig. 7, to evaluate 15 

changes in calibration model field performance over time. This is done using three RAMP monitors; one was deployed at the 

ACHD Lawrenceville station from January through September of 2017, as well as during November and December 2017. A 

second RAMP was kept at the CMU site year-round, where it was collocated with regulatory-grade instruments intermittently 

between May and October. The third RAMP was deployed at the ACHD Parkway East site beginning in November of 2017. 

The same gRAMP calibration models as depicted in Fig. 4 (using the training data collected at the CMU site in 2017) are used; 20 

note that the RAMP present at the CMU site was a part of the training set of RAMPs for the gRAMP model, while the other 

two RAMPs were not. Performance of CO, NO2, and O3 sensors are depicted, as both CO and NO2 were continuously 

monitored at both of the ACHD sites and intermittently monitored at the CMU site, and O3 was consistently monitored at 

ACHD Lawrenceville as well as being intermittently monitored at the CMU site. Performance is assessed on a weekly basis. 

For CO, the limited quadratic regression gRAMP model is used, since it demonstrated the best performance of the general 25 

models in Sect. 3.2.and for O3, the hybrid gRAMP model is used, as these showed the least variability in performance of the 

gRAMP models in Fig. 33. For NO2, a hybrid gRAMP model is used, which provided the same performance as the neural 

network gRAMP model in Fig. 33. 

Performance of the calibrated O3 measurements shows almost uniformly high correlation and low CvMAE throughout the 

year. For CO and (to a lesser degree) NO2, while CvMAE is relatively consistent, periods of lower and more variable 30 

correlation occurred from July to September (for CO) or October (for NO2). These periods of lower correlation do not appear 

to coincide with periods of atypical concentrations, nor with periods of excessive pollutant variability at the site, nor with any 

unusual pattern in the other factors measured by the RAMP. Periods of lower performance appear to roughly coincide for the 
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CMU and Lawrenceville sites for the time during which both sites were active, and observed pollutant concentration ranges 

were comparable for both the CMU and Lawrenceville sites during these periods. There does not appear to be a clear seasonal 

or temporal trend into this this performance, as low correlations occur in the late summer but not early summer, when 

conditions were similarand there is also a drop in performance in the winter at the Lawrenceville site, possible indicative of 

long-term degradation. Thus, while sensor performance is observed to fluctuate from week to week, there does not appear to 5 

be a seasonal degradation in performance.  

 

 

For CO, the limited quadratic regression gRAMP model is used, since it demonstrated the best performance of the general 

models in Sect. 3.2. In terms of CvMAE, performance is consistently good (0.5 or less) throughout the year, with slight 10 

differences from week to week. In terms of correlation, CO experiences intermittent periods of low correlation (e.g. July to 

September), during which performance varies greatly from week to week. There does not appear to be a clear seasonal or 

temporal trend in this performance, as low correlations occur in the late summer but not early summer, and there is also a drop 

in performance in the winter at the Lawrenceville site, possible indicative of long-term degradation. Additionally, periods of 

lower correlation at the Lawrenceville site do not appear to coincide with periods of atypical CO concentrations, nor with 15 

periods of excessive CO variability at this site, nor with any unusual pattern in the other factors measured by the RAMP. 

Periods of lower performance appear to roughly coincide for the CMU and Lawrenceville sites for the time during which both 

sites were active, and observed ranges of CO concentration were comparable for both the CMU and Lawrenceville sites during 

this period. Correlation is uniformly high at the Parkway East site, where overall CO concentrations are higher, but correlation 

at the Lawrenceville site was also high for the same period. For O3, the hybrid random forest gRAMP model is used, as it 20 

showed the least variability in performance of the gRAMP models in Fig. 3. Overall, performance of the calibrated O3 

measurements is good, with almost uniformly high correlation and relatively low CvMAE throughout the year. For NO2, a 

random forest gRAMP model is used, which provided the same performance as the neural network gRAMP model in Fig. 3. 

Although it is higher than for the other gases, CvMAE is fairly consistent throughout the year. Correlation shows a similar 

trend to that of CO, with correlation becoming lower and more variable during certain periods. Here, these periods are 25 

concentrated in the fall. Also, correlation at the Parkway East site is lower than at the Lawrenceville site during the same 

period. This is potentially due to the higher variability of NO2 observed at the Lawrenceville site (standard deviation, SD 13 

ppb) during this period, as compared to the Parkway East site (SD 6 ppb).  

64 Discussion and Conclusions 

Based on the results presented in Sect. 3.1, random forest, complete quadratic regression, and hybrid models give the best and 30 

most consistent performance across all gases. Of these, the hybrid models, combining the complicated non-polynomial 

behaviors of random forest models (capable of capturing unknown sensor cross-sensitivities) with the generalization 

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight

Formatted: Highlight



20 

 

performance of parametric linear models, tend to generalize best for NO, NO2, and O3 when applied to data collected at new 

sites. For CO, quadratic regression models generalize better. Neural networks perform well for NO and NO2 but not for CO; 

limited quadratic regression models perform well for CO and O3 but not for NO and NO2. Linear regression, Gaussian 

processes and clustering are the worst overall models for these gases, never being in the top two best performing models, and 

only rarely being one of the top three. These results could perhaps be improved further; for instance, our linear and quadratic 5 

regression models did not use regularization, nor did we experiment with neural networks involving multiple hidden layers 

and varying numbers of nodes. The fact that for most gases a variety of calibration approaches show similar and (and for 

typical uses cases, acceptable) performance may reflect better underlying performance from the RAMP monitor, as similar 

studies for other low-cost sensor packages showed a wider variability in performance between calibration approaches (see e.g. 

the summary provided by Zimmerman et al., 2018). This suggests that the primary difference between these monitors, i.e. the 10 

internal circuitry which is unique to the RAMP, is the cause for this consistency; however, determination of this is beyond the 

scope of this paper. 

Overall, in most cases the generic bRAMP and generalized gRAMP calibration models perform worse than the individualized 

iRAMP models at the calibration site, but the decline in performance may be manageable and acceptable depending on the use 

case. For example, for NO2 (Fig. 3), median performance of bRAMP and gRAMP neural network and random foresthybrid 15 

models are only 15% worse in terms of CvMAE and 5% worse is terms of r. For O3, median performance of all models is 

above 0.8 for r and below 0.25 for CvMAE, indicating a high level of correlation and relatively low estimation error. For CO, 

limited quadratic models meet the same criteria. Furthermore, in examining the generalization performance of the models 

when applied to new sites, as depicted in Figs. 4 and 5, for NO2 (in terms of the r and CvMAE metrics) and for CO (in terms 

of the EPA precision and bias metrics), the gRAMP models show more consistent performance between the calibration and 20 

deployment locations than the iRAMP models. For O3, performance of iRAMP and gRAMP models at the Lawrenceville site 

is comparable, while for NO, performance of the gRAMP model at the Parkway East site is actually better than the iRAMP 

model. This may indicate that the NO sensors are more affected by changes in ambient conditions than the other 

electrochemical sensors, and the gRAMP model is better able to average out these sensitivities than the other model categories 

considered.  25 

Based on comparisons between the performance of models from one year to the next, as well as the analysis of changes in 

performance of the RAMP monitors collocated with regulatory-grade instruments for long periods, some sensors, such as the 

O3 sensor, are quite stable over time. For the CO sensor, performance seemed variable over time, and performance noticeably 

degraded from one year to the next, although no seasonal trends were apparent, and overall performance may be acceptable 

(CvMAE < 0.5). The NO2 sensor also exhibited some degradation from one year to the next, although performance was stable 30 

over time in 2017, with minimal changes in overall performance during this long deployment period.  

It can generally be expected that RAMP monitors will at least meet Tier II or Tier IV EPA performance criteria (<30% error) 

for O3 (with hybrid linear and random forest/linear regression bRAMP and possibly gRAMP models) and CO (with limited 

quadratic regression gRAMP models). Individualized calibration models are more likely to meet Tier II/IV criteria for NO2 
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(with iRAMP or bRAMP random foresthybrid models), and localized calibration may also be required. For NO, while no 

specific target criteria are established, neural network iRAMP or gRAMP models appear to perform best. 

6.14.1 Recommendations for Future Low-Cost Sensor Deployments 

In comparing different methods for the calibration of electrochemical sensor data, it was found that in some cases, e.g. for CO, 

simple parametric models, such as quadratic functions of a limited subset of the available inputs, were sufficient to transform 5 

the signals to concentration estimates with a reasonable degree of accuracy. For other gases, e.g. NO2, more sophisticated 

nonparametric models performed better, although parametric quadratic regression models making use of all sensor inputs were 

still among the best performing models for all gases. Depending on the application, therefore, different methods might be 

appropriate, e.g., using simpler parametric models such as quadratic regression to calibrate measurements and provide real-

time estimates, while using more sophisticated non-parametric methods such as random forest models when performing long-10 

term analysis for exposure studies. Of the non-parametric methods considered, random forest and hybrid random forest and/ 

linear regression models gave the best general performance across all the gas types. These models, along with the quadratic 

models, should therefore be considered for situations where it is desirable to use the same type of calibration across all gases, 

e.g. to reduce the “overhead” of programming multiple calibration approaches. The hybrid model, which combines the 

flexibility of the random forest with the generalizability of the linear model, is most theoretically promising for general 15 

application, but in practice the hybrid models give similar performance to random forest models only. This is likely because 

in the analysis presented here, training and testing data showed similar concentration ranges (see Table 4), and thus the 

capabilities of the hybrid model to generalize beyond the range of the training data was not adequately realized. . Future work 

will also investigate other forms of hybrid models. For example, combinations of neural network and linear regression models 

may work well for NO, where neural networks provided better performance than hybrid models using random forests. Also, 20 

for CO and Ozone, hybrid models combining random forests with quadratic models regression might perform better than those 

with linear models, since quadratic models perform better than linear models for these gases overall.  

Although there is a reduction in performance as a result of not using individualized monitor calibration (iRAMP) models when 

these are calibrated and tested at the same location, the use of a single calibration model across multiple monitors, representing 

either the best of available individualized models (bRAMP) or a general model developed for a “typical” monitor (gRAMP), 25 

tends to give more consistent generalization performance when tested at a new site. This suggests that variability in the 

responses of individual sensors for the same gas when exposed to the same conditions (such as would be accounted for when 

developing separate calibration models for each monitor) tends to be lower than the variability in the response of a single 

sensor when exposed to different ambient environmental conditions and a different mixture of gases (such as is experienced 

when the monitor is moved to a new site). Models that are developed and/or applied across multiple monitors will avoid 30 

“overfitting” to the specific response characteristics of a single sensor in a single environment. Thus, considering that it is 

impractical to perform a collocation for each monitor at the location where it is to be deployed, there is little benefit to 
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developing individualized calibration models for each monitor when their performance will be similar to (if not worse than) 

that of a generalized model when the monitor is moved to another location.  

There are several additional qualitative advantages to using gRAMP generalized models. First, the effort required to calibrate 

models is reduced, since not every monitor needs to be present for collocation and separate models do not have to be created 

for every monitor. For example, while for CO only 48 RAMPs had sufficient data to calibrate iRAMP individualized models 5 

based on data collected at the CMU site in 2017, general models can be calibrated and applied for all 68 RAMPs which were 

at the CMU site during this period, as well as for additional RAMPs which were never collocated at the CMU site but had 

have the same gas sensors installed. Second, collocation data collected from multiple RAMP monitors at different sites can be 

combined in the creation of a gRAMP generalized model, whereas iRAMP individualized or bRAMP models would require 

each RAMP monitor to be present at each collocation site. This means that a wider range of ambient gas concentrations can 10 

be reflected in the training data, allowing for better generalization. Finally, the use of gRAMP generalized models allows for 

robustness against noise of individual sensors, which can lead to mis-calibration of iRAMP individualized models but is less 

likely to do so if data from multiple sensors are averaged. Therefore, for future deployments, generalized models applicable 

across all monitors should be used. 

For long-term deployments, it is recommended that new models be developed each year, due to the noticeable change in 15 

performance when models for one year were used for processing data collected in the subsequent year. If generalized models 

are used, model development can be performed using only a representative subset of monitors collecting data across a range 

of temperature and humidity conditions, allowing most monitors to remain deployed in the field (although periodic “sanity 

checks” should be made for field-deployment monitors to ensure all on-board sensors are operating properly). Another option 

is to maintain a few “gold standard” monitors collocated with regulatory-grade instruments year-round and to use these 20 

monitors for the development of generalized models to be used with all field-deployed monitors over the same period. 

Determination of how many monitors are necessary to develop a sufficiently robust generalized model is a topic of ongoing 

work. 

Data Availability 

All data (reference monitor data, RAMP raw signal data, calibrated RAMP data for both training and testing), and codes (in 25 

MATLAB language) to recreate the results discussed here are provided online at https://doi.org/10.5281/zenodo.1302030 

(Malings, 2018a)(Malings, 2018). Additionally, an abridged version of the dataset (without the calibrated data or models, but 

still including the codes to generate these) is available at https://doi.org/10.5281/zenodo.1482011 (Malings, 2018b). 
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Figure 1: External (a) and internal (b) configuration of the RAMP monitor. 

  



29 

 



30 

 

 

Figure 2. Comparative performance of various individualized RAMP calibration models across gases measured by the RAMPs. 

Models are trained and tested on distinct subsets of collocation data collected at the CMU site during 2017; performance shown is 

based on the testing data set only. Proximity to the lower-left corner of each figure indicates better performance. Note the differing 

vertical axis scales.  5 
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Figure 3. Comparative performance of individualized (iRAMP - square), best individual (bRAMP - diamond), and general (gRAMP 

- circle) model categories across gases measured by the RAMPs. The modelling algorithms used for each gas corresponds to three 

of the better-performing algorithms identified among the individualized models. Models are trained and tested on distinct subsets 

of collocation data collected at the CMU site during 2017; performance shown is based on the testing data set only. Proximity to the 5 
lower-left corner of each figure indicates better performance.  
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Figure 4. Comparative performance of individual and general models for RAMPs deployed to ACHD monitoring stations (filled 

makers), compared to the performance of the same RAMPs at the CMU site (hollow markers). For example, a filled green marker 

indicates the performance of a RAMP at the Lawrenceville site, while a hollow green marker indicates the performance of that same 

RAMP when it was at the CMU site. The modelling algorithm used for each gas corresponds to the most consistent algorithm 5 
identified among the models depicted in Fig. 3: limited quadratic regression (LlQR) for CO, neural network (NN) for NO, random 

forest (RF) for NO2, and hybrid linear and random forest/linear regression models (HY) for NO2 and O3. Models are trained on data 
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collected at the CMU site during 2017; performance shown for the CMU site (hollow marker) is based on the testing data for the 

corresponding RAMPs collected at that site. Proximity to the lower-left corner of each figure indicates better performance.  
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Figure 5. Comparative performance of individual and general models for RAMPs deployed to ACHD monitoring stations using EPA 

performance criteria. Dotted lines indicate the outer limits of each performance tier. Performance shown for the CMU site is based 

on performance across all RAMPs at that site based on testing data only. Proximity to the lower-left corner of each figure indicates 

better performance.  5 
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Figure 6. Comparative performance of individualized random forest hybrid models in 2016 and 2017. The “Models” year indicates 

the year from which training data collected at the CMU site are used to calibrate the model; the “Data” year indicates the year from 

which testing data collected a the CMU site are used to evaluate the model.  

Models for 2016 are trained using data collected at the CMU site during 2016 or 2017, and tested on either set as indicated. 5 
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Figure 7. Tracking the performance of RAMP monitors deployed to ACHD Lawrenceville, ACHD Parkway East, and CMU over 

time. Statistics are computed for each week. Results shown correspond to those of models trained using data collected at the CMU 

site during 2017. For CO, the generalized limited quadratic regression model is used; for NO2, and O3,  a general random forest 

model is used; for O3, the generalized hybrid linear and random forest/linear regression models  iares used.  5 
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Table 1: Assigned lower limits for censoring small measurement values. 

Quantity Assigned Lower Limit 

CO 200 ppb 

NO2 10 ppb 

O3 10 ppb 

 

Table 2: EPA air quality sensor performance guidelines for various applications. Reproduced from (Williams et al., 2014). 

Tier Application Error Metrics 

I Education  < 50% 

II Hotspot Identification and Characterization < 30% 

III Supplemental Monitoring < 20% 

IV Personal Exposure Monitoring < 30% 

V Regulatory Monitoring < 7% for O3 

< 10% for CO 

< 15% for NO2 
 

Table 3: Performance of iRAMP calibration models with respect to EPA air quality sensor performance guidelines as assessed at 5 
the CMU site. Entries in the table denote which models meet the corresponding guidelines for each gas (LR = linear regression; 

LlQR = limited quadratic regression; CcQR = complete quadratic regression; GP = Gaussian process; CL = clustering; NN = neural 

network; RF = random forest; HY = hybrid random forest and/ linear regression).  

Gas Tier I Tier II/IV Tier III 

CO NN LR, GP, CL, HY 
lQRLQR, 

cQRCQR, RF 

O3 CL 

LR, lQRLQR, 

cQRCQR, GP, 

NN, RF, HY 

 

NO2 GP 

LR, lQRLQR, 

cQRCQR, CL, 

NN, RF, HY 

 

 

 10 
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Table 4: Durations and rPerformance data for iRAMP modelsanges of testing and training data at CMU in 2017. (Avg. is the average, 

SD is the standard deviation). Durations of the training and testing periods are in days. Ranges indicated are in ppb for all gases, 

degrees Celsius for temperature (T), and percent for relative humidity (RH). Ranges of lower values, average values, and upper 

values across RAMPs for each period are presented.Concentration, MAE, and bias are in units of ppb for all gases except CO2, 

which uses units of ppm. Models indicates the total number of iRAMP models considered. Slope and r2 are presented for the best-5 
fit-line between the calibrated RAMP measures and those of the regulatory monitor. 

Gas Training Period Testing Period 

 Duration Concentration Duration Concentration 

 [days] [ppb] [days] [ppb] 

 Range 

lower 

range 

average 

range 

upper 

range Range 

lower 

range 

average 

range 

upper 

range 

CO 21 - 28 57-118 193-356 923-3750 3 - 75 57-120 145-451 235-3750 

NO 26 - 28 0-1 1-4 21-66 4 - 93 0-2 1-3 11-66 

NO2 22 - 28 0-1 5-9 19-31 4 - 110 0-1 4-9 15-32 

O3 21 - 28 1-3 21-36 62-128 2 - 76 1-23 22-48 54-128 

T [°C] 2-16 18-26 32-42 [°C] 0-18 14-27 27-42 

RH [%] 26-52 56-71 66-94 [%] 25-52 50-73 64-94 
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Table 5: Performance data for iRAMP models at CMU in 2017 (Avg. is the average, SD is the standard deviation). The “#” sub-

column under “Model” indicates the total number of iRAMP models developed for each gas. Slope and r2 are presented for the best-

fit-line between the calibrated RAMP measures and those of the regulatory monitor. 

Gas Model Testing Performance 

 
Type # Slope r2 MAE Bias 

     [ppb] [ppb] 

 
  

Avg. SD Avg. SD Avg. SD Avg. SD 

CO LR 48 1.08 0.36 0.75 0.16 60 19 -6 18 

 LQR 48 1.01 0.18 0.83 0.10 48 11 -5 14 

 CQR 48 0.96 0.16 0.85 0.09 46 16 -3 20 

 CL 48 1.06 0.24 0.74 0.11 58 17 1 22 

 NN 48 1.33 1.11 0.46 0.23 84 34 -2 34 

 HY 48 0.94 0.20 0.77 0.12 52 15 11 22 

NO LR 19 1.31 0.56 0.15 0.07 2.3 1.1 0.26 0.80 

 LQR 19 1.15 0.52 0.25 0.15 2.3 1.1 0.26 0.80 

 CQR 19 0.97 0.36 0.36 0.14 2.1 1.0 0.35 0.82 

 CL 19 0.67 0.33 0.18 0.10 2.2 1.2 0.08 0.80 

 NN 19 0.90 0.35 0.30 0.13 2.0 1.0 0.09 0.55 

 HY 19 0.65 0.37 0.32 0.14 2.3 0.8 0.76 0.66 

NO2 LR 62 0.89 0.31 0.17 0.08 3.4 0.7 0.16 0.88 

 LQR 62 0.79 0.23 0.21 0.09 3.3 0.6 0.18 0.93 

 CQR 62 0.85 0.15 0.47 0.11 2.6 0.5 0.07 0.73 

 CL 62 0.77 0.17 0.37 0.12 2.9 0.5 0.27 0.70 

 NN 62 0.93 0.16 0.49 0.12 2.6 0.5 0.07 0.59 

 HY 62 0.83 0.13 0.48 0.10 2.6 0.4 0.51 0.63 

O3 LR 44 0.98 0.06 0.80 0.12 5.1 1.7 -0.05 1.6 

 LQR 44 0.96 0.05 0.83 0.11 4.6 1.7 0.12 1.4 

 CQR 44 0.93 0.07 0.82 0.12 4.6 1.7 -0.08 1.1 

 CL 44 0.89 0.11 0.62 0.11 7.3 1.3 -0.47 2.4 

 NN 44 0.98 0.21 0.73 0.26 5.8 2.8 0.09 1.3 

 HY 44 0.93 0.06 0.81 0.09 4.9 1.3 0.40 1.5 
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